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1- SUMMARY

The primary objective of phase 1 of this research project is to conduct

multidisciplinary research that will contribute to fundamental scientific

knowledge in several of the USAF critical technology areas. Specifically, neural

networks, signal processing techniques, and electro-optic capabilities are utilized

to solve problems associated with automated target acquisition, recognition, and

tracking. To accomplish the stated objective, several tasks have been identified
and were executed.

2- ACCOMPLISHMENTS

This report presents our research efforts at solving the ATTRACT problem using electro-optic

systems, neural networks, and image processing techniques. In the electro-optic area, three

different algorithms: (a) Fourier-Mellin transform (FMT) based hybrid electro-optic algorithm;

(b) joint Fourier transform (JFT) based algorithm; and (c) amplitude-modulated phase only filter

(AMPOF) based correlation algorithm are utilized. Using the silhouette of aircraft targets,

features were defined and extracted to train a neural network that proved to be very effective in

recognizing targets regardless of their orientation and scale. Also, by developing an

autoregressive model to recognize aircraft silhouettes, another effective scheme for target

recognition was developed.

For the electro-optic systems, our intent is to identify, analyze, and characterize hybrid electro-

optic systems which are capable of meeting ATTRACT objectives and whose speed operation is

faster than the purely electronic ones. Each of these algorithms are implementable using optical
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systems and, therefore, in each the corresponding two-dimensional processing is accomplished in
parallel.

2.a. FMT Based Correlation: While the classical Vander-Lugt type of correlation [1,2] can be

used to handle the ATTRACT problem by employing multiplexed matched filters, it still remains

very sensitive to both scale and rotation. Fortunately, one can use a Mellin transform based

Vander-Lugt correlator [3,4] for adequately dealing with the issues both rotation and scale.

However, such a process will still need the fabrication of a filter or a bank of filters thus slowing

down the corresponding computation time. On the other hand, JFT correlation [1,5] has been

shown to be capable of real-time matching and tracking operations as it does not involve any

filter fabrication. This ongoing FMT effort, accordingly, combines the best of both solutions by

cultivating a JFT implementation of Merlin transform based correlation.

Figure 1 shows the system that can implement a traditional JFT correlation. In it the target scene

(which may or may not contain a target) as well as the reference scene (target model) are both

loaded in a modified liquid crystal television (LCTV) [l 1,6]. The joint scenes are then Fourier

transformed (in parallel) using a Fourier lens and then detected by a CCD camera. The CCD

camera information, which corresponds to the square of the joint Fourier transform), is now fed

to a second LCTV. The following Fourier lens next performs an inverse Fourier transform

information and accordingly the video-processed output corresponds to the correlation of the two

scenes. The correlation energy obtained thereby thereafter serves as a measure of correlation.

The Merlin-transform based technique involves the following steps. First, the target scene is

Fourier transformed, preferably, by optics. Second, its magnitude is taken through a polar

coordinate transformation whereby the rotational shifts about the origin of the rectangular spatial

frequency domain is converted into linear shifts. Third, the radial axis of the polar domain is

logarithmically scaled which converts scale changes in the Fourier transform space into linear

shifts along the radial axis. Figure 2 shows the block diagram describing the implementation of

this algorithm. Figure 3 on the other hand shows the system operations obtained by combining

the best of two processes - Mellin based algorithm and the real-time JFT architecture.

Advantages of this system are as follows. The transformation of the target scene and the

reference scene is accomplished in one step and in parallel using only one filter. The phase

information is not lost thus maintaining the position information of the targets. Figure 4 shows

the corresponding hybrid electro-optical implementation. Figure 5 shows a test result of two

square shaped targets but with different scale and rotation. Figure 5(b) includes the logarithmic-

polar transformation while Figure 5(c) and 5(d) corresponds to the binarized and edge-enhanced

logarithmic-polar transformation. Finally Figure 5(e) shows the degree of correlation between

these two scaled and rotated targets.

