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An investigation was conducted to describe topologically close packed (TCP) phase instability

as a function of composition in the advanced Ni-base superalloy Rene N6. TCP phases are

detrimental to overall high-temperature performance of Ni-base superalloys because of their

brittle nature and because they deplete the Ni-rich matrix of potent solid solution

strengthening elements. Thirty-four variations of polycrystalline Rene N6 determined from a

design-of-experiments approach were cast and homogenized at 1315°C for 80 hours followed

by exposure at 1093°C for 400 hours to promote TCP formation. The alloys had the

following composition ranges in atomic percent: Co 10.61 to 16.73%, Mo 0.32 to 1.34%,

W 1.85 to 2.52%, Re 1.80 to 2.11%, Ta 2.36 to 3.02%, A1 11.90 to 14.75%, and Cr 3.57 to

6.23%. Physical and chemical characteristics of all microstructures obtained were described

using various analytical techniques. From these observations, a mathematical description of

TCP occurrence (t_ and P phase) was generated for polycrystalline Rene N6.
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Introduction

Ni-base superalloy single crystals represent the state-of-the-art for turbine engine airfoil

application as they offer the best balance of properties to allow for the high operating

temperatures required for efficient engine operation. 1 Current trends in alloy design take

advantage of improved creep rupture strength with the addition of higher levels of refractory

elements. 2 In particular, the addition of significantly higher levels of Re in third generation

superalloys is key for both microstructural stability and creep rupture strength. 3 While the

presence of the refractories is thought to provide strength benefits from solid solution

hardening, a tendency for alloy instability in the form of topologically-close-packed (TCP)

phases or secondary reaction zone (SRZ) phenomena accompanies the high refractory

content. 3 The formation of these phases in sufficient amount is detrimental to the overall high

temperature performance of Ni-base superalloys because of their brittle nature and because

they deplete the Ni-rich matrix of potent solid solution strengthening elements. 4 The tendency

for a particular composition to form TCP may not be immediately known since the

precipitation of TCP phases in Ni-base superalloys is nucleation controlled, thereby requiring

long times at elevated temperatures to precipitate. 5 They preferentially nucleate along the

octahedral planes of the Ni-base superalloys, usually in areas of refractory metal enrichment at

grain boundaries or inside dendrites. 5'6 In Rene N6, two closely related TCP phases, o and P,
have been observed. 2

Early attempts to predict TCP phase formation were based on the PHACOMP method, 7 which

calculates an average electron vacancy number, Nv, for a given alloy. This theory is based on

the premise that TCP phase precipitates in the "/phase when Nv of that ), phase exceeds a

critical value. 8 The difficulty of PHACOMP was described by Murphy et. al. 9 who concluded

that PHACOMP calculations are not accurate unless detailed knowledge is available as to the

exact compositions of the precipitating phases. Efforts to predict TCP phase formation have

continued into this decade by a group of Japanese authors who also make predictions based on

the electronic structure of the Ni-base superalloy, commonly known as the "d-electrons

method", m'll They have determined that 2 parameters, the bond order (Bo) and the average

d-orbital energy level (Md) can be used to predict o phase. As with the Nv method, the new

method defines a critical value of Md above which instability occurs. This method also does

not take into account the synergistic effects of the alloying elements on their partitioning

behavior (i.e., the dependence of elemental partitioning on the presence or absence of other

alloying elements).

Approach

The current work was designed to examine TCP phase formation in modem single crystal

superalloys paying particular attention to the potential synergistic effects of alloying elements.

In order to accomplish this, close attention must be paid to the structure and composition of

all phases present. The approach chosen in this investigation to understand the presence of

TCP phase instability in third generation Ni-base superalloys was to develop a model based on

a design-of-experiments (DOE) methodology. While the investigation of multiple

temperatures would have been of interest, it was instead decided to focus on one temperature

and investigate the compositional effects in more detail. A DOE was set up to quantify both

the linear and pairwise interactive effects of A1, Co, Cr, Mo, Re, Ta and W in an 8-component

superalloy (Ni-base Rene N6 without C) on the resultant amount of TCP phase. It is a relative

certainty that eventual turbine blade materials will be in single crystal form. However, to

improve experimental feasibility and simplify the microstructures, it was decided to examine
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the alloys in polycrystalline form and without the inclusion of carbon. The effects of those

choices will be an increase in the likelihood of TCP in the microstructure due to the increased

amount of high-energy grain boundary area and by precluding the formation of carbides.

