lonall

O

SR Internat

@ https://ntrs.nasa.gov/search.jsp?R=19980200849 2020-06-15T23:40:27+00:00Z

DEVELOPMENT OF AN EXPERT
SYSTEM FOR REPRESENTING
PROCEDURAL KNOWLEDGE

Final Report
Covering Period 15 May 1984 to 18 December 1985

December 18, 1985

By: Michael P. Georgeff, Program Director
Representation and Reasoning Group

Amy L. Lansky, Computer Scientist
Representation and Reasoning Group

Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

National Aeronautics and Space Administration
Ames Research Center

Space Technology Branch

Moffett Field, California 94035

Attention: Dr. Henry Lum
SRI Project 7268

Approved for Public Release: Distribution Unlimited.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the National Aeronautics and Space Administration or the
United States Government.

Preparation of this report was supported by the National Aeronautics and Space Admin-
istration under Contract NSA2-11864.

Approved:

Stanley J. Rosenschein, Director
Artificial Intelligence Center

Donald L. Nielson, Vice President and Director
Computer Science and Technology Division

Contents

1 Description of the Problem

1.1

Introduction« v o e e e e e e e e e e e e e e e e e

1.2 Fault Isolation and Diagnosis

2 Possible Technologies
2.1 Conventional Programming Languages
2.2 Conventional Expert Systems
2.3 ASimple Example e
3 Procedural Knowledge
3.1 Representing Procedural Knowledge
3.2 Using Procedural Knowledge
3.3 Procedural Expert Systemso
4 RCS Application
4.1 TheSystem o o vt vt e
4.1.1 The System DataBase.
412 Behaviorsand Goalso oL
41.3 Knowledge Areas
4.1.4 User Interface and Menu System
4.2 Space Shuttle Example o

14
14
16
18

22
22
24
29

5 Theoretical Considerations

5.1 Declarative Semantics
5.2 Metalevel Reasoning
5.3 Reasoning about Complex Goals

Personnel and Publications

6.1 Personnel
6.2 Major Publications,
6.3 Major Presentations

Semantics of the Procedural Representation

Al Introduction

A.3 Process Descriptions
A.4 Declarative Semantics
A5 Operational Semantics
A6 Action Descriptions

A7 Conclusions

A Theory of Process

B.1 Introduction.
B.2 Eventsand Actions
B.3 The Law of Persistence
B4 Processes

B4l Prefixing ()

B.42 Sequencing (;)

.......

.......

.......

.......

.......

.......

.......

.......

.......

61
61
64
66

69
69
70
71

72
72
74
76
79
83
86
87

B.4.3 Ambiguity (+) 100

B.44 Parallelism (&) 100

B.5 State Change AXiomsot 101
B.5.1 Prefixing (() . -« v vt e 102

B.5.2 Sequencing (;) -o .o 103

B.5.3 Ambiguity () . . . - . oo 103

B.5.4 Parallelism (&)o 104

B.6 Internalization ¢ . it e 105
B.7 The Frame Problem and Causality R 108

C Sample Knowledge Base for the RCS system 112
C.1 Glossary of Identifier Prefixes o 112
C.2 RCS State Description (Initial Data base) 113
C.2.1 Top Level Reactant Control Systems 113

C.2.2 Basic Components of Forward RCS 113

C.2.3 Helium Pressurization System Of Forward RCS 115

C.2.4 Propellant Distribution System Of Forward RCS 116

C.2.5 Thruster System Of Forward RCS 118

C.3 Knowledge Areasottt e 120

D Notational Conventions 139

Chapter 1

Description of the Problem

1.1 Introduction

A high level of automation is of paramount importance in most space operations. It
is critical for unmanned missions and greatly increases the effectiveness of manned
missions. However, although many functions can be automated by using advanced
engineering techniques, others require complex reasoning, sensing, and manipulatory

capabilities that go beyond this technology.

Automation of fault diagnosis and malfunction handling is a case in point. The
military have long been interested in this problem, and have developed automatic test
equipment to aid in the maintenance of complex military hardware. These systems
are all based on conventional software and engineering techniques. However, the ef-
fectiveness of such test equipment is severely limited [42]. The equipment is inflexible
and unresponsive to the skill level of the technicians using it. The diagnostic proce-
dures cannot be matched to the exigencies of the current situation nor can they cope
with reconfiguration or modification of the items under test. The diagnosis cannot
be guided by useful advice from technicians and, when a fault cannot be isolated, no
explanation is given as to the cause of failure. Because these systems perform a pre-
scribed sequence of tests, they cannot utilize knowledge of a particular situation to
focus attention on more likely trouble spots. Consequently, real-time performance is
highly unsatisfactory. Furthermore, the cost of developing test software is substantial

and time to maturation is excessive.

Many space operations require even more complex reasoning abilities than those
needed for the maintenance of military equipment. Such operations include subsys-
tem monitoring, preventive maintenance, malfunction handling, fault isolation and
diagnosis, communications management, maintenance of life support systems, power
management, monitoring of experiments, servicing of satellites, testing and deploy-
ment of payloads and upper stages, orbital-vehicle operations, orbital construction

and assembly, and extraterrestrial rovers.

Conventional automation techniques are unlikely to be effective in most of these
applications. The systems need to be very flexible and responsive to changes in op-
erating conditions. They must be able to interact with mission controllers, mission
specialists, and astronauts in a way that uses their skills to maximum effect. And,
because of the enormous cost and long duration of many space projects, these systems

must be verifiable and capable of evolutionary change.

Significant advances in artificial intelligence (Al) have recently led to the develop-
ment of powerful and flexible reasoning systems, known as ezpert or knowledge-based
systems. These systems utilize the knowledge of experts to reason about problems in
the domain of interest in much the same way as is done by the experts themselves.
They have the ability to explain their reasoning to the expert or user, and can incre-
mentally acquire new knowledge. They are flexible, responsive to changes of situation,

and can modify their behavior under varying conditions.

The application of expert systems to space operations can be expected to improve
mission productivity and safety, increase versatility, lessen dependence on ground sys-
tems, and reduce demands on crew involvement in system operations. However, most
of these systems are not well suited to problem domains in which much of an expert’s
knowledge is procedural - that is, where the operation depends on performing various
sequences of tests and actions. Yet this type of knowledge is crucial in each of the afore-
mentioned applications. Furthermore, since all these applications involve operations
that change the state of the world, a knowledge representation scheme is needed that
adequately models the effects of action and change. No conventional expert system

yet provides such a representation scheme.

In this report we describe a scheme for ezplicstly representing and reasoning about
procedural knowledge while retaining the benefits of traditional expert systems. The

knowledge representation is sufficiently rich to describe the efects of arbitrary se-

6

quences of tests and actions, and the inference mechanism provides a means of directly
using this knowledge to accomplish desired operational goals. Furthermore, the knowl-
edge representation has a declarative semantics that provides for incremental modifi-
cations of the system, rich explanatory capabilities, and verifiability. The scheme also
provides a mechanism for reasoning about the use of this knowledge, thus enabling
the system to choose effectively among alternative courses of action. Systems that are

based on this scheme are called procedural ezpert systems [18].

It is important to point out that this research confronts some fundamental prob-
lems that arise in domains in which knowledge of the world is influenced by events
and actions. In particular, the use of procedural knowledge is critical in areas where
reasoning over time is concerned, and where choice of action is strongly dependent on

external events.

This report describes work done during the first phase of this project. The work
so far has been directed at delineating the basic design of the system, experimenting
with potentially useful applications within the context of NASA’s space operations,
and identifying some of the outstanding problems requiring further research.

We have made substantial progress in these areas. We have devised a powerful and
theoretically sound scheme for representing and reasoning about procedural knowledge.
A declarative semantics for the representation has been constructed that allows a user
to specify facts about behaviors independently of context. We have also defined an
operational semantics that shows how these facts can be used by a system to achieve
desired operational goals. Possession of both a declarative and an operational semantics
is an essential precondition of a system endowed with all the desirable properties
of expert systems, including explanatory capability, reasoning ability, evolutionary
potential, and verifiability. We have constructed a practical implementation of a system
based on this representation, and shown how it can be applied to certain problems in

the automation of space operations.

Much more work remains to be done. We need to consider planning [38] and
consistency maintenance [8]. We should also investigate concurrency, and extend the
model to deal with it. Some work in this direction is described by us elsewhere [19].

1.2 Fault Isolation and Diagnosis

As mentioned in the introduction, there are many space operations that require com-
plex reasoning capabilities, including command and control, monitoring and control of
experiments, management of various subsystems, and the handling of system malfunc-
tions. The last is of particular importance. On the space shuttle (STS), for example,
malfunction handling currently places acute demands on crew and requires a very high
level of ground support and manpower. Given the proposed increase in the frequency
of shuttle flights during the next few years, such high levels of crew involvement and

ground support are patently unacceptable.

A major consideration in choosing a reasoning system suitable for such an applica-
tion is that much of the domain knowledge is represented procedurally. The procedural
nature of this knowledge is critically important not only with regard to the conclusions

drawn but also to the safety and efficiency of the operation.

Most of this knowledge is set down in the operational procedures for the various
subsystems of the spacecraft. Other knowledge is part of the general technical expertise
of mission controllers and astronauts. In addition, there are various constraints that
must not be violated in executing the procedures, such as adherence to flight rules and

the avoidance of potentially harmful interactions with other subsystems.

The operational procedures include extensive instructions describing various tests
to perform and actions to carry out, dependent on the results of previous tests and
actions. Most are written as a sequence of steps in English-like language, including
conditional statements, “go to” statements, and transfers to named procedures. Many
control constructs are unusual, such as procedures that have multiple entry points,
are interrupt-driven (i.e., can be invoked on a given condition), or are dynamically
modifiable (e.g., “do procedure P except ...”). Sample portions of the malfunction
handling procedures for the reaction control system (RCS) on the space shuttle are
given in Figures 1.1, 1.2 and 1.3. As can be seen, the procedures are extremely complex.

Some of the procedures that are used to establish particular conditions or draw cer-
tain conclusions would be invalid, were they not carried out in the order specified (i.e.,
the results are contezt-dependent or time-dependent). For example, the conclusions to
be drawn after a hot fire of the RCS system depend entirely on the context of the

particular maintenance procedure being executed: if the desired response is obtained,

RCS JET
DLMA/PWR

-t
o

-d

RCS

| RCS JET.“
il
ALARM

F RCS D JET
or

FRCS F JET
or

F RCS L JET
or

F RCS R JET
or

F RCS U JET
or

L RCS A JET
or

L RCS D JET
or

L RCS L JET
ar

L RCS U JET

R RCS A JET

R RCS D JET

JET

SET

1f:

Primary Jet 0X
Injector Temp
< 30

Primary Jet Fu
Injector Temp
<2y

Vernier Jet In-
jector Temp

< 130

Fire Command and

no PC Discrete
Ho fire Command

witn Jet Driver

Out put
S/d: OF08.01

P FWD (L,R) RCS

; ALARM

F{L,R) RCS
LEAK

If:
F(L.R) RCS

A 0%-FU > 12.6%

10.1 RCS JET/DLMA/PWR

IRy
RCS JET FAIL (ON) |GRCZIRCS |
1. Affected MANF ISOL - CL {tb~CL),
then GPC if MANF §
2. Go to MALF, RCS, 10.1a{T]
1. 21
RCS JET FAIL (LEAK) |GRC_Z3 RES |
1. /RCS FU and OXID qty diverging:
If diverging affected, MANF ISOL - CL (tb-CL),
then GPC if MANF §
2. Go to MALF, RCS, 10.1a|Z3|
T3]
== Res JET FAIL (OFF) |GRC 23 RS |
1. Go to MALF, RCS, 10.1alT|
1,37

RCS LEAK ISOL [GRT_SYS SUW 7|

{f FU or OXID TK P high, go to RCS TK PRESS (FU or 0X)
HIGH,
[f FU and TXID TK P Yow
YFU (OXID) He P (CRT & meter)
{f decreasing, go to step 1

If not decreas1ng go to RCS TK PRESS (FU or OX) LOW,
|TB! step 2
[f FUOr OXI0 TK P normal:
VFU(OXID) He P (CRT & meter) decr: (::(:)
1. DAP: free drift

Secure RCS
2. Perform affected RCS SECURE, |T.I0|, then:
3. If affected RCS receiving XFEEDJTTCNECT, go to
step 6

/Sing1e MANF :
. YOnly one MANF P decr
If decr, return to normal config except leave
leak ing MANF closed >>

YPRPLT TK Leg (/two MANF P):
5. /MANF 1,2 or MANF 3,4 P decr
[f two MANF P decr, return to norma) config
except leave affected TK ISOL (1/2 or 3/4/5),
MANFs, and corresponding XFEED vlvs closed.
If 3/4/5, go to LOSS OF VERNIERS (ORB OPS,
RES) >

/He TK:
6. YHe P decr
If decr, call MCC for use of LEAKING He RCS
BURN, MALF RCS, SSR-5. When att cnt1 reqd:
1 Aft RCS, T'CNECT from OMS |T.B| or |1.9]
then open all MANFs. Prior to deorbit TIG
return to stra1ght RCS feed. When He TX P <

556 perform I'CNECT from OMS, |T.B} or [T.T].

At EI perform XFEED from good RTS,
‘r—gz >> —

If Fwd RCS, return to normal) config:
When He P < 556, |GRT 23 RCS| - override
FWD MANFs STAT closed, perform LOSS OF
VERNIERS. (ORB OPS, RCS) then over-
ride open prior to deorbit. When PRPLT TK
P < 190, perform RCS SECURE (FwD) |TZI0| »>>

{Continued next page)

(:) If GNC SYS

SUMM 2 and meter
disagree, He P
instrumentation
failure. Do not
use |GAC 23 RS
to cross-check
meter

(:) If GNC SYS

SUMM 2 and meter
agree but not decr,
qty input finstru-
ment failure. Do
not use

BRC 23 RCS) to
cross-check meter

Figure 1.1: RCS Malfunction Procedure 10.1

ER|
[SREZIRCS |

o Deselect Jet
if not auto
deselected

n dis-
Figarding FAIL-
OFFs caused by
disabled RJD
Drivers, are
there multiple
or single
|FAIL-OFFs ?

Multiple
FAIL-OFF

Single
FAIL -OFF

2 or
a1l to proceed
with Hot Fire
Test
[Proceeding with
Hot Fire test 7

YES

RCS

10.1a L(R,F) RCS (L,U,D,R,A,F) JET
F(L,R) RCS TK P
F(L,R) RCS LEAK

|Z T Wates or Targe|
RTS usage

h 4

'n.{lz

observed ?

, Al
AILED-ON
ELECTRICALLY

3]

NO

TSR-2 HOT FIRE RCS

7 sire
vehicle response
cbtained ?

[TF MANF S:
o Reselect
Vernier cnt)

ks — -
select Jet if
att cnt) stil
available

JET DRIVER FAILURE
OR JET MECHANICAL

(Y

9 AR5, go
To RCS, LOSS OF }

VERRTERS (ORB OPS

To determine if
multiple fafl-off
Jets occurred,
/both Aft pods

Consult MCC
or other params
possibly lost in
same MDM card

(:) When in De-
orbit Prep 1f Jet
not real fail-off:
change READ/WRITE
Priority 1(2) yaw
Jjets in Aerojet
DAP to lTowest
priority. Refer to
GNC SSR-8, AFT RCS
PRIORITY MEMORY
WRITE

@ If L5L or RSR
ail-off, Vernier
control still
available.
Deselect affected

Jets

Figure 1.2

10

: RCS Malfunction Procedure 10.1a

—

RCS

RCS JET
Self-test
Fail

e e e s

1f:
Jet Oriver fai)
ON or OFF
Trickle current
circuit failure

Nominal Contig:
(014:F)
RJDA 1A L2/R2
LOGIC - ON
RJDA 2A L4 /R4
LOGIC - OM
RJDOF 1B F1
LOGIC - ON
(015:F)
RIDA 18 LY/L5/R1
LOGIC - ON
RJDF 1A F2
LOGIC - ON
(016:F)
RJDA 2B L3/R3/R5
LOGIC - ON
RJOF 2A F3
LOGIC - ON
RJIOF 28 F4/F5
LOGIC - On
(014,015,016)
RJDs (nine) - OFF

10.1e RCS JET SELF-TEST FAIL

I

|ERCZIRES |

® RCS FWD(L,R) -
ITEM 1(2,3)

EXEC (*

—- ™

7 | Jet previously]
Jeclared ‘FAIL
OFF' ?

NO

et previously
declared 'FAIL
ON' ?

NO

g Sk

‘YES’{

than
fa11ed ?

| More

7 1 Failed jets onl
three jets

same RJD ?
NO

CAUTION

Consult MCC before
proceeding

5 [/fatled jet

selected, RM

enabled

e TTEM XX EXEC

o ITEM XX EXEC as
reqd

RCS
SSR=Z HOT FIRE RCS

SRIVER FAILED OFF

1

[o/data
Desired vehicie YES JTIT Null vehicTe
response ? ‘mot fon with RHC

NO

A
TOrF " 141 Pc rAILED HIGH

l?ﬁilure occur ? AND JET FAILED OFF

YES

6] Deselect
Tailed jet and
reselect remaining

_zets

kil

121 TRICKLE
TURRENT CKT
FAILURE OR MDM
PARAM 1 0SS

(:) Jet still

usable. Do not
deselect

@ Turn all

drivers ON for HOT
FIRE RCS

Figure 1.3: RCS Malfunction Procedure 10.1e

11

then, in the context of Procedure 10.1a (Figure 1.2) we could conclude that either a
Pc (processor) or an MDM input parameter had failed, whereas the same observations
in the context of Procedure 10.1e (Figure 1.3) would indicate a TRICKLE CURRENT

circuit failure or an MDM parameter loss.

The ordering of actions and tests may not only influence the conclusions drawn,
but can also have a vital effect on the entire mission. For example, in Figure 1.1, if
the aft RCS system is affected (Step 6, Block 1.4), all manifolds must be opened after
interconnection with the orbital maneuvering system (OMS). If this were not done,

the result could be catastrophic.

Other procedures reflect ease of maintenance, or trade-offs between the likelihood
that a particular component is faulty and the ease with which it can be examined or
replaced. For example, it might not be necessary to check the setting of one valve
switch at the same time the setting of another is being examined, but, if both switches

are adjacent to each other, it is sensible to do so.

The procedures are also designed so that the system is “made safe” prior to any
attempt at fault isolation and diagnosis. Furthermore, even as the system is being
brought to safety, the ordering of actions and tests must often be done in a way that
ensures against loss of critical information regarding the cause of the failure.

Most of these procedures are applied to satisfy some particular goal, such as to
isolate a fault in some subsystem or to determine whether or not some condition
holds. However, some procedures, especially those of a precautionary nature, need to
be invoked whenever a certain condition is observed. For example, the mission control
center (MCC) must be advised before any hot fire of the jets in the RCS. Sometimes a
procedure will be primed for invocation at a particular time as a result of some other
procedure’s having been executed. For example, in Figure 1.1, Step 6, if the OMS has
been interconnected with the RCS, the systems have to be restored to straight feed,

and various other measures taken, prior to deorbit.

Not all the domain knowledge is represented procedurally, some being in the form
of general rules about the state of the system. Flight rules, for example, are often
given in this form. A typical sample of such knowledge might be

An internal OMS or RCS leak resulting in the violation of minimum thermal

operating constraints is cause for a deorbit delay.

12

In about 10 to 20 percent of cases, no malfunction procedures are appropriate. It
is then necessary for mission controllers, engineers, and astronauts to devise a test
from “first principles.” Much of this additional expert knowledge is also procedural
in nature, although the procedures are often based on functional considerations rather
than being related to a specific spacecraft system. For example, to isolate a fault in
an electrical system, a typical procedure is the feed-device-ground strategy [10]: the
expert focuses on the device, considers its input and output behavior, tests it by using
alternate feeds and grounds, and then, depending on the outcome, moves along the feed
or ground chain to another device. A similar method can be used for fault isolation
in hydraulic systems. However, much of the reasoning required in constructing tests
from “first-principles” involves an extensive understanding of physical systems and is

currently beyond the capacity of any automatic reasoning system.

Skilled astronauts and mission controllers also know how best to apply their knowl-
edge, such as when to terminate a diagnosfic test if some particularly unusual fact
suggests an alternative hypothesis or a mission-critical condition arises that requires
immediate attention. Such utilitarian knowledge, often called metalevel knowledge [6],

is very important for effective practical reasoning [15].

13

Chapter 2

Possible Technologies

In this chapter we examine some of the possible approaches to automating the mal-

function handling procedures for space vehicles.

2.1 Conventional Programming Languages

One possible approach to automating maintenance procedures is to employ conven-

tional programming techniques. However, this entails a number of serious problems.

One problem is that the order of task execution within a program is determined
entirely by the control structure of its code. This renders such systems unresponsive to
unanticipated external events and very inflexible. In space operations this is a critical
deficiency, as it is essential that the system be able to respond appropriately to newly

perceived data or changing goals.

Another problem is that conventional programming languages use arbstrary names
for the procedures, tasks, and actions that are to be performed. That is, the various
subroutine names and input/output commands serve merely to identify particular
procedures, and are not descriptive of the goals or conditions that the procedures

aim to achieve or test. This has at least three serious consequences.

The first is that the system loses its robustness and potential for change. For
example, there may be many ways to normalize tank pressure in the RCS, each of

which has a certain utility in different contexts. Yet a call to Procedure 1.7 (see Figure

14

1.1), or any other subroutine name, will invoke only one of these (i.e., the one so
named), irrespective of the context. And the addition of another (perhaps better)
pressure normalization procedure will go unnoticed by the system (unless one digs
into the code and replaces all calls to Procedure 1.7 with calls to the new procedure).
Worse yet, the deletion of Procedure 1.7, or an inadvertent renaming, could cause the
system to fail, despite the fact that other pressure normalization procedures may be

available for use.

The second consequence of invoking actions by name is that one loses reasoning
and explanatory capabilities. Thus, for example, if the system is asked why it is
performing Procedure 1.7, the best it can respond is that it is required for RCS-
LEAK-ISOL Procedure 1.4 whenever the tank pressure is found to be high. But the
user does not know what Procedure 1.7 was intended to achieve, and thus cannot use
any expertise to OK the procedure or revise it when necessary. The situation becomes
worse as procedures become larger. The user has little idea as to the purpose of the
tests and actions within the procedure and quickly loses understanding of what the

system is trying to achieve and how it is attempting to do so.

Equally important, the system itself cannot reason about tasks and decide how
they can be combined to accomplish composite goals. For example, the system could
not reason that a conjunctive goal (such as isolating a jet failure fault and opening the
shuttle bay doors) could be realized by trying to perform one task before the other, or

perhaps by interleaving the tasks with one another.

The third consequence is the most serious. The problem is that, by giving the
actions arbitrary names, it is not possible to determine the validity of a procedure
independently of the other procedures invoked by it. For example, the validity of
Procedure 1.4 (suitably coded in a programming language) will depend on the definition
of Procedure 1.7 (among others), which in turn will depend on the definitions of the
procedures it calls, and so on. As the actual calling sequence will vary from one
problem to the next, it is extremely difficult to verify the correctness of the system.
Therefore, one could not be certain that a situation would never arise in which some
particular procedure is improperly invoked, possibly with disastrous consequences.

In summary, one would prefer to be able to specify procedures in terms of the
desired sequences of goals to be achieved - i.e., to specify what is desired at each point
in the procedure - so that the system itself can reason about how best to attain these

15

goals given the current circumstances. In contrast, the use of calls to named procedures
forces one to choose a particular way of realizing each goal at program creation time,
rather than allowing this to be dynamically determined on the basis of the current
situation. More importantly, the use of named procedures also leaves the actual goal

or intention unspecified and thus inaccessible to reason and explanation.

There are numerous other problems, such as the complexity of the control con-
structs, the use of dynamic procedure modification, and the priming of tasks for later
invocation, that complicate further the employment of conventional programming lan-
guages for representing the malfunction handling-procedures for space vehicles.

2.2 Conventional Expert Systems

Another approach to representing malfunction-handling procedures is to use the rule-
or frame-based representations utilized by most current expert systems (such as KEE,
ART, and S1)[1,13,24,47]. However, these representations are not well suited to dy-
namic problem domains, where much of the knowledge is procedural in nature. Indeed,

the formalisms try to avoid any notion of “procedure.”

The major problem in using these systems is that of capturing the context in which
tests and actions are performed. Because the means of fault isolation for the RCS
is procedural, the various tests and actions have diverse outcomes that have different
implications in different contexts. The only way to represent this in a rule-based

formalism is to keep track of the procedural context by the use of “control conditions.”

For example, rules expressing knowledge of the system would have to include in-

formation about the current control point and procedure, such as

If [the data base contains] “at Control Point 1.1” and “in Block 1.4” and
“in Procedure 10.1” and “observed pressure decreasing” then [add to the
data base| “not at Control Point 1.1” and “at Control Point 1.2”

Clearly, this becomes very clumsy, reduces efficiency, and nullifies most of the desired
properties of an expert system. In essence, the rule-based approach makes things
implicit that should be explicit (i.e., the flow of control) and makes things explicit that
should be implicit (i.e., the context).

16

With the addition of the “control conditions” necessary to represent procedural in-
formation, extensibility and robustness are lost; each control condition must be unique
and should not be used by any rule other than the one for which it was intended. Ex-
planatory capability is poor, as there is no direct access to the entire procedure; each
rule must be explicated in isolation — with no satisfactory explanation offered for the
meaning or use of the control conditions. Moreover, the validity of a rule containing a
control condition depends on the rule or rules that inserted that control condition into
the data base, which in turn depend on the rules that inserted their control conditions
into the data base, and so on. Again, one could never be certain that a rule would
not be invoked unexpectedly, with perhaps catastrophic effects. Furthermore, it is not
possible to reason about a procedure as a whole — for example, to assess its usefulness

or criticality in a given situation.

In this respect, the popular view that rule-based systems are intrinsically modular is
a myth. Modularity is useful only to the extent that it captures some semantic whole,
some independent piece of information. While accepted programming methodology
encourages the subdivision of programs into subroutines, few people would suggest
that all subroutines should be one-line pieces of code.

Similarly, it is worth reflecting on why recipe books, maintenance manuals, and
descriptions of interpreters for expert systems are never given in rule form. The reason
is obvious: such an approach would complicate things to absolutely no advantage.
The subroutine (recipe, maintenance procedure, etc.) is intended to capture a useful
functional entity; to subdivide it into meaningless parts would be counterproductive.
Nor, by the same token, is there any purpose in arbitrarily subdividing a method or

procedure used by some domain expert into individual but dependent rules.

Experience in trying to apply conventional expert systems to problems in fault
diagnosis and maintenance has shown that expert knowledge is often procedural in
nature; a number of expert systems therefore provide some facilities for representing
procedures (e.g., Centaur [1] and ART). In most cases, however, such procedures are
represented simply by LISP code (or some equivalent) that can be invoked via the data
base. The procedures are ad hoc additions, have limited control constructs, cannot be
reasoned about, and cannot be interrupted on the basis of newly observed data or

newly established goals.

