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Flowfield measurements are presented for a symmetrical NACA 64A010 airfoil section at transonic con-
ditions. Measurements were obtained for three angles of attack with the freestream Mach number fixed at 0.8.
The cases studied included a weak shock-wave/boundary-layer interaction, an interaction of medium strength
with mild separation, and an interaction of sufficient strength to produce a shock-induced stall situation. Two
nonintrusive optical techniques, laser velocimetry and holographic interferometry, were used to characterize the

flows. The results include Mach number contours and flow angle distributions in the inviscid flow regions, and
turbulent flow properties, including the turbulent Reynolds stresses, of the upper surface viscous layers, and of
the near-wake. The turbulent flow measurements reveal that the turbulence fluctuations attain equilibrium with
the local mean flow much faster than previously expected.
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Nomenclature

= chordlength of airfoil

= lift coefficient, L/½p=u_

= local pressure coefficient, (p-p=) / ½p=u_
= Gladestone-Dale constant

= Prandtl mixing length

= effective optical path length
=Mach number

= total number of velocity realizations

= pressure

=turbulence kinetic energy, ((u')2+(v')2+
(w')2)/2

= Reynolds number based on airfoil chordlength

= uv correlation coefficient, u' v' / ( u' ) (v')
= velocity component in streamwise direction

= velocity component in normal direction

= velocity component in cross-stream direction

= coordinate in the streamwise direction

= coordinate in the normal direction

= angle of attack

= viscous layer thickness

= fringe shift in interferogram

= flow angle, arctan v/u
= laser wavelength

= fluid density

= Reynolds shear stress

= weighting factor for velocity biasing

Subscripts

L2
Oo

e
i

s

t
W

= two arbitrary points in the flow
= freestream conditions

= conditions at edge of viscous layer

= ith velocity realization
= surface

= stagnation condition
= conditions at the surface
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Superscripts

( ) ' = fluctuating quantity

(-) = time-averaged quantity

( ' ) = rms value of quantity

Introduction

LTHOUGH considerable advances have been madetoward the numerical prediction of the transonic flow

past two-dimensional airfoil sections (e.g., Refs. 1-5), these

numerical methods currently have a limited range of ap-
plicability, either because they ignore viscous effects

altogether or because they inadequately predict the viscous

effect as the shock wave strengthens on the airfoil's upper
surface. Accurate predictions are especially difficult to obtain

once shock-induced separation occurs. This inability to ac-

count accurately for viscous effects is a direct consequence of
the deficiencies in the models employed for the turbulent

Reynolds stresses (e.g., Ref. 4). To assess truly the ability of

these methods to describe the flow behavior and to provide
insight into how to improve on these methods, quantitative

measurements of the external flow and, especially, of the
turbulent transport properties, are needed. In transonic

testing, flowfield data are also needed if account is to be taken

of wall interference effects which can alter significantly the
pressure distributions from those that would be measured
under free-air conditions.

The objective of the present study was to obtain detailed

descriptions of both the inviscid and viscous flow regions

including the turbulence transport properties about a
geometrically simple, symmetrical airfoil section (NACA
64A010) for several different test conditions. The conditions

selected for study were: a weak shock-wave/boundary-layer

interaction for which inviscid methods should be adequate, an

interaction of medium strength containing some separation,

and a strong interaction with massive separation as occurs at

stall. The severity of the interaction was established by
varying angle of attack at a fixed freestream Mach number of

0.8. To describe the flow about the airfoil section quan-

titatively, two nonintrusive optical methods were employed.
A laser velocimeter technique was used to provide detailed

localized information of the streamwise and normal velocity

components (mean and fluctuating). Holographic in-
terferometry was used to obtain the density fields about the

airfoil section from which Mach number contours were

determined. For completeness of the experiment, surface

pressure distributions, wake pressure, oil flow visualizations,

and conventional Schlieren and shadowgraphs were also
obtained.
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Experimental Technique

The experiments were conducted in the Ames 2- by 2-Foot

Transonic Wind Tunnel which is a closed-return, variable-

density tunnel with 21 °70 open porous-slotted upper and lower

walls for transonic testing. A 6-in. chord 64A010 airfoil which

spanned the entire test section was selected for the tests.
Tunnel conditions were fixed at a freestream Mach number of

0.8 and a chord Reynolds number of 2 × 106. To insure that

the boundary layer was turbulent at the foot of the shock
wave for all test conditions, transition strips were affixed to

the airfoil section at the 1707o chord station on the upper and

lower surfaces. The 1.25-ram-wide strips consisted of 0.13-

ram nominal diameter glass bends, selected in accordance
with the recommendations of Ref. 6. Transition effectiveness

was verified by the sublimination technique.