In this particular area of research, the investigators have accomplished the following objectives:

Tested a possible Fourier-Mellin joint transform correlator,

Tested the workability of a hybrid electro-optic joint Fourier transform correlator that

uses liquid crystal televisions (LCTVs) for recording the joint scene (i.e., input and
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Figure 3, System Operations
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Figure 4, Hybrid Electro-Optical Implementation
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reference) and for recording the square of the Fourier transform of the joint scene.

Upon taking the Inverse Fourier transform of the square of the joint Fourier transform,

we obtain meaningful correlation peaks that can both detect and track the target.

2.b. JFT Correlation: In practice, in a JFT correlator system, the joint power spectrum (JPS)

is binarized based on a hard-clipping non linearity at the Fourier plane to only two values, + 1

and -1, before applying the inverse Fourier transform operation on it. While processing target

scene that includes multiple targets, the binarization of JPS introduces harmonic correlation

peaks that may in turn result in false alarms. This rather serious problem of false alarm is being

dealt with in our ongoing ATTRACT work by making use of a fringe-adjusted filter (FAF)

[7,8] in the JFT correlator and by modifying the JPS content of it. In this scheme, the JPS is

multiplied by the FAF. The FAF H(u,v) is given by B(u,v)/[A(u,v) + ]R(u,v)f^2] where A(u,v)

and R(u,v) are either constants or functions of u and v and IR(u,v)r is the amplitude of the

reference Fourier transform. When multiple targets are present in the scene, then in addition to

the autocorrelation between the reference and the targets, additional correlation peaks will be

produced because of autocorrelation between the targets themselves. These false alarms are

avoided by eliminating the cross-correlation energies between the different targets. This is

achieved by displaying the target scene at the JTC input plane without the presence of the

reference scene and then recording the target-only power spectrum. With this power spectrum

subtracted from JPS, the modified JPS is next processed for the subsequent two operations:

multiplication with FAF and an inverse Fourier transformation. The resulting correlation output

is expected to be unaffected by any false alarms.

Figure 6 shows the FAF based JFT correlator system. Figure 7a shows a test reference while

Figure 7b shows a set of targets in the scene. Figure 8 shows the correlation output at the exact

location of the targets and no false alarms.

In JFT related work, the investigators have accomplished the following objectives:

• Designed and tested the JFT correlator far single-target recognition both in the absence

of noise and also in the presence of noise.

• To overcome the false alarms, designed the fringe-adjusted filter for JFT applications.

• Tested the JFT correlator for recognizing targets from amongst multiple targets in

presence of noise and clutter and under varying illumination conditions.

2.c. AMPOF Based Correlation: One of the reasons for not often preferring to use a Vander-

Lugt type of a matched filter configuration for correlation is that the resulting correlation peak

is neither too narrow nor too high during a match [1 ]. This problem has partly been overcome

by devising a phase-only filter [1,9]. However, we have in the past demonstrated an amplitude-

modulated phase-only filter [10,11] which has the possibility of providing a yet-larger

correlation discrimination as well. As part of the ongoing ATTRACT effort, we are now

studying the extent to which this AMPOF amplitude and phase can be descretized. The
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discretization of the AMPOF will guarantee its implementation using spatial light modulators

thus making the overall correlation system suitable for autonomous and real-time operations.

In AMPOF based architecture, the target scene is Fourier transformed first, then multiplied with

the AMPOF function at the Fourier plane, and finally inverse Fourier transformed. The

AMPOF function F(u,v) is given by B(u,v) exp[-j p(u,v)]/[lR(u,v)l + A(u,v)] where p(u,v) is the

phase component of the reference Fourier transform R(u,v). Our current efforts have resulted in

the identification of a very reliable discretized version of the AMPOF. This particular

AMPOF's amplitude is ternarized while the phase is binarized. The resulting AMPOF is found

to yield much improved statistical performance measures.

Figure 9 shows a gray-level image of a tank. Figure 10a shows the correlation utilizing an

undescretized AMPOF while Figure 10b shows the effect having utilized a discretized AMPOF.

