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Numerical Solutions of Supersonic and Hypersonic Laminar

Compression Corner Flows

C.M. Hung* and R.W. MacCormacki"

NASA Ames Research Center, Moffett Field, Calif.

An efficient time-splitting, second-order accurate, numerical scheme is used to solve the complete Navier-
Stokes equations for supersonic and hypersonic laminar flow over a two-dimensional compression corner. A
fine, exponentially stretched mesh spacing is used in the region near the wall for resolving the viscous layer.
Good agreement is obtained between the present computed results and experimental measurement for a Mach

number of 14.1 and a Reynolds number of 1.04x l0 s with wedge angles of 15", 18", and 24". The details of the
pressure variation across the boundary layer are given, and a correlation between the leading edge shock and the
peaks in surface pressure and heat transfer is observed.

!. Introduction

ONTINUING advances in numerical methods and com-
uter capabilities have now made feasible many flowfield

calculations which were formerly intractable. One such

problem which has renewed interest is supersonic or hyper-
sonic flow over a two-dimensional compression corner. This

problem has received considerable attention within the past

decade because of its importance to the design engineer in

predicting the pressure and heat loads at a wing-flap junction

on re-entry vehicles. When flow separation occurs, reduced
flap effectiveness results, and in some regions, the surface

heating could become severe on a maneuverable re-entry
vehicle.

The problem to be considered is illustrated schematically in
Fig. 1. The pressure rise generated by the wedge extends up-

stream along the flat plate, thickening the boundary layer,
and results in a complicated interaction between the viscous

flow near the body surface and the outer inviscid stream. Sin-

ce the inner part of the boundary layer may not have suf-
ficient momentum to overcome the combined effects of skin

friction and adverse pressure gradient, the interaction can

lead to flow separation for certain ranges of Mach number,

Reynolds number, and wedge angle. The separated boundary
layer will then become a free shear layer external to a recir-
culating inner flow near the corner. Reattachment occurs

because of the interaction between free shear flow and the

outer flow. The surface pressure continues to rise through the

separated and reattached regions, until the boundary layer
reaches a minimum thickness or "neck." Downstream of the

neck, the boundary layer returns to a normal state of weak in-
teraction with the outer inviscid stream at a new Mach num-

ber. Although, in most practical situations the region of shock

wave and boundary-layer interaction is turbulent, at high
altitude flight, fully laminar flows can exist and are important
for design considerations.

Previous theoretical treatment of such a problem has

usually been made with the boundary-layer equations together

with a "coupling" equation relating the development of the

inner viscous flow to the outer flow. The governing partial
differential equations can then be solved by finite difference

techniques L2 or can be expressed as integral relations and
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solved as ordinary differential equations. 3-7 This treatment, in
general, involves the question of uniqueness because certain

portions of the flowfield contain substantial upstream in-

fluence, and the initial and downstream boundary conditions

cannot be completely specified. In some integral tech-

niques, 4-7 there is also the question of so-called jump con-

ditions for supercritical to subcritical types of boundary
layers.

Consideration of the Navier-Stokes equations avoids these

questions and removes some restrictive assumptions, viz., that

the static pressure is constant across the boundary layer, and

that the viscous and inviscid flows interact only along a line at

or near the edge of the boundary layer, which can be difficult

to define in hypersonic flow. Also, as mentioned by Van

Dyke, s a solution of the Navier-Stokes equations is necessary
in the immediate vicinity of a sharp corner.

Cart,:r 9 has obtained numerical solutions of the Navier-

Stokes equations for laminar flow past a compression corner

at low Mach numbers. He used the Brailovskaya difference
scheme, which is first-order accurate in time and second-order

accurate in space. In the present study a more efficient
numerical method, _0.H which is second-order accurate in both

time and space, is used to calculate supersonic and hypersonic
cases.

The complete time-dependent Navier-Stokes equations are
split into two sets, one for the x-derivative and the other for

the y-derivative. The advantage of the split system is that the
computation proceeds with larger time increments because the

stability criterion is less stringent. Each calculation starts

from a uniform flow with appropriate boundary conditions.