Laser Velocimeter

The laser velocimeter was a dual-color system utilizing the

4880 h, and 5145 ,_ lines of an argon-ion laser; one spectral

line to measure the streamwise velocity component, the other
to measure the vertical velocity component. Bragg-cell

frequency shifting, necessary for probing highly turbulent and

separated flow regions, was incorporated in both spectral

lines. The frequency offsets also facilitated the direct

measurement of the vertical velocity component (i.e., +45

deg beam orientations to resoh, e the vertical velocity were

unnecessary). The effective sensing volume was ap-

proximately a cylinder, 200 _.m in diameter and 3 mm long,

whose axis was aligned with the cross-stream direction.
Signal processing was accomplished with single-particte

burst counters and the individual realizations from the two

channels were recorded simultaneously with a digital com-
puter. This allowed the velocity correlation u ' v ' to be ob-

tained in a straightforward manner by multiplying and

averaging, rather than by the less accurate method of sub-

tracting the variances of the two signals obtained from ±45

deg beam orientations. In addition, it facilitated the weighting
of the data for the velocity biasing which is believed to occur

when the particle concentration is low." This biasing is at-

tributed to particle arrival rate dependency on instantaneous

velocity. In this paper, the data presented were adjusted using

the two-dimensional weighting factor suggested in Ref. 7. The

mean velocities, turbulence intensities, and velocity
correlations u' v' were calculated as follows:

,%' N

i=/ t=l

<.,>=[( o,.:I +,;-o.]
i=l I=1

U'V'= w_U_U, w_ --UV (3)
I=l i=l

with the two-dimensional weighting factor given by

o_i = 1/x/-u2, + v_ (4)

The equations for 0 and (v') are identical to Eqs. (1) and (2),

except v_ is used in place of u,. When no correction for

velocity biasing is applied, _i is taken to be unity; the data
were also reduced in this manner. A comparison of the two
sets of results showed that the same overall conclusions

regarding the flow behavior would be drawn using either

approach.

Naturally occurring particles in the tunnel were used for

light scattering, in this facility, lubrication oil within the drive

system vaporizes and then later condenses in the tunnel circuit

to provide a generous supply of scattering centers. Previous
measurements _ across a normal shock have shown that these

particles are small enough in size (estimated to be ! _m) to

give very good response to a step change in velocity at sonic
speeds. At each point in the flow, at least several thousand

velocity realizations were used to calculate the flow properties

given in Eqs. (1-3). Measured velocities at the edge of the

viscous layers were generally repeatable to better than 1% and

agreed well with edge velocities inferred from the measured

surface pressures. The primary cause for these variations was

changes in the tunnel operating temperature. Under constant
test conditions, the inviscid velocities repeated to within

0.25°7o. In the viscous layers, mean velocities were repeatable

to better than 2°/o of the edge velocity--including the ex-

tremely turbulent separated regions.

Holographic lnterferometer

The holography system was designed to utilize the existing
tunnel Schlieren mirrors. The setup is based on the

arrangement suggested in Ref. 9 for converting large wind
tunnel Schlieren systems to holographic visualization systems.

In the present investigation, the dual-plate method J0 was used
wherein an exposure is made on a photographic plate under

no-flow conditions and subsequent plates are made at the test

conditions. After processing, the no-flow plate and one of the

plates taken at test conditions are positioned in a recon-

struction plate holder, illuminated with the reference beam

and aligned for infinite-fringe interferograms. Vibrations in

the system are relatively insignificant since the pulse duration

of the ruby laser is extremely short (---20 ns) and motion

between exposures can be eradicated in the reconstruction

process.
To reduce the infinite-fringe interferograms to density

contours, two-dimensional flow was assumed in the

relationship

X
= -- - (5)

P2-OI Lcrr Kc, D

where pj and /32 are the densities at two locations, e is the

fringe shift between the locations, Lcf r is the effective optical
path length taking into account the sidewall boundary layers,

h the laser wavelength, and KG_ o the Gladestone-Dale

constant. Since the correction in optical path length due to the

sidewall boundary layers was only 2%, the geometrical width

of the tunnel could have been used without any significant

!oss in accuracy. With the interferometer aligned in the in-

finite-fringe mode, each fringe corresponds to a constant

density contour. Once the density at one point in the flow is
established, the remaining contours can be determined from

Eq. (5).
Due to the relatively large span of the tunnel, the sensitivity

of the system to density changes is quite good for two-

dimensional testing. At M® =0.8, for example, one fringe

shift corresponds to only about a 0.5070 change in density and

a corresponding change in Mach number of about 1%. This

and the high aspect ratio (4) of the airfoil tested, which
produced good two-dimensionality in the flow, contributed to

the quality of data obtainable with this optical method.