In the area of AMPOF based target recognition, we have accomplished the followings:

• Completed testing the viability of the AMPOF in the case of gray-level targets. We

have successfully discretized both amplitude and phase of the AMPOF, The

discretized AMPOF is being tested currently for both binary and gray-level targets.

Such discretization consideration is necessary since AMPOFs will have to be adapted

for use with spatial light modulators in an optical set-up. We have also started

conducting the minimum average correlation energy (MACE) implementation of the

AMPOFs, Our preliminary simulation seems to indicate that the AMPOF-based

MACE is better than the, other alternatives

• An optical neural network (NN) implementation of AMPOF based recognition is

being studied and simulated to handle scale, rotation, noise, clutter, and obscuration

related problems. We do not have significant optical NN-related results at the current
time.

• We are currently exploring the use of AMPOF-based MACE for discriminating targets
from SAR data,

2.d. Neural Networks: Neural networks are being investigated for target recognition. Neural

networks are characterized by a process of decision making from highly interconnected non-

linear thresholding elements known as neurons. Each neuron performs weighted summations on

its analog inputs followed by a non-linear, hard limiting threshold function. All these operations

are performed in parallel. Software-only neural networks compete heavily for CPU usage and

100% electronic implementations of neural networks are ultimately limited by the massive

interconnection requirement between processing elements. We have conducted a literature search

to cover the electro-optical implementation of neural networks and the applications that utilized

neural networks for target identification or detection.

2.d.l. Optical Neural Networks: Optical implementations of a neural networks [ 12,13] are thus

motivated by the huge number of interconnections that can be provided by the interferenceless
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free-space parallel communication capabilities of optics. Electro-optics is an efficient and natural

way to implement these functions, however, it is not without practical problems. Optical neural

processors are usually designed around ultra high speed optical vector-matrix multipliers [14],

where the input to the neurons are represented by the vectors while the interconnection weights

are represented by the matrix. One of the earliest optical neural network that was implemented

was the Hopfield memory [15] model in 1985 by Farhat et al [16]. Many variations of the

Hopfield neural networks [17-22] has been proposed and tested for moving target recognition

[20], character recognition [21] and machine parts recognition [22]. Additionally, some models

of neural networks require training [23]. Training is a process whereby the weight matrix is

altered until the output after thresholding, for a given input, conforms to a preselected value.

Training is an area where a simple optical implementation may limit a neural network's pattern

matching versatility [24]. Clearly, then, many decisions must be made when designing a practical

implementation of an electro-optic artificial neural-network. This work provides some basis of

how such decisions may be made in the design of an opto-electronic neural network.

Additionally, neural networks are analog circuits. In any analog implementation there are errors

associated with the limited analog accuracy and non-linear responses of the components. In

electro-optic neural-networks, these errors could exist in the input devices, the interconnection

weight matrix, or the output detectors. Neiberg, et. al. have shown that errors in the weight

matrix have the most significant impact on the output values [24]. Piche has analyzed weight

matrix accuracy and developed methods to quantify the signal to noise ratio of the system based

upon these accuracy [25-30].

2.d.2. Neural Network Experiment: In target identification, one of the difficult tasks has been

the extraction of features to train the neural network which is subsequently used for the target's

identification. This section describes the development of an automatic target identification

system using features extracted from a specific class of targets. The extracted features were the

graphical representations of the silhouettes of the targets. Image processing techniques and some

Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT

eliminates variations in the extracted features due to rotation or scaling.. A Neural Network (NN)

was trained with the extracted features using the Learning Vector Quantization paradigm. An

identification system was set up to test the algorithm. The image processing software was

interfaced with MATLAB Neural Network Toolbox via a computer program written in C

language to automate the target identification process. The system performed well as it classified

the objects used to train it irrespective of rotation, scaling, and translation. This automatic target

identification system had a classification success rate of about 95%.