The boundary layer and shock waves generated by the leading
edge and compression corner develop with time, until a steady

state is achieved. A fine, exponentially stretched mesh spacing
is employed in the region near the wall for resolving the

viscous layer, and a coarse uniform mesh spacing is used in

the outer region where viscous effects are negligible. The

solution is advanced more frequently in the fine mesh region,
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using smaller time steps, than in the coarse mesh region. Com-

putational efficiency is further enhanced by using elongated
cells (nonisotropic mesh spacing).

A novel, recently devised fourth-order damping term is in-

corporated to maintain numerical stability in the presence of

steep pressure gradients, and hence, fine mesh spacing near
the leading edge, required by previous studies, is avoided.

Moreover, high Mach number cases with strong induced

shocks may be solved. The results are in good agreement with

Carter's computed data, with significantly less computation

time for a wedge angle of 10", Mach number of 3.0, and
Reynolds number of 1.68x 104, based on freestream con-

ditions and the distance from the leading edge to the corner.

For a severe test, the experiments conducted by Holden and

Moselle 6 are selected for comparison at Mach number 14.1

and Reynolds number 1.04 x 10 _, with wedge angles of 15",

18", and 24*. For the large-wedge-angle case, the pressure
rises by a factor of 50 across the interaction. Good agreement

is obtained between the present computed results and ex-

perimental measurements of wall pressure, skin friction, and
heat transfer.

With the whole flowfield calculated, we are able to study
the details of the shock wave and viscous flow interaction.

The most striking feature is the large, normal static pressure
gradients within the boundary layer, which contrasts with the

classical boundary-layer assumption. Instead of starting with

a local similarity flat plate solution, the generation of a

leading edge shock provides another interesting feature. For
the experimental cases of Holden and Moselle 6 we observed
from the calculated flowfields that the interference of the

leading edge shock with the induced shock significantly af-

fected the pressure and heat transfer distributions.

II. Analysis

Governing Equalions

The time-dependent Navier-Stokes equations, in two

dimensions, neglecting body forces and heat sources, may be

written in integral form as

__O f,o, um_ UdVol+ l,u_,,_. [1"h dS=O (1)
Ot

where

U _

p

pu

pv

E

pO

[1= puq + _.0,

pro + 7._

Egl + r.O-KVT

the volume of integration. The equation of state relates the

pressure p and density o to temperature Tand specific internal

energy e. The perfect gas relations are p=oRT and e= QT.

The viscosity coefficient /_ is assumed a function of tem-

perature only, and is evaluated by Sutherland's semiempirical

formula # = 2.270 x 10 - s T__,/( T+ 198.6) (slug/ft-sec). For
the conditions of the experiment and the calculated tem-

perature distribution we assume that the above relations are

adequate for this study. The coefficient of thermal con-

ductivity K is computed by assuming a constant Prandtl num-

ber Pr and specific heat c,, so that K ='tC,#/Pr.

Time-Split Numerical Technique

A time-split, two-step MacCormack scheme is used which

solves the set of two-dimensional equations by reducing them

to two sets of one-dimensional equations. The system of

equations can be solved in one orthogonal x, y coordinate

system for an arbitrary quadrilateral volume element, as
described by Deiwert. f2 The typical element used is shown in

Fig. 2, where 0 is the inclination of the parallelogram element

with respect to the x-coordinate. The difference equations ap-

proximating Eq. (1) are then written as follows

Lx( At) operator:

predictor

U__,,+_"= Un,,,
At

Vol ,. j
[ (F_j-FT__.j) ",_&]

corrector

n+ Vz _Ui,s _1/2 [U;"_*" +

_ n+ h)F_,j .ayj]

Ly (At) operator:

At
n+ Vz(F,+I.jun.