Although carbides may enhance TCP formation by providing more nucleation sites 12, the

absence of carbon allows more refractory atoms that would be tied up in carbides to instead

contribute to TCP. These choices are believed to be conservative in the sense that a single

crystal is expected to have slightly less TCP formation than a polycrystal of the same

composition. The full statistical model supported by the DOE was:

TCP phase = _0 + I]1X1 + 132X2 + [_3X3 + _4X4 + _5X5 + _6X6 + 1_7X7 +

_12XlX2 -F l_,3XlX3 + [_14XlX4 + [_15XlX5 + [_16XlX6 + [_17XlX7 "l-

_23X2X3 + _24X2X4 "t- _25X:X5 -I- [_26X2X6 + l_27X2X7 "1- _34X3X 4 +

_3sX3Xs + _36X3X6 -I- _37X3X7 + _45X4X s + _46X4X6 + _47X4X7 -{-

[_56X5X6 + _57X5X7 + _67X6X7 + [[3s,B, + _s2B2 + _83B3 ]

where XI=A1, X2=Co, X3=Cr, X4=Mo, Xs=Re, X6=Ta, X7=W, [_o=intercept, and B_, B2, and

B3 are blocking terms. The ranges of investigation for each of the seven elements are listed in

the next section. The 44 runs were conducted in four furnace batches of 11 experiments each.

The DOE strategy employed is called D-Optimal. 13 This strategy allows the reliable

estimation of a user-supplied model in the absolute minimum number of experiments. In this

study the desired model incorporated 32 terms involving all seven linear effects of the

alloying elements and 21 two-variable interactions that captured their interactive behaviors.

The remaining 4 terms in the model were for the intercept and the three dummy variables that

accounted for potential differences among the four furnace runs.

Material Selection

Rene N6 was chosen for this analysis because it is typical of third generation alloys. 14 Single

crystal Rene N6 has a melting temperature of 1399°C and a _/' solvus of 1299°C. _5 A series of

experimental superalloys with compositions containing Ni-Co-A1-Cr-Mo-W-Re-Ta were

chosen based on Rene N6. In commercial Rene N6 trace amounts of C, B, and Hf are also

present. Other elements not included in Rene N6, such as Ti and Y, may also contribute to

phase instability in third generation Ni-base superalloys.

Forty-four Rene N6 compositions (thirty-four variations plus 10 repeats of one composition)

were determined from a DOE strategy. The DOE defines a range of elements included at

either their low or high limit as defined by the patent. 4 The alloys had the following

composition ranges in atomic %: Co 10.61 to 16.73%, Mo 0.32 to 1.34%, W 1.85 to 2.52%,

Re 1.80 to 2.11%, Ta 2.36 to 3.02%, A1 11.90 to 14.75%, and Cr 3.57 to 6.23%. The

compositions studied are given in Table I. Alloys 1, 2, 3, 12, 13, 14, 23, 24, 25, 34, 35 were

designed to be the repeats located at the middle composition level of each of the elements.

Procedure

All alloys were vacuum induction melted in argon starting with 100 gram charges of high-

purity melting stock. The inductively stirred melts were then poured into a copper mold to

obtain the cylindrical castings nominally 2 cm in diameter by 4 cm long. The heat treatment

procedure was carried out in two steps. The goal of the first heat treatment was to fully

homogenize the samples from top to bottom while the second heat treatment step would
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Table I Compositions of all Rene N6 Castings in Atomic Percent With Actual