In building a recognition or an identification system using a neural network, a key problem that

arises is the extraction of features of the targeted object to be used for training the neural network

[31 ]. The performance of an identification system may be erroneous if the extracted features are

subjected to change by factors that were not considered during the training process. If

precautions are not taken, factors such as scaling, object rotation, and translation may affect the

extracted features and influence the performance of the neural network.
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An important problem in pattern analysis or target identification is the automatic identification of

a target regardless of its position, size and orientation in a scene [32]. In order to achieve such

automation, the feature acquisition tool and the artificial intelligence model (fuzzy logic, neural

network, statistical classifiers, etc.) used for identification need to be integrated.

In this study, an algorithm was developed for target identification. The effects of variations due

to scaling, rotation, and translation were considered. Neural networks have different paradigms

which can be used to develop an identification system. The various paradigms have their pros

and cons as far as performance is concerned, depending upon the type of data or features

available. For our application, a Learning Vector Quantization (LVQ) network was used. The

LVQ is a method for training competitive layers in a supervised manner. The LVQ networks

learn to classify input vectors into target classes chosen by the user.

The initial step in the neural network approach for target identification is feature extraction [35-

38]. The feature considered in this study was the graphical representation of the silhouette of

each target. Five targets were utilized to develop and test the algorithm. Figure 11 shows five

aircraft models used in this study. The resources used for developing and implementing the

algorithm were: I) Image processing software package by Epix Inc.; 2) Digital Charge Coupled

Device (CCD) black and white video camera; 3) Video monitor; 4) Microsoft CIC++ software

package; 5) MATLAB Neural Networks Toolbox; and 6) 486DX PC. A data flow diagram,

shown in Figure 12, depicts how input data (target) is transformed to output results (extracted

features) through a sequence of functional transformations.

Targets I Digitize target's image [
O -" using the Digital Charge

I Coupled Device (CCD) I

Trained network

Process the Image Using

Epix Image processing

Software Package

I Extract the Identifiedfeatures via C program

|

I Train the Neural Networkwith the extracted features

on the MATLAB software

I package

Figure 12 Data flow diagram for feature acquisition and neural network

training
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Figure 11, Aircraft Models used in the Study
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Live images of the targets (aircraft) were first digitized using the CCD video camera. Using the

Epix image processing software package, the images were processed and their boundary outlines

(silhouettes) isolated. The centroid of each image was also determined using the Epix software.

The silhouettes were thinned to a single boundary line. Figure 13 shows one of the images and its

corresponding boundary outline.

A boundary tracking algorithm was developed to transform the silhouette into graphical form.

While tracking the boundary, the distance (radius) between each point on the boundary and the

centroid was determined. The ratio of each radius to the longest radius was also computed. These

radii ratios constituted the variables in the function that represented the silhouette graphically.

Figure 14 shows the graphical representation of the boundary function of Figure 13. Using the

Fast Fourier Transform, the magnitude of the frequency spectrum was obtained and plotted as

shown in Figure 15. It can be seen that the significant amplitudes occur at the two ends of the

graph; it is important to note, however, that the first half of the plot along the frequency axis is

symmetrical to the other half. As a result, the significant amplitudes of only the first half (100

points) were chosen and utilized as the input or feature for training the neural networks. The plot

of the first 100 points in Figure 15 has been expanded and is shown in Figure 16 for elaboration.

The same feature was extracted for all targets.

The Neural Network Toolbox in the MATLAB software package was used to train the extracted

features. The MATLAB software interfaces with a C program which was developed to access the

image processing functions of Epix for extracting the features. The learning paradigm used in

this training was the Learning Vector Quantization (LVQ).

Learning Vector Quantization is a method for training competitive layers in a supervised manner.

LVQ networks learn to classify input vectors into target classes chosen by the user [34]. The

LVQ is composed of two layers: competitive layer and linear layer. The LVQ network is

initialized, trained, and simulated with initlvq, trainlvq, and simulvq MATLAB functions

respectively. The function initlvq initializes the weights W1 and W2 for the competitive and

linear layers respectively. The function trainlvq is used to train the network. The training uses the

initialized weights, W1 and W2, the input signal (extracted feature) and the target (class) vectors,

and the parameters for the learning function. The class indices are converted to vectors with

IND2VEC function to obtain the network's target vectors.