t, J Vo] i,j

predictor

U_ U v_v_
I,j ,',./

At

Vol i, j

[ (G,_+ v' "+ '/_--Gi, j_l) "Z_(,

(F_._ v_ ,+vl -tan0]-- , -Fi, j-I) "AX i

corrector

u',l;' = < { y'
A!

r
Vol,d t W'al,j+l _l,j •

- (F "+l -Fq +l).Axi.tan 0i] }
i,j+l I,J

0= uO, + t,_y E=o(e+V,.(u"+ve))

where

F= pu2 + ax , G = puv + rxv

IPUV + ryx IPV2 + %,

LEu - uo, - vr,, - K(OT/Ox) L Ev - Uryx- v%- K(aT/Oy)

÷= o,g,g, + r,., O,O., + r_,,O.,O, + %0, 0.,

2 /au at,) Ou (au Ov\o, + ,,, =,.,=-,

(;; av\ 2or or oro,=p+v,, vr=gxO,+iye,

and O,,O, are unit vectors of the orthogonal x,y coordinate

system, and h a unit normal vector of the surface enclosing

The subscripts i, j refer to a special mesh of point x, yj with

spacing Ax, and ky./, and the superscript n refers to times
t=nAt where At is the time increment that the solution is ad-

vanced. The bar on F and G indicates that the predicted quan-
tities U are to be used in the evaluation of these terms. Note

that the operator Lx accounts for the convection and stress
terms acting at the vertical sides of the typical mesh element

shown in Fig. 2 and the Ly operator accounts for the terms ac-

ting on the inclined sides. The dot product of Eq. (1) is FAyj
for a vertical side and (G+Ftan 0,)Ax, for an inclined side.

The Lx and Ly operators are applied so that Eq. (1) is ap-
proximated at each time-step for each element of the non-
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Fig. 3 Computational boundaries (above), and mesh point and cell
system (below).

orthogonal computational mesh. Although the operator

sequence ofLy(At) Lx(At) is accurate only to the first order,

MacCormack has shown that symmetrical operator sequences
such as

are accurate to the second order both in time and space.
To evaluate the viscous and heat conduction derivatives for

the nonorthogonal cell (Fig. 2), the differences used are as

follows: Using ,b as a dummy variable, for the Lx operator

predictor

[0_b '_ q5_+,4- _,,./ _b,../+, - ,;b,./_,
_ m _Jt )

_X id3 "_-" Xi+l --Xi Yj+l --Y)-I

( a¢ chu+_- 4_i4- IOY ) i'/_ Yj+I-Yj-I

and for the Ly operator predictor

O0 ) (_i+l,j--dPi_l,j
_X id _-" XI+ I --Xi_ I

adp ._ q_,4+ 1-- _i 4

(_Y ) U Yi+t-Ys

where

Reynolds number is computed by (Ay),,i,, = ¼ (L_'-Re]). The

leading edge is placed at x=0 and L, the distance from the

leading edge to the corner, is used as the characteristic length.

The appropriate boundary conditions are shown in Fig. 3.

At the upstream boundary a few mesh points ahead of the

leading edge, the flow is assumed uniform at supersonic
freestream conditions (M_,T_,p_,u=). The downstream

boundary is positioned far enough from the corner so that all

the gradients in the flow direction can be set to zero. Though

this condition is not exact, the boundary layer in the vicinity
of this exit is parabolic, and the remainder of the flow is

supersonic; hence, it is not expected that this condition will in-

troduce significant error in the region of interest upstream.

The upper boundary is specified by the freestream conditions
ahead of the leading edge shock and by simple wave ex-

trapolation downstream of the shock. The wall surface is

assumed impermeable, and nonslip boundary conditions are

applied. The wall is treated either as isothermal or adiabatic,
and the wall pressure is evaluated from an approximation of

the y-momentum equation at the wail. During the calculation

of the inner mesh, transport and stress at the internal boun-

dary y = h/are saved, and their average net quantities are then
used as boundary conditions for the outer mesh flow field.