17

2.3 A Simple Example

To examine some of the difficulties in using current expert systems for problems of
this kind, let us take a very simple example. It is interesting that, even in this elemen-
tary case, an adequate representation of procedural knowledge proves to be crucially

important.

The example we shall consider is the mechanism for removing CO, in the environ-
mental control and life support system (ECLSS) of the proposed space station. This
is to be accomplished by operating a number of fuel cell arrays out-of-limits, where,
instead of producing useful power, they absorb CO,.!

A single module consists of an array of fuel cells. A stream of hydrogen flows across
the array (in serial), passing from one cell to the next. The contaminated air flows
through the cells (in parallel), entering one end and exiting the other. That is, unlike
the hydrogen, the air does not flow from one fuel cell to another. If the fuel cells are
operating correctly, most of the CO; has been removed by the time the air has passed
through the module. A cooling system also operates to keep the module within an

appropriate temperature range.

One of the primary symptoms of a module malfunction is a loss in voltage. By
considering the pattern of voltage loss through the component cells in one of the
modules, it is possible to narrow down the source of the fault. For example, because
hydrogen flows across the cells, a problem with the hydrogen supply will tend to affect
the closest cells differently from those farther away. This manifests itself as a pattern
of decreasing voltage across the cells. On the other hand, as the air flows through the
cells, any problem in the air supply will affect each cell equally, thus resulting in a

uniform voltage drop among all of them.

Unfortunately, the pattern of voltage loss does not identify the fault uniquely. For
example, if a uniform voltage drop is observed, we can infer a problem with the air
supply or the current supply. Furthermore, there are at least two possible problems
with the air supply: too high a humidity or too low a humidity. Consequently, we need
to conduct further tests to help close in on the fault.

'Researchers at Johnson Space Center have applied the expert system KEE to this problem [34]. It
is interesting to note how they are forced to use procedures for the diagnosis, and how the represen-
tation of these procedures manifests most of the failings of conventional programming techniques as

discussed in Section 2.1.

18

Note that now we have a sequence of tests to perform if we suspect a problem in a

fuel cell module:

1. Test for voltage drop
2. If the voltage has dropped, examine the pattern of voltage loss

3. If the pattern is uniform, test humidity and temperature; otherwise, if the pattern

is ..., test for ...; etc.

Not only is this a sequence of tests, but it involves conditionals as well. In other
words, it is a fully-fledged procedure for isolating the fault. Furthermore, each of these
tests might itself be quite a complex procedure. For example, examination of the

pattern of voltage loss might require a sequence of probes.

Sometimes, parameters may not be examinable directly, either because no sensor
is provided or because a sensor is faulty. In the above example, it may be that the
humidity sensor is faulty, in which case it could not be used to help isolate a fault
involving a fuel cell module (indeed, it could be the cause of the problem). In such a
situation, one way to distinguish between too high and too low a humidity is to adjust

the humidity in one direction and see if that improves things or not.

But even this method has its complications. If we #ncrease the humidity, nothing
much happens except that module performance gets either steadily better or steadily
worse. But if we decrease the humidity we have a chance of bringing the module into a
critical region that would require it to be shut down immediately. Thus it is important

that we try to increase the humidity and observe the outcome, rather than decrease it.

Let us now consider how this knowledge about fault isolation of a fuel cell module
might be represented in a standard rule-based expert system, such as EMYCIN [51],
OPS [14], or such commercially available systems as S1 (Teknowledge), ART (Inference
Corp) and KEE (Intellicorp).

For this problem, a possible set of rules for a forward-chaining system might include

the following:
1. if do(isolate-problem module) then do(volt-test module)

2. if voltage-drop(module) then do(patt-test module)

19

3. if done(patt-test module) and pattern(module, uniform)
then do(hum-test module)

4. if done(patt-test module) and pattern(module, ...)
then do(...)

5. if done(hum-test module) and high(humidity)
then done(isolate-problem module) and do(red-hum)

6. if done(hum-test module) and low(humidity)
then done(isolate-problem module) and do(inc-hum)

and so on.

Of course, this is not the only representation possible with a rule-based scheme.
For example, as an alternative to the condition about having done the pattern test
in Rule (3) (i.e., done(patt-test module)), we could have added a condition on the
voltage drop (i.e., voltage-drop(module)). This would be more or less equivalent to
the formulation given above, but in general one has to be careful. For example, the
pattern test might have a temporary effect of restoring the voltage to normal.

We could not, however, remove the contextual information. That is, we could not

use the rule
if pattern(module, uniform) then do(hum-test module)

as an alternative to Rule (3). The fact that we have just done the pattern test must
be included (one way or another) in the antecedent, as otherwise the rule could be
invoked (be “fired”) when the module is operating normally (in which case the voltage

pattern is likewise uniform).

The system must also include rules describing how to conduct the various tests,

such as
if do(hum-test module) then do(x) and do(y) and do(z)

The intent here is that the humidity test involves performing, in order, the actions
X, ¥, and 2. Furthermore, these actions may themselves be defined by quite complex

procedures.

20

We again have the problem of specifying the context in which actions and tests
are performed. For example, the various actions above might have diverse outcomes
that could have different implications in different contexts. If this were the case, we
could not include as the consequent of each action simply the results of performing
that action in isolation: doing so would fail to capture the fact that the consequents

are context-dependent. So we would probably need rules of the kind

if done(x) and done(y) and done(z) then done(hum-test module)
if done(hum-test module) and voltage-decrease(module)

then high(humidity)

As can be seen, things are beginning to get very messy and complex. And the sit-
uation becomes commensurately worse for the far more complex components typically

found in space systems.

21

Chapter 3

Procedural Knowledge

3.1 Representing Procedural Knowledge

It is clear from the preceding discussion that operational procedures involve very com-
plex control structures and are based on a wealth of knowledge about operational
conditions, usage and experience with similar equipment, best available engineering
judgment, technical edicts, operational flight rules, and safety considerations. It is
clearly not sensible to try and “deproceduralize” this knowledge so that it can be rep-
resented in a form suitable for conventional expert systems.! We therefore need to
develop a knowledge representation that allows arbitrary facts to be stated regarding
procedures and their eflects, and that, at the same time, enables the use of this knowl-
edge to achieve desired operational goals. But first we must define some basic concepts

that we will be dealing with.

We view a system as trying to to attain certain goals by performing certain actions
in some environment. At any given instant, the world is in a particular world state.

The world includes both the environment external to the system and the system’s

'This is not to say that formalizing the knowledge used in the construction of the operational pro-
cedures would not be worthwhile. However, any simple reformulation of the procedures into rule
form would gain nothing (and as we have shown, would actually be disadvantageous). Furthermore,
should it eventually be possible to formalize the designer's knowledge (and this is currently well
beyond the state of the art), it would be better to use this knowledge to construct operational pro-
cedures (in effect, to “compile” some of the knowledge) rather than always being forced to “reason

from first principles”.

22

own internal state. World states are described by statements in predicate calculus,

including conjunction, disjunction, and negation. For example, the state description
(block a) A (block b) A (on a b)

describes all those worlds in which one block (a) is on top of another (b).

A behavior is a sequence of world states that is generated by the system; an action
(or action type) is a set of such behaviors. We use so-called temporal statements to
describe actions (or behaviors). A temporal statement consists of one of the temporal
operators !, 7, or #, followed by a [nontemporal] state description. For a given state
description p (such as the one given above), the meaning of these temporal operators

is as follows:

e The expression !p is true of a sequence of states if p holds in the last state of the
sequence. Thus, it represents the performance of an action that tries to achieve

the condition p.

e The expression ?p is true of a sequence of states if p holds in the first and last

states of the sequence, thus representing a [nondestructive| test for the condition

D.

e The expression #p is true of a sequence of states if the truth value of p is main-

tained throughout the sequence, i.e., it preserves p.

We describe a procedure by specifying the possible sequences of goals that the
system will try to achieve in executing that procedure. A goal specifies a desired
behavior of the system. This view of goals as behaviors is unlike that found in most
planning and reasoning systems, where goals are usually represented as nontemporal
statements denoting states of the world to be achieved. The scheme adopted here
allows a much wider class of goals to be represented, including goals of maintenance
(e.g., “achieve p while maintaining q true”) and goals with resource constraints (e.g.,

“test p within the next 10 minutes”).

The procedure itself is specified by using a recursive transition network (RTN),
which can be viewed as a kind of flowchart. We will call this the body of the procedure.
The arcs of the RTN are labeled with goal descriptions, and the various possible paths

23

through the network from the start node to a final node represent the possible ezecu-
tions of the procedure. Because the procedure is represented as a network, arbitrarily

complex control constructs can readily be expressed.

Finally, we associate with each procedure an effect, which is a description of the

behaviors that will be realized if the procedure is successfully executed.

A sample procedure description, representing a method for returning a fuel cell
module to proper operation as described in the previous chapter, is shown in Figure
3.1. (The invocation condition is discussed in the next section.) The start node is
labeled START and final nodes are labeled END. As mentioned above, one of the crucial
features of the representation is that the arcs are labeled with goals, that is, conditions

to be achieved or tested for, rather than arbitrary procedure names.

This means of representation allows us to state facts about the procedure without
regard to how these facts may be used. Thus, for example, one of the facts represented

by the procedure shown in Figure 3.1 is

If a fuel cell has a voltage drop and it can subsequently be determined
that the pattern is uniform, and if it can thereupon be established that the
humidity is high, and f finally it is possible to achieve a lower humidity,
then it follows that the fuel cell will be rendered operable.

This is a statement about the problem domain, and its truth can be determined
without regard to any other procedures or any other statements about the domain.
This is what we call the declarative semantics of the procedural representation. Such a
semantics is necessary for reasoning about composite goals, is critical for verification,
substantially eases the construction process, allows for the incremental addition of
knowledge, and provides for more meaningful explanations of system reasoning. A
more formal treatment of the semantics of the representation is given in Appendix A,
and the basis for the formal model in Appendix B (see also [20,21]).

3.2 Using Procedural Knowledge

Procedural descriptions provide a way of describing the effects of actions in some
dynamic problem domain. That is, they state that the realization of certain sequences
of goals (specified in the body of the procedure description) will result in a particular

24

INVOCATION: (FACT (COMPONENT $MODULE ECLSS))
AND (GOAL (! (OPERABLE $MODULE)))

EFFECTS: (! (OPERABLE $MODULE))
BODY: .

(? (VOLTAGE-DROP $MODULE))

(? (PATTERN $MODULE UNIFORM))

(? (KIOH HUMIDITY)) (? (LOW HUMIDITY))

(! (REDUCED HUMIDITY)) (! (INCREASED HUMIDITY))

(=> (OPERABLE $MODULE))

Figure 3.1: Portion of KA for Fuel Cell Malfunction

25

class of behaviors (specified in the effects of the procedure). But how can a system use

this knowledge to achieve its goals?

One way to accomplish one’s goals is to select a procedure whose effects imply that
the goal will be achieved, i.e., whose set of possible behaviors is included in the set
of behaviors denoted by the goal. A simple interpreter based on this idea could be
usefully implemented. However, it is not always wise to invoke a procedure simply on
the basis of its effects. For example, one way to reduce pressure in a fuel tank is to
blow it up, but this is not a sensible procedure for achieving this goal. Similarly, some
procedures (such as emergency procedures) need to be invoked solely because some
critical event has occurred, and thus do not have to be responsive to any particular
goal having been set. In these cases, admittedly, there is indeed some underlying
goal that is being achieved (such as maintaining the safety of the spacecraft), but
it is implicit in nature. Rather than be compelled to make such goals explicit, it is
preferable to have a mechanism that allows procedures to be invoked on the basis of

either explicit or implicit goals.

To accomplish this, we associate with each procedure a form of metalevel knowl-
edge that specifies under which circumstances invocation can occur. This is called
the tnvocation condstion of the procedure. The combination of a procedure and its
invocation condition is called a knowledge area (KA). The invocation condition is an
arbitrary logical expression, which may include constraints on both currently known
facts and currently active goals. A KA can be executed or invoked only if its invocation

part evaluates to “true”.

For the KA given in Figure 3.1, the invocation condition indicates that this KA
may be useful when the current goal is to isolate a problem involving the operation of
a fuel cell module in the ECLSS.

A selected KA can be used to achieve a given goal by achieving, in order, each of
the goals appearing in some path through the body of the KA. Thus, when an arc of a
KA is to be traversed, the goal labeling that arc is set up as a new goal of the system.
This new goal may be attained either by realizing that it has already been achieved, by
performing some primitive action directly, or by executing other KAs whose invocation
conditions match the goal. If any of these possible methods succeeds in accomplishing
the goal, the arc of the original KA can be traversed and execution can progress to

the next node in the network. The KA is considered to have been successful when,

26

and if, execution reaches the end node. We call this the the operational or procedural

semantics of the KA.

For example, if the KA in Figure 3.1 were invoked, it would first try to test whether
there was a voltage drop in the given fuel cell. This might involve executing some
simple test directly, or may involve invocation of some other KA to perform the test.
If a voltage drop were not detected, the KA would fail and perhaps some other KA
for isolating fuel cell faults could be tried instead. However, if a voltage drop were
detected, the KA would then try to test the pattern of voltage loss in the fuel cell.
If this were normal, it would test humidity, and finally try to modify the humidity
appropriately.

The main point to note about this procedure is that it captures all the information
contained in the rule-based representation, yet is much less cumbersome and much more
natural. Furthermore, it provides a considerable gain in efficiency, as the conditions
used for representing the control structure in the rule-based scheme (e.g., done (module
patt-test)) do not have to be matched with some global data base, but instead are

represented explicitly in the flowchart structure.

As mentioned above, we may need other KAs to tell us how to perform particular
tests and achieve given goals. For example, if there were a procedure for determining
humidity (see Section 2.3), we could represent this by the KA given in Figure 3.2. As
for the previous KA, there is no need for the explicit contextual information about
having done actions x, y, and z (which is needed for the rule-based representation);

that information is implicit in the structure of the KA’s body.

During execution of the body of a KA, other KAs become applicable (and thus
available for execution) whenever a new goal is established that matches their respec-
tive invocation conditions. A KA that responds in this way is called goal-dsrected.
Alternatively, a KA may respond to the discovery of some new fact about the current
state of the world. This happens whenever the invocation part of a KA matches the

new fact. Such a KA is said to be data-driven.

Such a reactive capability is indispensible for safe and efficient operation of the
space shuttle. For example, if the interconnection of the OMS and RCS were done
as in Figure 1.1, we would want the system to reconfigure the RCS upon noticing
intent to deorbit. Similarly, upon sensing a violation of minimum thermal operating
constraints, the system should check as to whether it resulted from an OMS or RCS

27

INVOCATION: (GOAL (? (HIGH HUMIDITY)))
EFFECTS: (GOAL (? (HIGH HUMIDITY)))

BODY: .

(1 ($X))

a(sy)

(1 ($2))

(? (VOLTAGE-DECREASE $MODULR))

(=> (HIGH HUMIDITY))

Figure 3.2: KA for Testing Humidity

28

leak and, if so, delay deorbit (see Section 1.2). In this case, we could use an invocation

condition of the form
(fact (violated minimum-thermal-constraints))

and have the corresponding KA respond as soon as that fact becomes known.

KAs can also be partly goal-directed and partly data-driven, since, in general, the
invocation part can be any logical expression involving current facts and goals. Thus,
the system can be opportunistic in the more general sense that KAs might be invoked
because certain facts were observed during an attempt to establish particular goals.
This is particulary important because we often need the system to react in different

ways to observed conditions, depending on the current operating mode.

3.3 Procedural Expert Systems

In the previous section we described how KAs could be used to achieve given goals
and react to particular situations. In this section we describe the basic architecture of

a system based on these ideas, called a procedural ezpert system.

The overall structure of a procedural expert system is shown in Figure 3.3. The
system consists of a data base containing currently known facts about the world, a set
of current goals or tasks to be performed, a set of KAs (procedure descriptions together
with invocation criteria) describing how certain sequences of actions and tests may be
performed to achieve given goals or react to particular situations, and an snterpreter
(or inference mechanism) for manipulating these components. At any moment, the
system will also have a procedure stack, containing all currently active KAs, that can
be viewed as the system’s current plan for achieving its goals or reacting to some

observed situation.

Since the data base is intended to describe the state of the world at the current in-
stant of time, it contains only state descriptions. Goals are represented by descriptions
of the behaviors that are to be achieved.

The system interpreter runs the entire system. From a conceptual viewpoint, it
operates in a relatively simple way. At any point in time, certain goals are active, and

certain facts or beliefs are held in the data base. Given these extant goals and facts,

29

Data

Shuttle
Subsystems

[

Input
System/User
Interfaces
Data
Output

l Monitor
Data base KAs
(Facts) (Procedures)
\ / Sensors
(Perceptors)
Interpreter
(Reasoner)
Controllers
/ \ (Effectors)
Goals Procedure Stack
(Tasks) (Plans)
Command
Generator

Figure 3.3: System Structure

30

and depending on their invocation parts, a subset of KAs will be deemed relevant
(applicable). One of these KAs will then be chosen for execution. In the course of
traversing the body of the chosen KA, new goals will be formulated and new facts and
beliefs will be derived. At such points, once again, newly relevant KAs are found and

possibly invoked.

Thus, when new goals are pushed onto the goal stack, the interpreter checks to
see whether any new KAs are relevant, and, if there are, chooses one and executes it.
Likewise, whenever a new fact is entered into the data base, the interpreter will perform
appropriate truth maintenance procedures and possibly activate newly applicable KAs.
The system is therefore reactive, rather than merely goal-driven: KAs may respond
not only to goals, but also to facts. For example, when a new fact enters the system
data base, execution of the current KA might be suspended, with a newly relevant KA

taking over.

One of the key aspects of the system is the mechanism which determines when KAs
are applicable. This works by matching the invocation conditions of KAs with the
facts in the data base and the goals on the goal stack. As the invocation conditions
may be parameterized, it is necessary that there be some scheme for matching the
variables and constants appearing as parameters of an invocation condition with those
appearing in the expressions representing the goals and facts of the system. To do this,
the interpreter employs a form of pattern matching called unification to determine
whether or not the invocation part of a given KA matches the extant system goals and

facts. This is similar to the approach used in the programming language Prolog.

One of the advantages of unification that is unlike parameter binding conventions in
standard programming languages, is that it is unnecessary to decide prior to execution
which of the variables are to count as input variables and which as output variables.
This is important from the standpoint of flexibility and ease of verification. Unification
also confers other important benefits. In particular, it avoids binding variables until
absolutely necessary, which can often be advantageous in allowing difficult decisions

to be avoided or deferred.

An abstract interpreter for the system is given below. The interpreter works by
exploring paths from a given node n in a KA, P, in a depth-first manner. To transit
an arc, it unifies the corresponding arc assertion with the invocation conditions of
the set of all KAs, and executes those that unify, one at a time, until one terminates

31

satisfactorily. If none of the matching KAs terminate successfully, and all leaving arcs

fail, the execution of P fails.

function eval (P n)
if (is-end-node n) then
return true
else
arc-set := (outgoing-arcs n)
goal-pr-set := (KAs-that-unify arc-set)
fact-pr-set := (KAs-that-unify data base)
pr-set := (append goal-pr-set fact-pr-set)
do until (empty pr-set)
proc := (select pr-set)
if (fact-invoked proc) then
(eval proc (start-node proc))
else arc := (corresponding-arc proc)
if (eval proc (start-node proc)) then
return (eval P (terminating-node arc))
end-do
return false
end-function

The function KAs-that-unify takes a set of goals or data base facts and returns the
set of KAs that unify with some element in the set. The function corresponding-arc
returns the arc corresponding to the selected KA instance (i.e., the arc with which it
unified). The function return returns from the enclosing function (eval in this case),
not just the enclosing do. The initial system goal is explicitly placed on the goal stack

by the user.

The function select selects an element from a set, destructively modifying the set as
it does so. In the real system, this is done by forming a metalevel goal to select which
KA to next execute. The appropriate metalevel KAs respond and make the selection.
These metalevel KAs are manipulated and invoked by the system in the same way as
any other KA. However, they respond to facts and goals pertaining to the system itself,
rather than just those of the application domain. In this way it is possible to include
both domain-independent and domain-dependent selection criteria, and to represent

32

this knowledge in the same formalism as other knowledge of the domain.

Finally, it is important to note that a procedural expert system is not limited to
representing procedural knowledge, but can also represent static knowledge about the
problem domain. For example, the data base can be expected to include many facts
about the domain, such as the fact that a particular fuel tank is part of a particular
RCS, or that the current pressure in the tank is 130 psi.

33

Chapter 4

RCS Application

The development of an adequate knowledge representation requires both theoretical
research and experimentation with a real system. In this chapter we describe an
implemented experimental procedural expert system and discuss an application on

which the system was tested.

4.1 The System

We have implemented an experimental system, PES (the SRI Procedural Expert Sys-
tem), based on the ideas presented in the previous chapter. The implemented system
is written in LISP and runs on a Symbolics 3600 machine. In this section we present
an overview of the system structure, describe how domain descriptions are encoded
in the system, and also try to bring across the flavor of its user interface. Quite an
elaborate window system has been constructed for interacting with PES. Among the
facilities provided is a graphical package that allows direct entry and manipulation of
KA networks as well as visualization of system execution in terms of these graphical

networks.

The basic structure of PES is shown in Figure 3.3 of the previous chapter. From
the user’s point of view, the important components are: (1) the system data base
representing the current “beliefs” of the system; (2) the set of KAs representing proce-
dural knowledge about the problem domain; and (3) the set of current goals that the
system is attempting to achieve. Each of these must be initially set up by the user. A

34

complete domain description might thus consist of, say, a data base that describes the
structure of a complex piece of equipment as well as current failure indications, a set
of KAs that describe procedures used for trouble-shooting the equipment, and domain

goals that seek the determination of a faulty module.

A description of each of these components and their usage is given below.

4.1.1 The System Data Base

The data base of PES may be thought of as the current “beliefs” of the system. Some of
these beliefs may be provided initially by the system user. Typically, these will include
facts about static properties of the application domain - for example, the structure of
some subsystem, or the physical laws that some mechanical components must obey.
Other facts are derived by PES itself as it executes its KAs. These will typically be
current observations about the world or conclusions derived by the system from these
observations. It is clear then, that the PES data base is nonmonotonic — at some times,
for example, the system may believe that a particular valve is open - at other times,
closed. Thus, part of the PES data base implementation involves truth maintenance
~ making sure that the system’s data base is consistent within itself at any particular

time.

The system data base consists of a set of state descriptions describing what is true
(or what is believed to be true) at the current instant of time. We use first-order
predicate calculus for the state description language. The standard logical connectives
~ - (negation), A (conjunction), and V (disjunction) - are allowed and have their usual
meaning. We use prefix notation (as in LISP) and both A and V take an arbitrary
number of arguments. Quantification is usually implicit and, depending on context,
may be either existential or universal. Within the data base, free variables are assumed

to be universally quantified, and are represented by symbols prefixed with a $ sign.

For example, in the system data base the statement (on a table) can be taken
to represent the fact that the object denoted by a is on top of the object denoted
by table. The statement (red (color $x)) means that every object is colored red,
and the statement (V (- (on $x table)) (red (color $x))) means that every
object on the table is red. Note that, in this case, the free variables are assumed to be

universally quantified.

35

State descriptions are not limited to describing states of the ezternal environment,
but can also be used for describing snternal system states. Expressions that refer to
internal system states are called metalevel expressions. Because these expressions refer
to the system itself, all the basic metalevel predicates and functions are predefined by
the system. For example, goal is a predefined metalevel predicate that is true if its

first argument is a current goal of the system.

We intend that future extensions to the system will include a structure edstor. This
editor would enable the graphical representation of an application system (for instance,
a schematic of the subsystem under test), the derivation of structural information from
that representation, and finally, the integration of that information into the PES data
base. This would represent a significant advance over the manual encoding of the
struture of the application system into predicate form - a task that we had to perform

for the space shuttle application described in the next section.

A graphical representation of system schematics could also be used as a vehicle
for run-time explanation and interaction with a PES user. For example, manifolds
currently being opened, closed, or tested could be highlighted and their current char-
acteristics displayed. There is even potential for user alteration of a system’s char-
acteristics through the manipulation of its graphical representation - the graphical
interface would then play an active manipulative role, rather than a passive role re-

flecting current status.

4.1.2 Behaviors and Goals

Goals appear both on the system goal stack and as labels on the arcs of KAs. Unlike
most expert systems, these goals represent desired behaviors of the system, rather than

static world states.

To specify goals, we need some language for describing behaviors. A behavior
description (or action description) is a condition that is true of some interval of time,
i.e., that is true of some sequence of world states. Such sequences may be described by
a temporal predscate applied to an n-tuple of terms. Each temporal predicate denotes
an action type or a set of state sequences. That is, an expression like “(walk a b)”

can be considered to denote the set of walking actions from point a to b.

A behavior description can also be formed by applying a temporal operator to a
state description. The temporal operators currently used are !, 7, and #. The state-

36

ment (!p), where p is some state description (possibly involving logical connectives),
is true of a sequence of states if p is true of the last state in the sequence; that is, it
denotes a behavior that achieves p. For example, we might use a behavior description
of the form (!(walked a b)) rather than (walk a b). Similarly, (?p) is true if p is
true of the first and last states in the sequence, and can be considered to denote a
behavior that tests for p. Finally, (#p) is true if p is preserved (maintained invariant)

throughout the sequence.

Behavior descriptions can be combined using the logical operators A and V, repre-
senting intersection and union operations, respectively. The interpretation of variables
is fixed over the interval (sequence of states) to which the behavior description is ap-
plied. Quantification is usually implicit, its type depending on the particular context

in which the expression is used (see below).

As with state descriptions, behavior specifications are not restricted to describing
the external environment, but can also be used to describe the internal behavior of the
system. Such behavior specifications are called metalevel specifications. One important
metalevel form is (=> p), which specifies a behavior that places the state description

p in the system data base.

4.1.3 Knowledge Areas

Knowledge about procedures is represented in PES by KAs. Each KA consists of a
body represented within the system as a graphical network that encodes the steps of
the intended procedure. A KA must also include an tnvocation condition that specifies
under what situations the KA may be used, as well as what it is useful for (i.e., a
declaration of what types of goals the procedure can be used to achieve, and under
what situations it is truly applicable). The user of PES inputs all of this procedural
information via a graphical network editor that is part of PES.!

Each PES application is associated with a set of KAs that describe how to achieve
particular goals in the given application domain as well as how to react to specific facts
in the data base. Some of these KAs may be meta-level KAs - that is, they contain
information about the manipulation of PES itself (for example, how to choose between

"The graphical network editor is called GRASPER II and was developed at SRI International’s
Artificial Intelligence Center.

37

multiple relevant KAs, or how to achieve a conjunction, disjunction, or the negation of
goals). In addition to those KAs that are supplied by the user, each PES application
contains a set of KAs that are a default part of every system. These typically are

domain-independent metalevel KAs.