The maximum number of epochs was 1000 and the learning rate was 2. Only one output neuron

of the linear layer would have an output of 1 depending upon the class of the input vector during

and after training. The rest of the output neurons would have Os.

The function simulvq was used to test the trained network. Simulvq takes the saved weights, and

an input vector, and returns the class for that particular vector. A series of experiments was

performed to test the effectiveness of the algorithm developed in this study. The main theme of

this algorithm was to use the properties of Fast Fourier Transform to eliminate the effect of any

variation in the extracted features and use the extracted features for target identification. The five
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Figure 13, One of the Aircrafts

Figure 14. Corresponding Silhouette
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aircraft in Figure 11 were used to test the algorithm. For each aircraft, various possible

conditions were tested. Each aircraft was translated, rotated at different angles, reduced to about

50% in area, and both increased about 100% in area and rotated at different angles. Figure 17

shows the images of the five aircraft in their respective conditions under which the experiment

was conducted. The normal condition is the initial condition under which the features used in

training the neural network were extracted.

The classification accuracy is summarized in Table 1. The number of misclassifications

represents the number of times the system misclassified any of the targets under the stated

conditions. For each condition about fifty trials were made. For example, the '5' in the number

misclassified column represents five misclassification in fifty trials when the targets were both

scaled 100% in area and rotated at different angles. The results obtained show the reliability

and the high accuracy of this algorithm. Each classification or trail was performed in twelve

seconds or less. However, this time could be significantly reduced by replacing the 50 MHz

486 PC with a Pentium or higher performance workstation.

Condition Number Misclassified

Normal 0

Rotated at different angles 0

Translated 0

Reduced to about 50% in area 0

Increased to about 100% in area and rotated 5

Percent Correct

100%

100%

100%

100%

90%

Table 1 Classification Results

2.e. Model based target Recognition: Previously, we utilized neural network to classify target

using their silhouettes. Additionally, a bivariate autoregressive model [39] is utilized for the

analysis and classification of closed planar shapes. The boundary coordinate sequence of a

digitized binary image is sampled to produce a polygonal approximation to an object's shape.

This circular sample sequence is then represented by a vector autoregressive difference equation

which models the individual Cartesian coordinate sequences as well as coordinate

interdependencies. Several classification features which are functions or transformations of the

estimated coefficient matrices and the associated residual error covariance matrices are exploited.

These features are shown to be invariant to object transformations such as translation, rotation

and scaling. Laboratory experiments involving an object set representative of military aircraft is
presented.

Here, we present preliminary results for our work in target boundary analysis and classification.

We explored a scalar transform technique which is an extension of the methods based on one-

dimensional (l-D) Circular Autoregressive (CAR) models [40,41]. A given target silhouette is

approximated by N samples of its original boundary sequence. The x and y Cartesian coordinates

of these samples referenced to the object centroid serve as the elements of a bivariate spatial

series. This bivariate series is then represented by a stochastic circular autoregressive model

characterized by a set of unknown coefficient matrices and an independent vector noise

2O



Normal Translated Rotated Reduced 50%
in area

Increased 100% in

area and rotated

Figure 17, Test Aircraft Models
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sequence. Certain functions of these matrices are introduced and shown to be invariant to

rotation, translation, and scaling.

A bivariate sequence representation has certain advantages over one dimensional methods. Since

both the x and y coordinates of the shape boundary are used, both convex and non-convex

objects may be treated in the same fashion. Although boundary unwrapping techniques [40]

allow the extension of radii based methods to non-convex shapes, they lose boundary phase

information. Such phase loss can allow different shapes to produce similar sequences. A

bivariate boundary representation allows a variety of sampling schemes to be used. Because of

this flexibility it is sometimes possible, depending upon the data set, to choose a sampling

method which biases the resulting spatial series so as to improve classification results. A

presentation on the issues involved in the choice of sampling rate and method for shape analysis

can be found in [42]. Finally, the bivariate method allows the modeling of the x and y coordinate

sequences as well as the inter-relationships between them. We have found that this results in

models with lower residual errors than that achieved with a one dimensional model. Also,

extension of this bivariate method to sequences described on higher dimensional lattices is

straightforward. Other two-dimensional methods which provide context for our algorithm can be
found in [40,43,44].