and Predicted TCP Response

Alloy A1 Co C__£r Mo Ni R_ge T__aa W Vol %

TCP

1 13.18 12.71 4.56 0.78 62.41 1.84 2.48 2.04 0.42

2 11.90 12.92 4.48 0.79 63.47 1.86 2.54 2.05 0.23

3 12.58 12.80 4.47 0.79 62.96 1.86 2.50 2.05 0.11

4 14.48 10.91 3.64 0.33 63.35 1.90 2.96 2.43 4.47

5 12.66 16.73 3.59 1.34 58.08 2.11 2.99 2.49 5.56

6 12.47 16.48 3.66 1.32 59.27 1.91 2.95 1.93 0.58

7 14.19 16.57 3.68 1.33 57.73 2.09 2.47 1.94 8.57

8 14.09 16.45 6.09 0.33 55.58 2.08 2.94 2.45 12.25

9 12.69 10.97 6.10 1.32 62.09 1.91 2.45 2.48 7.98

10 14.03 10.92 6.07 1.32 60.72 2.07 2.93 1.96 13.34

11 12.39 11.13 3.71 1.34 63.96 1.93 3.02 2.52 4.46

12 12.95 12.60 4.44 0.85 62.91 1.81 2.48 1.97 0.24

13 12.85 12.61 4.52 0.77 62.97 1.80 2.50 1.99 0.3

14 13.38 12.57 4.55 0.78 62.47 1.81 2.48 1.96 0.33

15 13.06 10.79 3.63 0.33 65.40 2.03 2.40 2.36 0.29

16 14.22 15.26 5.56 1.18 56.89 1.86 2.75 2.29 16.7

17 14.86 16.16 3.61 1.31 57.30 2.02 2.87 1.87 9.1

18 12.93 15.96 5.99 1.30 57.74 1.84 2.38 1.86 2.38

19 13.32 16.26 6.06 1.31 56.27 2.00 2.89 1.89 7.96

20 14.68 10.61 6.07 0.39 61.70 1.83 2.36 2.36 8.91

21 14.75 15.93 3.59 0.32 58.90 1.80 2.37 2.33 1.7

22 14.46 10.61 3.57 1.29 64.05 1.80 2.36 1.85 4.94

23 12.76 12.75 4.70 0.78 62.60 1.85 2.53 2.04 0.46

24 12.77 12.86 4.58 0.78 62.65 1.85 2.49 2.01 0.14

25 12.98 12.73 4.69 0.78 62.41 1.85 2.52 2.04 0.2

26 12.92 10.97 6.22 0.33 62.30 1.91 2.94 2.41 2.31

27 13.03 10.86 3.74 1.31 64.69 2.06 2.43 1.88 0.55

28 13.02 16.18 6.15 0.33 57.61 1.89 2.43 2.39 1.06

29 13.09 10.92 3.76 0.33 65.02 2.07 2.93 1.89 0.03

30 14.70 10.90 3.75 1.31 62.41 2.06 2.44 2.43 6.5

31 13.07 11.10 6.29 1.34 60.62 2.10 3.01 2.48 11

32 12.43 10.85 3.70 0.32 66.53 1.87 2.40 1.89 0

33 14.70 16.09 6.20 0.32 56.06 1.83 2.91 1.89 4.48

34 12.98 12.84 4.69 0.78 62.31 1.85 2.52 2.04 0.2

35 12.98 12.84 4.69 0.78 62.31 1.85 2.52 2.04 0.32

36 12.97 16.52 3.79 0.33 58.98 1.95 2.99 2.46 0.74

37 12.91 10.76 6.22 0.32 63.45 2.04 2.41 1.89 0.66

38 12.94 16.48 6.23 1.32 56.01 2.11 2.46 2.45 7.16

39 12.53 16.26 3.73 0.33 60.80 2.05 2.42 1.87 0

40 13.05 16.33 6.17 0.33 57.22 2.06 2.92 1.92 1.15

41 14.68 10.81 3.69 0.32 64.19 2.03 2.39 1.88 0.53

42 12.71 16.49 3.79 1.32 58.87 1.91 2.46 2.45 0.56

43 13.11 10.93 6.20 1.32 61.66 1.90 2.97 1.92 7.79

44 14.57 16.46 3.78 0.33 57.36 2.08 2.98 2.45 5.49

Predicted

0.91+1.21

0.01_+0.13

0.21_+0.58

3.73+_.2.45

4.53+_2.70

0.12_+0.44

7.96+3.58

10.49+4.11

6.45+3.23

13.92+4.74

4.29+_2.63

0.44_+0.84

0.29_+0.68

0.94+1.23

0.06_+0.31

14.5+4.84

9.54+_3.92

1.89-2_1.75

8.27+3.65

8.75+3.76

1.23+1.41

3.47+_2.37

0.44_+0.84

0.31_+0.71

0.73+1.09

3.02+_2.21

1.15+1.36

0.75+1.10

0.04_+0.25

6.68+3.28

11.46+4.30

0.08_+0.36

4.76+2.77

0.71 + 1.07

0.71+1.07

1.29-!-_1.44

0.26_+0.65

8.62+3.73

0-L-0

1.41+1.51

0.51_+0.91

1.3+1.45

6.71 +3.29

6.53+3.25
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simulate the microstructural evolution of the alloys at unstressed, hot-engine conditions.