The bodies of KAs are represented using a recursive transition network whose arcs
are labeled with goals. Variables used in the body of a KA are classified as either
global (represented by symbols prefixed by a $ sign) or local (represented by symbols
prefixed by a % sign). Informally, the interpretation of a local variable is fixed in
the interval during which a given arc is transitted, but can otherwise vary. A global
variable, on the other hand, has a fixed interpretation during the execution of the
entire KA. (Local variables are often needed in loops where it is necessary to identify
different elements from one iteration to the next.) The current system also makes use of
program variables (prefixed by @) that behave like local variables (i.e., they may change
value on each new arc) but whose value is retained or “remembered” from one arc to
the next. A program variable @x may only be rebound within a behavior of the form
(! (= @x ezpression)). Such a variable thus behaves much like a program variable
in standard programming languages. We do have a proper semantics for program
variables, however, that is consistent with the semantics for the more standard logic

variables of form $x and %x.

In addition to the KA body, we also need to specify the invocation condition as-
sociated with each KA, which states under what situations the KA should become
applicable (i.e., be made available for execution). Currently, this is done by specifying
to which goals it should respond, to which facts it should react, or some logical combi-
nation of these. We do this by using metalevel predicates, which refer to the system’s
internal state rather than the external environment. There are two metalevel predi-
cates that are important in this case: (1) goal, which takes a behavior description g
as its argument, and is true if g unifies with a goal of the system; and (2) fact, which
takes a state description f as its argument, and is true if f unifies with a statement in
the data base of the system. These metalevel primitives may be combined using either
conjunction (represented by AND at the metalevel) or disjunction (represented by OR).
A sample metalevel statement for specifying applicability conditions is the following:

(AND (goal (!'(-~ (p $x $y))))(fact (g $x unit-1)))))

38

It states that the particular KA being specified is applicable precisely when (! (-
(p $x $y))) unifies with a current system goal and (g $x unit-1) unifies with some
fact that is currently known by the system. Note that any global variable that appears
in a KA is implicitly universally quantified, its scope extending over both the invocation
part and the body of the KA.

Within the current version of PES, we do not explicitly specify the effects of KAs.
Instead, we assume that any goals that appear in the invocation part of a KA are
achieved by a successful execution of the KA (provided the facts appearing in the
invocation part are also satisfied) - that is, the goals appearing in the invocation
part are also considered to be the effects of the KA. The reason for this is simply
convenience in the specification of KAs. If the user desires to represent an effect of
a KA but not have it appear as an invocation condition, that effect can instead be
asserted in the data base by labeling a final arc of the KA with a metalevel goal of the
form (=> effect). In later versions of this system, we may find it useful to separate
out the invocation conditions and effects as was done in the KAs that were described

in previous chapters.

Sometimes it is convenient to represent procedures directly as Lisp code rather
than in the graphical form expected of KA bodies. To retain the reactive and flexible
nature of KAs, such procedures are specified and invoked as normal KAs, except that
the body of the KA is replaced with Lisp code. Such KAs are called Lisp KAs. In
the current interface, the appropriate Lisp code is actually placed on a property list of
the corresponding Lisp KA under the key ACTION. One example of a Lisp KA is the
default KA called <. It can be invoked by a goal of form (!(< $x $y)) or (?(< $x
$y)), but its invocation results in execution of the normal Lisp function ¢, applied to
the two parameters $x and $y, rather than in the execution of a KA body. Another
important metalevel Lisp KA is §-=. It reacts to goals of the form (!(= $x $y)) and
results in the execution of a Lisp function that manipulates the internal bindings of
global variables in an appropriate fashion. Users may also define Lisp KAs as part of

their own applications.

4.1.4 User Interface and Menu System

The PES user interface is the medium through which a user creates a new application
system, loads or modifies an existing system, or runs a system. Part of this interface

39

is a sophisticated window system that aids the user in all of these tasks.

The main PES window is divided into four parts (see Figure 4.1). The top pane
is used for a textual trace of KA execution. As KAs are invoked and their edges
traversed, the textual trace reads out KA names, edge expressions, as well as variable

bindings.

The second pane is a user run-time interaction window — the input/output pane.
Here, messages that are “sent to” the user by a KA (for example, questions that ask
the user for particular kinds of information) are printed out, and user responses are
typed in and sent back to the KA. For instance, in the RCS system application, we use
the input/output pane to get simulation information from the user. Thus, a KA may
send a message of the form “Are we using orbiter OV102?” and the user may respond

“yes” or “no.”

The third pane is the graphical KA-tracing pane. At any point in time, a user
may specify that they want a subset of the KAs traced (of course, all or none of the
KAs may be traced as well). When those KAs that have been selected for tracing
are executed, they are displayed in the graphical tracing pane. As their edges are
traversed, these edges are graphically highlighted. If the user desires, edge tracing
may be given a certain “tail length” - e.g., given a “tail length” of three, the three
most recently executed edges are highlighted, the most recently executed edge being
highlighted the darkest. This graphical tracing facility enables the user to see what is
going on visually and in the full context of an entire KA body, rather than trying to
follow a more complex textual trace.

Finally, the fourth window pane is the menu and PES system interaction pane. The
user may execute any Lisp function in this window. In addition, an entire hierarchy of
pop-up menus are available for loading, editing, starting up execution, and interacting
with the PES application. Right now, the primary top-level menus are the following:

¢« LOAD
Guides the user through loading an application that has already been set up.

o EDIT
Serves as an interface for creating and modifying (editing) the system data base
and KAs.

40

adepU] 19s() SHd T’y andiy

A :53d J96Ulg B2:26:¢T SB/91/
NuUawWw AdeJdodua] 4 fusW S44 ‘L Auzil C44 FIpULp 433U37 $3337-1043U0)

B :s3d v
((13r-833 1H9IT))
((39(-894 34BiL) «) :S3d

(120 4- INVINS R$ TATVA-TOSI- ANV TdADCTINI-ASd$ TINH- INVIHS JO-1AVd) (XO- INVINS N$ JATVA-TOSI- ANVIK BdAL(XO-Asd$ XO-ANVHS JO-14

45018 OIANODTW) 1)

(((1304-Asd$ 1IN4 1SIG-TAOLS-dOUd TJALNAI-$O¥$ TANL-ASd$ JO-LAVAI(XO-ASd$ X 151G-TYOLS-JOUd TAL(AI-SOA$ XO-ASd$ JO-LAVANAI-ANVHS N§ JATYA-TOSI-ANYN &

((ISNOJSTE$. OL. $5¥- 4. TIVO-DOM-1IVA) i)

(((z01 AO WI11¥O) ~) ¢)

({Q1-13r$ SYAINIZTA-JO-§50°D <*)

~ ((Q1-s0¥$ d SO TdAD) ~) ¢)
((201 A0 ¥ILIGYO) &)

((MTINTIA IONINGIS- NOLLVEID
((@1-s04$ 4 $OU TdAL) ¢
FINYZA IONINOAS-NOLLVITJO-)

(QI-1%r$ SETINITA JO-$SOT) <) P

((.QUVD MAN INVS NI 1SOYSHVEVA TTHIO YO4 DOW IIASNOD. ONINIVA||

((AI-ANYHWS § TATVA-TOSI-INYR BJAD) ¢)

(((Q1-13r$ HOIH-NVL NVL-NYFYL-L0dNI-NANNAI-130$ TYOINIOTTT NO-TIVE TIV4-IL
INbd 01

(CEAY. IATWING @ Mo TWA_ANCT. FIWIT BIXTY L))

ou: (0N d¥0 S$S34) £2BTNAD A3118M0 ONISN 3IM Il
ou: (DN 30 S34A) &1°S0¥ SOd NI S73n31 39dSN HIOIH 3¥3HLI SI
Ou: (0N 30 S3A) ¢1°S0¥ S3¥ NI S73n31 39uSN HOIH 333HL SI

INYd 3oL

&)

((1°S34 4 STY¥ 3dAl) ¢)

(((1°S24 4 S3¥ 3dAl)) &)

(((T"T°T°AIN 'S 3NBA-T0SI-dNUH 3dAL) .) &)
(((T°SJ¥ 394SN-HIIH) .) &)

((1°534 398SN-HIIH) &)

41

¢ RUN
Guides the user in running a loaded application system. A lower-level menu is
provided for asserting facts in the system data base, or putting new goals on the

goal stack, and is thus a vehicle for getting system KAs to respond and execute.

e TRACE
Enables one to turn graphical and textual tracing of KA execution on and off,

as well as adjust other tracing parameters.

¢ HELP

Prints documentation of these commands.
Usage of PES will normally follow this pattern:

e Creation of Application System: Use EDIT.
e Testing of Application System: Repeated use of the following cycle:

1. LOAD to load the system.
2. RUN to run the system.
3. EDIT to modify the system.

There are a large number of potential enhancements for the PES window.system
and user interface, as well as the system internals. As it stands, it is already a sophis-
ticated framework for building KAs and visualizing their execution. Areas for future

progress include:

e Augmenting the tracing facility with a full run-time debugging facility. This
would include run-time interaction with the system data base, goal stack, and
KA descriptions. In addition, color graphics could be used to encode more kinds
of tracing information. For example, a different color edge could indicate success
or failure of the goal labeling that edge.

¢ Setting up an environment for creating, running, and visualizing the execution
of multiple, interacting PESs. This is necessary for dealing with environments
in which parallel forms of reasoning and interaction must take place, and is

particularly suited for the envisioned space station environment.

42

e Setting up an additional window for the structure editor described earlier. This
would be a context for visualizing changes to the physical characteristics of the

domain.

¢ Enhancing the metalevel procedures within the system and providing a richer set

of basic metalevel predicates.

4.2 Space Shuttle Example

A potentially useful system for experimentation is the reaction control system (RCS) of
the space shuttle mentioned in the previous chapter. The system structure is depicted
in the schematic of Figure 4.2. One of the aims of our research is to try and automate
the malfunction procedures for this subsystem. Sample malfunction procedures are

presented in Figures 4.3 and 4.4.

One of the basic difficulties faced with building any knowledge base is that of
artomatizing the problem domain — that is, determining the entities of the problem
domain, their properties, and their mutual relationships. This is a task that can be

accomplished only by extensive discussions with specialists in the given domain.

One then has to acquire from these experts the rules and techniques used for
reasoning about problems in the domain of interest. In the application proposed above,
much of this information is provided by the malfunction procedures. This saves an
enormous amount of effort in building a practical system, as much of the work of

knowledge acquisition has already been done.

Unfortunately, our task is still not as straightforward as one might have hoped.
The reason is that the procedures do not specify the purpose of the individual tests
and actions, and thus do not lend themselves to direct translation into the form de-
sired for procedural expert systems. Had the designers of these procedures followed
recommended programming practice and annotated the procedures with descriptions
of the overall ntent of each of its steps (in other words, the conditions that are being
made true by each particular step), the situation would be entirely different and a
more-or-less direct translation would have been possible. As it is, this information will

have to be sought by interviewing mission controllers and engineers.

The manner in which we have represented the actions reflects what we said in

the preceding chapter — i.e., that actions and tests must be represented by whatever

43

FWD RCS

AFT RCS

L GNC_23 RCS]
QUAD [Grc 23 Res)
LIL] e o BFS, GNC SYS SUMM 2]
L . VLVS TK P
ALF [BFs.GRC_svs_summ 2]
an < v '
HETER + K iSOL X isoL
12 3 ars
+{{BFS, GNC_SYs_sumn 2]
T® P
MANF MANE | mane | manF
3z 1SoL isoL | 1soL | isoL
T® P 1 3 4 H
[aFs, GNC SYS SumMmM 2] MANF MANF MANF
Pi P3 P4
TK ISOL L ‘R L R L
Vs U u u 0 R
0 0 0
F F F
MANF MANF | MANF | MANF
ISoL 1so. | isoL | isoL
2 3 4 5
MANF] MANF
P3 P4
' Y Y Y Y Y
F
’“;fg" v u 0 v 0 :,E,Eg ovo99
A D A 0 0966. ART, 6
& 12/83

Figure 4.2: The RCS System

44

RCS

| RCS JET‘—I

ALARM
| |

F RCS D JET
or

F RCS F JET
or

F RCS L JET L
or [

F RCS R JET
or

F RCS U JET
or

L RCS A JET
or

L RCS D JET
or

L RCS L JET
or

L RCS U JET
or

R RCS A JET
or

R RCS D JET
or

R RCS R JET

or
R RCS U JET

If:
Primary Jet OX
Injector Temp
< 30
Primary Jet Fu
Injector Temp
< 20
Yernier Jet In-
jector Temp
< 130
Fire Command and
nn PC Discrete
No €ire Comnand
with Jet Driver
Output

S/: 0F08.01 *

l ALARM

F(L,R) RCS
LEAK 1

If:
F(L,R) RCS
4 OX-Fu > 12.6%

10.1 RCS JET/DLMA/PWR

T
RCS JET FAIL (ON) |BRT Z3RCS |
1. Affected MANF ISOL - CL (tb-CL),
then GPC if MANF §
2. Go to MALF, RCS, 10.1a|T|
1.7
RCS JET FAIL (LEAK) |GRCZIRCS |
1. /RCS FU and OXID qty diverging:
If diverging affected, MANF ISOL - CL (tb-CL),
then GPC if MANF 5
2. Go to MALF, RCS, 10.1a|Z3|
.31
RCS JET FAIL (OFF) |BRCZIREs |
1. Go to MALF, RCS, 10.1a|T|
T.4]

FWD (L,R) RCS L__4r

[GRC_SYS SUW 2|

go to RCS TX PRESS (FU or 0X)

RCS LEAK ISOL

If FU or OXID TK P high,
| HIGH, IT7
If FU and OXID TK P low
YFU (OXID) He P (CRT & meter) (:)
{f decreasing, go to step 1

If not decreasing, go to RCS TK PRESS (FU or OX) LOW,
ITE| step 2
If FU or OXID TK P normal:
/FU(OXID) He P (CRT & meter) decr: (:)(:)
1. DAP: free drift

Secure RCS
2. Perform affected RCS SECURE, |T.T0|, then:
3. If affected RCS receiving !FEEU?I'CNECT go to
step 6

/S1n91e MANF :
* 4, /Only one MANF P decr
If decr, return to normal config except leave
leaking MANF closed >>

YPRPLT TK Leg (/two MANF P):
5. /MANF 1,2 or MANF 3,4 P decr
If two MANF P decr, return to norma) config
except leave affected TK ISOL (1/2 or 3/4/5),
MANFs, and corresponding XFEED vlvs closed.
If 3/4/5, go to LOSS OF VERNIERS (ORB 0PS,

RCS) >
/He TK:
6. /He P decr
If decr, call MCC for use of LEAKING He RCS

BURN, MALF RCS, SSR-5. When att cnt1 re
1f Aft RCS, T'CNECT from OMS |T.B H‘!I
then open all MANFs. Pr1or'f_'deorbff_TIG
return to stra1ght RCS feed. When He TX P <«

At EI perform XFEED from good RTS, |TIT
or |T.12] >
If Fwd RCS, return to normal config:
When He P < 556, - override
FWD MANFs STAT closed, perform LOSS OF
VERNIERS. (ORB OPS, RCS) then aver-
ride open prior to deorbit. When PRPLT TK
P < 19, perform RCS SECURE (FWD) [T.I0] »>>

(Continued next page)

556 perform 1'CNECT from OMS, |T.8| or |T.9|.

@ If GNC SYS

SUMM 2 and meter
disagree, He P

instrumentation
failure. Do not
use

to cross-check
meter

@ 1¢ onc svs

SUMM 2 and meter
agree but not decr,
qty 1nput finstru-
ment failure. Do
not use

| to
cross-check meter

Figure 4.3: Some RCS Malfunction Procedures

45

condition they achieve or test for, rather than by some arbitrary name. For example,
there are some malfunction procedures in which one must lower the pressure of a tank
that has a high pressure reading, and likewise, raise the pressure of a tank with low
pressure. In such cases, the goal is actually to “normalize” the pressure of the tank,
and thus, a KA reflecting this procedure would be identified as achieving this goal.
This results in a more modular and useful system. Given a set of KAs associated with
the actual goal that they achieve, the KAs may then be reused in other circumstances
in which they might be useful, or easily replaced by other KAs that achieve their

particular goal in a better way.

To get a more in depth view of our RCS application system and to illustrate various
advantages of the procedural approach, we now look at some of the RCS KAs and their

execution in more detail.

4.2.1 The RCS Data Base

Our first task in encoding this application was to capture the structure of the RCS
system (depicted in Figure 4.2) as a set of initial data base facts. For this particular
application the facts were derived manually; in the future, they could be derived auto-
matically by having the user input the system schematic (for example, the schematic
given in Figure 4.2) to our proposed structure editor. Once inserted into the system
data base, these facts are used during fault diagnosis to identify particular components

of the system and their properties.

For example, a sample set of structural facts is given below. (The entire set of

structural facts for the RCS system is given in Appendix C.)

(type rcs f res.1)

(type he-pressurization ox hep.1.1)
(type he-pressurization fuel hep.1.2)
(part-of hep.1.1 recs.1)

(part-of hep.1.2 rcs.1)

(type he-tank het.1.1.1)

(part-of het.1.1.1 hep.1.1)

(type he-tank het.1.2.1)

(part-of het.1.1.1 hep.1.2)

46

For the purposes of the current system, there are two types of structural facts - type
facts, which declare specific components or subsystems and associate them with unique
identifiers, and part-of facts, which state which components and subsystems are part
of other subsystems. For example, (type rcs f rcs.1) specifies that the system
rcs.1 is a front reactant control system (there are two other reactant control systems:
the left aft and right aft). Each RCS contains two helium pressurization subsystems,
one for the oxidant part of the system, the other for the fuel subsystem. For RCS
rcs.1 these are labeled as hep.1.1 and hep.1.2, respectively. Finally, each helium
pressurization system contains its own helium tank. These tanks are assigned the
identifiers hep.1.1.1 for helium pressurization system hep.1.1, and hep.1.2.1 for
the tank in helium pressurization system hep.1.2. As the reader may have noticed, the
identifiers themselves reflect some of the structure of the RCS. The form of identifier
names, however, should only be regarded as a mnemonic device for users; within PES

these identifiers are simply regarded as unique tokens, void of semantic meaning.

Once we encode the structure of the RCS in this fashion, our diagnostic procedures
can make use of this information to perform what might be considered simple common
sense tasks for an astronaut. For example, if a malfunction procedure had the test
“Is the oxidant helium tank pressure greater than the fuel helium tank pressure for
the front RCS system?” our system could encode the test in a way that is impervious
to system reconfiguration and is not hard-wired to particular identifiers. This is done
using the process of unification ~ matching data base facts against queries that have a

particular form. For this particular test, we might use the query:

(? (& (type rcs f $rcs-id)
(type he-pressurization ox $hep-ox)
(part-of $hep-ox $rcs-id)
(type he-pressurization fuel $hep-fuel)
(part-of $hep-fuel $rcs-id)
(type he-tank $he-ox-tank)
(part-of $he-ox-tank $hep-ox)
(type he-tank $he-fuel-tank)
(part-of $he-fuel-tank $hep-fuel)
(pressure $he-ox-tank $ox-press)
(pressure $he-fuel-tank $fuel-press)
(> $ox-press $fuel-press)))

47

This type of conjunctive unification is actually used in the sample malfunction proce-

dure discussed next.

4.2.2 The JET-FAIL-ON KA

Figure 4.4 shows a portion of the malfunction handling procedures for the RCS system.
We will be concentrating on the procedure called RCS JET FAIL (ON), which can be
seen as Step 1.1 of Procedure 10.1, as well as 10.1a (only a portion of the entire
malfunction procedure is shown in the figure). Notice how diagnostic conclusions
(such as “JET DRIVER FAILED-ON ELECTRICALLY?”) are displayed in highlighted

boxes.

In the PES implementation of these diagnostic procedures, the main top-level KA
for dealing with the “JET FAIL (ON)” failure is called JET-FAIL-ON and is shown in
Figure 4.5.2 This KA is fact-invoked - that is, it responds when the system notices
that certain lights, alarms, and computer monitor readings appear. For this reason,
the invocation part of the JET-FAIL-ON KA has the form:

(AND (fact (light rcs-jet))
(fact (alarm backup-cw))
(fact (fault $rcs-id rcs $jet-id jet))
(fact (jetfail-indicator on $manf-id)))

Thus, in order to get this particular application of the RCS system running, these four
facts (with instantiations of the three variables: $rcs-id, $jet-id, $manf-id) must
be added to the system data base. For example, we might add the facts:

(light rcs-jet)

(alarm backup-cw)

(fault rcs.1 rcs thr.1.1 jet)
(jetfail-indicator on miv.1.1.1)

This tells the system that there ss an actual malfunction in a specific reactant
control subsystem (rcs.1), jet (thr.1.1), and manifold (miv.1.1.1) and the system
will then react and proceed with the diagnosis procedure.

2All of the RCS procedures as well as the initial data base facts reflecting the structure of the RCS

system are given in the appendix.

48

F
F
3
F
F

or
L RCS L

E I I

=

10.1 RCS JET/DLMA/PWR

1,1]
|_Res &1 I RCS JET FAIL (ON)

1.
2.

then GPC {if MANF 5

I ‘
6o to MLF, RCS. 10.1"! ‘

|GRCZ3ReS |

Affected MANF ISOL - CL (tb-CL),

RCS D JET ’
or
RCS F
or
RCS L
or
RCS R

JET
JET

10.1a

JET
or

RCS U JET
or

RCS A
or

RCS O

JET
JET
JET |
or
RCS U JET
or
RCS A JET
or
RCS D JET
or
RCS R JET

or
RCS U JET

YES | N
—PFPRRAM FAIL HIGH OR

JET DRIVER FAILED-

fm'ij—l

YES)]

Ir_srrwri%n—l

!E Which Orbiter:

5 1

ON ELECTRICALLY
RS —

|7 | Rates or large
TR'CS usage
observed ?

o]

2 BRIV

RILED-OM
ELECTRICALLY

ah
» 90
LOSS oF

"113 RCS,
VERRTERS (ORB 0S)

0 to RCS, LOSS OF
VERNIERS (ORB_OPS

NO

0Vile
ATT others

MOM
PARAM FAIL HIGH

UL R

DR
FRILED-ON
ELECTRICALLY

Figure 4.4: RCS JET FAIL

call for FRCS

I7T Wait for WCC '
reconfig

—.1

Z0T Upen affected

|Manf

e F{L,R) RCS
MANF 1(2,3,48)
IsoL - op

27
| SR 23 RES|

¢ Override to CL
status affected
Manf and all
other Manfs
which share
same RJD

RCS FWD(L,R) -
ITEM 1(2,3)
EXEC (*)

MANF YLV OVRD -
ITEM 42(43,44,
45) EXEC

_"

ﬁg{4.015.016)
o Affected Jet
RJD DRIVER - OFF

(ON) Malfunction Procedure

49

JET-FAIL-ON

(=> (V (JRT-FALL FAIL-ON SLECTRICAL SJBY-ID)(MDM-INPUT-P -FAILL FAIL-HIOK $JET-ID)))

(o> (LOSS-OF VEANIERS SIET-ID)

? (XYPE XCS ¥ $XC3-ID))

(=> (LOSS-OF -VERNIERS $JRT-ID))

D NIL))

(? (PAESSURR SMANY-OX $P-OX))

(7 (~ O $P-OX 120)))
(? (PAESSURE $MAN?T-FULL $P-FUEL))

(? (& (> SP-OX 130) (> $P-FUEL 130)))
(? (~ (> $P-FURL 130)))

(*> (JET-FAIL FAIL-ON ELECTRICAL J3T-ID)

(o> (MDM-INPUT-PARAM-FAIL 1-HIOH $JET-ID))

L 28-JET))
. (sFACT (ALARM BACKUP-CW))
(sFACT (FAULT $RCS-1ID RCS $JET~ID JET))
($FACT (JETFAIL-INDICATOR ON $MANF-ID))))
)

Figure 4.5: JET-FAIL-ON KA

50

Starting at its START node, the JET-FAIL-ON KA execution will begin and try to
traverse its first edge, labeled with the goal expression (!(closed-manifold $manf-
id)) (see Figure 4.6). In other words, the system must find some way to close the
given manifold. (This corresponds to the first step of the malfunction procedure in
Figure 4.4, which reads: “Affected MANF ISOL - CL (tb-CL), then GPC if MANF 5.”
Notice how we have abstracted the overall goal of this step (to close the manifold) from
a particular instruction in the malfunction book, which only states how to achieve the

goal.

Moreover, in this case, there are two different ways of achieving the goal - for all
manifolds, a talk-back switch is set to the closed position. For vernier manifolds (of type
5), a setting must also be made on the computer console. These two ways of achieving
a behavior of form (!(closed-manifold $manf-id)) are reflected in the two KAs
shown in Figure 4.7, CLOSED-MANIFOLD or CLOSED-MANIFOLD-VERNIER. As indicated
in their invocation parts, each responds to a goal of the form (!(closed-manifold
$manf-id)). However, the invocation parts also constrain their applicability further
— CLOSED-MANIFOLD will only be truly applicable if the manifold in question is not of
type 5, and CLOSED-MANIFOLD-VERNIER will only be applicable if the manifold is of
type 5.

In this particular case then, both of these KAs will respond to the goal (!(closed-
manifold $manf-id)), but only one of them will be truly applicable. Of course, for
other situations and other goals, more than one KA may actually be applicable to a
given goal. In these cases, metalevel KAs are used to resolve which KA is most useful
in the particular situation. In some situations, a metalevel KA might decide to choose
one of the applicable KAs at random, trying each of them till one succeeds (or till they
all fail).

Of course, because of the semantics of our KAs, there is yet another way to achieve
(t(closed-manifold $manf-id)) besides executing KAs. In particular, a goal of
the form (!p) will automatically be achieved if the system already believes that p is
true. For our example case, if the system already has in its data base a fact of the form
(closed-manifold miv.1.1.1) (in other words, it believes manifold miv.1.1.1 to al-
ready be closed), a goal of the form (!(closed-manifold miv.1.1.1)) will automat-
ically succeed - no executions of the KAs CLOSED-MANIFOLD and CLOSED-MANIFOLD-
VERNIER need be undertaken.

51

‘da1s ATOJINVIN-QISOTO YL :9'p 2anslg

((13r-s3y 1H9I1))
((39f-%94 34y6}|) «) 383d %ﬂd

o2l i

L\ QI-1X0§ SYTINUIA JO-SSOT) <*) _ Tl _

$ § TATVA-TOSI- ANV TdAD &)

IYNS § TATVA-T05I- ANV TDAL) ~) é)

(({qI-ANYNS § TATYA-10SI- ANV Z4AD) ~) &)

n-13r$ TYONIOTTE NO-"TIV4 UVI-130) <=)
((a1- ANVNS ¢ TATYA-TOSI-AINVN TdAD ¢)

((a@1-50u$ IOVSO-HOUD &) (((a1-55¥$ TOVSO-HOM) ~) &)

((QI-ANVIR$ QIOLNVR-AISOD))

@

(QAYD WAN INYS NI 1SOY SAVIVL STHIO AOL DON IINSNOD ONINIYA) 1)

(((Q1-130$ HOTH-TIV4 WUVI-NYFYI- LOINI-RAPO(A- 1308 TVONILOTIE NO-TIVE UVL-181) A) =)

NO-TIVA-1dr

o 01|

JIN (1906 40y NO-TIW3-L3Ir @3 jo Bujssadoud

FNYd 3041

52

CLOSED-MANIFOLD $MANF-ID
($FACT (TYPE HANF-ISOL-VALVE $N $MANF-ID))
(sLISP-PREDICATE (NOT (= $N 5.)))))