Aid = V2 (tan 0i+/+tan Oi )

Bij=l/a (tan 0i+1+2 tan 0,+tan 0,-t)
F" F- 1

At x_< _Ax /l lul +a+ -- (-
Similar approximations used in theare corrector steps, such k L p
that the overall treatment of derivatives results in centered

second-order-acc'urate approximations. For variable mesh andfortheLy(Aty)operator

Aty< (Ay_ /_lv-u tan O,l +a sec Oi+ 1 (
P

spacing the resulting difference equations are second-order
accurate in the • 13computational coordinate system.

Mesh and Boundary Conditions

Figure 3 shows the computational domain and the mesh

point and cell system used for calculation. Note that the in-

clination angle 0 is zero on the fiat plate and is constant along

the wedge. The mesh is equally spaced in the x-direction, but

they-direction, a fine, exponentially stretched mesh spacing is

used in the region 0.0<y<h I near the wall for resolving the
viscous layer, and a coarse, equally spaced mesh is used in the

outer region hf<y<h, where viscous effects are negligible.
The minimum spacing for the fine mesh is dependent upon the

Computational Time-Step

The maximum time-step for which the calculation will be

stable is determined by the CFL and viscous stability
requirement. By applying a yon Neumann stability analysis
separately to the linearized inviscid and viscous parts of Eqs.

(1) tl we arrive at the following criteria: For the Lx(AG)
operator

+--)
A1( Ay./ min

2yj +--)
min

where a is the local sound speed. These stable time-steps are
larger than those of explicit finite difference methods without

time splitting. Four different time-steps are used in

calculations: two for the Lx operator Atx,., At_,j and two for
the Ly operator Ate.c, Atyf in the coarse and fine mesh, respec-

tively. In general, for the present calculations At.v,-> Atyf and
/xty, > Ate,. Hence, the computational efficiency is enhanced

by use of the operator sequences for the fine mesh region

[ Ly(Atf /2)Lx(Atj)Ly(Aty /2) ] m

and for the coarse mesh region

[Lx ( At,. )Ly (2At,.) Lx (At,) ]
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where

Atj=min [Atxy, 2Atyy]

At,,=m.At:<_min[Atx,, , l/z £xty,, ]

and m is an integer, representing the number of applications
of the operator sequence in the inner mesh region for each

time-step At,. which the solution is advanced in the outer

region. As m becomes large, most of the computing time is

spent in the calculation of the fine mesh-region.

Nonlinear Instability

Several types of nonlinear instability are encountered in the

present calculation. The remedies for these have been
previously discussed by MacCormack,_° Baldwin and Mac-

Cormack, 14 and Kutler, Sakell, and Aiello. _ One of them oc-

curs, for example, in the convective flux across a mesh surface

when there is an expansion in which the velocity normal to the

mesh surface changes sign. When this condition occurs, in-

stability can be avoided by employing the average normal

velocity. Another nonlinear instability can be removed by ad-

ding a product fourth-order damping term AUij to the right-
hand side of the predictor and corrector equation of each

operator. For the Lx operator

1.2

L0

.8

p-p.
P©

--PRESENT

RESULT

_--.._ CARTER

. RES_L_S

-- ,6 _RE

.4 _ z_

.2 _J "%
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/:
# Mm=3_

_/ ReL=I.68 xlO 4
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0

.5

.4

.3

Cf x 102:

.2

.I

4 .6 .8 1.0 1.2 1.4 1.6 _.8

XWOIt/L

Fig. 4 Comparison of wall pressure and skin friction for Mo, =3.0,
Ret. =1.68× 104, ¢(= 100.

pressure, skin friction, and heat transfer along the wall. The
flow conditions selected are as follows:

M==I4.1 ReL=I.O4xlO s Pr=0.72

To_ =130*R L=1.44 ft T_ = 535°R

The wall is highly cooled, so that the ratio of wall temperature

T_ to the adiabatic wall temperature To, ` is 0.118. Note that,

AUjj = Cx
IPi+Ij -2Pia +Pi-lj I (U_+I.j -2Ui.j + Ui_l,j) ( I uol +ai,j) At

(pi+lj+2pi.j+pi_l.j) Ax

and for the Ly operator

AUij=Cy IP_u+I--2p,U+p_d_1I (U_,j+t-2U,,j+Uid_I) ( Iv, a I+a,u)&t
(P,u+ t + 2p,,: +P,u- _) Ayj

where C_, and Cy are two assigned constants with values bet-
ween 0.0 and 0.5. The damping form of the damping term is

more compact than standard fourth-order smoothing terms.
It requires data at just three mesh points instead of the usual

five points. For shock wave calculations this compactness
achieves better shock resolution. In the present investigation

these terms played important roles in smoothing the ripples in

the solution in the region near the leading edge and corner

shocks. With this smoothing treatment, fine-mesh spacing

near the leading edge, such as that found necessary by
Carter '_ as well as others, in the x-direction is avoided. This

reduces considerably the computation time of the present

method from that required by the other investigators. Even

more important, high Mach number cases with strong shocks
can be solved without difficulty.

III. Results and Comparisons

The first case computed was for M= = 3.0 supersonic flow

over a 10" wedge with an adiabatic wall. The flow conditions
correspond identically to one of the cases studied by Carter, 9

and are given as follows:

Mo_=3.0 ReL=I.68X104 c_=lO*

Too=390R L=2.4in. Tw=T=[I+(y-1/2)M_

Here, T w, the wall temperature, is assumed equal to the

freestream stagnation temperature. For this case 86 mesh

points were equally spaced in the x-direction, and 28 mesh

points were used in the y-direction, 15 for the inner mesh and
13 for the outer mesh. Figure 4 shows the present computed

surface pressure and skin friction distribution. The skin fric-

tion coefficient is defined as c/=(zwlp=u_. These
distributions are in good agreement with the results of Carter.

The experiments selected for comparison were conducted

by Holden and Moselle. 6 Measurements were made of

in this case, both the Mach number and Reynolds number are
almost one order of magnitude higher than for the previous

calculation. The computational domain extends from (x/L)
=-0.077 to (x/L)=1.859, with the fine-mesh boundary

placed at hf=0.096 ft and the outer boundary at h =0.28 ft.
In the x-direction 90 mesh points were used with a mesh

spacing of Ax=3.130x 10 -2 ft. In the y-direction 30 mesh

points 20 for the fine mesh and 10 for the coarse mesh, were
used. Mesh spacing varied from Ay=2.087x 10 -_ ft to Ay
=9.842x 10 -3 ft for the fine mesh; for the coarse mesh,

equal spacing of Ay = 2.024 x 10 -2 ft was used. In general, the

stable time-steps were about Aty/=3.297× 10 -J sec, Atx/
=3.216x!0 -6 sec, Atx_=3.272X10 -6 sec, At w=l.3OOx
10 -5 sec, and hence, m= 10. The freestream velocity was

u= =7.880× 103 fps, and it took about 200 time-steps (or 1.3

msec) to reach a steady state. During this time the freestream

traveled a distance seven times the length of the flat plate.

About 32 rain on a CDC 7600 were required to perform the
calculations.

The calculation was first made for a plate plate. Shown for

comparison in Fig. 5 is the wall pressure distribution of the

4

2

I

XIL

L_ a,84_ 1338 ,&s
Xm

Moo = 141

Re L : LO4xIO 5

Tw : 535*

0x 0 PRESENT RESULTS

L_ -- BERTRAM 6 BLACKSTOCK (REF 14) Fig. 5 Comparison of

strong interactiontheory with present
results for wall pressure
distribution on flat
plate.