Following a furnace calibration, all of the 44 alloys were homogenized in flowing argon at

1315°C for 80 hours. This was not a typical Rene N6 homogenization treatment. The longer

time was chosen to minimize both macro and microsegregation in the castings. The

homogenization procedure was carried out in four randomized batches of eleven samples

each. All samples were air cooled from the homogenization treatment. Subsequent to

homogenization, longer term heat treatments at 1093°C for 400 hours were conducted on all

44 as-homogenized samples using the same randomized array of four batches. The

temperature 1093°C is considered to be a typical exposure for turbine blades in advanced

engines.

Scanning electron microscopy was performed on all aged microstructures. Both secondary

electron and backscatter electron imaging (BSE) were used to capture the predominantly

three-phase (y+y'+TCP) aged microstructures. Since phase identification was important, BSE

imaging was advantageous given the ability to capture compositional differences between

phases in the form of intensity differences. Strong delineation of all microstructural phases

allowed for more accurate quantitative image analysis.

Image analyses of the microstructures were performed using either a computerized image

analysis software package or point counting as per ASTM Standard E562-95. The gray levels

were set manually (by inspection) for each photograph when using the computer software.

For each casting, four areas were analyzed and the results averaged.

Results

As-homogenized microstructures

Figure 1 - As-homogenized microstructure.

The microstructural characteristics of the as-homogenized alloys were very diverse. Three as-

homogenized alloys were strategically chosen for microprobe analyses to cover both lean and

heavily alloyed compositions. The microprobe results indicated that no macro or

microsegregation was present. Again, it is noted that carbides were absent in all alloys. Small

amounts of TCP phase was observed in alloys 8, 10, 16, 30, and 31. The balance of the alloys

exhibited the desired two-phase y/y' . y' volume fractions ranged from 60 to 75 percent. The

y' precipitates were mostly cuboidal in shape (Figure 1) and ranged in size from 0.1 to

0.25 _'n. Size differences could be the result of compositional variations, differences between

NASA/TM--1998-206622 5



the homogenization temperature and the `/' solvus for each alloy, and slight differences in

cooling rate from the homogenization treatment.

Aged microstructures

Figure 2 - Group 2 BSE images of aged microstructures indicating TCP only at grain

boundaries. TCP is the white phase, "/is light gray, and "/' is dark gray.

a) random formation, b) cellular formation.

Upon examination of all microstructures after aging treatment it was determined that the

alloys fell into three groups based on the TCP distribution. Group 1 alloys contained no TCP

phase and only alloys 32 and 39 were in this group. Group 2 was comprised of alloys where

TCP formed exclusively at the grain boundaries and contained less than 3%TCP by volume.

Further, Group 2 alloys could be broken down into two categories: 2a where the TCP existed

as a random distribution along grain boundaries (Figure 2a) and 2b where the TCP tended to

form in a cellular fashion (Figure 2b). Group 3 alloys contained between 3 and 17% TCP by

volume. This third group was comprised of alloys that formed TCP at grain boundaries as

well as within grains. Group 3 could be further broken down into three categories: isolated

needles, interconnected needles, and abundant-random (Figures 3a-3c). Table 11 summarizes

how all of the alloys were categorized.

Table II Breakdown of Alloy Microstructures into Groups

Group 1
no TCP

32, 39

Group 2

Intergranular precipitates only

random cellular

1,2,3,

12,13,14,

15,23,24,

25,26,28,

29,34,35,

36,37,42

6,21,26,

27,28,35,

36,40,41,

42

Group 3

Intra- + inter-granular precipitation

isolated interconnected abundant/

needles needles random

18,26,44 11,17,19,

22,38

4,5,7,

8,9,10,

16,17,19,

20,22,30,

31,33,38,

43,44

The microstructures of the aged alloys were markedly different between Group 2 (Figure 2)

and Group 3 (Figure 3) alloys. The ,//T' structure within the grains of the Group 2 alloys was
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undisturbedby thepresenceof TCP phase which was located at the grain boundaries. There

was evidence of y' alignment within the grains and also some evidence of y' coarsening.