CLOSED-MANIFOLD

SIART

(! (ISOLATED-MANIFOLD SWITCH CLOSED $MANT -ID))

i3

(*> (& (CLOSID-MANIFOLD $MANT-ID)(~(OPENED-MANIFOLD $MANF-ID))))

CLOSED-MANIFOLD-VERNIER

(! (& (ISOLATED-MAN{FOLD SWITCH CLOSED $MANF -ID)(ISOLATED-MANIFOLD COMPUTER CLOSED $MANT-ID)))

(=> (& (CLOSED-MANITOLD $MANF -1D)(~(OPENED-MANIFOLD $MANF-ID))))

————

[(INVOCATION-PART (AND {*GOAL (1 (CLOSED-HANIFOLD EHANF-1D)))
(SFACT (TYPE MANF-ISOL-VALVE 5. $MANF-ID))))

Figure 4.7: KAs for Closing a Manifold.

53

It is precisely the lack of this kind of goal semantics and reasoning ability that
caused a recent space shuttle flight to abort. Although the shuttle system knew that
a particular manifold was closed, it found itself unable to proceed when an instruction
of the form “close the manifold” was given to it. This is because all of the manifold-
closing procedures available to it presumed an open manifold - it could not close a
manifold that was already closed! If the system had been structured properly (i.e.,
in terms of abstract goals and procedures, rather than as fixed hard-wired procedure
calls), the shuttle system would have realized that its goal to close the manifold had

already heen achieved.

In the current PES implementation of the RCS, this very same situation actually
comes into play. For example, in testing out the system, we often run through the JET-
FAIL-ON diagnostic procedure several times. In the course of this procedure, affected
manifolds are closed, and while in some circumstances they are reopened again, in
others they are not. When the diagnostic procedure is run more than once, it will not
try to reachieve a closed manifold if that manifold had been closed and not reopened on
the previous run. Thus, by encoding all of its knowledge in a perpetual, nonmonotonic

data base, the system is able to remember and use its knowledge effectively.

Continuing with our execution of the JET-FAIL-ON KA, if the goal to close the
manifold in question actually succeeds, the system will then move on to the next
node and choose a new outgoing arc to traverse. One possible choice might be the
arc labeled (?(- (high-usage $rcs-id))) - i.e., we establish the goal to determine
whether there is not high usage (see Figure 4.8).

How does our system handle a goal of this form? First of all, it will check to see if
there are any data base facts or KAs that match this goal precisely. In other words,
because we can have negated facts in the system data base, it is possible that a fact
of form (- (high-usage rcs.1)) #s present in the data base. Similarly, there may
be a KA with an invocation part that indicates it is useful for precisely a goal of the
form (7(—~ (high-usage $rcs-id))). If a matching data base fact or a successful
matching KA are found, then the goal will be satisfied in this way. However, if no such
fact or matching KA is present, the system will try to achieve the goal using any other

means at its disposal.

For goals composed of negated predicates, a metalevel KA is available that tries to

achieve the goal using the rule of “negation as failure.” In other words, for a goal of

54

‘da1g FHVSN-HOIH 8% 2andiy

B :s3id
((13r-s93 LHIIT))
((39f-894 4Bi|) «) :53d

((.QUVD WAK TNVS NI 150 SHVEVL TTHIO YOL DON LINSNOS ONINTVAL) i)

A QI-1I0§ SYAINTIA JO-SSOV <=} —ls-

((AI-ANTHS § TATVA-TOSI- ANV TdAL) ¢)

IVAS § TATVA-10S1- ANV TJAD ~) ¢) (((QI-121$ HOIH-TIVS UVI-WVIFd-LOINI-NAKR(AI- 1118 TYOILIOTTI NO-TIVL ‘UVA-1Ef) A) <)

(((QI-INYIRS ¢ TATVA-TOSI-INVIK TdAD) ~) &)

U-13r$ TYONIOTTT NO-TIVE TIVA-130) <=)
((Q1-ANYHS$ § ZATVA-TOSI- ANV TdAD) &)

((ar-so¥s 20Vsa-How) &) (((ar-528$ IDYsA-HOMH) ~) ¢)

((a1- AINVIR$ GTOLINVH-ATSOTD) i)

NO-TIVA-1dr

INEd 01

|
OU: (0N ¥0 S3A) ¢1°S0¥ S2d NI S73n371 39HSN HOIH 3¥3IHL SI

INYd W1

((T1°S3d 394SN-HIIH) &)
((T°T"T°AIN QI034INBW-03S0TD) i)
JIN :1e06 uoy NO-TIH4-130 @3 Jo Bupssadoud

55

form (1 (-p)) or (?2(-p)), the metalevel KA will try to achieve (!p) (or (?p)) and,
if it fails to do so, will assume that the original negated goal has succeeded. Other
metalevel KAs also exist for achieving a conjunct of goals (in our current system, this
metalevel KA tries to achieve each of the conjuncts, successively, till all succeed or
one fails), as well as a disjunct of goals (this metalevel KA tries to achieve each of
the disjuncts, successively, till one succeeds or all of them fail). Of course, one might
imagine other ways to achieve negated goals, conjuncts of goals, or disjuncts of goals.
These new methods may easily be added to the system as new metalevel KAs. For
example, one such KA might achieve a conjunct of goals by trying to achieve all of

them in parallel.

Returning to the goal (?(—~ (high-usage $rcs-id))), our current system will
actually use the negation-as-failure metalevel KA. This KA will set up a goal of form
(?(high-usage $rcs-id)). This particular goal will then be achieved by a KA that
asks the user the question “Are there high usage levels in RCS.1? (yes or no):” (once
again, see Figure 4.8). If the user responds “no,” the HIGH-USAGE KA will fail, and
the original metalevel KA will decide that the goal (?(-~ (high-usage $rcs-id)))

succeeded.

The JET-FAIL-ON KA might next proceed to ensuing goals of the form

(? (- (type manf-isol-valve 5 $manf-id))),
(? (type rcs f $rcs-id)),
(? (- (orbiter ov102))),

which are all handled in routine ways (using data base facts, negation as failure, etc.).
The next two arcs along this path are labeled with large conjunctive goals (see Figure

4.9). In fact, both of these arcs are conjuncts of facts in the data base.

To handle a conjunctive goal of this form, the system will first test to see if all of
the conjuncts are facts. If this is true, it will achieve the goal via unification. (This
is precisely what is done for this case.) In other cases, the system will first try to
match the conjunct exactly against the invocation parts of KAs (to see if there is a
KA that achieves precisely this conjunctive goal). If this too fails, it will resort to the

conjunctive metalevel KA described above.

Returning to the example, the conjunction of facts depicted in Figure 4.9 is being
used to find two particular manifolds in the system. The unification is set up much

56

nAUaW wsj

<

'$798y JO jounluo)) a3ie] e Jo uoljedIYiu() :¢'p 4ndty

:53d J436ulg 2E:6G: 4T G8/91/2

RO AuaW AJEJ0due | : fuzl §4dq 1 1 J83Us] $339]-[0430U0]

o0

i83d
((L3r-s34 1HSIT)
((39f-594 4B}|) «) 183d .-d%—lt

NODTO 1)

NWWE N WATWA_INSI_ SNV TIE Y L) Y

(((130d- INYNS N$ TATVA-TOSI-ANVH TdAD(TIN4-asd$ 12

‘Nd-ASd$ 1304 1S1d-TUOIS-dOUd FALN(AI-$OUS 1ANd-d8d$ 4O-1¥VI(XO-Asd$ Y

dSTUS =Dl Ay SO¥- £ TIVO-DOR-LIVA) i)

((Z01 AO WALIGHO) ¢)

((a1-13r$ SETINYTA 4O-550°1) <*) w

((QI-ANYHS$ § TATYA-T0SI- ANV TdAD) &)

- AINVI$ JO-13Vd) (XO- AINVIS$ N$ JATVA-10SI- ANV TdAD(XO-ASd$ XO- ANYNS JO-1¥Vd) 1) ¢)

1510~ TUOLS-dOUd FJAI(GI-50%$ XO-Asd$ JO-1¥V(al-INVNS N$ n>._<>-._om_-uz<ﬁ. AdAD) ®) &)

(((z01 AO ¥ILITHO) ~) ¢é)
((QI-130$ SUTINVIA- JO-SSOD <*)

((QI-50¥$ 4 SO¥ IdAD) ~) &)
((4TINYTA IONINDIAS-NOILVETID

(Qa1-s0¥$ 4 $O¥ FdAL) ¢
TINEIA IONIOOTS-NOILVIIIO-RD ~) ¢)

((.a¥YD AW TNV NI 150YSNVIVd ¥IHIO Y04 DON LINSNOD« DNINIYA) 1)

(((QI-13r$ HOIH-TIVL ‘UVL-N - LOINT-Rar)(al-13$ TYOILLOTTE NO-TIVd ‘UVL-130) A) <=)

INYd O

|

ou: (ON 30 S3A) £28TN0 ¥3LI8d0 INISA 3H 3aW

ou: (DN ¥0 S3A) &1°S3¥ SJ¥ NI S13n37T 39HSNH HOIH 3¥3HL SI
ou: (DN ¥0 S3A) ¢1°S3¥ SJ¥ NI ST3n371 39uSN HOIH 3J¥3IHL SI

INYd 3T621

&)

(((2PTAD ¥3LIBND) .) &)

((1°S0¥ 4 S3d§ 3dAl) 2)

(((1°50¥ 4 534 3dAl) .) &)

(({T"T°T°AIN °S INWN-T0SI-INEW 3dAL) .) &)
(((1°S3¥ 394SN-HITH) .) ¢&)

57

as for the example given earlier in our description of the RCS data base. In this
particular instance, we are trying to find the two manifolds that meet the description:
“RCS OXID and FU MANF?” (see Figure 4.4). In the context of the entire procedure,
a human would know that what is meant is the particular oxidant and fuel manifolds
corresponding to the currently faulty manifold, but a machine is not so smart. The
unification of facts must thus use the identity of the faulty manifold in its search for
the corresponding fuel and oxidant manifolds. This “correspondance” is very much
tied in to the structure of the RCS system itself.

To conclude this particular run of the JET-FAIL-ON KA, if the pressure in one of
the two fuel and oxidant manifolds was found to be less than 130 units, the system
will diagnose the failure as an electrical failure of a particular jet (see Figure 4.10). If,
on the other hand, the pressure in both is greater than 130, the diagnosis will be an
MDM input parameter failure, and various manifolds and settings will be readjusted

(see other path in Figure 4.10).

From these few examples, we can see that the PES data base plays a large role in
the diagnosis process. As another illustration of the use of the PES data base, consider
what happens if a particular action results in some reconfiguration of the components
of the RCS system. If such an action were undertaken and overseen by PES, the new
structure of the RCS system (e.g., the way its components are interconnected) would
be encoded in the PES data base and remembered. These facts may later be quite
relevant when performing other tasks on the system. Moreover, if a new configuration
is nonstandard in any way, an astronaut might forget the particular details of this

configuration and not perform the malfunction procedures correctly or effectively.

For example, in Malfunction Procedure 1.4 (RCS LEAK ISOL) Step 6 (see Figure
4.3), we have the instruction “If Aft RCS, P'CNECT |interconnect] from OMS ... then
open all MANFs. Prior to deorbit TIG return to straight RCS feed.” Astronauts
would have to remember that they had reconfigured the system for this particular case
and later, upon deorbit, return to straight RCS feed. It is easy to see that PES would
probably perform more adequately than a human in these circumstances. The new
nonstandard configuration would be stored in the data base. A fact-invoked KA could
then be used to trigger return to straight feed in the precise situation where the system

is in this particular configuration and deorbit is about to begin.

58

VY NO-1IVA-LAC 343 Jo pug 01’y 2n3iy

d JaBuig 9g:ipG:
NUSU U23558 174 NuUsW AuEJ0dw3| i4 nuauw Sq4q4 gl €44 17 LR LL AE3Le]) 1349~ 04360
Sy
00
Sdd
09
1 5t
1534 qn.mwr@qm

P)

({Al- INVR$ ATOJINVH-QINIJO) i)

((aQ1-141$ EIATY QLLOIILY TAVHS HOIHM. AISOTD IAILITAO) 1)

((a1-131$ 44O WAAINA-ArW-13S) 1)

((a1-11r$ HOIH- TVI-WYVAVI-INdNI-RAYO <=)

QI-130$ TYOISIONTE NO-TIVL TVA-110) <=)

((Coer TAN&-d$ <) ~) &)

((CoeT1 1ANL-d$ <) (061 XO-d$ <) *®) &)

((1In4-d$ TINL- INVAS TUNSSTAL) ¢)
((oe¥ XO-d$ <) ~) ¢)

((X0-d$ XO- INVI$ TUNSSAUL) ¢)

(((T304-INVAS N$ TATYA-TOSI- ANV TdALX(TINI-ASd$ TAMi- INVAS 4O-1¥Vd) (XO- INVIS N$ TATVA-T0SI-INV TJAD(XO-Asd$ XO-INVIRS 4O-1Tvd) %) &)
.M

FNHd 01

BF:1°2°T°AIN J104INUK 304 INIGH3IN 3ANSSIAd INID 3ISHI
BF: T T T°AIN 0I0JINBW 304 SNIOHIY 33NSS3INd INID 3ISHId
Ou: (DN A0 S3A) ¢2BTNO JILIAN0 INISN 3M 3aH

OU: (ON ¥0 S3A) &¢T°S3¥ SJ¥ NI S13n37T 398SN HITH J¥3FHL SI

N4 2061

Y)Y Bupsssooud pua

((T°T"¥HI WITALIINI NO-TIW4 I¥4-13Ir) <=)
((("BET ‘@b <) .

((26°713n4-d$ 1°2°1°AIH 33NSSIdd

vs
A:.uma.mvﬁfmmﬂ.mvﬁ ww @W
u.
((26°H0-d$ T°T°T°NIH 3I¥NSSIAd) &)

59

Of course, there are many cases where we would expect our system to perform
less knowledgeably than a human. For example, this might be true in the case where
the malfunction procedures had actually failed to yield any particular results and
an astronaut was forced to reason about the system “from first principles.” Unless
extensive knowledge was encoded into an elaborate system of deductive procedures
and the content of the PES data base description was greatly enhanced, the PES

system would be less effective than a human in this type of reasoning.

One aid to the astronaut in such a reasoning process, however, is the procedural
nature of KAs and their graphical representation. Procedures are presented as mean-
ingful entities rather than as sets of disjoint and seemingly unconnected rules. Because
the purpose of each procedure and each step of a procedure is described abstractly (as
goal descriptions), an astronaut might easily see another way of achieving a particular
goal that could be used, or why a particular diagnostic failed. The graphical presen-
tation of procedures also makes them easy to understand and their execution easy to
follow. Thus, graphically represented KAs represent a powerful ezplanation facility for

any form of procedural reasoning.

Our experiences so far have found the efficiency of PES to be quite adequate to
applications like the RCS system. While the system may not be suited for complicated
numerical calculations, it seems to be a fine medium for malfunction diagnosis or other
higher-level reasoning tasks. A more rigorous test of the system should, of course, be

undertaken with an application consisting of many more KAs.

60

Chapter 5

Theoretical Considerations

In this chapter we discuss some of the theoretical results arising from our work.

5.1 Declarative Semantics

One of the most important features of procedural expert systems is that they have
a declarative semantics. The body of a KA is intended to represent true statements
about the problem domain under consideration. Unlike statements in standard logic,
which can be viewed as describing a single state of the world, statements in the body

of a KA are temporal facts about sequences of world states.

For example, consider the following simple KA:

INVOCATION: (GOAL (! (ON $Y $X)))
EFFECTS: (! (ON $Y $X))
BODY: .

(! (HOLDING $Y)) (I (ABOVE $Y $X)) (! (PUTDOWN $Y))

(? (CLEAR $X))
~[=] s —

61

The intended meaning of this is that, for all $x and 8y, if clear $x holds initially,
and after some time (holding $y) is true, and then (above $y $x) becomes true, and
finally (putdown $y) becomes true, then it follows that (on $y $x) will be [finally]
true. Note that nothing is said about how the various conditions on world state (such
as (holding $y)) will be brought about — the KA simply states a declarative fact
about the world, describing how one block ($y) may end up on top of another ($x).

The declarative semantics of KAs is an essential precondition if the system is to
possess all the desirable properties of expert systems, including explanatory capabil-
ity, reasoning ability, evolutionary potential, and verifiability. The explanation of a
procedure can be more meaningful, as the reasons for performing the various actions
and tests are specified. For example, if the system fails to achieve a given goal, it
can explain how it was trying to achieve it and what task it failed to complete, thus
allowing a user to suggest alternative approaches. The system can reason about com-
posite goals and can determine, for example, that a given conjunctive goal could be
realized by achieving all the component goals, one after the other. System evolvability
is ensured because each KA expresses a fact about the world that is independent of
any other facts about the world. This independence also means that the validity of a
KA can be examined irrespective of the definition of any other KA. Thus, once all KAs
have been independently validated, we can be certain that no situation could possibly

arise that would cause these KAs to be executed incorrectly.

KAs also have an operational semantics that enables them to be used to achieve
desired goals. For example, the blocks-world KA given above not only states a fact
about the world, but also describes a way of achieving a state in which block $y is on
block $x if that is one of the system’s current goals. That is, if you want to reach a world
in which, for some $x and $y, (on $x $y) holds, do some test to determine whether $x
is clear, and if it is, try to achieve each of the following goals ((holding $y), (above
$y $x), and (putdown $y)) in the order given. The test for determining (clear $x)
may involve a lot of other actions and tests — this is fine, provided the test leaves
the condition (clear $x) true at the beginning if it was true at the end. Similarly,
attempts to achieve any of the other goals in the body of the KA could involve further

tests and actions.

In other words, we can view a KA either as describing a procedure to achieve
something (its operational semantics), or as a statement about the way the world is

(its declarative semantics). This is similar to the manner in which a Prolog statement

62

can be viewed either procedurally or declaratively. The importance of a declarative
semantics for knowledge representation schemes was emphasized early on in Al [23],
and the combination of an operational and a declarative semantics is one of the major
reasons for the success of Prolog [27]. However, Prolog and most knowledge represen-
tation languages (e.g., predicate calculus, rule- or frame-based languages [1,47]) are
concerned with inference regarding a single state of the world. Procedural expert sys-
tems extend these ideas to reasoning about actions, tests, and sequences of states —
that is, to entire hsstorses of the world.

The declarative semantics outlined above is very informal. It is important that this
be formalized, and the soundness and completeness of the system investigated. This
is not a simple problem, especially given that actions and tests can have side eflects.
Indeed, this is a very difficult problem even for conventional programming languages

[33]. The first steps to formalize the system are described in Appendix A.

In providing a declarative semantics for procedural expert systems, we also need a
means for describing the primitive tests and actions performed by sensors and effectors.
Currently, the performance of tests and the execution of actions are all mediated
through the global data base, which represents the system’s current beliefs about the
world. In this view, a test directly updates the data base with new facts as they
become known. Similarly, successful completion of an action results in updating of the

data base by the goal that the action achieved.

In the design of the system, there is no assumption that the performance of an
action by some effector will actually accomplish the desired goal. The device called
to perform an action has either to assert that it has achieved the goal or has to
invoke a test to check that it has been achieved. If the goal is not achieved, then the
corresponding arc in the calling KA will not be traversed (unless, of course, some other

means is found to achieve the desired goal).

Neither is there any assumption that sensors are accurate or error-free. To model
this possibility, a sensor, for example, may put into the data base the fact that st
observed some predicate p to be true. Further reasoning by the system (as well as,
perhaps, integration with the views of other sensors) might be necessary before the
system itself believed p (i.e., before p itself was added to the data base).

For example, a sensor, say s-101, might like to enter into the data base the fact
that it observed “(holding A)” to be true. One way to do this would be to add some-

63

thing like “(believes s-101 (holding A))” to the data base. Currently, the system
cannot handle this type of knowledge. The semantics and implementation of such a
capability is not straightforward, especially if one wishes to allow for concurrency, and

would require further research.

5.2 Metalevel Reasoning

When more than one KA responds to a goal or when a data-driven KA interrupts
a goal-directed KA that is being executed, we need some means for deciding which
of all the applicable alternatives we should execute next. When reasoning about a
static world, one can often get by with relatively simple schemes. For example, Prolog
uses depth-first search and considers alternatives in their lexical order. Concurrent
evaluation may also be possible. In dynamic worlds, however, more powerful reasoning
abilities are required: changes effected in the state of the world by one course of
action may preclude backtracking to others, while interference among actions can make

parallel exploration of all alternatives impossible.

Reasoning about the appropriateness of sequences of actions is particularly difficult
in rule-based formalisms. Because the rules making up a procedure are ostensibly
independent pieces of knowledge, there is no sensible way to reason about the procedure
as a whole. The problem is that such information does not apply to the rules as
independent individuals, but to the procedure as a whole; thus, it cannot be attached

sensibly to any one rule.

For a rule-based system, the best one can do is to attach to each rule information
about its execution (in the given context). Unfortunately, such information is often
not very useful in determining which procedure is the most suitable. For example,
to ascertain whether or not a patient has a certain disease, one option may be to
perform a series of quite expensive diagnostic tests, while another may require surgical
examination. The individual steps leading up to the surgery may well be cheaper than
each of the diagnostic tests and, under a rule-based system, one would be led to the

point of incision before discovering the true cost of the chosen procedure.

Procedural expert systems present no such difficulties: because KAs represent en-
tire procedures, we can reason directly about the procedures as single entities. One

approach is to have the interpreter make a careful choice as to which KA to process

64

at any given stage of execution. This could be achieved by giving applicable KAs
priority levels or importance measures (such as those used in AM [29]), then having
the interpreter select for execution whichever KA has the highest priority or greatest

importance.

However, the importance or utility of a KA is often context-dependent and qualita-
tive in nature. This kind of information is difficult to represent using simple numerical
priorities. It is therefore better to represent the knowledge about selection of KAs in
some logical form, allowing the system to reason about what is best to do next. Indeed,
such knowledge is an essential part of an expert’s understanding of a problem domain.
We shall call such knowledge metalevel knowledge, because the entities it describes and

manipulates are the object-level KAs representing the physics of the problem domain.

Much of this metalevel knowledge is also procedural in nature (for example, the
KA interpreter itself can be viewed as a metalevel procedure). It is thus desirable that
this metalevel knowledge be represented in the same form as the object-level knowledge
[16,27]. As Hayes says [23] : “We need to be able to describe processing strategies in
a language at least as rich as that in which we describe the external domains and, for
good engineering, it should be the same language.” Therefore, we allow metalevel KAs
to describe and manipulate object-level KAs, much in the same way that object-level
KAs describe and manipulate entities in the problem domain. In fact, the system

interpreter does not even distinguish between these two kinds of KAs.

We also impose no restriction upon the number of metalevels; for example, we allow
metametalevel KAs to operate on metalevel KAs. In fact, we even allow metalevel KAs
to reflect upon themselves, and we mix meta- and object-level KAs quite freely (making

sure, of course, that each KA is independently valid).

Still, we need to provide these metalevel KAs with information upon which they
can base an assessment of the relative utilities of a set of KAs. Such information
would include estimated costs (in time, space, and dollars), criticality (e.g., emergency
procedures), and the probability of success in attaining given goals. These [metalevel]
facts could be entered into the data base along with all the other facts about the
problem domain. However, since they are known at the time the KAs to which they
refer are created, it is convenient to attach these facts directly to the KAs themselves.

We call such a collection of facts the snformation part of a KA.

There are a number of problems that have to be solved before such a scheme

65

can be usefully implemented. Most of these involve issues of efficiency and the need
to determine how much expressive power is required at the metalevel. Others involve
issues of consistency. For example, if the metalevel were to have unfettered access to the
data base, it could add and delete arbitrary facts. Clearly, this could be catastrophic.
What restrictions should we therefore impose on the metalevel to ensure that these
changes would be consistent with the object-level theory (as represented by object-level
KAs)?

5.3 Reasoning about Complex Goals

One of the important features of the system is that it can reason about how to achieve

complex composite goals. For example, a conjunctive goal such as
(‘((p ab) A (q ab)))

may be set by the user or may appear as a subgoal labeling the arc of some KA.

Often, there will be no KA in the system that directly unifies with such a composite
goal. However, because our notion of goal has a well-defined semantics, the system
can reason about how it can achieve composite goals by trying to achieve the simpler
component goals. For example, the system could reason that a given conjunctive goal

could be realized by achieving all the component goals, one after the other.

The rules for how composite goals can be decomposed into simpler ones follows di-
rectly from the semantics given to goal descriptions. We will use the notation (P} (o)
to mean that every successful behaviour associated with the KA P satisfies the tem-

[{9%.]

poral assertion 0. (P)r denotes failed behaviors. The symbols “” and “|” represent

sequential composition and [nondeterministic] choice, respectively.

Some typical proof rules are as follows:

Conjunctive Testing

(P)(?p) A (P1)(#9) A (P2)(q)
(P; P)(7(p Aq))

66

Conjunctive Achievement

{P1)('p) A (P2)('q) A (P2)(#p)
(P1; P2)(M{p Aq))

Disjunctive Testing

(P)(7p) A (P2)(q) A {P1)r(#9) A (P2)r(#p)
(Py| P2)(?(pV4q))

Disjunctive Achievement

(P1)('p) A (P2) (')
(P | P2){({(pVq))

The first rule states that, to test for a condition (p Agq), one way is first to test for p
using a KA that does not modify g, then subsequently to test for g. The second states
that to achieve a condition (p A q), one way is to first achieve p and then to achieve
q without affecting p. The disjunctive rules simply say that to test for or to achieve
(pVq) we simply need try each of the disjuncts, though in testing for (p V) we must,
in addition, be careful that any fasled attempt to test one of the disjuncts does not
affect the other.

Note that these proof rules are not the only ones, nor are they the strongest, that
could be used. For example, in the rule for conjunctive achievement, we need not
require that p be unaffected by (P:); all we need do is regress the goal !p through (Fz)
and set this as the goal of {P;). However, since, in most real-world cases, it is difficult
to regress conditions through complex sequences of actions, the rules given above prove

to be most practical.

These rules are represented in the current system by metalevel KAs. Thus, if no
KAs respond directly to an extant composite goal, the metalevel KAs corresponding
to the appropriate decomposition rules will be invoked to break down the complex goal

into a sequence of simpler goals.

Representing decomposition rules in the form of metalevel KAs provides the system
with enormous flexibility. It allows users to add or delete such rules as they find appro-
priate. Moreover, in this way it is even possible to add domain-specific decomposition

rules to the system.