I J

8 l0

1 J

925 8.27
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Fig. 7 Comparisons of: a) pressure and b) heat transfer and skin fric-
tion along wall for _ = 18 °.

present computed result and the result theoretically predicted

by the strong-interaction analysis of Bertram and Black-
stock. _6 The analysis was based on the hypersonic similarity

theory that
plp_ =O.83 + 3A (7(7-1) 12) "_fiX=

where

_- / { Tw 0.3521'{ M__= 1.648 _-- , +

Here, X= is a hypersonic parameter; _ is a parameter related

to the wall temperature; and C, the Chapman-Rubesin con-

stant, is evaluated as C=T=_(Tw)/T_I_(T=). Excellent

agreement is obtained between the theoretical prediction and
the numerical result. Also shown in Fig. 5 is an experimental
value of Holden and Moselle. 6 The reason for the

disagreement between the present result and the experiment is

unknown. Nevertheless, as will be seen later, good agreement
was observed downstream in the interaction region.

Figures 6-8 show the detailed comparisons of the present

computed results with the experimental measurements for

pressure, heat transfer, and skin friction for three different

wedge angles. Very good agreement was found for the cases
of c_=15 ° and c_= 18 °. Here, the pressure coefficient is

defined as c_ = [pwall/(_/_) p_ou2_ and the heat-transfer coef-
ficient as

CH_

K aT secOi
oy

_ Ig2
p=u=[(e+ p + )=-(e+ p_ ).,1

p _- p

For oz=15 ° there is no separation, while for o_= 18 °, the

separation and reattachment are very close to the experiment.

The general features of the computed results for the o_=24 °

case have the correct trend but the extent of separation is
slightly underpredicted. Nevertheless, the plateau pressure

and the magnitude and location of the peaks of surface

pressure and heat transfer are correctly predicted. Note that,

in the experiment the peaks of pressure and heat transfer

coincide, and in the computed results the peak of heat transfer
is ahead but very close to those of surface pressure. This is
also observed in the case of _ = 18 °.

With the entire flowfield calculated, we can examine the
details of the interaction between viscous and inviscid flows.

Fig. 9 shows the isobar distributions for wedge angles of 15 °,
18 °, and 24 =. One of the most striking features is that the

static pressure is neither constant across the boundary layer

nor constant along the simple straight characteristic lines, as
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Fig. 10 a) pressure variation and b) u-velocib boundar) layer

profiles near separation for c_= 18".

treated by Myring. _7 Figure 10 shows the static pressure

variation and the corresponding u-velocity profiles across the
boundary layer at locations near separation for c_= 18". The

pressure can be treated as constant only very near the wall,

and then it decreases drastically to the edge of the boundary

layer. The total variation may be as much as a factor of two or

more, depending on the location and wedge angle.

Presumably, the normal pressure gradient develops as a result
of the curvature of the streamlines in the boundary layer. This

curvature can be generated by the response of the boundary

layer to the longitudinal pressure gradient or form the cur-

vature of the surface upon which the boundary layer is

growing. The pressure rise is first detected near the wall and,
because of the large Mach number, takes quite a distance to

reach the edge of the boundary layer. The ratio Of this dis-

tance to the boundary-layer thickness may be very large, and

hence, tap/_y) _, (319I_._Vc)may occur.

Downstream of the corner, the compression waves coalesce
into a shock wave. The intersection of the leading edge shock

with this induced shock shows another interesting feature.

Here both the leading edge shock and the induced shock are

right-runing _'aves. The intersection is classified by Edney u8

RESULTANT SHOCK,

STREAMLINE A_._

LE_DING EDGE SH -'----------

STREAMLINE B_

COMPRESSION SHOCK

WAVE

Fig. 11 Type VI shock wave interference pattern.
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Fig. 12 Pressure profiles at three locations downstream of in-
tersection point of leading edge and induced shocks.