Conversely, in regions near the TCP phase at the grain boundaries the y' became the

continuous phase at the expense of y which is in agreement with the literature. 3 Group 2b

alloys exhibited a cellular precipitation of phases at the grain boundaries including a variety of

TCP phase morphologies while the TCP phase aspect ratio in Group 2a alloys was closer to 1.

Group 3 alloys contained many different TCP phase morphologies. In all Group 3 alloys, the

stable phase adjacent to the TCP phase was T'. Group 3a contained a random placement of

low TCP volume fraction while Group 3c formed TCP similarly but in more prolific amounts.

Group 3b seemed to form TCP on preferred planes which are not conclusively identified at

this time, however, {111 } type planes are probable based on a measurement of roughly 54 °

from the { 100} type 11' orientation. The TCP that was present in Group 3 alloys interrupted

the y/_' structure but was most noticeable in the case of Group 3c where it is obvious that 1/,

was no longer present as discrete particles but as an interconnected, interpenetrating y/7

network.

i ¸¸ i.... , !i̧

Figure 3 - Group 3 aged microstructures indicating both intra- and inter-granular TCP.

a) isolated needles, b) interconnected needles, c) abundant/random.

Microprobe analyses of the TCP phase in a random sampling of 11 alloys indicated that it was

rich in Re and Co. The average composition in atomic percent was: Ni 23.68, Co 19.60,

Mo 5.40, W 12.30, Re 23.77, Ta 1.96, A1 0.44, and Cr 12.86. These values are meant to

indicate the general trends in TCP phase composition because they represent a limited

sampling and also because only the TCP at the grain boundaries was analyzed. As can be seen

from Figures 2 and 3 it is obvious that the TCP phase cannot be classified as having any one
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morphology. The TCP phase takes the form of needles, rods, and equiaxed particles

depending on several factors, including composition and volume fraction. Transmission

electron microscopy (TEM) in conjunction with electron diffraction conclusively identified

both _ and P phases in the microstructure of alloy #17. The orthorhombic P-phase had lattice

parameters of a=l.73nm, b=0.49nm, and ¢=0.92nm and the tetragonal _ phase had lattice

parameters of a=0.931nm and e=0.486nm. It was not possible to distinguish _ from P using

BSE contrast in the scanning electron microscope and TEM examination was not performed

in sufficient detail to determine the relative amounts of the two phases. Therefore, the general

designation of "TCP phase" is used to refer to the total volume fraction of _ plus P in all

alloys.

Discussion

It is generally accepted that a complete understanding of the microstructure of complex Ni-

base superalloys is elusive. While ternary and even quaternary systems can be described by

phase diagrams, extrapolating those simpler cases for 8-component systems is often futile. It

is of particular interest in this study to gain further understanding regarding the occurrence of

TCP phase in third generation Ni-base superalloy microstructures. Future work will include

analysis of compositional effects on the TIT' microstructure.

It is widely known that the refractory metal content in a Ni-base superalloy contributes to the

formation of TCP phases such as _ and _. This idea has also been substantiated by electron

vacancy theory where the Nv values for the refractories are greater than Nv of other constituent

elements. Most of the research substantiating this theory involved investigation of first- and

second-generation Ni-base superalloys. Current Ni-base superalloys, termed third-generation,

contained a greater amount of the refractory elements so as to improve the solid-solution

strengthening of the alloy and improve its high-temperature engine performance. It is

expected that the total refractory metal content in the alloys directly affects the TCP content.

However, a strong sensitivity for both the type of refractory metal addition and also the level

of other alloying elements exists. In other words, certain elements or combinations of

alloying elements are more potent than others in forming TCP. It is situations such as these

where DOE strategies are valuable as they employ multi-variable regression models to

accurately quantify both the simple linear and complex interactive effects. A full multiple

regression model is necessary in order to capture these effects.