67

Other rules can also be represented by metalevel KAs. For example, the current
system allows the user to specify that the closed-world assumption [41] applies to vari-
ous state predicates, and implements this default assumption by means of a metalevel
KA.

68

Chapter 6

Personnel and Publications

In addition to the work described herein, this project included, as separate compo-
nents, a study of automation and robotics technology for the proposed space station
and a research and development plan for Al-based technology. For completeness, the

personnel and publications listed below include all components of the project.

6.1 Personnel

A number of researchers worked on the part of the project described herein. Michael
Georgefl, Amy Lansky, and Pierre Bessiere developed most of the theory and a substan-
tial part of the implementation. Mabry Tyson and Joshua Singer were also involved
in implementation, and significantly upgraded the performance of the system. Marcel
Schoppers helped test the system on various applications. Michael Georgefl was the

Principal Investigator on this part of the project.

The other parts of the project involved the following personnel: Oscar Firschein,
Michael Georgeff, William Park, Peter Cheeseman, Jacob Goldberg, Peter Neumann,
William Kautz, Karl Levitt, Raphael Rom, and Andrew Poggio. Oscar Firschein was

the Principal Investigator on these parts of the project.

69

6.2 Major Publications

Georgeff, M.P., “A Theory of Action for Multiagent Planning,” Proceedings of the
National Conference on Artificial Intelligence, Austin, Texas (1984).

Georgeff, M.P., A. Lansky, and P. Bessiere, “A Procedural Logic,” Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
Califorma, 1985,

Georgeff, M.P., “Reasoning about Procedural Knowledge,” Proceedings of the AIAA /-
ACM/IEEE Computers in Aerospace Conference, Long Beach, California, 1985.

Georgeff, M.P., “A Theory of Process,” Proceedings of the Workshop on Distributed
Artificial Intelligence, Sea Ranch, California, 1985.

Georgeff, M.P., “An Expert System for Representing Procedural Knowledge,” Mid-
term Report, SRI International, Menlo Park, California, 1985.

Georgefl, M.P., and O. Firschein, “Expert Systems for Space Station Automation,”
IEEE Control Systems, Vol. 5, pp 3-8, 1985.

Firschein, O. and M.P. Georgeff, “Review of Automation Technologies Applicable to
the National Space Program,” AIAA/NASA Symposium on Automation, Robotics,
and Advanced Computing for the National Space Program, Washington, D.C.,
1985.

Park, W., and O. Firschein, “”Space Station Automation: The Role of Robotics and
Artificial Intelligence,” SPIE Workshop, Space Station Automation, Cambridge,
Massachusetts, 1985.

Park, W., “Space Station Applications for Teleoperation and Robotics,” First Annual
Workshop on Robotics and Ezpert Systems, Houston, Texas, 1985.

Firschein, O., M.P. Georgeff, W. Park, P. Cheeseman, J. Goldberg, P. Neumann, W.H.
Kautz, K. Levitt, R. Rom, and A. Poggio, “NASA Space Station Automation:
Al-Based Technology Review,” Final Report, Artificial Intelligence Center, SRI

International, Menlo Park, California, 1984.

70

Firschein, O., M.P. Georgefl, W. Park, and P. Cheeseman, “A NASA Initiative in
Al-Based Technology: R & D Plan,” Final Report, Artificial Intelligence Center,
SRI International, Menlo Park, California, 1984.

6.3 Major Presentations

Speaker at the Stanford Computer Science Colloquium, Stanford University, Stanford,
California, July, 1984 (M. Georgeff).

Paper presented at the National Conference on Artificial Intelligence, Austin, Texas,
August, 1984 (M. Georgeff).

Speaker at the Colloquium of the Center for the Study of Language and Information,
Stanford University, Stanford, California, February, 1985 (M. Georgefl).

Speaker at the NASA Ames’ Director’s Colloquium, August, 1985 (M. Georgefl).

Paper presented at the Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, California, August, 1985 (M. Georgeff).

Paper presented at the AIAA/ACM/IEEE Computers in Aerospace Conference, Long
Beach, California, October, 1985 (M. Georgeff).

Paper presented at the Workshop on Distributed Artificial Intelligence, Sea Ranch,
California, December, 1985 (M. Georgefl).

Presentations on the Space Station Automation Study, Johnson Space Center, Novem-
ber 1984 (O. Firschein and W. Park).

Paper presented at the First Annual Workshop on Robotics and Expert Systems,
Houston, Texas, June 1985 (W. Park).

Paper presented to the Congress of the US, Office of Technology Assessment, OTA
Workshop on Automation and Robotics for the Space Station, July, 1985 (O.
Firschein).

Paper presented at the AIAA/NASA Symposium on Automation, Robotics, and Ad-
vanced Computing, Washington, D.C., September 1985 (O. Firschein).

71

Appendix A

Semantics of the Procedural

Representation

This appendix describes the semantics of the process representation used in procedural
expert systems. Some of the terminology differs from that in the main body of this
report; however, the material is self contained and the difference in terminology should
present no difficulties. The aim of this work was to provide a formal semantics for a
subset of the system being developed. A version of this material, entitled “A Procedural
Logic,” was published in the Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, held in Los Angeles, California, in August, 1985.

A.1 Introduction

Active intelligent systems need to be able to represent and reason about actions and
how those actions can be combined to achieve given goals. Much of this knowledge is
in the form of sequences of actions or “procedures” for accomplishing these goals. For
example, knowledge about kicking a football, performing a certain dance movement,
cooking a roast dinner, solving Rubik’s cube, or diagnosing an engine malfunction, is
primarily procedural in nature.

Within Al, there have been two approaches to the problem of action and practical
reasoning, with a somewhat poor connection between them. In the first category, there
is work on theories of action - i.e., on what constitutes an action per se ([2,25,32]). This

72

research has focused mainly on problems in natural-language understanding concerned
with the meaning of action sentences. Second, there is work on planning - i.e., the
problem of constructing a plan by searching for a sequence of actions that will yield
a given goal [3,11,43,45,48,50,52,53]. Surprisingly, almost no work has been done in
Al concerning the execution of preformed plans or procedures - yet this is the almost
universal way in which humans go about their day-to-day tasks, and probably the only
way other creatures do so. To actually search the space of possible future courses of

action, which is the basis of planning, is relatively rare.

In attacking this problem, we first have to identify what it is that humans or
other active systems do when performing a complex action. We postulate that such
systems have some representation of a procedure for achieving given goals, or reacting
to particular events, and that they can reason about and execute this procedure to
achieve their aims. Just as we might view intelligent systems as having “beliefs” about
the world, we consider these systems to have “procedures” for acting in the world.
And, just as for theories of belief, the problem here is to provide abstract models for

these “mental entities.” We call these abstract models processes.

There are two aims to our work. One is to develop a theory suitable for building
active intelligent agents. In that regard, the theory presented in this paper models only
the simplest kind of agent - one with no preserved beliefs and with limited reasoning
abilities. We define a declarative semantics for our formalism, as well as an operational
semantics. Together these provide a suitable semantics for simple action sentences in
natural language and a method of practical reasoning about how to accomplish given

goals.

The other aim is to provide a basis for the design of improved programming lan-
guages — in particular, languages that allow users to represent their knowledge about
the behavior of systems declaratively, are amenable to verification, and operationally
are flexible and responsive to environmental changes. In this sense, our work can be

viewed as the basis for executable specification languages.

It is important to point out that the theory presented here is not just another vari-
ant of the standard logics for describing dynamic behaviors. In particular, there is no
existing logic (temporal, dynamic or interval-based) known to us that can both (1) ex-
press the same complexity of action as the formalism proposed here (which can handle

sequencing, conditional selection, nondeterministic choice, iteration, and hierarchical

73

abstraction), and (2) be used to automatscally generate behaviors for achieving goals
and to form plans. In this sense, the approach here offers the same kind of advantages
as Prolog, but in a dynamic rather than static domain: it can be viewed as a logic
describing properties of behaviors, or it can be used as a programming language for

generating behaviors to achieve given goals.

Furthermore, the model we use is based on nondeterministic procedures. This
nondeterminism is essential for providing the kind of flexibility exhibited by intelligent
systems. The model also allows for action failures and tests with side effects, both
of which are necessary for handling most real-world domains. Such a model would
be very cumbersome to describe in any of the standard temporal or dynamic logics -

indeed, we know of none that have attempted to do so.

The more recent work includes many capabilities not decribed in this paper, includ-
ing a data base of preserved “beliefs” and more powerful reasoning abilities represented

as metalevel processes.

A.2 Processes and Actions

Most previous work in representing actions has been based on state change models
(e.g., [11,30,43]). However, existing models can describe only a limited class of actions
and are too weak to be used in dealing with multiagent or dynamic worlds.

Some attempts have recently been made to provide a better underlying theory for
actions. McDermott [32] considers an action or event to be a set of sequences of states,
and describes a temporal logic for reasoning about such actions and events. Allen (2]
also considers an action to be a set of sequences of states, and specifies an action by
describing the relationships among the intervals over which the action’s conditions and
effects are assumed to hold. However, while it is possible to state arbitrary properties
of actions and events, it is not obvious how one could use these logics to achieve, or

form intentions to achieve, one’s goals.!
b

Our notion of action is essentially the same as that of McDermott and Allen;

namely, we consider actions to be sets of sequences of world states. However, in

'Allen [3] proposes a method of forming plans that is based on his representation of actions. However,
he does not use the temporal logic directly, and actions are restricted to a particularly simple form
(e.g., they do not include conditionals).

74

modeling intelligent agents, it is convenient to consider not only states of the external
world, but also various “mental entities,” such as beliefs, goals and intentions. In the
same way, it is important to be able to model not only the actions that occur in the real
world, but the internal mental “procedures” that agents use to generate their external
behaviors. We will call these entities processes (see [19] and, for some early work based

on similar ideas, [25]).

We assume that, at any given instant, the world is in a particular world state. A
process is some abstract mechanism that can be executed to generate a sequence of
world states, called a behavior of the process. The set of all behaviors of a process
constitutes the action (or action type) generated by the process. In this paper we

restrict our attention to sequential (nonconcurrent) processes.

Each process is modeled by a labeled transition network, with distinguished start
and finish nodes. The nodes of the network are called control points, and are labeled
with state conditions. These conditions can be viewed as representing constraints on
possible world states. Each arc of the network is labeled by a goal, which can be
considered to represent a particular type of behavior to be achieved.? Associated with
each network is an effect, which is the goal that will be achieved if the process is

successfully executed.

A process is ezecuted in the following manner. At any moment during execution,
the process is at a given control point c. An outgoing arc a may be traversed if (1)
the current state of the world satisfies the state condition labeling ¢ and (2) the goal
labeling a is successfully achieved. If no outgoing arc from ¢ can be traversed, process
execution fatls. Execution begins with control at the initial control point and succeeds

if control reaches the final control point.

In some ways, a process may be viewed as just a convenient way of specifying
actions. However, processes also allow us to make a distinction that is critical for
practical reasoning - we can distinguish between behaviors that are successful execu-
tions of the process and those that are unsuccessful (or have fatled). Since actions often
fail to achieve their intended goals, it is important to be able to reason explicitly about
the consequences of action failure. We thus need to be able to represent the behaviors
that correspond to failed actions as well as successful ones. This is particulary impor-

tant if the model is to be extended to handle multiagent and dynamic environments

2In Section 6 we show how a goal to achieve a given stale can be represented as a type of behavior.

75

(e.g., see [26]). Similarly, in natural-language understanding, it is important to have
a denotation for action sentences (such as “he was painting a picture”) that allows
for action failure, even in mid-performance (“he was painting a picture when killed by
lightning”).

The notion of action failure also allows us to represent tests on world states as
actions, without the introduction of knowledge or belief structures (cf. [37]). To test
whether a particular condition is true, one need simply perform an action that can
only succeed when the condition is indeed true. (Of course, action failure cannot, in

general, be equated with the falsity of the condition being tested.)

A.3 Process Descriptions

In this section we develop a formalism for describing processes and for reasoning about
the behaviors they generate. Each process description consists of descriptions of its
effects and of its body. The body is a network isomorphic to the network of the described
process. The state conditions labeling the control points of the underlying process are
modeled by expressions which have as their denotation world states; the goals labeling
the arcs of the underlying process are modeled by expressions whose denotations are
behaviors (sequences of world states). The description of process effects also denotes

a set of behaviors.

A typical process description using the formalism is shown in Figure A.1. It de-

scribes a procedure for killing someone with a slingshot.

The process involves gathering stones, placing them in a pile, getting a slingshot,
and then repeatedly taking up a stone and shooting it until the foe ($person) is hit on
the head. In this particular domain, hitting someone on the head with a stone hurled
by a slingshot always results in that person’s death. The procedure is nondeterministic
and allows agents to gather as many stones as they wish, limited only by their ability
to continue gathering them. The procedure is not guaranteed to be successful - it may
fail if any one of the actions labeling the arcs of the network fails. However, if there are

only a finite number of gatherable stones, the procedure is guaranteed to terminate.

It is important to note how the process description captures smplicit knowledge
of the problem domain. This knowledge is of two kinds: one concerning the validity
of the killing procedure, the other heuristic. For example, hitting a person on the

76

EFFECTS: (KILL $PERSON)
BODY: .

(STALK $PIRSON)

(TRANSFER *STONE $PILE)

(PICKUP SLINGSHOT)

(GETOBJECT $PILE)

(& (HIT %WHAT WHERE)|(V (~ (= *»WHAT $PERSON)) (~ (= WHERE HEAD))))

(SHOOT $PERSON SLINGSHOT)

(HIT $PIRSON HEAD)

Figure A.1: David and Goliath

head with an object propelled from a slingshot will not always kill them (e.g., if it’s a
cotton ball), but will if it’s a stone (in this particular domain). Thus, the validity of
the conclusion depends critically on the first part of the procedure, which ensures that
only stones are placed in the pile. (Strictly, the procedure should also ensure that the

pile is initially empty or contains nothing but stones.)

77

The procedure also captures heuristic knowledge in that earlier actions may make
subsequent actions more likely to succeed. For example, the slingshot may require
a certain size and weight of stone; however, instead of this being represented as an
ezplicit precondition of the shooting action, it is represented implicitly by the context
established by the procedure. In this case, the assumption is that any stone that can
possibly be gathered will most likely possess the appropriate characteristics. Note that
this does not affect the validity of the procedure; if a stone does not have the necessary

properties, the action of shooting the slingshot will fail.

We now give a definition of the formalism. A process description is a tuple
P = (S)Fv N’E96anlvnFaCaAaG> 3
where

e S is a [possibly infinite] set of state descriptions

F is a [possibly infinite] set of action descriptions

e N is a set of nodes

—

e F is a set of arcs

6: N x E— N is the process control function

n; € N is the instial node

Ng C N is a set of final nodes

C : N — S associates a state description with each node

A: E — F associates an action description with each arc

(7 is an action description called the effects of the process.

The state descriptions labeling the nodes are called [partialf correctness assertions;
the one labeling the initial node is called the precondition of the process. The action

descriptions labeling the arcs are called goal assertions.

We choose predicate calculus as the state description language. A state description

can be viewed as denoting a set of states; namely, those in which it is true. We

78

distinguish between local and global variables. Informally, the interpretation of a local
variable is fixed in the interval during which a given arc is transitted, but can otherwise
vary. A global variable, on the other hand, has a fixed interpretation during the
execution of the entire process. (Local variables are needed in loops when it is necessary
to identify different elements from one iteration to the next.) A state description is
any formula in this calculus in which all global variables are free and all local variables
are bound. In the example of Figure A.1, global variables are prefixed by $ and local
variables, assumed to be existentially quantified, by %. All correctness assertions are

assumed to be true.

An action description consists of an action predicate applied to an n-tuple of terms.
Action descriptions denote action types or sets of state sequences. That is, an expres-
sion like “walk (a, b)” is considered to denote the set of walking actions from point
a to b. Any sequence of states satisfies the action description if it is in the set so
denoted. In Section 6 we augment the action description language to include various

temporal operators.

A.4 Declarative Semantics

The declarative semantics of process descriptions is intended to describe what is true
about the underlying system of processes and the world in which they operate. Such a
semantics says nothing about how such knowledge could be used to achieve particular

goals — rather, it simply allows one to state facts about certain behaviors.

On an intuitive level, the declarative semantics is straightforward. The intended
meaning of a process description P is that every behavior that satisfies the goal and
correctness assertions for some path through the net also satisfies the effects of P.
Alternatively, one may view the body of P as denoting a set of behaviors — namely,
those that satisfy the goal and correctness assertions for some path through the net.
Then the intended meaning of P is that each behavior in the set satisfies the effects of

P.

Unfortunately, allowing only simple paths through the net will not do. For example,
if a node has multiple outgoing arcs, we need to allow several of these arcs to be tried
until one is found successful. This is exactly the sort of behavior required of any useful

conditional plan or program; if a test on one branch of a conditional fails (returns

79

false), it is necessary to try other branches of the conditional. The problem in this
case is that an attempted test may change the state of the world. Thus, paths through
the network must allow behaviors that explicitly include failed attempts at realizing

tests and actions as well as successful ones.

We now give an informal outline of the semantics of process descriptions. The
approach is similar to that used for most temporal logics. We first consider single
states. A state s consists of a set of elements from a domain D together with relations
and functions defined over these elements. Assuming a fixed interpretation for each
constant symbol in the language, a state interpretation I assigns to each variable in
the language an element of D, to each n-ary predicate symbol an n-ary relation in
D, and to each n-adic function symhol an n-adic function in D. The truth-value of a
state assertion w in a state 3 with respect to a state interpretation I is defined in the
standard way (variables ranging over elements of D). We can also view w as denoting

the set of states in which w is true.

While state interpretations may vary from state to state in the course of a behavior,
the interpretation of global variables must remain the same. For a process description
P, a global variable assignment a is defined to be an assignment of an element in
D to each global variable in P. Similarly, for each arc in P, we have a local variable
assignment J that associates a value with each local variable used by the goal assertion
of that arc. In the course of a behavior satisfying the goal assertion, its local variables
may take on at most one value. A state interpretation I is said to be consistent with
a given a (or 8) if the assignment to global (local) variables in I is the same as their
assignment in a (f). Note that we do not require a fixed interpretation for predicate
symbols or function symbols over the sequence of states in a behavior. We define a
process instance to be a process description together with consistent global and local

variable assignments.

Following the discussion above, we consider the set of behaviors denoted by the
body of a process instance as falling into either of two classes, one of which we will call
the success set of the process instance and the other the faslure set. The success set
represents all those behaviors that constitute successful executions of the underlying
process; the failure set represents all those executions that fail somewhere along the

way.

Let P be a set of process instances and let n be a node in a process instance P.

80

An element @ of P is said to be applicable to an arc a emanating from n if its effects

are included in the set of behaviours described by the goal assertion of a.

The allowed behaviors starting at node n are those in which each applicable process
instance at n is tried at most once until one succeeds or they all fail. 3 Let succ(n,a) be
the set of behaviors consisting of some arbitrary number of unsuccessful attempts by
applicable process instances (at most one per process instance) on the arcs emanating
from n, followed by a behavior of an applicable process instance that succeeds for
some arc a. Each of these attempts, both successful and unsuccessful, must begin in
a state that satisfies the correctness assertion at node n. Similarly, let farl(n) be the
set of all behaviors that fail to reach a successor node of n, i.e., behaviors consisting of
failed attempts of all applicable processes. In this case, an attempt may fail because
it cannot satisfy the correctness assertion at node n, or because the applicable process
instance itself fails.

The success and failure sets for a node n, denoted S(n) and F(n) respectively, are

then defined recursively as follows: *

1. If n is a final node, then S(n) is the set of states satisfying the correctness
assertion at n and F(n) is the set of states that fail to satisfy the correctness

assertion at n.

2. If n has arcs a; to nodes m;, 1 <1 <k, then
S{n) = U; suce(n,a;).S(m;) and
F(n) = U{ fail(n),U; succ(n,a;).F(m;)}
The success and failure sets of a process description P are then taken to be the

success and failure sets, respectively, of the initial node of P. The semantics of P is

that any behavior in the success set of P satisfies the effects of P.

As an example, consider the process networks shown in Figure A.2 where the arcs

are labeled with applicable process instances. For a process instance P, let (P) denote

3The decision to try each process instance at most once allows us to realize the control constructs of
standard programming languages; various alternatives are possible without substantially affecting
the results presented here.
‘If w, = 8y,...8x and w2 = 6x,...&n, then wi. w2 = &1,... 841,

Bk, 8k41,...8n. This operation is extended to sets of sequences in the usual way. Note that this

formulation allows a single state to satisfy a sequence of goals.

81

Figure A.2: Sample Process Networks

the set of its successful behaviors, and {P)g the set of its failed behaviors. Then the

success and failure sets for each of the process networks in Figure A.2 are as follows:

(P1): (a) {b) (Pl)r: (a)r
(a) {c) (a) (B)F (c)r
(a) (b)F {c) (a) {c}r (b)F
(a) (c)r (b)
(P2): (a) (b) (P2)F: (a)rF
(a) (c) (a) (B)r
(a) {c)r

82

Notice that backtracking upon failure occurs only up to the current node being

exited, and no farther.

Because process descriptions can be recursive, and because loops in process net-
works introduce self-reference into the definitions of S and F given above, a formal
specification of the semantics of process descriptions requires a fixed-point construc-
tion. That is, for a given set of process instances P = P;... P, we need to define a
transformation 7 that maps n-tuples of pairs of success and failure sets into additional
such n-tuples. The definition of 7' is based on the definition of success and failure sets
given above. If one assumes a set of primitive tests and actions, the least fixed point

of T' applied to these primitives can be taken as the denotation of Py ... Fy.

A.5 Operational Semantics

Process descriptions provide a way of describing the effects of actions in some dynamic
problem domain. But how can a system or “agent” use this knowledge to achieve its
goals? That is, we currently have a knowledge representation that allows us to state
certain properties about actions and what behaviors constitute what actions. We have
not explained, however, how an agent’s wanting something can provide a rationale
for or cause an agent to act in a certain way. This is the basis of so-called practical

reasoning [7].

One way to view the causal connection between reasoning and action is as an
interpreter that takes knowledge about actions and goals as input and as a result
performs certain acts in the world. An abstract representation of such an interpreter
may be considered to be the operational semantics of the knowledge representation

language.

If a system is to be able to achieve its goals, it must be able to bring about certain
actions, and thus be able to aflect the course of behavior. Thus, we assume a system
with certain effector capabilities. The actions that the system can effect simply by
choosing to do so will be called primitive actions. The system must also be able to sense
the world to the extent of determining the success or failure of the primitive actions.
In addition, we assume the system has sensor capabilities for detecting satisfaction of

all correctness assertions.

83

The system tries to achieve its goals by applying the following interpreter to appli-
cable process instances. The interpreter works by exploring paths from a given node
n in a process description P in a depth-first manner. To transit an arc, it unifies the
corresponding arc assertion with the effects of the set of all process descriptions, and
executes those that unify, one at a time, until one terminates satisfactorily. If none of
the matching processes terminate successfully, and all leaving arcs fail, the execution of

P fails. At each node, we verify that the correctness assertion (c-assertion) is satisfied.

function successful (P n)
if (is-end-node n) then
if (satisfied (c-assertion n})) then
return true
else return false
else
arc-set := (outgoing-arcs n)
pr-a-set := (processes-that-unify arc-set)
do until (empty pr-a-set)
if (not (satisfied (c-assertion n))) then
return false
pr-a := (randomly-delete pr-a-set)
pr := (process pr-a)
a .= (arc pr-a)
if (successful pr (start-node pr)) then
return (successful P (terminating-node a))
end-do
return false

end-function

The function processes-that-unify takes a set of arcs and returns the set of processes
that unify with some arc in the set, along with the specific arc with which each unifies.
The functions process and arc select out the process instance and corresponding arc
from each element of this set. The function randomly-delete selects an element from
a set, destructively modifying the set as it does so. The order in which selections
are made is called the selectson rule. The function return returns from the enclosing

function, not just the enclosing do. The initial system goal is represented by a process

84

description with a single arc labeled with the goal.

Note that, if this theory were to form the basis of the reasoning capabilities of
some real-world agent, we would probably want process descriptions to be invoked on
the basis of particular facts becoming known as well as because particular goals have
been established. A suitable organization for such a system would be to have a list
of all applicable process descriptions - some goal-invoked and others fact-invoked -
and at each stage of processing select one of these for execution. The above recursive
implementation would have to be modified, but the semantics would remain essentially

the same (see Section 3.5}.

Of course, it is important that the operational and declarative semantics be con-
sistent with each other. The declarative semantics defines a set of behaviors for each
process instance. The operational semantics also defines a set of behaviors for each
process instance, but this set depends on the selection rule utilized in the above algo-
rithm. Let {P)p be the set of successful behaviors for a process instance P as given
by the declarative semantics, and let (P)o r be the set of successful behaviors for P
as given by the operational semantics for selection rule R. It is not difficult to show
that

(P)o,r € {P)p

This means that any behavior generated by the interpreter given above will satisfy
the declarative semantics. However, the inclusion, in general, is strict. That is, the
interpreter may not achieve some given goal even when, according to the declarative
semantics, there exists a way to achieve it. But, assuming that all correctness assertions

are directly testable, we do have the following:

If a behavior s is in {P)p, there exists a selection rule R such that s is in
(P)o.r-

This is the best one can really hope for when any particular selection may cause
some possibly irreversible action. It means that, provided you are smart enough to
choose the right selection rule, the above interpreter will achieve a goal if it is at
all achievable. This highlights the importance of reasoning about the selection of

applicable processes in any practical implementation (see Section 3.3). It also means

85

that one can reliably plan to achieve goals and be guaranteed of finding a finite plan

if one exists.

A.6 Action Descriptions

So far, action descriptions have been restricted to simple action predicates. However,
it is desirable to also allow a class of action descriptions that relate to conditions on

world states.

We thus extend the action description language to include actions that achieve a
given world state p (represented as !p), actions to test for p (?p), and actions that

preserve p (#p). We define these action descriptions more formally as follows.

We assume a fixed domain D and a fixed interpretation for constant symbols. Let
w be a state assertion, o an action description of the above form, and S = sy,...3,
a behavior. Assume fixed global and local variable assignments and let all local inter-

pretations I be consistent with them. We then have the following truth rules:

1. 'w is true in S if, for some local interpretation I, w is true in s,,.
2. 7w is true in S if, for some local interpretation I, w is true in s;.

3. #wis true in S if, for all 1, 1 < ¢ < n, there exist local interpretations I; such

that w is true of all states in S or —w 1s true in all states in S.

To make effective use of such action descriptions we can use proof rules of the kind
given below. We will use the notation (P} (¢) to mean that every successful behaviour
associated with the process description P satisfies the temporal assertion o. (P)p
I”

denotes failed behaviors. The symbols “;” and “|” represent sequential composition

and [nondeterministic] branching, respectively.