as Type VI interference in which, after the intersection of two

shocks, a single stronger resultant shock, and expansion fan,

and a slip surface are formed (Fig. ! 1). Along the streamline

B, through multiple compression, the pressure in region 3 is

higher than the pressure in region 5, which is compressed

along streamline A by a single resultant shock. Behind the ex-
pansion fan the pressure and flow direction in region 4 are the

same as those in region 5, which is separated from region 4 by

a slip surface. For or= 15", the expansion fan does not reach

the wedge surface within the computational region. The wall

pressure monotonically increases and the peak of maximum
pressure is expected to lie downstream of the computational

domain (Fig. 6a). For o_= 18", the influence of the expansion

fan on the wedge surface is observed in the computational

domain (Fig. 9); the surface pressure and heat transfer reach

their maximum and then decrease gradually (Fig. 7). Since the
intersection angle is small, the expansion fan is so weak that it

can barely be detected. As the wedge angle increases further to

o_=24", the correlation of the interference of leading edge

shock and the peak pressure is evident (Fig. 9). (The dashed

line represents, approximately, the trajectory of the leading

edge shock.) The high pressure in region 3 (Fig. 11) is at-
tributed to the viscous effect of smoothly bending the

streamlines while passing the compression corner, and the

high heat-h'ansfer rate is attributed to the high temperature

and the local thinning of the boundary layer behind the com-
pression waves and the induced shock. The expansion fan
causes a rapid decrease in pressure. Figure 12 presents the

pressure profiles at three different locations, AA', BB', CC'

(indicated in Fig. 9), and shows the details of the pressure

field change from overcompression, through expansion, to a

state of overexpansion relative to the inviscid solution. The
expansion fan bounces back and forth, partly transmitted and

partly reflected from the viscous layer and slip surface, bet-
ween the wall and the external resultant shock, and the flow

asymptotically relaxes to a stale of normal weak interaction.

It is interesting to notice that, for a flow at Mach number 14.1

over a 24* wedge, the pressure rise, p/p=, is 225 for the isen-
tropic solution, and 58 for the inviscid Rankine-Hugoniot

relation, whereas (p_)max=102 for the viscous flow
solution in the present calculation.

Indeed there exists no discontinuity or slip surface in the

viscous flow; the slip surface between regions 4 and 5 (Fig. I 1)
is smeared into a shear layer. Figure 13 shows the density con-
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shock, edge of boundary layer, boundary-layer displacement
thickness, and line of zero u-velocity for _ = 24 ° .

tours and clearly displays the trajectories of the leading edge

shock, resultant shock, shear layer, boundary layer, and the
cold-wall high-density sublayer. Figure 14 shows the detailed

plots of u-velocity, density, and temperature across the boun-

dary layer and the shear layer at the location (x/L) = 179 for

=24 °. Total pressure loss is larger in region 5 than across
the single resultant shock; hence, the temperature is higher,

and the velocity and density are lower in region 5 than those in

region 4.

Figure 15 indicates the locations of leading edge shock, in-
duced shock, resultant shock, edge of boundary layer, boun-

dary-layer displacement thickness 6", and the line of zero

u-velocity for the case of c_=24". Here, the edge of the
boundary layer is defined as the smallest y for which

A(pu) /pu<0.02. The locations of the peak heat-transfer rate
and the peak wall pressure are labeled A _ and A2, respec-

tively. The boundary-layer displacement thickness (5* at first

increases as pressure increases, up to the corner, then

decreases as pressure continues to increase, reaching a neck
region at about the point of peak pressure, and then starts to

increase as the normal state of the boundary layer resumes.

The thickness of the boundary layer before and after the com-

pression are different by about one order of magnitude.

IV. Conclusion

An efficient time-splitting finite difference scheme has been

used to obtain steady-state solutions of the Navier-Stokes

equations for supersonic and hypersonic laminar flows over a

compression corner. Favorable comparisons with previous

calculation and with experiment indicate that the present

calculations are accurate. The pressure profiles are neither
constant across the boundary layer nor constant along simple,

straight characteristic lines, as has been assumed in some

analyses. Surface pressures higher than predicted by inviscid

shock wave theory are obtained, due to the compression of the

smooth bending of the streamlines. Edney Type VI in-

terference of the leading edge shock with the induced shock
results in an expansion fan which produces a large peak in the

surface pressure and heat transfer. Consequently, it is im-

portant to include the leading edge shock wave in the present

study of such hypersonic flows.
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