Since the shape boundaries are closed contours, we have X(i) = X(i+N), where {X(i), i=1,2 .... N)

are coordinates of the boundary samples used to approximate the shape. We choose to fit the

following circular autoregressive model:

rck)= +rck-j)+ vrck),
)=1

k=l,2 ..... N

x )=a + r(k)

where {Aj ,j = 1,2,..p} are 2 x 2 coefficient matrices, and a is a 2 x 1 process mean vector, i.e.,

E[X(k)] = ct, where E[] denotes the expected value of []. The modeling error is represented by

V(k) and is taken as a zero-mean white noise random vector sequence with fl as the
covariance matrix.

This model may also be written in state space form as follows: Define the following matrices,

Y'(k) = [Y'(k),Y'(k-1 ), Y_(k-2), ...,Y'(k-p+l)] t,

AS _

Ai A 2 ... Ap. I Ap

I2 0 ... 0 A o

0 12 0 ... 0 0

0 0 I2 0 ... 0 0

0 0 0 ... I 2 0

22



Xs(k)=[X'(k), Xt(k-l), X'(k-2)..... X'(k-p-1)]', ct s =[or ', a' .... ct ']',

Vs(k)=[V'(k) _/_ ' ,0,...,0]',

then we have, Ys(k) = AsYs(K - 1)+ Vs(k), Xs(k ) = ct s+ Ys(k),

where As is the 2p x 2p system matrix, and I2 is a 2 x 2 Unit matrix.

In order for this model to be useful for shape classification, features which are invariant to

changes in shape rotation, scaling, and translation must be identified. We may state the following
Theorem:

Theorem 1: Consider a circular vector sequence {X(i), i=1,2 .... N}, whose elements are boundary

sample coordinates (referenced to an objects centroid) from a simply connected closed planar

shape curve. If the sequence is modeled by the vector circular autoregressive model (CAR) given

in (1) and (2), then the following features are invariant to translation, arbitrary rotation, and

scaling of the shape:

(a) the trace, determinant, eigenvalues, and elemental sum of squares of the coefficient

matrices {Aj, j=l,2,...p},

(b) the trace, determinant and eigenvalues of the system matrix A,

(c) the combination of the mean vector ct and the covariance matrix/5' designated as tau:

r = cttfl-i a Proof: [39]

The intraclass invariant properties of the system matrix eigenvalues, the sum of squares of the

elements of the coefficient matrices, and the mean vector error covariance matrix product, r

make them excellent candidates as target features for recognition purposes. Digitization errors,

imaging noise, and parameter estimation errors are among the influences which can cause the

feature vectors within the same class to exhibit some variations. These variations will typically

generate close clusters in the feature space which can be adequately characterized by a variety of
statistical pattern recognition techniques.

2.e.1. Experiments and Results: The experiments are principally concerned with

nonoverlapping simply connected planar shapes which are completely known, i.e., no partial

boundaries are considered. The shapes used for the experimental portion of this report are
illustrated in Figure 18, and consist of fourteen different aircraft silhouettes some of which are

very similar. These shapes, though not extracted from actual imagery, provide a complex set with
subtle differences.

Forty images were taken for each plane in the set. The shapes were rotated by arbitrary angles,

shifted within the image plane, and scaled by as much as 200 percent by changing the camera

magnification. The boundary sequences were obtained by a boundary follower algorithm.