Some typical proof rules are as follows:

Conjunctive Testing

(P)(p) A (P1)(#4) A (P2)(?q)
(Pr; P2) (M(pAq))

86

Conjunctive Achievement

(P1)('p) A (Pe)('q) A (P2)(#p)
(Pi; P2)(!(p A q))

Disjunctive Testing

(P)(?p) A (P2)(q) A (P1)r(#q) A (P2)r(#p)
(P P)(2(pVa)

Disjunctive Achievement

(P1)('p) A (P2)('q)
(P | P2)(MpVaq))

Note that these proof rules are not the only ones, nor are they the strongest, that
could be used. For example, in the rule for conjunctive achievement, we need not
require that p be unaffected by (/%); all we need do is regress the goal !p through ()
and set this as the goal of (P;). However, since in most real-world cases it is difficult to

regress conditions through processes, the rules given above prove to be most practical.

The declarative semantics with this extension to the language is standard. The
operational semantics simply requires that the interpreter be modified to allow appli-

cation of the proof rules when necessary.

A.7 Conclusions

This paper has presented a simple model for action and a means for representing
knowledge about procedures. We have indicated the importance of reasoning about
processes rather than simply histories or state sequences. A declarative semantics for
the representation was provided that allows a user to specify facts about behaviors
independently of context. We have also given an operational semantics that shows
how these facts can be used by an agent to achieve (or form intentions to achieve) its
goals.

This knowledge representation can also be used for planning. Indeed, the operators
of many standard planning systems (such as NOAH [45], DEVISER [52] and SIPE

[53]) can be viewed as restricted forms of process descriptions. The fact that any

87

behavior allowed by the declarative semantics can also be found using the operational
semantics means that a planning algorithm that tried all possible selection rules would

be “complete” - that is, it would find a solution if one existed.

By modifying the formalism so that failure sets allow full backtracking, single-state
theorem proving of Horn clauses becomes a special case. This modification would also
include as a special case the realization of “backtracking through triangle tables,” as
proposed by Nilsson [39]. However, such modifications present practical problems of

verification and efficiency, and would appear useful only in some special cases.

In some ways, the declarative semantics is surprisingly complex and would seem to
indicate some undesirable properties of the representation. Most of these difficulties
arise from the need to model failed as well as successful behaviors. Of course, if
we could fully specify necessary correctness conditions independently of context, and
test for them, failed behaviors would become irrelevant for practical reasoning; we
could always test to make sure conditions were true when needed. But experience
with programming languages, and indeed the real world, shows that this can often be

impractical if not impossible.

The formalism presented here can also be viewed as an ezecutable specification
language — that is, as a programming language that allows a user to directly describe
the behaviors desired of the system being constructed. The fact that the language
has a denotational semantics allows facts about the behavior of the system to be
independently stated and verified. The operational semantics provides a means for
directly erecuting these specifications to obtain the desired behavior. In this sense the
language has much in common with Prolog, except that it applies to dynamic domains

instead of static domains.

The system modeled in this paper has no data base, and thus no storage for knowl-
edge or beliefs. We have a practical implementation of a system that includes such a
data base, but have yet to formalize it. This introduces all the standard planning issues,
such as the frame problem [31] and consistency maintenance [8]. We also need to inves-
tigate concurrency, and extend the model to deal with it. The notion of process failure
and correctness assertions play a particularly important part when multiple agents
or dynamic environments are allowed, and bear some relationship to formalisms for
concurrent program verification. Some work in this direction is described by Georgeff
[19].

88

Appendix B

A Theory of Process

This chapter describes the theoretical foundations of the process representation. A ver-
sion of this material, entitled “A Theory of Process,” was published in the Proceedings
of the Workshop on Distributed Artificial Intelligence, held at Sea Ranch, California,
in December, 1985.

The notion of process is essential for reasoning about the behavior of agents in
dynamic worlds. The purpose of this work is to show why reasoning about process is
so important, and to contrast this with other approaches in artificial intelligence (Al)
that are based primarily on the allowable behaviors of agents. A model of events is
constructed that provides for simultaneous action, and a model-based law of persistence
is introduced to describe how events affect the world. No frame axioms or syntactic
frame rules are involved in the specification of any given event, thus allowing a proper
model-theoretic semantics for the representation. It is indicated how an algebra of
processes can be employed to ascertain critical properties of multiagent systems, such
as freedom from deadlock, and how systems of processes can be reasoned about given
specifications of the component processes. A notion of hidden (internal) events is then
introduced, whereupon it is shown how this provides an abstraction capability that
can be used to avoid the combinatorial explosion typical of other Al approaches to
multiagent planning. Finally, it is shown how the law of persistence, together with
notions of causality and derived predication, makes it possible to avoid most of the
difficulties associated with the frame problem.

89

B.1 Introduction

We take the notion of compositionality as central to any attempt at reasoning about
complex systems. By that we mean that we should be able to compose complex systems
from sets of interacting subsystems and have the behaviors of the latter determine the
behavior of the whole. Moreover, subsystems that are deemed behaviorally equivalent

should be replaceable by one another, without affecting the behavior of the whole.

Traditionally, machines or agents have been characterized by the set of behaviors
that they can accept. Influenced by this tradition, formalisms for reasoning about
multiagent domains have focused on reasoning about the allowable behaviors of agents
[2,32]. For multiagent domains, however, sets of allowable behaviors are inadequate in

their characterization of agents and hinder compositionality.

Al[.

Figure B.1: Nonequivalent Machines

For example, consider the finite automata in Figure 1. Both accept the strings
(a(b + ¢))*. Consequently, the machines are deemed to be equivalent. But they are
clearly not the same - they differ in the number of internal states and in the state

transitions that are made. This in itself is no reason for viewing the machines as

90

nonequivalent; only if their observed behavior is different do we wish to distinguish

among machines.

From one point of view, however, their observed behavior #s different. While the
sets of strings that each machine may accept are identical, the sets of strings that each
must accept are different. That is, machine M; could fas! to accept some strings that
M, would not. For example, after acceptance of an @, machine M; may fail to accept
a b (if it is at node N;) or a ¢ (if it is at N3), whereas M; cannot fail to accept either
of these. Where concurrency is concerned, this means that the machines could act

differently in different environments.

In other words, we want to view machines as equivalent if it is possible to replace one
with the other when they appear as components of a larger system without affecting the
overall system’s behavior. Such a criterion has been called observational equivalence
[36]. For the automata in Figure 1, however, it is easy to construct a system that is
deadlock free when M, is used as a subsystem, but is subject to deadlock when M, is

replaced by M,.

We thus need something that retains more information about an agent than the
agent’s allowable behaviors. How we do this is the subject of Section 3. But first we

need to define the basic entities in this ontology of agent behavior.

B.2 Events and Actions

We assume that, at any given instant, the world is in a particular world state. We
consider a world state to consist of a number of objects from a given domain, together
with various relations and functions over those objects. We will use predicate calculus

for specifying world states, allowing quantification and the usual logical connectives.

A given world state has no duration; the only way the passage of time can be
observed is through some change of state. The world changes state by the occurrence
of some event. The simplest kind is an atomic event. As in classical models of events
and actions, a single occurrence of an atomic event is viewed as a transition from
some single world state to another single world state. An atomic event type is a set of

such occurrences — that is, a relation on world states.! In what follows, we shall use

1We represent the transition relation as a function from world states to sets of world states.

91

the terms “action” and “event” synonymously, and will simply refer to event types as

events.

We begin by modelling an event as a set of state sequences, representing all possible
occurrences of the event in all possible situations (see also [2,32]). In particular, an
atomic event must include all possible state transitions, sncluding those in which other
events occur simnultaneously with the given event. Consequently, the state transition
function for an event must allow most world relations to change, as almost anything
can happen in parallel. Thus, the state transition function places restrictions on those
world relations that are directly affected by the event, but leaves most others to vary
freely (depending upon what else is happening in the world). This is in direct contrast
to the classical approach, which views an event as changing some world relations but

leaving most others unaltered.

For example, consider a domain consisting of blocks A and B at possible locations
0 and 1. Assume a world relation that represents the location of each of the blocks,
denoted loc. Consider two events, move,, which has the effect of moving block A
to location 1, and moveg, which has a similar eflect on block B. Then the classical
approach (e.g., see [40]) would model these actions as follows:?

movea = { (loc(A,1),loc(B,1)) — {loc(A,1),loc(B,1))
{loc(A,0),loc(B,1)) — (loc(A,1),loc(B, 1))
(loc(A,1),loc(B,0)) — (loc(A,1),loc(B,0))
{loc(A,0),loc(B,0)) — (loc(A,1),loc(B,0))}

and similarly for moveg.

Every instance (transition) of move, leaves the location of B unchanged, and sim-
ilarly every instance of movep leaves the location of A unchanged. Consequently, it
is impossible to compose these two actions to form one that represents the simul-
taneous performance of both move, and moveg, except by using some interleaving

approximation.

In contrast, our model of these actions is:

*Indeed, many approaches use syntactic representations that may not even yield proper models for

thesee actions.

92

moves = { {loc(A,1),loc(B,1)) = {{loc(A,1),loc(B,1)},{loc(A,1),loc(B,0))}
{loc(A,0),loc(B, 1)) — {{loc(A,1),loc(B, 1)}, {loc(A,1),loc(B,0))}
(loc(A,1),l0c(B,0)) — {({loc(A,1),loc(B, 1)}, {loc(A,1),loc(B,0))}
(loc(A,0),loc(B,0)) — {{loc(A,1),loc(B, 1)), {loc(A,1),loc(B,0))}}

and similarly for movep.

This model represents all possible occurrences of the action, including its simulta-
neous execution with other actions. For example, if move, and movep are performed
simultaneously, the resulting action will be the intersection of their possible behaviors:

movea||moveg = movey Nmovep
={ {(loc(A,1),loc(B,1)) = {{loc(A,1),loc(B, 1))}
(loe(A,0),l0c(B,1)) — {{loc(A,1),loc(B, 1)}}
(loc(A,1),l0c(B,0)) — {{loc(A,1),loc(B, 1))}
{loc(A,0),loc(B,0)) — {(loc(A,1),loc(B,1))}}

Thus, to say that an event has taken place is therefore simply to put constraints

on some world relations, and leave most others to vary freely.

We now need to develop a notation for specifying properties of atomic events.
Given a sentence ¢ in the state description language, let m(4) be the set of states that
satisfy ¢ under some class of interpretations for the nonlogical symbols appearing in
the language, and let m(e) be the transition function associated with event e. (The
formal details are not important for this paper.) We then define the construct {e}é to
mean the set of states that result in ¢’s being true after the occurrence of an event e.

More formally, the meaning of {e}¢ is given by

m({e}$) = {s | Vt.t € m(¢) = (s,1) € m(e)}

The “if” part of the equivalence states that s must be able to pass to all states
satisfying ¢ during the performance of e, and the “only if” part states that all e

transitions from s will satisfy ¢.3

3Note that the |] operator of dynamic logic includes just the “only if” part of the { } operator. It
is defined as m([e]¢) = {s | Vt.(s,t) € I.(e) Dt € m(4)}

93

Thus, if we have ¥ O {e}4, the performance of event e in a state in which ¢ holds
will result in a state in which ¢ holds. Moreover, depending on which events, if any,
occur simultaneously with e, every state satisfying ¢ can be reached from each state
satisfying ¢. For simplicity, we shall write ¥{e}¢ for ¥ D {e}¢. We shall call (¢, 4) a
precondition/postcondition pair for e If ¢ is satisfiable, we say that e is performable
in situation ¥». The set of states for which an event is performable is called the domasn

of the event.

For example, the event movea satisfies true{movea}loc(A,1). As true covers
the entire domain of the action, move, is completely characterized by the precondi-
tion/postcondition pair {true,loc(A,1)). Similarly, the paramaterized action move4(z)
that moves A to location z would satisfy true{move(z)}oc(A,z); it would be com-

pletely characterized by the precondition/postcondition pair (true,loc(A, z)).

Specifying the precondition/postcondition pairs of an event does not require a
large number of frame axioms stating what relations the performance of the event
leaves unchanged; the event, in and of itself, usually places no restrictions on the
majority of world relations so that these do not have to appear in the specification. In
contrast to the classical approach, we therefore need not introduce any frame rule [22]

or STRIPS-like assumption [11] regarding the specification of events.

B.3 The Law of Persistence

We have been viewing atomic events as imposing certain constraints on the way the
world changes while leaving other aspects of the situation free to vary as the environ-
ment chooses. That is, an event transition function describes all the potential changes
of world state that could take place during the occurrence of an event. Which transi-
tion actually occurs in a given situation depends, in part, on the events that take place

in the environment. However, we have not specified what happens if no environmental

*By varying ¢ over the powerset of world states, {¢}¢ induces an equivalence relation over initial
states of the event e. We shall call the equivalence classes that are so induced the inilial state sete
of e. Each initial state set uniquely determines a final state set, which is the set of final states
accessible from every state in the initial state set. The set of all such pairs for an event e is unique.
Thus, there is a set of precondition/postcondition pairs for e that fully specifies e and is unique up

to equivalence.

94

event occurs or, more specifically, if no environmental event occurs that affects some

given world relation.

What we need is some notion of persistence that specifies that, in general, world
relations only change when forced to [32]. For example, because the action movey
defined in the previous section places no constraints on the location of B, we would
not expect the location of B to change when move, was performed in isolation from

other environmental events.

At this point we encounter a serious deficiency in the event model we have been
using and, incidentally, in all others that represent events as the set of all their possible
behaviors (e.g., [2,32]) . Consider, for example, a world consisting of a source of light,
L, the location of an object, A, and the location of the shadow cast by the object,
S. We shall assume there are no other entities in the world, and that the possible
locations for both L and A are 0 and 1. In our simplified world, the constraint on
locations of these various objects is loc(S) = 2 x loc(A) — loc(L) (so that S has more
possible locations than A and L).®

Now consider an action move, that moves A to location 1 (see Figure 2). The

transition function for moveq will map every possible initial state into the two final
states (loc(A,1),loc(L,1),loc(S,1)) and {loc(A,1),loc(L,0),loc(S,2)).

If A is initially at location 0, the effect of move,, in addition to changing the
location of A, will be to change either the location of L or the location of S. The
question is, if no other event occurs simultaneously with moves, which of L and S
changes location? While intuitively we would expect the location of S to change, using
our current event model there is simply no way to distinguish these two possibilities.
We cannot restrict the transition relation so that the first state above can only be
achieved when the initial location of L is 1 (and the second state when L’s location is 0),
because that would prevent L from being moved simultaneously with A. Furthermore,
the constraint on locations is a contingent fact about the world, not an analytic one —
thus, we cannot sensibly escape the dilema by considering any of the relations derived

from the others.

From a purely behavioral point of view, and with no additional knowledge about

the nature of shadows, this is how things should be. If an observer had no sensors for

5We should really write something like Vz,y, z.loc(A,2) A loc(L,y) Aloc(S,2) D 2 = (2x z —y).
However, we will use the functional form here and throughout for simplicity of expression.

95

= ©
!

©
>]

o |]
(=]

Location: -1

Figure B.2: Sample Transition for move,4

detecting the location of A, but could observe the location of L and S, then it would
appear to such an observer that move 4 sometimes changed loc(S) (whenever the loca-
tion of L was not changed simultaneously with move,) and sometimes changed loc(L)
(whenever the location of L was changed simultaneously). As there is no observation
that could allow the observer to detect whether or not another action was occurring

simultaneously, there is no way the two situations could be distinguished.

On the other hand, one might want to choose an ontology where these cases were
distinguished, and be able to say that if loc(L) were observed to change, there must
have occurred some simultaneous event that changed it. Although it is not clear that
being able to make these distinctions provides any more deductive power, such an

ontology better matches commonsense reasoning.

In addition to problems such as these, there are also some technical reasons for
finding our current representation of events unsatisfactory. (We shall encounter some
of these problems later.) Therefore, we extend our model of an atomic event to include,
in addition to the state transition function, a component specifying the relational tuples
that might be directly affected by the event. For example, in the above case we could
view loc(A) and loc(S) as the only relational tuples directly affected by move,. We
call these tuples the direct effects of the event.

Note that all the direct effects of an event e need not be involved in any single

occurrence of e — they represent only possible effects. Also, the direct effects of an

96

event do not define the possible state transitions - this is given, as before, by the state

transition function for e.

It is important to be clear about the consequences of this extended model of atomic
events. In particular, it means that events with the same transition function - that
is, events that are indistinguishable through observation of all their possible behaviors
- may not be identical. For example, consider the atomic event move, with the
transition function given above and direct effects loc(A) and loc(S), and the atomic
event move 4y, with the same transition function but with direct effects loc(A), loc(S),
and loc(L). (The action move,y, can be viewed as the action that changes the location
of A to 1 and arbitrarily chooses whether or not to move L.) The behaviors exhibited
by both these actions are identical, yet we consider the actions to be different. The
difference is essentially a matter of viewpoint - move,4 can change the location of S,
but any change in the location of L is attributed to the simultaneous occurrence of
some other event that affects L; on the other hand, movesr, tn and of stself, could

change the location of L as well as the locations of A and S.

With this representation, we can now state how atomic events may be combined
to form more complex atomic events. The two means of composition are simultaneity
of events, denoted ||, and choice between events, denoted +. In both cases, the set of
direct effects of the composite event is the union of the direct effects of the component

events. The state transition relation, denoted tr, is given as follows:
o trey|les) = tr(ey) Nitr(er)
o tr(e; +ez) = tr(eg) Utr(ez)

We are now in a position to say how an event changes the world if no other events

occur simultaneously (i.e., if the event occurs sn tsolation).
The Law of Persistence:
If for an event e, r is not a direct effect of e and no event ¢' with direct

effect r occurs simultaneously with e, then r remains unchanged by the

occurrence of e.

In other words, unless a relation is the direct effect of some event, the relation will
remain unchanged by that event. This law is crucial; without it we could deduce little

about the world state resulting from the occurrence of a given event.

97

For example, if move,4 given above was performed in isolation, then the location
of L would remain unaffected by the performance of the action. An action no-op that
allowed all possible state transitions but had no direct effects would do nothing when
performed in isolation; an action chaos having the same transition function but with

every relation a direct effect could do anything at all.®

To have well-defined final states in the presence of this law, the transition function
and direct effects of an atomic event must satisfy the following compatibility require-

ment:

Given an atomic event e with transition function tr, for every state s in
the domain of e there is a state s' € tr(s) that preserves all the relational

tuples of s that are not direct effects of e.

In our model, therefore, the effects of events can be ascertained without recourse to
any frame axioms (stating what remains unchanged by the occurrence of an event) or
any syntactic frame rules (such as a STRIPS-like assumption). Indeed, to fully specify
an atomic event, all we need is a specification of the precondition/postcondition pairs

of the event and its direct effects.

B.4 Processes

As we observed in the introduction, for multiagent domains it is not sufficient to
represent the behaviors of agents simply by giving the sequences of events that they
can engage in. We must also specify what sequences of events can lead to failure. To

do this we introduce the notion of process.

An agent may be thought of as being able to perform a number of different actions.
In a multiagent domain, or wherever any interaction with an environment may occur,
certain of these actions will be constrained to occur simultaneously with other events.
For example, if an agent has its hand on a light switch, the action of moving its hand

upward occurs simultaneously with the movement of the light switch, which in turn

SConsider a two state domain with possible states p and —~p. If e, is an event that brings about p
and ez is an event that brings about —p, then €; + €2 is chaos. This is as expected - as we have
a choice of doing e, or ez anything at all could happen. However, without the extended model of
events that we described above, there would be no way to distinguish ¢, + e; from no-op.

98

occurs simultaneously with a flow of electricity. Thus, we need to specify which actions
an agent can perform and which of these must occur simultaneously with other events.
If two atomic events e, e; are constrained to occur simultaneously, we shall say that
they are synchronous, denoted e; ¢ e2. The event in which both e; and e; occur

simultaneously is e;]|ez. We shall assume that if e; < ez, then e,f|ez is performable.

A process can be viewed as generating all possible behaviors of an agent in all
possible environments. A renewal behavior of a process is the behavior of the agent
after some action has been performed. We write P —, Q to mean that process P can

evolve into process @ after performing the atomic action e.

Two processes have no renewals. These are FAIL, which represents the failure
of a process, and NIL, which represents successful completion of a process. These
are the simplest forms of process, upon which all others are built by means of various

composition operators.

The composition operators we introduce below are based on the synchronized be-
havior algebras of Milne [35]. (Other alternatives (e.g., [26]) could equally well be
employed.)

B.4.1 Prefixing (:)

The process e : P is one that can begin by performing the event e, after which it

behaves exactly like P. We therefore have the rule

eec:P—. P

B.4.2 Sequencing (;)

The process P ; Q behaves first like P and, if that concludes successfully, behaves next
like @. We thus have

elf P-,Pthen P; Q—.P; Q
e fP—, NILthen P; Q —.Q

99

B.4.3 Ambiguity (+)

The process P + @ can behave like either P or Q. We have
e If P—, P' then P+Q —, P’
e IfQ —». Q@ then P+ Q —,. Q'

For example, if
R=(b:P)+(c: FAIL)
then R can either perform b and evolve into P or perform ¢ and fail.

The ambiguity operator allows the environment to choose between events, whereas
prefixing allows no such choice. This may be viewed as the difference between events
initiated by the environment and those initiated by the agent. Note that (e; : P)+
(ez : P) is equivalent to (ey +e2) : P, which is why we have chosen to use the + symbol

for both processes and events.

B.4.4 Parallelism (&)

The process P&(Q involves both processes P and @ running concurrently. Events that
are designated as synchronous must occur simultaneously, whereas other events can
choose to occur simultaneously with one another or be arbitrarily interleaved. We

therefore have

e If e is not synchronous with any event in Q and
P—.Pthen P& Q—. P &Q

e If e is not synchronous with any event in P and

Q—. Q'thn P& Q—, P& Q'

e If b and ¢ can (or must) be performed simultaneously and
P-4 P, Q—.Q then P& Q —y P' & Q'

The operators given above are not all we could define, but they are sufficient for
our present purposes. Indeed, the machinery we now have is much more powerful than
that described in any other work on multiagent planning, with the exception of some
new research by Lansky [28] and Rosenschein and Kaelbling [44].

100

Using results from concurrency theory (e.g., [26,35]), various algebraic laws for
reasoning about these processes can be developed [21]. These laws allow us to discover
certain properties of systems of processes, such as system deadlock. For example,
using slightly different process models from that presented herein, the author [17]
and Stuart [49] have applied such laws to synthesize synchronized multiagent plans.
However, because we do not require events of the same type to be synchronized, and
because a given relation can be affected by different events, we cannot utilize many
of the specification axioms developed in concurrency theory. In the following sections,

axioms appropriate to our model of concurrency are provided.

B.5 State Change Axioms

Our goal is to use descriptions of events and actions given in terms of precondition/post-
condition pairs to derive constraints on possible event orderings.” Furthermore, we
wish to derive rules that allow us to determine the behavior of systems of processes,

given properties of the behaviors of the component processes.

For reasoning about world states, the axioms need to include the standard axioms
of predicate calculus. To these we must add other axioms or rules for reasoning about
events and processes. While the rules given below are probably not complete, they are
nevertheless sound.

We have a particularly simple rule for reasoning about simultaneous actions:®

o If ¥y {e1}¢1 and Yo{ez}d2 then (¢ A ¥2){eslle2}(d1 A d2)

We also have a simple but somewhat surprising rule for the choice operation:

o If ¥1{er}¢1 and ¥2{ez} o2 then (¥4 A ¥h2){es + €2} (41 V ¢2)

7It is constraints such as these that Lansky [28] uses for her plan synthesis system. However, she
requires that they be specified for the problem domain under consideration; she does not attempt to
derive them from a state-based representations for events. Indeed, she takes the opposite approach
and defines state predicates in terms of restrictions upon event sequences.

8Note that the notation of dynamic logic does not immediately lend itself to such simple axioms; for
example, if ¥1 D [e1]¢1 and ¢z D [e2]¢2, and er|ez is taken to represent the intersection of e, and
ez, it does not follow that ¥, A Y2 D [er]lez]d A ¢2.

101

In what follows, we shall use a temporal logic consisting of the modal operators
O (always) and { (eventually) to describe behaviors. If every behavior generated
by a process P satisfies a temporal assertion ¢, we shall write (P)¢. If ¢ is a non-
temporal state description (i.e., contains no temporal operators), we will also write
Y(P)¢ to mean (P)(¢» D ¢). Thus, for example, if ¢ is a nontemporal state descrip-
tion, ¥ (P) O O¢ means that, if the first state in a behavior of P satisfies ¢, then
eventually ¢ will always be satisfied — in particular, if ¢ is also nontemporal, the last
state, if one exists, will satisfy ¢. Note that this formalism does not allow us to make

statements about what might happen in a process - we can only state facts about what
must happen.

Unfortunately, because the set of behaviors associated with a process include all
possible behaviors, there is little one can say about the effects of individual processes
if the environment is allowed to change the world in arbitrary ways. We therefore
distinguish between events that occur within the process and events that occur in the
environment, and qualify our axioms by placing constraints on what behaviors may or

may not occur in the environment (see also [4]).

To do this, we shall qualify process axioms by annotating prefix operators with [¢]
wherever ¢ is a constraint on behaviors in the environment. That is, for an event e and
process P, the intended meaning of e : [¢/] P is that ¢ must be true of the sequence
of states following the completion of e until the beginning of P. Sequencing operators

can be annotated similarly.

We begin with the following general laws:

o If {(P)¢ and (P)é then (P)(¥ A ¢)

(This extends in the obvious way to universal quantification.)
e If (P)y and ¢ D ¢ then (P)¢

o (FAIL)true

B.5.1 Prefixing (:)

For a process of the form e : P, one might at first expect that the final states of the
event e should at least intersect the possible initial states of the process P, if not be a

subset of them. However, this is not so, because the environment can intervene after

102

the performance of e and change the state of the world before P begins. We therefore

have

o If 8{e}~ and ¥(P)¢ then 8 (e : [y A OOY)] P) O¢

This says that ¢ will eventually be satisfied by e : P if, after e has been performed,
the environment can bring about ¢ starting from an initial state in which ~ is true,
and can keep v true long enough for process P to begin. Note that, even if e can
directly bring about ¥ (i.e., if ¥ D 9), the environmental constraint is necessary to

prevent the environment from interfering detrimentally and undoing the effects of e.

Similar rules are used by Lansky [28] for defining state predicates, and by Pednault
[40] and Chapman [5] for plan synthesis. In these works, there is some rule or axiom
allowing an event that deletes a desired precondition but requiring that the latter be

reestablished by some subsequent event.

B.5.2 Sequencing (;)

The rule for sequencing is very similar to that for prefixing; in this case, the environ-
ment can intervene between the completion of one process and the start of the next.
We have

o If ¥, (P)1 and ¥2(P2)d2 then ¥y (P 5 [61 A OO)] P2} Ooe

It is important to note that the sequencing operators defined by both Allen [2] and
McDermott [32] do not permit the interleaving of events between the component pro-
cesses. This is much too strong a restriction on sequencing; for example, the standard
sequencing operators of programming languages that support concurrency cannot then
be modeled.