Two approaches to model building were conducted in this work. The "backwards elimination

with review" approach began with all 32 terms in the generic DOE model and sequentially

eliminated the non-significant terms. The "forward selection with review" approach began

with just an intercept and sequentially selected significant terms into the model. Both

modeling approaches yielded the same final model. The actual regression calculations were

performed on composition data that was in normalized units ranging from -1 to +1. Actual,

not aim compositions were used. The volume percent of TCP was transformed by a square

root function to accommodate the fact that TCP response values were more reproducible at

lower volume % than they were at the higher volume fractions near 15%. Even though the

blocking terms were significant, they were removed from the final model to make possible

future predictions. The resultant decrease in agreement between actual and predicted TCP

values was reflected in a slightly increased error of prediction. The result of this analysis in

terms of atomic percent is:

NASA/TM--1998-20662; 8



(vol% TCP) 1/2 = 16.344782 - 1.019587(A1) - 2.624322(Cr) - 3.821997(Mo) +

1.109575(Re) - 3.207295(Ta) + 6.462984(W) - 2.271803(Co) +

0.052884(A1"Co) + 0.214059(Al*Cr) + 0.300698(Al*Mo) +

0.8001 l(Co*Re) + 0.257108(Cr*Mo) - 5.081598(Re*W) +

1.824441(Ta*W)

The model's predictive capability can be expressed by an approximate 95% confidence

interval around the predicted value, and is given by TCP + 1.27(TCP) 1/2. The model's

goodness of fit is captured in the statistic R 2 = 0.954, which implies that 95.4% of the total

variation in the response, (vol% TCP) 1/2, across all 44 experiments is explained by the model.

Actual TCP volume percents as well as model predicted TCP phase values with 95%

confidence intervals are given in Table I. Since the TCP prediction relies heavily on

interactive effects as well as linear effects, its usefulness will be limited when applied to

alloys that lie outside of the design space of Rene N6. The casting and heat treatment of

several different alloys is forthcoming to experimentally verify the predictive capabilities of

the model.

The above mathematical relationship indicates that every element in the composition can have

a statistically significant effect on TCP phase formation. However, it is not simple to discern

the direct relationship between the coefficients associated with individual elements and their

primary effect on resultant TCP. In other words, coefficients associated with the linear effects

of the elements can not be relied upon solely for indicating TCP phase response. Interactive

effects captured by the interaction terms are also of critical importance, namely Co*Re,

Mo*Cr, Cr*A1, Co*A1, Mo*A1, W'Re, and W*Ta. Figures 4a-4f represent these

relationships graphically where volume % TCP phase is the response with uniform scaling

across all graphs to indicate the relative strength of interactions. The response surface for

Mo*A1 was omitted because it was essentially identical to the Cr*AI response. For the

generation of each graph, all 5 elements that were not included in the interactive relationship

were kept at their midpoint compositional level. Figure 4a shows the response surface of

volume percent TCP as a function of Re and Co content. The figure indicates that at low Co

levels the inclusion of Re has very little effect on TCP content. However, when the Co level

is high Re has a more pronounced, positive effect on TCP phase content. Figure 4b and 4c

indicate that at higher levels of Cr, either high Mo or high A1 levels contribute strongly to

TCP formation. Conversely, the effect of Cr is negligible with low A1. Figure 4d shows that

Co has less of an impact on TCP at lower A1 levels and that the increase of A1 across all Co

levels contributes toward more TCP. Figures 4e and 4f show that the interactive effect of W

with either Ta or Re gives a more subtle TCP response similar to that observed in the Co*Re

interaction in Figure 4a. From inspection, the interactive effects of Re, W, and Ta are not

major with respect to some of the other sharper trends toward high TCP content. The survey

of Figures 4c-4e strongly suggests low A1 levels to minimize TCP phase content. Figure 4b,

when studied in conjunction with Figures 4c and 4e makes investigation of potential 3-way

interaction among Mo, Cr, and A1 intriguing for future studies. Further detailed inspection of

the response surfaces in Figures 4a-4g could provide several additional, substantive arguments

regarding the interactive effects of two elements on TCP.

If we were to look at this model using the Rene N6 target composition (Table HI) a TCP

content of 1.57 + 1.59 percent after exposure to 1093°C for 400 hours is predicted. This is a

NASA/TM--1998-206622 9



Ca)
j

16---

12--

8 ---.