In order to insure the accuracy of the image sample locations and eliminate perimeter

dependence in the sampling algorithms, a polygonal approximation was first calculated for each
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shape [45]. The number of polygonal segments for each shape varied depending on the amount

of curvature present. The linear segments were fit such that the maximum distance of any

boundary point from the corresponding line segment was 2.0 grid units. The resulting polygon

was used to determine sample coordinates for the bivariate model. It was found that using

samples calculated from the polygonal approximation rather than points taken directly from the

boundary sequence resulted in lower overall variance in the feature vectors. The boundary

sampling method used to generate the bivariate model sequences was an equal-curve-length

method [42] which chooses samples such that they are spaced at equal distances along the shape

contour. The sample rate was determined by performing a Fourier power spectral analysis of the

most complex shape contours. A rate of 128 samples per object was deemed sufficient to

represent the salient boundary variations.

2.e.2 Classification Feature Vector: The next task is to identify functions or transformations

which extract salient information from these matrices while remaining invariant to scaling and

rotation. The state space formulation for the CAR model is attractive because the eigenvalues of

the system matrix completely identify the system modes, and therefore are excellent feature

candidates. Although the eigenvalues of the individual coefficient matrices could also be used as

invariant features, they are not capable of completely describing the system modes. However, if a

real feature vector is desired, the trace and determinant of the individual matrices can be used

effectively as features.

The sum of squares of the elements of the coefficient matrices is used as a feature because it

exploits the fact that object rotation results in a unitary transformation rather than just a similarity

transformation. A conventional similarity transformation would result in invariant eigenvalues

corresponding to an equivalent system, but the sum of squares feature would vary.

The feature r (see Theorem ! ), is important in that it is based on the process mean vector and on

the modcl residual error which is an indication of model fit. An alternative way to incorporate the

information in the residual error covariance matrix into the feature vector is to use the
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eigenvalues of the quantity P/(a t a) as features. This allows more detailed information about

the quality of the CAR model fit to be used for classification at the cost of increasing the

dimension of the feature vector by one. These eigenvalues can be shown to be invariant by

following a procedure similar to that presented in the proof of Theorem 1. The actual feature

vector used for this study can be written as [eig(A_), S(A_), r ^] where eig(,4_) denotes the

eigenvalues of the estimated system matrix, and the sum of the squares of the elements of the

model coefficient matrices is,

• = Y.(a,,j)(ak,j)
k=l--i_l -j_l

2.e.3 Classification Results: A straightforward weighted Euclidean distance classifier (the

Feature Weighting method [81) was used to evaluate the quality of the features derived from the

bivariate CAR model. The classification results for this study are presented in Table II below.

Included in the table are the classification accuracy as well as the 95% confidence interval

specified in terms of a classification accuracy window. The limits are calculated using the

following equation,

prI2n_h-z2-z_4n_)+z2-4n_2 2n_+z 2 +z_4n_+z2-4n_ 22(n + z 2) < p < 2(n + z 2) =_,,

^

where z=1.960, _,=0.95, n is the total number of test samples, and p is the maximum likelihood

estimate for the error rate ---(#misclassifications)/n.

Table II

Bivariate CAR Model Classification Results

order 1

Misclassifications 0

Percent correct 100

95% Confidence Interval 98.65 ¢:_ 100

order 2

Misclassifications 0

Percent correct 100

95% Confidence Interval 98.65 ¢:_ 100
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3- Conclusions

In this report we investigated a promising approaches for the automated target recognition and

identification. Electro-optic techniques provides high speed processing as two dimensional

image processing is accomplished in parallel. Neural networks were utilized and proved effective

in target identification using images of target aircrafts under different conditions. Another

approach for generation of salient classification features from a target's boundary contour was

developed. A bivariate circular autoregressive model of a sampled shape's boundary sequence

was used to develop a set of classification features which were shown to be invariant to object

translation, rotation, and scaling. Laboratory experiments demonstrated superior classification

accuracy (100%) at low model orders. These boundary features then, are likely candidates for use

in conjunction with other topological and structural features in a general automatic target

recognition system. Further testing with actual imagery will be necessary to determine the

model's efficacy in more realistic environments.
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