B.5.3 Ambiguity (+)
In this case, we simply require that either of the specifications for P, and P> be satisfied:
o if (P1)¢, and (P;)¢2 then (P + P2)(¢; V ¢2)

103

B.5.4 Parallelism (&)

Because parallelism can be reduced to prefixing (:) and ambiguity (+) by means
of certain algebraic laws (see [21]), there is no need for any axioms about the state
behaviors of parallel processes. Nevertheless, the following rule is very convenient, as
it avoids examining all interleavings of the composed processes:

o if (P1)¢1 and (P2)¢2 then (P, & P2)(¢1 A 82)

This rule assumes that each component process satisfies the environmental constraints
of the other. The conditions for ¢nterference freedom described in a previous paper
[19] represent a particular case in which these constraints are satisfied. If any events
are constrained to occur synchronously, the combined process may fail. However, any

behavior that does not fail will satisfy the foregoing rule.

The rules given above enable us to infer properties of systems from the properties
of their components. For example, consider the following. Two people are engaged in
lifting a table. We assume that the world can be in any state ([,r), where { and r are
integers representing the height of the left and right ends of the table, respectively.
The initial world state is (0,0), and the goal is to raise the table more or less evenly,

i.e., so that —1 <! — r < 1. Each person can perform two atomic events:

Person 1:

o A test t; where ({ < r){t:}(! <r) and (I > r){t1} false
e An action a; where ({ = n){a;}(I=n+1)

Person 2:

o A test tp where (r <{){t2}(r <!) and (r > ‘l){tl}falsc

e An action ag where (r = n){az}(r =n+1)

The processes representing each person are®

Pi=t :a,: P and

Po=ts:a2: P

®Strictly speaking, we need a fixed-point operator to define these processes (see [26]).

104

Let g, represent any sequence of states in which ! does not increase and r does not
decrease (i.e., ¢ = (I —r=n) D O(l - r < n)), and let g represent any sequence of
states in which r does not increase and { does not decrease (i.e.,, g2 = (n <l —-r) D

0O (n <! —r). The behaviors generated by these processes satisfy the following:
Process 1: ({ —r < 1) {t1:[q) a1 : (@] PA) O -r<1)
Process 2: (-1 <l —r) (t2:[g2] 62 :[q2) P2) O(=1 <1 ~7r)

Furthermore, neither process violates the environmental constraints of the other

(in fact, they are interference free [19]). Therefore, we must have

(-1<l-r<) (P &P)O(-1<I-r< 1)

Of course, this relies on the external environment satisfying the environmental

constraints specified in each of the process descriptions.

To show that the above two processes actually enable the table to be raised, we
need to prove that each “cycle” of each process increases { and r, respectively, and that

at least one process can always proceed. This is straightforward.

We now need to consider how to conceal the internal structure of processes so that

we have the capability of abstraction.

B.6 Internalization

For a given process, certain relational tuples will be nonobservable (and thus incapable
of being influenced) from outside that process. We call these internal relations. In
addition, some world relations will be nonobservable from inside the process. We call

these ezternal relations. The remaining relations are called interface relations.°

The external relations of a given process (agent) are those relations that are not
directly affected by any event in a process and that do not occur critically in any

precondition of any event in the process. Knowledge of the external relations for every

1%Although we talk of “relations”, we strictly mean relational tuples. Thus, for example, the tuples
On(z,y), for all z and y in a given room, may be external to processes operating outside the room,
but the relation On applied to other objects may not be external to these processes.

105

process in a system of processes fully determines the internal and interface relations

for each such process.

Let us first consider the externally observable behavior of processes. For a given
world state w over a domain involving relations R, let w|gr be the restriction of w to
the set of relations in R. We extend this operation to atomic events in the natural

way: the direct effects are restricted to R and the transition relation is given by

tr(elr) = {(s|r, t|r)|(s,t) € tr(e)}

For a given process P with interface relations R, let P|g be the process in which
all atomic events e are replaced by e|p. The set of behaviors of P|r is equal to the
set of observable behaviors of P. For processes P; and P, with interface relations R,
if the set of behaviors of Pj|g equals the set of behaviors of P;|g, we say that P, is
observationally equivalent to P> with respect to R.

Once we restrict the events in a process P to the interface relations R of P, many of
the restricted events will turn out to be no-ops — that is, many of the events, restricted
to R, will have no direct effects and no constraints on the allowed state transitions.
If, in addition, these events are not constrained to be synchronous with any external
event, they will be nonobservable from outside P. Such hidden events will be denoted

by the symbol 7.

The algebraic laws relating to the special hidden event 7 are given elsewhere [21].
These are critical in allowing the behavior of a system of processes to be ascertained
without examining all interleavings of the component processes, and thus enable us to
avoid computational intractability. In this way we can reason about processes without

concerning ourselves with their internal behavior (i.e., how they are implemented).

The combination of internalization (7) and ambiguity (+) also enable us to distin-
guish between ezxternal and snternal nondeterminism. The distinction between these
two kinds of nondeterminism is essential when dealing with real-world systems. For
example, it allows us to differentiate between a machine that will dispense either a
bag of candy or a chocolate bar, depending on what the user of the machine does, and
a poker-playing slot machine that chooses for itself, independently of the user’s will,
what hand to display next.

106

The difference in the two cases is simply a matter of whether or not the selecting
event is hidden from the external world. Consider, for example, the following two

processes:
EXTERNAL = (ey : P) + (e2 : Q)
INTERNAL = (r: P)+(r: Q)

In the first of these, the environment can influence the choice between P and @ by
performing either e; (or some event constrained to occur simultaneously with e;) or
eq; in the second process, the initial event is hidden and the environment thus has no

influence over the subsequent behavior of the agent.

Now consider the internal behavior of processes. Because the environment cannot
affect the internal relations of a process, we can strengthen considerably the axioms
given in the preceding section. In particular, for a process e : P, any final state of
e must satisfy the precondition of P with respect to the internal relations of P. As
before, however, the enviroment can intervene between the completion of ¢ and the

beginning of P to change the interface relations.

We consider below the simplified rules for the various composition operators. Let
R be the interface relations for a process P and let I be the internal relations of P.
We then have

o if 8{e}y and ¢(P)4 and (v D ¢)|s then 8 (e : [(vA ODOY)|r] P) O¢

This rule states that, if the internal constraints of ¢ are satisfied by the event e and
the interface constraints of 1 are satisfied by the environment, then eventually ¢ will

hold. In particular, if ¢ does not contain any interface relations, we have
e If 8{e}~ and ¢(P)¢ and v D ¢ then 8{e : P)O¢

This is the standard rule used in most planning systems, in which one attempts to
extend a plan (P) to accomplish a given goal (4) by prefixing the plan with an action
(e) that will achieve the current plan’s preconditions (¢). The law for sequencing is

similar.

The laws for ambiguity and parallel composition are as before, but now we only have
to check compatibility of the environmental constraints as restricted to the interface
relations. Furthermore, as mentioned above, any reduction of parallelism to prefixing

107

and ambiguity (as needed, for example, in the analysis of deadlock) is greatly simplified
by the introduction of hidden events.

B.7 The Frame Problem and Causality

The frame problem, as Hayes [22] describes it, is dealt with in our approach by means
of the law of persistence. Because this law is a property of our event model, and not of
our event specification language, we thus avoid all of the semantic difficulties usually

associated with the frame problem.

However, in our representation the specification of the direct effects of an event
can be cumbersome. For example, if we have a domain with relations representing the
location of objects, the distance between objects, the farthest object, and the closest
object, then any event that changed the location of an object would have to include as

direct effects each of the other relations.

To avoid this problem, we allow that certain predicates be specified as dersved pred-
icates [12]. We require that derived predicates be defined in terms of other predicates
and that they be well-founded. We can then adopt the convention that any derived
predicate need not be mentioned in the set of direct effects of an event, as it is always
possible to determine its truth value in a given state by examining the truth value of its

definiens. Of course, the law of persistence would not then apply to derived predicates.

For example, consider a domain consisting of two blocks A and B, and assume
relations loc representing location and dist4p representing the distance between A
and B. We could specify that distance was a derived predicate, defining it in terms
of the locations of A and B. Then an action move4 that changed the location of A
would only need to mention loc(A) as a direct effect of the action.

We could, if desired, extend the convention in the other direction and allow derived
predicates to be mentioned as direct effects. In such situations, the definiens of the
derived predicate are also to be considered direct effects of the event (and so on,
recursively). For example, if the explicit direct effect of some event stretchyp was
dist4p, then we would consider the actual direct effects to be dist4p, loc(A) and
loc(B). That is, stretch,p could affect, in addition to dist 45, the location either of A
or B or both.

108

Another problem with specifying the direct effects of an event is that it requires
considering all the relations and functions the event could possibly affect, in any con-
ceivable circumstance. This does not conform well with commonsense views of action.
For example, in the case of the block and the shadow (Section 3), the direct eflects
of the move,4 event included the location both of the block (A) and the shadow (S).
As mentioned before, we do not want to consider the location of the shadow to be a
derived predicate, but it does not seem we should have to mention it in the definition

of the event that simply moves block A.

We handle this problem by introducing a notion of causality. What count as di-
rect effects of an event can now be simplified, but certain events are forced to occur
simultaneously that restrict the application of the law of persistence to the composite
parallel event. That is, if an event e; is stated to cause an event ez, we require that e,
always occur simultaneously with e;. The law of persistence could then be applied to

the event e;||ez, but not to e, alone.

For example, in the above case we might specify that a simultaneous event (moveg,
say) is caused by the movement of A that results in the location of S being changed.
Thus, the direct effect of move, is simply loc(A) - the change to S’s location comes
about through the direct effect of the event moves which is always constrained to be
simultaneous with moves. This conforms better to commonsense reasoning, where
we would be inclined to say that moving A caused A’s shadow to move, rather than
considering the movement of A and the shadow to be a single event. Also note that,
provided that the causal laws are stated correctly, they need not presuppose that no
further event occurs simultaneously - for example, the laws should still apply even if

the light source and the block were both moved at the same time.

The introduction of derived predicates does not provide any increase in represen-
tational power: they can always be replaced by their definiens. However, causal laws
allow us to represent events that cannot be described by a single event specification.
The reason is that event specifications can only include a finite number of direct ef-
fects, whereas with causality we can represent events with an infinite number of effects.
However, the major reason for introducing causality is to allow for simpler event spec-
ifications and more natural reasoning about behaviors, rather than greater expressive

power.

The notion of causality used by us is actually more general than that described

109

above, and is fully described in another paper [21]. Essentially, we view causality as
a relation between atomic events and processes that is conditional on the state of the
world. We also relate causation to the temporal ordering of events, and assume that
an event cannot cause a process (and thus other events) that precedes it. However,
we do allow an event to cause another that occurs simultaneously (as in the above

example). This differs from most formal models of causality [28,32,46].

At this point we could ask what has happened to the frame problem - in particular,
why do most other formalisms that use a general rule for determining the relations
preserved by an event base that rule on provability of formulae? The answer is twofold.
First, our representation of events and the law of persistence are model-based rather
than syntactic. Unlike most other approaches, this provides us with a proper model-

theoretic semantics for our specification language.

Second, we have really shifted the place in which questions of provability arise. In
the usual approaches, any action specification is guaranteed to be consistent, provided
the axioms describing world states are consistent. However, determination of what
conditions hold after performance of an action requires, in general, determining the
consistency of a some given set of formulae. In our case, determining the effects of
an event do not require determining the consistency of any formulae, but the action
specifications themselves can be inconsistent. Thus, while using the usual frame rules
it is undecidable what the effects of action are [41], in our case it is undecidable
whether or not a given action specification is consistent. However, the latter is really
no disadvantage at all: given that the consistency of the axioms describing world states
is undecidable, it hardly matters that the consistency of the formulae describing actions

is also undecidable.!!

There are also important implementation considerations. Any approach where the
effects of an action are dependent on determination of the consistency of formulae is
simply intractable. In contrast, the approach outlined here can be implemented very
efficiently, as the relations and functions that can be affected by the occurrence of an
event require, at most, provability of the formulae of interest. Interestingly, one of
the most efficient action representations so far employed in Al planning systems - the
STRIPS representation - is essentially the special case in which (1) each action has a

""Had we adopted the representation of events that did not include specification of their direct effects,
we would have encountered problems similar to those of the traditional approaches.

110

single precondition and postcondition, (2) the postcondition is a conjunction of literals,
(3) the direct effects include all the literals mentioned in the postcondition, and (4) no

events ever occur simultaneously with any other.

Some researchers take a more general view of the frame problem, seeing it as the
problem of reasoning about actions and events in the presence of sncomplete informa-
tion about processes (usually the environment). Unfortunately, this problem is often
confused with the representation of events, with the result that there is usually no

clear model-theoretic semantics for the representation.

In our case, the problem of reasoning about processes and that of making assump-
tions about them are quite separate issues. That is, given a description of a set of
processes, we can use the approach outlined above to determine certain properties of
any composite system of these processes. If we want stronger results, we may need to
make additional assumptions about the system. We may wish to assume, for example,
that a certain relation r in a given process will not be influenced by other processes
(i.e., that r is internal to the process). But making assumptions as to which other
events are likely to occur or which relations are internal to given processes is quite a
separate problem from that of reasoning on the basis of these assumptions. Indeed, we
can (to some extent) qualify any statement about the effects of a given process, thus

making any assumptions explicit.!?

It is not our intention to consider the problem of making useful assumptions about
events and internalization. However, the means of making such assumptions is likely
to be very domain-dependent, and not something that can be sensibly encompassed
in domain-independent rules based on minimal models or syntactic properties of the
representation (as in most approaches to the frame problem). For example, it at
first seems reasonable to assume that my car is still where I left it this morning,
unless 1 have information that is inconsistent with that assumption. However, this
assumption gets less and less reasonable as hours turn into days, weeks, months, years,
and centuries. This puts the problem where it should be - in the area of making
reasonable assumptions, not in the area of defining the effects of actions [11,22] or the
persistency of facts [32].

2Much of the qualification problem revolves around the internalization of relations. We may, for
example, internalize a relation about the connection of two components in a car, whereas, in reality,
it is possible for this connection to be externally affected (or for there to be an unspecified internal
event that affects the connection).

111

Appendix C

Sample Knowledge Base for the
RCS system

In this section we present a sample of the data base facts and KAs used to represent
some of the malfunction-handling procedures for the RCS system. They represent a
first attempt at formalizing the domain; considerable work with mission controllers

and other experts is needed before a realistic formalization can be developed.

C.1 Glossary of Identifier Prefixes

Individual elements in the system are represented by unique identifiers. These are of
the form (word).(number).(number) ..., and are named in such a way to given some

intuition about the type of object and its location.

RCS RCS

HEP Helium Pressurization system

PSD Propellant Storage and Distribution
THR Thruster

HET Helium Tank

HEV Helium Pressure Valve

REG Regulator

112

CHK Check Valve

REL Relief Valve

0XT Oxygen Tank

FUT Fuel Tank

TIV Tank Isolation Valve

MIV Manifold Isolation Valve
BIV Bipropellant Valve

XFV Crossfeed Valve

C.2 RCS State Description (Initial Data base)

The following are some of the facts stored within the RCS data base. They represent
the basic structure of a portion of the RCS system in its standard configuration (see
Figure 4.2).

C.2.1 Top Level Reactant Control Systems

(TYPE RCS F RCS.1)
(TYPE RCS L RCS.2)
(TYPE RCS R RCS.3)

C.2.2 Basic Components of Forward RCS

(TYPE HE-PRESSURIZATION 0X HEP.1.1)
(TYPE HE-PRESSURIZATION FUEL HEP.1.2)
(PART-OF HEP.1.1 RCS.1)
(PART-OF HEP.1.2 RCS.1)

(TYPE PROP-STORE-DIST OX PSD.1.1)
(TYPE PROP-STORE-DIST FUEL PSD.1.2)
(PART-OF PSD.1.1 RCS.1)
(PART-OF PSD.1.2 RCS.1)

113

(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER
(TYPE THRUSTER

(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF
(PART-OF

THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.

© ® ~ O bW N

[S S e T ™ T T T T T T TP

PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
PRIMARY
VERNIER
VERNIER
VERNIER
VERNIER

RCS.1
RCS .1
RCS.1
RCS.1
RCS.1
RCS.1
RCS.1
RCS.1
RCS.1
RCS.
RCS.
RCS.
RCS.
RCS.
RCS.
RCS.

[S S SN PN T Y
DD W = O

A O b b WW W W NN NN e e e

)
)
)
)
)
)
)
)
)
1)
1)
1)
1)
1)
1)
1)

o o0 @ MO QCrr-rTmMoOoac ®™® ™M oOQCTrr

THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.
THR.

L T T o T S S N = N = NS S S VOV Sy VO G W S O Y

1)
.2)
.3)
.4)
.5)
.6)
.7
.8)
.9)
.10)
11)
12)
.13)
.14)
.15)
.16)

114

C.2.3 Helium Pressurization System Of Forward RCS

(TYPE HE-TANK HET.1.1.1)
(PART-OF HET.1.1.1 HEP.1.1)

(TYPE HE-TANK HET.1.2.1)
(PART-OF HET.1.2.1 HEP.1.2)

(TYPE HE-PRESS-VALVE A HEV.1.1.1)
(TYPE HE-PRESS-VALVE B HEV.1.1.2)
(PART-OF HEV.1.1.1 HEP.1.1)
(PART-OF HEV.1.1.2 HEP.1.1)

(TYPE HE-PRESS-VALVE A HEV.1.2.1)
(TYPE HE-PRESS-VALVE B HEV.1.2.2)
(PART-OF HEV.1.2.1 HEP.1.2)
(PART-OF HEV.1.2.2 HEP.1.2)

(TYPE REGULATOR A 1 REG.1.1.1)
(TYPE REGULATOR A 2 REG.1.1.2)
(TYPE REGULATOR B 1 REG.1.1.3)
(TYPE REGULATOR B 2 REG.1.1.4)
(PART-OF REG.1.1.1 HEP.1.1)
(PART-OF REG.1.1.2 HEP.1.1)
(PART-OF REG.1.1.3 HEP.1.1)
(PART-OF REG.1.1.4 HEP.1.1)

(TYPE REGULATOR A 1 REG.1.2.1)
(TYPE REGULATOR A 2 REG.1.2.2)
(TYPE REGULATOR B 1 REG.1.2.3)
(TYPE REGULATOR B 2 REG.1.2.4)
(PART-OF REG.1.2.1 HEP.1.2)
(PART-OF REG.1.2.2 HEP.1.2)
(PART-OF REG.1.2.3 HEP.1.2)
(PART-OF REG.1.2.4 HEP.1.2)

115

(TYPE CHECK 1 CHK.1.1.1)
(TYPE CHECK 2 CHK.1.1.2)
(TYPE CHECK 3 CHK.1.1.3)
(TYPE CHECK 4 CHK.1.1.4)
(PART-OF CHK.1.1.1 HEP.1.1)
(PART-OF CHK.1.1.2 HEP.1.1)
(PART-OF CHK.1.1.3 HEP.1.1)
(PART-OF CHK.1.1.4 HEP.1.1)

(TYPE CHECK 1 CHK.1.2.1)
(TYPE CHECK 2 CHK.1.2.2)
(TYPE CHECK 3 CHK.1.2.3)
(TYPE CHECK 4 CHK.1.2.4)
(PART-OF CHK.1.2.1 HEP.1.2)
(PART-OF CHK.1.2.2 HEP.1.2)
(PART-OF CHK.1.2.3 HEP.1.2)
(PART-OF CHK.1.2.4 HEP.1.2)

(TYPE RELIEF REL.1.1.1)
(PART-OF REL.1.1.1 HEP.1.1)

(TYPE RELIEF REL.1.2.1)
(PART-OF REL.1.2.1 HEP.1.2)

C.2.4 Propellant Distribution System Of Forward RCS

(TYPE OX-TANK OXT.1.1.1)
(PART-OF OXT.1.1.1 PSD.1.1)

(TYPE FUEL-TANK FUT.1.2.1)
(PART-OF FUT.1.2.1 PSD.1.2)

(TYPE TANK-ISOL-VALVE 1/2 TIV.1.1.1)

116

(TYPE TANK-ISOL-VALVE 3/4/5 TIV.1.1.2)
(PART-OF TIV.1.1.1 PSD.1.1)
(PART-OF TIV.1.1.2 PSD.1.1)

(TYPE TANK-ISOL-VALVE 1/2 TIV.1.2.1)
(TYPE TANK-ISOL-VALVE 3/4/5 TIV.1.2.2)
(PART-OF TIV.1.2.1 PSD.1.2)
(PART-OF TIV.1.2.2 PSD.1.2)

(TYPE MANF-ISOL-VALVE 1 MIV.1.1.1)
(TYPE MANF-ISOL-VALVE 2 MIV.1.1.2)
(TYPE MANF-ISOL-VALVE 3 MIV.1.1.3)
(TYPE MANF-ISOL-VALVE 4 MIV.1.1.4)
(TYPE MANF-ISOL-VALVE 5 MIV.1.1.5)
(PART-OF MIV.1.1.1 PSD.1.1)
(PART-OF MIV.1.1.2 PSD.1.1)
(PART-OF MIV.1.1.3 PSD.1.1)
(PART-OF MIV.1.1.4 PSD.1.1)
(PART-OF MIV.1.1.5 PSD.1.1)
(TYPE MANF-ISOL-VALVE 1 MIV.1.2.1)
(TYPE MANF-ISOL-VALVE 2 MIV.1.2.2)
(TYPE MANF-ISOL-VALVE 3 MIV.1.2.3)
(TYPE MANF-ISOL-VALVE 4 MIV.1.2.4)
(TYPE MANF-ISOL-VALVE 5 MIV.1.2.5)

(PART-OF MIV.1.2.1 PSD.1.2)
(PART-OF MIV.1.2.2 PSD.1.2)
(PART-OF MIV.1.2.3 PSD.1.2)
(PART-OF MIV.1.2.4 PSD.1.2)
(PART-OF MIV.1.2.5 PSD.1.2)

117

C.2.5 Thruster System Of Forward RCS

(TYPE BIPROP-VALVE OX BIV.1.1.1)
(TYPE BIPROP-VALVE FUEL BIV.1.1.2)
(PART-OF BIV.1.1.1 THR.1.1)
(PART-OF BIV.1.1.2 THR.1.1)

(TYPE BIPROP-VALVE 0X BIV.1.2.1)
(TYPE BIPROP-VALVE FUEL BIV.1.2.2)
(PART-OF BIV.1.2.1 THR.1.2)
(PART-OF BIV.1.2.2 THR.1.2)

(TYPE BIPROP-VALVE 0X BIV.1.3.1)
(TYPE BIPROP-VALVE FUEL BIV.1.3.2)
(PART-OF BIV.1.3.1 THR.1.3)
(PART-OF BIV.1.3.2 THR.1.3)

(TYPE BIPROP-VALVE 0X BIV.1.4.1)
(TYPE BIPROP-VALVE FUEL BIV.1.4.2)
(PART-OF BIV.1.4.1 THR.1.4)
(PART-OF BIV.1.4.2 THR.1.4)

(TYPE BIPROP-VALVE 0X BIV.1.5.1)
(TYPE BIPROP-VALVE FUEL BIV.1.5.2)
(PART-OF BIV.1.5.1 THR.1.5)
(PART-OF BIV.1.5.2 THR.1.5)

(TYPE BIPROP-VALVE 0X BIV.1.6.1)
(TYPE BIPROP-VALVE FUEL BIV.1.6.2)
(PART-OF BIV.1.6.1 THR.1.6)
(PART-OF BIV.1.6.2 THR.1.6)

(TYPE BIPROP-VALVE 0X BIV.1.7.1)
(TYPE BIPROP-VALVE FUEL BIV.1.7.2)
(PART-OF BIV.1.7.1 THR.1.7)

118

(PART-OF BIV.1.7.2 THR.1.7)

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

BIV.1.
.8.2)

BIV.1

(PART-OF BIV.1.8.1 THR.1.8)
(PART-OF BIV.1.8.2 THR.1.8)

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

BIV.1.
BIV.1.

(PART-OF BIV.1.9.1 THR.1.9)
(PART-OF BIV.1.9.2 THR.1.9)

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

(PART-OF BIV.1.10.1 THR.
(PART-OF BIV.1.10.2 THR.

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

(PART-OF BIV.1.11.1 THR.
(PART-OF BIV.1.11.2 THR.

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

(PART-OF BIV.1.12.1 THR.
(PART-OF BIV.1.12.2 THR.

(TYPE BIPROP-VALVE OX
(TYPE BIPROP-VALVE FUEL

(PART-OF BIV.1.13.1 THR.
(PART-OF BIV.1.13.2 THR.

(TYPE BIPROP-VALVE 0X
(TYPE BIPROP-VALVE FUEL

BIV.1.
BIV.1.

1.10)
1.10)

BIV.1.
BIV.1.

1.11)
1.11)

BIV.1.
BIV.1.

1.12)
1.12)

BIV.1.
BIV.1.

1.13)
1.13)

BIV.1.
BIV.1.

8.1)

9.1)
9.2)

10.
10.

11.
11.

12.
.2)

12

13.
13.

14.
14.

1)
2)

1)
2)

1)

1)
2)

1)
2)

119

(PART-OF BIV.1.14.1 THR.1.14)
(PART-OF BIV.1.14.2 THR.1.14)

(TYPE BIPROP-VALVE OX BIV.1.15.1)
(TYPE BIPROP-VALVE FUEL BIV.1.15.2)
(PART-OF BIV.1.15.1 THR.1.15)
(PART-OF BIV.1.15.2 THR.1.15)

(TYPE BIPROP-VALVE 0X BIV.1.16.1)
(TYPE BIPROP-VALVE FUEL BIV.1.16.2)
(PART-OF BIV.1.16.1 THR.1.16)
(PART-OF BIV.1.16.2 THR.1.16)

The data base also includes similar facts regarding the left and right aft RCS

systems.

C.3 Knowledge Areas

This section contains sample processes representing some of the RCS malfunction han-
dling procedures (see Figures 1.1, 1.2 and 1.3). Note that the syntax varies slightly
from that given in the main body of the report in that the metalevel predicates goal
and fact are prefixed here with a * sign. The pictures of the KAs are actual snapshots

of the user interface to the system.