TCP. _2

4"--

0-- 04
11.0

.88 1.9613.0 1_.0_ "1
1.80 Re

Co

8_
TCP _/_]_

0.2

6.

• 4.4 3.6
Cr

14.4

f_'_::l 2.8 13.6

12.0 A1

(e)

82
TCP,

4_

0

2.45 ,, ,- .8

2.05 2.4
1.85 TaW

16"-"

12

8---.
TCP-

4-.

0

1.2
0.8

Mo

\

0.4 3.6 Cr

6.0

(d)

12 -.[ /_/

82
TCP. /_

13
Co

i 12.0 12.8

14.4

AI

- 3.0

(f)

16

12

TCt_

4

o .04
_25 _0_:-.-_7_, 88-'_
W 1.85 Re

Figure 4 - Graphical representation of model predictions showing significant linear

interactive effects, a)Co*Re, b)Mo*Cr, c)Al*Cr, d)Co*A1, e)W*Ta, f)W*Re.

reasonable result for Rene N6 close to its target composition. However, it is fair to assume

from the results of this study that TCP content could become much higher if compositions of

certain elements are at their high or low limits, but still within the specification of the alloy.

Table 11I applies the mathematical description of TCP occurrence generated in this study to
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severalcommerciallyavailablealloys. The traceelementspresentin the alloyswereomitted
from the tableto simplify the applicationof the modelwhile higherNi valueswere usedto
absorbthe excludedvaluesandbring the compositionsto 100percent. Although Ti is not
includedin themodel,it wasassumedandtreatedto behavesimilar to Ta. In eachcase,the
predictedTCPphasecontentis pairedwith a 95% confidencenumber. Theobvious,inflated
predictionof ReneN5 TCP contentindicatesthat the"model" is not applicableto all second
and third generationNi-base superalloys. Especially those falling outside the design
parametersof this study. By inspectionit appearsthat the low Co level may be the main
sourcefor this discrepancy.Theotherpredictedresultsof Table 111 appear believable after

exposure at 1093°C for 400 hours.

Table HI Compositions of Several Commercially Available Alloys in Atomic Percent

Alloy W Re T___g C___r Mo A1 C___QO Ti "Ni" TCP

Rene N4 1.9 0 1.3 10.3 1.2 8.1 8.1 5.2 63.8 0

CMSX 4 2 1 2.2 7.6 0.4 12.6 9.3 1.3 63.8 7.55+3.49

Rene N5 1.6 1 2.3 8.1 1.3 13.9 8.2 0 63.6 23.09_+6.10

Rene 162 1.9 2.1 2.4 5.4 0 14.3 13.1 0 60.8 1.53+_/1.57

CMSX 10 1.7 2 2.8 2.4 0.3 13.2 3.2 0.3 74.2 0

Rene N6 2 1.8 2.5 5 0.9 13.3 13.2 0 61.2 1.57+1.59

CMSX-4 ® and CMSX-10 ® are registered trademarks of the Cannon-Muskegon Corporation.

Summary and Conclusions

An approach based on a DOE was conducted to describe TCP phase instability as a function

of chemical content in advanced Ni-base superalloy Rene N6. A regression model was

developed to describe the presence of TCP phase in the microstructures of polycrystalline

Rene N6 based on chemical content. Forty-four alloys were cast, homogenized, and aged to

produce samples for microstructural evaluations. For compositions all within the

specification limits of the patent, TCP content varied from 0 to 17 volume percent. It was

determined that A1, Mo, Cr, W, Re, and Ta had strong primary as well as interactive effects on

the presence of TCP phase. While these primary effects can be described by PHACOMP, the

present work was able to also quantify interaction effects which are difficult to obtain in

PHACOMP-based approaches. For example, this study found the following interactions to be

significant in varying degrees: AI*Co, AI*Cr, AI*Mo, Co*Re, Cr*Mo, Re*W, and Ta*W.

The model was accurate (R2=0.954) within the alloy design space, but extrapolation to other

alloys is of unknown utility. The predictive capabilities of this model still require

experimental verification but it did produce a reasonable prediction for a target composition of

single crystal Rene N6.
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