120

1AL :S3d 496uiS 16:66:6@8 S8/41/2

G861 (J) [euojjeusajul T3S II ¥34SUY¥D

NOILS3N0$ 3INOJSIAa$ NOTLSINO-ASH) |) THO9%) 13H4-HOTLHIOANT

AdODAYVH
ADALS 214
MAVIAINY
40 INTVA (((avad) ASNOJSTAS =) i)

aniIva Lia3d
LNGJd 3Dd3 mm_
LNO4 JdON
JWVNIY ({NOII5INDS$ ISIT-INIYJ'SYd) i)
Lndilno

a0ad

i0¥lsad 400N
ALVIUD " : 30VdS

1237138 HdVYD

NOILSIND-JSV

121

G861 (J) 1vuojjeusdjuT TYS II ¥I4SHED

AdODAQYVH
AD3Ad8 114
MAVIaIY
dO ANIVA
dnva 11a3a
LNO4 3Dad
LNOd 3AON
dNVNIY
1ndino
A0Y¥1s3da
J1vVIdd
1037148

((((ar-ANYNS$ TIOLINVH-AINIIO)~ N AI- INVAS QTOJINYI-ATSOTD) #) (=)

((Q1- AINYA$ dISOTO HOLIMS QTOJINVH-AQALVIOSD i)

p4 1 J36uig p1

((({("S N$§ =) 1ON) 31YII03dd-dSINs)
((QI-3JNUWS N$ 3NTWA-T10SI-4NUW 3dAL) 1J0dx)
(QI-dNUWg 0104 INUW-035012

Ny

MMH

@

ATOJINVIN-AESOTO

136d-NOT 1HIONNT

ctalet:|
ddoN
dJvds

HdVYD

122

S861 (J) Ieuolleulsdjur T3S II #IdSHYI

((((QI-JNUW$ S INTWA-T0SI-JNBH 3dAL) 1OWd4s)
(dI-3NUW$ 0104 INEW-035072 ONY) 136d-NOT1HI0NNT

AdOJUYVH
AD3dS L1114
MAVIAId
40 ANTVA
d0TVA 11d3
LNO4 3043
LNO4 JAON
JNVNIY
1NdLNo
Aoylsia
dLVIYD
1J3dTdS

=)

((((Ql- INVA$ QTIOJINVH-TINIIO)~NAl- ANVHS ATOJINVH-JISOTO) %) <)

(((QI- INVHS AISOTD ATLNIWOD ATOJINVA-AILYIOSD(AL- INVNS ATSOTD HOLIMS 4104 NVW-aQILv10sD) %) 1)

HAINHIA -TTOLINVIN-TISOTO

anaa
ddON

HdV¥D

123

AdODQQ¥VH
AIJddS 214
VY]
40 INTVA
dNTVA L1ad
LNO4 30303
LNO4 3dON
JNVNIN
INdino
A0¥1S3aa
JLlvIdd
LJ3T13S

((STX ISNOJSITD =) ¢)

(((a1-508$ «:(ON O $21) (¥~ SOU NI 5TFA%T 2OVSA HOIH JATHL S[%~.

(((($FX TSNOLSTED *) ~) ((ON ISNOJSTE® =) ~) %) &)

TIN IYNYOL) ASNOJSTED NOLISIND-ASY) 1)

JOVSN-HOBIH

a0a3
JdON

HdVYD

124

A1 :53d J96uis Bp:iBT:iAT GB/LT/2T
G861 (3) Ieuojjeuadjul T3S II 334SHAD

390158 30ON3NDIS-NOTLIHAIJO-NI) &) HOIs) LdaHd-NOTLIHIONNT

(=

((STL ISNOJSTUD =) ¢)

AdODAYVH
N23dS A14 (((3OV1s$.(ON ¥O STR) (¥~ ADONINDIS(NOILVITIO NI TM TAVR~. ._1 LYNYOL) ISNOJSTEID NOLLSTAD-NSV))
MVYa3y
Jd0 dANTVA
dNTVA Lia3l
INOJ 90ad ((((5TX ISNOLSTYD =) ~) ((ON ISNOLSTYD =) ~) ¥) &)
LNO4d 3AON
JWNVNIY
lndilno -
AQ¥LSdA S

a1vavud

d0vds
RRek i b i

HdV¥D
JONINDIS-NOLLVYIJO-NI

125

} 4 Ja6uiS 91:92:@1 684 1/21

S861 (J) 1evogjeusazul T3S II 334SHYI

((((QI-JNBWg NOILISOd$ SNUIH$ OI04INUM-031UI0ST) i) W0D3) 1dUd-NOTILIHIONNT)

Ad0DaYVH
3JddS AT1d
.34 (st
40 ANTVA
4NTVA 11a3
dNO4 3004
LINO4 JAON
JWNVNIY
lndino
A0¥183Q
dLVIND
LJ31ds

(((SNYINS$ NOILISOdS$ AI-ANVWS$ 'V~ VIA NOILISOd ¥~ FHI NI V~ YIGAON QTOJINVN QILVIOSI HIAVH NOA. 1IN IVIRYOL) IS17- INIESSUd) 1)

cholik
e 3aON

d'TOJINVIN-JALVIOSI

126

S861 (3)

14 J36ULg T2iGEIET GB/ZT1/2T

[euogjeusajuy T¥S II ¥34SHYI

((({QI-4NUH$ NO d0IHIIONI-TIH413C) 10Wd4%)
((13r QI-13r$ SO¥ GI-SO¥$ LINY4) 10Wds)
((MJ-dNXJUE WaHH) 10Hd4x)

NY) 13Ud-NOTIHIONNT)

13r-83d IHIIT

13A 4O-5S0T) (=)

]

<) &)

AdODUYVH .u
pRECH YD
AVIAIY \
A0 =)
J0 INTVA
INTVA LIad
LNO4 3Da3l
LNO4 ddON
JWVNIY
LNdLno
AQYLS3A
JLVIED
L2318

FOIH) ¢)

(((201 A0 ¥ALLAO) ~) ¢)

((a1-so>¥$ 4 $O¥ IdAL) ¢

$ § TATVA-TOSI-ANVH TdAL) ¢)

(((Q1- ANVHS § TATVA-TIDSI- ANV TdAL) ~) &)

E ((QI-1A1$ SUTINATA- JO-5SOD) <*)
(((aI-sD¥$ 4 SO¥ TdAL) ~) &)

((YAINYIA TIONINOIAS-NOLLYAIAO-ND ¢)

YAINYIA IDNINOIS-NOILVEIJO-ND ~) ¢)

((aEVYD WA IAVS NI 1507 SHYEY YTHIO 04 DOW LTASNOD. ONINIVA) i)

(((@1-13r$ HOIH-TUV] TVI-WVAVI-LAINI-RAR(AI-130$ TYOIEIOTTT NO-TIVL TIV4-1T0) A) <*)

((Q1-INVWS § TATYA-TOSI-ANVI TdAD) &)

(((QI-5D¥$ IOYSN-HOWH) ~) ¢)

3003
JdON

HdVYD

((ar- INVINS$ ATOJINYIN-QISOTO) i)

NO-TIVA-LAr

127

MOpUM Ou

((X0-d$ XO-INVIR$ JINSSIUL) ¢)

(((1204-INVHS N$ TATVA-TOSI- ANV TdAD(T1I04-ASd$ 12 d- ANVAS$ JO-1¥Vd) (XO-INVIN$ N$ TATVA-T0SI- INVH 2dAL(XO-ASd$ XO-INYNS JO-1AVd) %) ¢)

04-0sd$ 1104 1SIA-FHOLS-JOUJ TJAL(QI-SOUS 1U04-ASd$ JO-1AVANXO-ASd$ XD ISIG-TYOLS-dOUd TR AI-50T8 XO-Qsd$ JO-14Vd)(QI- ANVINS N$ IATVA-TOSI-ANYN 144D ¥) &)

NODTD 1)

dSTIS OLINOSTY SO¥- & TIVI-DOW-1IVAL) i)
(((zov A WZLIGHO) ~) ¢)

((QI-131$ STTINWIA- 4O-SSOD <=)

(((Q1-50¥$ 4 O¥ TdAD ~) ¢)
((z01 A0 ¥3LIGWO) ¢)

((QI-sOu$ 4 $O¥ TAL) ¢
ATINAIA IONIODOTS-NOLLVELLO-ND ~) ¢)

€ (QUYD WA TAYS NI 1SO7 SHYEVA YTHIO YOL OOW LINSNOD. ONINIVA) D)

(((QI-ANVHS$ § TATVA-TOSI- INVIA (((Q1-13r$ BOH-TIVY TIV4-MYAVI- LO4NT-IRAW)(QI- 1308 TYOILIOTTI NO-V{ UVA-1I1) A) ¢=)

(((Q1-ANVAS$ § TATVA-IPSI- ANV TdAD) ~) ¢)

((A1-13r$ TYOILIDTI NO-TIVd TIV4-LA1) <o)
((QI-ANYWS ¢ TATYA-TOSI-INVH TdAD) ¢)

((ar-sous 30Vsn-HOIH) ¢) (((Q1-503% IOVSN-HOIH) ~) ¢)

((QI- ANVAS QTOJINVH-ATSOTD) i)

NO-TIVA-L3r

128

fMopuin ou

((QI- INVHS$ QIOJINVIA-QINTO) i)

((QI-1%0$ ~UTATNQ QALY ALLOALIY JUVHS HOIHM. ATSOTO TATTTTAC

((QI-13r$ 440 ¥IATUA-Q

((a1-13r$ HOIH-T1

TIVE-RVEVI-104NI- A (=)

(08T T20d-d8§) ~) &) E (aI-1308 TVORUIDTTE NO- Vi

((C0eT TANL-d$ <) (0ET XO-d$) %) ¢)
((1704-d$ 1204- INVAS TINSSTEL) ¢)
(((oe1 xO-d$) ~) &)

((X0O-d$ XO-INVIS$ TUNSSTAD) ¢)

((ISNOISTUS .OIINOSTY $O¥-4u TIVI-DOR-1IVA) 1)

(((z01 AO ¥ALIAHO) ~) ¢)

(((Q1-$0¥$ 4 SOU TdALD) ~) &)
((201 AC ¥FLIFYO) ¢)

((4AINYIA IONINOTS- NOUVEIIO-ND ¢)
((aI1-50¥$ d SO IJAL) ¢

YTINIZTA IONINOLS- N¢
(QI-13r$ SYTINYIA JO-$SOT) <=)

((.a¥VD HAX TAVS NI 1507 SHYEVd YTHLIO Y04 JON 1T0SNOD:

QQT&Z‘ﬂo § TATVA-TOSI-ANVI 3dAL) ¢)

»+ QINNIINOD NO-TIVA-Ldl

129

J436uig BpiETi2T G8/241/2

((aI- AINVS QTOJINV-TINILO) i)

((QI-131$ ATANAE(Y GALOTILY TAVHS HOMM. AISOTD IATALTAO0) i)

((QI-L3r$ 440 YTAING-ArA-138) i)

((QI-111$ HOIH-TIYE TUVL-NVIVL- LOINI-RARW) <=)

(€01 TINL-d$ <) ~) &) E ((ar1-1ae$ TVOIUIDTIX NO-TIVS TIVL-111) =)

((Coer TIN-d$ <) (0£T XO-d$ <) %) &)

((120d-d$ TINI- INVINS THNSSTAL) &)
((Cogt XO-d8 <) ~) &)

((XO-d$ XO-INVWS$ T4nSSIAd) &)

(((1204- AINVRS N$ TATVA-TOSI- ANV TJAD(TINL-ASd$ 1 - NVIS JO-1AVd) (XO-INVINS N$ TATVA-T0SI- ANV JAD(XO-ASd$ XO- ANV JO-1TVd) *) &)

NO2aAW i)

04-asd$ 1IN ISIQ-TYOLS-dOUd ILAL(AI-5O¥$ 1IN-ASd$ JO-LAVI(XO-ASd$ XD ISIA-TUOIS-40Ud LAV AI-SO¥$ XO-ASd$ JO-LAVI(AI- INYIRS N§ TATIVA-T0SI- NV FdAD ®) ¢)

4SS +OLINOBTY §D¥- da TIVO-DOM-1IVA) 1)
(((z01 AO ¥ALIEAO) ~) ¢)

((Q1-13r$ SETINYTA-JO-5S0D) <*)

(((a1-sou$ 4 SO¥ TdAL) ~) &)
((z01 AO TILIFEO) ¢)

((YTINYTA IONINOTS-NOLLYIIAO-ND ¢)
((a1-s0¥$ 4 $O¥ 4dX1) ¢
TIINATA IDNINOIS- NOLLYEALO-ND ~) ¢)

((.Qe¥D HAW IRVS NI 1507 SHVEV TTHLO 04 DOK L'INSNOD. ONINIVA) i)

((Q1- ANV AS$ § TATYA-TOSI-ANVI 2dAL) ¢)

,

AANTINOD NO-TIVI-IAl

130

G861 (3) truojjeuadjul JHS II 434SHYI

}A : J96ULS 6b:82:0T GB/¢1/21

((((aI-dNUH$ @I04INUW-03NIJ0) 1) H09%) 138d-NOTIHIONNT)

44d00A¥VH
303ds A1d
MAVIady
dJO ANTVA
dNIVA L1d3
LNOd 3Da3
LNOJ4 3aON
JWVNIY
LNndino
A0Y1Sdd
dLVIND
103138

((ai- ANYAS ATOJINVHN-ATSOTD) ~) (AI-AINVAS CTOJINYN-JINILO) %) <)

((QI-INVAS NIJO HOLIMS QTOJINVI-QLLYTOSD i)

ana3
JAON

dTOJINVIN-QINIJO

131

S861 (1) |euoj3vusdjul TYS II Y34SHYI

AdODA¥VH
H03dS 214
Aviaad
40 ANTVA
dNTVA 1103
LNO4d 35403
INO4 JAON
JNVNIY
ilndilno
A0¥ls3aa
Jivadd
124138

((STX ISNOJSTED =) ¢)

((C¥aaMNN- ¥ILITHOS .:(ON 2O STR) (¥~ LN

((((STL ASNOISTED =) ~) ((ON ASNOISTUD =) ~) 3) ¢)

N IVRIOD) ISNOJSTAD NOLLSIAD-ASY) 1)

HALIGHO

({ ((338UNN-¥311830% 4I1I8¥0) ¢) HO9s) 136d-NOTILHIONNT
e 7. TAJ Il

a0a3
ddON

132

G861 (J) Ieuojzeudajul TYg II 434SHEI

((((QI-13r$ HIIHM$ SNIYLS$ IAINNINO) i) HO9x) 1¥HL-NOI LYIOANI)

AdODaY¥VH
AD3ds 414
MAVIQdY
40 INTVA
dNIVA 1L1a3
LNOJ 3203
LNOd 3dON
JINVNIH
1ndilno
A0¥183a
JLVIYD
L33 T1d8

(((Q1-13$ HOIHMS SALVISS o'V~ Y~ SATOJINVI TTV ‘SO1VIS V~ Ol ZAIMYTAOR ~« TN IYWUOLH ISIT-INIEJ'SHd) ()

- anad
adON

JATHIHIAO

133

G861 (J) (euojjeuddjul THS TII ¥I4SHHI

tA] : JabuiS 2A:GE:RT SB8/¢ 1,2

((((WNIINSSINdS TI-INUUS FANSSINH) &) W0Ss) 13Ud-NOILIBIOANT)

A4d0OQYYH
ADIdS A1d
AVIAIY
40 INTVA
dNIvaAa Lia3a
LNO4 3Dad
LNOJ 3dON
JNVNIY
indlno
A0¥183a
J1vVId)d
10313s

(@vad) TYATINSSTULS =) i)

]

(((QI-4NVAS 1V~ QTOJINYN 304 ONIGVIY [XINSSTEd TAID ISVITdT~. TIN IVYNIOD) 1SIT-INIELSED))

@

a%a3

134

S861 (J) IeuojIeusdjul TdS IT YI4SHE9

((((SNOT1d3OH3I$ QI-SOu$ HIJNOIIN) i) THOIs) 1NHA-NOIIHIOANT

(=

(((SNOLLdTOX2$ AI-5D¥$ 'V~ ISNOILJIOKT ONIMOTIOL THL HIIM ¥V~ YTTHAN SO QRANOLINODTY MON JAVE 1% ~. UN IYIMIOL) ISIT-INIXSSUD) i)

s aDaa
ddON
dovds
HdVYD

OLINODAY

135

S861 (J) IvvojPuUIdIUT TS IT ¥3I4SHAI

pA) :S3d J436uig BS:I6TICT G841~

AdODQ¥VH
303ds 214
AViaax
40 ANTVA
dnIvaA 11a3
INOd 39a3d
INOJ 3dON
dNVNIY
ilndino
Aoulsaa
d1Va¥0
1237138

(((sn1viss QI-1368 .V~ OL Y~ TATUA QrE NEOLY~. TIN IVINEOD ISIT-INRUISUd) 1)

HIAHA-Ary-13s

a0aa

4dON

HdVYD

136

S861 (J) teuoyieuldjul 133 II ¥34SHYD

AL : J36uig GAEp:IAT GB/L1/21

((((3SNOdS3ds TININIS$ 1IHI-I0H-1IHH) i) HO9s) LNHA-NOILHIONNI)

JWNVN JAON
JNVNIY
40 INTVA

dN1vVA 11a3
A0¥1s3ad
dlv3Ivd

39043
JdON
qIvds
HdVYD

(((FONINLSS ' AQVIN TYY NOX NIHA (S110N0O NI) ISNOISTE IdAL ISVITd "V~ YO ISEINOIY O1 ISNOJSTY SO WOJ DNILIVA TV TMA%~. TIN IVIRIOH| ISIT- ININLSAD) 1)

(=

(((QvaE) ISNOJSTUS ») i)

_M>.D

TIVO-DDN-LIVM

137

S861 (J) 1euojIRPuUIAIUT TYS IT HIJSHAD

AdODAQYVH
ADIdS A4
AVIAIT
JO ANTVA
dNIVA 11ad
LNO4 3Da3
INO4 3dON
JWVYNIY
1Nndino
A0uls3a
dLVI™D
L0d7ds8

((ONIYLSS ISIT-INTESSEd) i)

1A}

436ULg 11:96:

186d-HOT IHJO0NNT

40ad
JAON

ONINYVM

138

Appendix D

Notational Conventions

Symbol Representing class

o, B3,v,¢,¢ | State and temporal propositions
) Transition function

T Special hidden event

: Sequential composition

: Prefixing

+, | Nondeterministic choice

Il, & Parallelism

& Synchrony

A Conjunction

% Disjunction

- Negation

? Temporal operator (“test”)

! Temporal operator (“achieve”)
Temporal operator (“preserve”)
= Metapredicate (“insert in data base”)
$x, etc. Global variables

%x, etc. Local variables

@x, etc. Program variables

(P) Successful behaviors of process P
(P)F Failed behaviors of process P

139

References

[

(2]

[3]

[4]

[5]

[6]

[7]
(8]

[9]

Aikins, J.S., “Prototypical Knowledge for Expert Systems,” Artificial Intells-
gence, Vol. 20, pp 163-210 (1983).

Allen, J. F., “A General Model of Action and Time,” Computer Science Report
TR 97, University of Rochester, Rochester, New York (1981).

Allen, 1.F., “Maintaining Knowledge about Temporal Intervals,” Comm. ACM,
Vol. 26, pp 832-843 (1983).

Barringer, H., Kuiper, R., and Pnueli, A., “Now You May Compose Temporal
Logic Specifications,” Proceedings of the Symposium on Theory of Computing
(1981).

Chapman, D. “Planning for Conjunctive Goals,” Master’s thesis, Technical Re-
port MIT-AI-TR-802, MIT Laboratory for Artificial Intelligence, Cambridge,
Massachusetts (1985).

Davis, R., “Applications of Metalevel Knowledge to the Construction, Mainte-
nance, and Use of Large Knowledge Bases,” STAN-CS-76-552, HPP-76-7, Stan-
ford University, Stanford, California (1976). :

Davidson, D., Actions and Events, Clarendon Press, Oxford, England (1980).
Doyle, J., “A Truth Maintenance System,” Artificial Intelligence, Vol. 12 (1979).

Doyle, J. and London, P. “A Selected Descriptor-Indexed Bibliography to the Lit-
erature on Belief Revision,” Al Memo 568, MIT-AI Lab, Massachusetts (1980).

140

[10] Feurzeig, W., Frederiksen, J., White, B., and Horwitz, P. “Designing an Expert
System for Training Automotive Electrical Troubleshooting,” in Artificial Intel-
ligence 1n Masntenance: Proceedings of the Joint Services Workshop, ed. J.J.
Richardson (1984). '

[11] Fikes, R. E., and Nilsson, N. J., “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving,” Artificial Intelligence Vol. 2, pp.
189-208 (1971).

[12] Fikes, R.E., “Knowledge Representation in Automatic Planning Systems,” SRI
Tech Note 119, SRI International, Menlo Park, California (1976).

[13] Fikes, R.E., and T. Kehler, “The Role of Frame-Based Representation in Rea-
soning,” Comm. ACM, Vol. 28, pp 904-920 (1985).

[14] Forgy, C., and McDermott, J., “OPS, a Domain-Independent Production System
Language” Proceedings of the 5th Int’l. Joint Conf. on Artificial Intelligence, pp
933-939 (1977).

[15] Genesereth, M.R., and Smith, D.E., “Metalevel Architecture,” Memo HPP-81-6,
Stanford University, Stanford, California (1982).

[16] Georgefl, M.P., “Procedural Control in Production Systems,” Artificial Intells-
gence, Vol. 18, pp 175-201 (1982).

[17] Georgeff, M. P. “Communication and Interaction in Mulitagent Planning,” Pro-
ceedings of the Third National Conference on Artifictal Intelligence, Washington,
D.C. (1983). -

[18] Georgefl, M.P. and Bonollo, U. “Procedural Expert Systems,” Proceedings of the
8th Int’l. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany (1983).

[19] Georgeff, M.P., “A Theory of Action for Multiagent Planning,” Proceedings of
the National Conference on Artificial Intelligence, Austin, Texas (1984).

[20] Georgeff, M.P., Lansky, A. and Bessiere, P., “A Procedural Logic”, Proceedings
of the 9th Int'l. Joint Conf. on Artificial Intelligence, Los Angeles, California
(1985).

141

[21] Georgeff, M.P. “Reasoning about Process” forthcoming Technical Note, Artificial
Intelligence Center, SRI International, Menlo Park, California (1985).

[22] Hayes, P. J., “The Frame Problem and Related Problems in Artificial Intel-
ligence,” in Artificial and Human Thinking, A. Elithorn and D. Jones (eds.),
Jossey-Bass (1973).

[23] Hayes, P.J., “In Defense of Logic,” Proceedings of the 5th Int'l. Joint Conf. on
Artificial Intelligence, Cambridge, Massachusetts, pp 559-565 (1977).

[24] Hayes-Roth. F., “Rule-Based Systems,” Comm. ACM, Vol. 28, pp 921-932
(1985).

[25] Hendrix, G. G., “Modeling Simultaneous Actions and Continuous Processes,”
Artificial Intelligence, Vol. 4, pp 145-180 (1973).

[26] Hoare, C. A. R., Communtcating Sequential Processes, Series in Computer Sci-
ence, C. A. R. Hoare (ed.), Prentice Hall, Englewood Cliffs, New Jersey (1985).

[27] Kowalski, R., Logic for Problem Solving, North Holland, New York (1979).

[28] Lansky, A. L., “Behavioral Specification and Planning for Multiagent Domains,”
Technical Note 360, Artificial Intelligence Center, SRI International, Menlo Park,
California (1985).

[29] Lenat, D.B., “Automated Theory Formation in Mathematics,,” Proceedings of
the 5th Int'l. Joint Conf. on Artificsal Intelligence, Cambridge, Massachusetts,
pp 833-842 (1977).

[30] McCarthy, J., “Programs with Common Sense,” in Semantic Information Pro-
cesstng M. Minsky ed., MIT Press, Cambridge, Massachusetts (1968).

[31] McCarthy, J., and Hayes, P.J., “Some Philosophical Problems from the Stand-
point of Artificial Intelligence, in Machine Intelligence 4, pp 463-502 (1969).

[32] McDermott, D., “A Temporal Logic for Reasoning about Plans and Processes,”
Computer Science Research Report (196, Yale University, New Haven, Connecti-
cut (1981).

142

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Manna, Z., and Waldinger, R., “Problematic Features of Programming Lan-
guages: A Situational-Calculus Approach,” Acta Informatica, Vol. 16, pp 371-
426 (1981).

Maylin, J. T., and N. Lance, “An Expert System for Fault Management and
Automatic Shutdown Avoidance in a Regenerative Life Support Subsystem,”
Proceedings of the Instrument Sociely of America First Annual Workshop on

Robotics and Ezpert Systems, Houston, Texas (1985).

Milne, G., “Synchronized Behaviour Algebras: A Model for Interacting Sys-
tems,” Technical Report, Department of Computer Science, University of South-
ern California (1979).

Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer
Science 92, Springer Verlag, New York (1980).

Moore, R.C., “Reasoning about Knowledge and Action,” Technical Note 191,
Artificial Intelligence Center, SRI International, Menlo Park, California (1980).

Nilsson, N.J., Problem Solving Methods sn Artificial Intelligence, McGraw Hill,
New York (1971).

Nilsson, N.J., “Triangle Tables: A Proposal for a Robot Programming Lan-
guage”, Technical Note 347, Artificial Intelligence Center, SRI International,
Menlo Park, California (1985).

Pednault, E. P. D., “Toward a Mathematical Theory of Plan Synthesis,” Ph.D.
thesis, Department of Electrical Engineering, Stanford University, Stanford, Cal-

ifornia (forthcoming).

Reiter, R., “A Logic for Default Reasoning,” Artificial Intelligence, 13, pp 81-132
(1980).

Richardson, J.J., Artificial Intelligence sn Masntenance: Proceedings of the Joint
Services Workshop, Air Force Systems Command, Air Force Human Resources
Laboratory, Brooks Air Force Base, Texas (1984).

Rosenschein, S.J., “Plan Synthesis: A Logical Perspective,” Proceedings of the
7th Int’l. Joint Conf. on Artificial Intelligence, pp 331-337 (1981).

143

(44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

[53]

Rosenschein, S. J., and Kaelbling, L. P., “A Formal Approach to the Design of
Intelligent Embedded Systems,” to appear in Proceedings of the Conference on
Theoretical Aspects of Reasoning about Knowledge, Monterey, California (1985).

Sacerdoti, E.D. A Structure for Plans and Behaviour, Elsevier, North Holland,
New York (1977).

Shoham, Y. and Dean, T., “Temporal Notation and Causal Terminology,” Work-
ing Paper, Department of Computer Science, Yale University, New Haven, Con-
necticut (1985).

Stefik, M. “An Examination of a Frame-Structured Representation System,”
Proceedings of the 6th Int'l. Joint Conf. on Artificial Intelligence, pp 845-852
(1979).

Stefik, M. “Planning with Constraints,” Artificial Intelligence, Vol. 16, pp 111-
140 (1981).

Stuart, C. J., “ Implementation of a Multiagent Plan Synchronizer Using a Tem-
poral Logic Theorem Prover,” Proceedings of the Ninth International Joint Con-
Jerence on Artificial Intelligence, Los Angeles, California (1985).

Tate, A. “Goal Structure - Capturing the Intent of Plans,” Proceedings of the
6th European Conference on Artificial Intelligence, pp 273-276 (1984).

vanMelle, W. “A Domain-Independent System That Aids in Constructing Knowledge-

Based Consultation Programs,” Memo HPP-80-1, Report No. STAN-CS-80-814,
Computer Science Department, Stanford University (1980).

Vere, S., “Planning in Time: Windows and Durations for Activities and Goals,”
Jet Propulsion Lab, Pasadena, California (1981).

Wilkins, D.E., “Domain Independent Planning: Representation and Plan Gen-
eration,” Artificsal Intelligence, Vol. 22, pp 269-301 (1984).

144