Resulls and Discussion

Shown in Fig. ! are the lifting characteristics (C t vs or) of
the 64A010 airfoil section for M® =0.8 as obtained from

integration of measured surface pressure distributions. Two

sets of data are shown in Fig. 1: those obtained in the present

investigation and those from a previous study _ in the same

facility. The slightly higher lift coefficients observed in the

present study are believed to be a result of transition strip

placement. In the study of Ref. I 1, the transition strips were

placed nearer to the leading edge (6.1°70 chordwise station).
This would produce a thicker turbulent boundary layer at the

foot of the shock wave and, hence, a reduction in lift. Other

64A010 data, such as those of Stivers, _-' are not included,
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since the intent of Fig. 1 is only to show the performance of

this airfoil in this particular facility with boundary-layer

transition imposed. At the subject Reynolds numbers, sub-
stantially different results would have been obtained if

natural transition had been employed, as in Ref. 12. It is

i/nportant to note from Fig. l the sudden decrease in the lift

curve slope at an angle of attack of about 4 deg which strongly
suggests the occurrence of a shock-stall situation. The three

angles of attack concentrated on in the present study were set

angles of 0, 3.5, and 6.2 deg. As is apparent from Fig. l, the
two lifting cases studied occur just prior to and after the

sudden decrease in the lift curve slope.

As seen in Fig. l, the variation in C L due to Reynolds
number was observed to be quite small in the study of Ref. ! I.

To verify this, surface pressures were obtained for a = 6.2 deg

and Re c =4x l0 6 in the present study. These data are com-

pared to data obtained at Re c =2x 10 6 in Fig. 2. Included in
Fig. 2 are results from Ref. 11 for Rec =4× l0 6, which show

the effect of transition strip placement on the surface pressure

distribution. It is evident that the surface pressure

distributions for the two Reynolds numbers differ only

slightly. The insensitivity to Reynolds number in this study

should not be construed to imply that the data would compare

well with full-scale Reynolds number results. In the present

study, and in that of Ref. I I, the transition strip placement

had the effect of nullifying the effects of natural boundary-

¢)

Fig. 3 Infinite-fringe interferograms, a) a = 0 deg; b) ot= 3.5 deg; c)
ot= 6.2 deg.

layer transition, thereby reducing the Reynolds number
sensitivity. Obviously, the boundary-layer thicknesses relative

to the chord of the airfoil in this experiment were much
greater than for a flight situation where natural transition

occurs. However, the objective of the study ,,','as not to obtain
data vafid for flight conditions but rather to obtain data that

could impove our understanding of the basic flow phenomena

and, consequently, our predictive capabilities. From this

point of view, it is highly desirable not to have the flow be

sensitive to the complex transition phenomena.
Infinite-fringe inlerferograms obtained with the

holographic interferometer for the fllrcc angles of attack of
interest are presented in Fig. 3. As was discussed in the

previous section, each fringe corresponds to ;I line of t:onslflnl
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Fig. 4 Surface pressure comparison between directly measured
pressuresand pressuresinferred from inlerferograms, tz = 6.2 deg.

density. In the interferograms, the shock wave on the wing's

upper surface (upper and lower for the 0 deg case), the tur-
bulent wake and the turbulent boundary layer downstream of

the shock, as well as the stagnation region near the leading
edge are readily apparent. The major contrast for the three

angles of attack is the thickness of the boundary layer on the

airfoil's upper surface. For the two lifting cases (a = 3.5 and

6.2 deg), the boundary-layer thickness on the upper surface at

the trailing edge is, respectively, 2 and 6 times that for the 0
deg case. Also apparent is the very dominant forward cur-

vature in the shock wave near the airfoil for a=6.2 deg,

caused by the rapid thickening of the turbulent boundary

layer. In the 3.5 deg case, oil flow visualization confirmed
that the boundary layer separates at the foot of the shock

wave (this was not the case for ct = 0 deg); however, the shock

curvature is very much subdued as compared to the 6.2 deg

case. Bifurcation (two shock waves) was not observed in any
of the cases studied.

Although the interferograms are of value from a flow-

visualization point of view, their greatest contribution comes

from the quantitative density information they can provide.

Ip principle, if the fluid density can be established at one point

in the flow, the density can then be determined at any other

point in the flow from Eq (5), provided the flow is two-

dimensional. The validity of Eq. (5) in the interpretation of

these interferograms was established by comparing surface

pressure inferred from the interferograms with the directly
measured centerline surface pressures. The inferred surface

pressures were obtained by assuming isentropic flow in the

inviscid region and constant pressure across the viscous layer.
The laser velocimeter was used to establish the required

density at one point in the flow. In Fig. 4, this comparison is

shown for o_= 6.2 deg. In the 6.2 deg case, the total pressure

loss across the shock wave was not neglibile. A correction for

this loss in total pressure as determined from the maximum
Mach number immediately upstream of the shock wave and

the shock-wave inclination is included in Fig. 4. This

correction produced better agreement at the trailing edge.

lnviscid Flow Properties

Under the conditions of isentropic flow, lines of constant

density are also lines of constant Mach number. In Fig. 5,

°.illljJj

M" OI Og lo

o_ 13

Fig. 5 Mach number contours obtained from intcrferograms, a)
a = 3.5 deg; b) et = 6.2 deg.

Mach number contour plots obtained from the interferograms

under this assumption are presented for the two lifting cases.
Although there are total pressure losses across the shock

waves, the effect in computing a Mach number is slight. For

instance, for the most severe case, _ = 6.2 deg, the maximum

error in Mach number caused by neglecting total pressure

losses is only AM= 0.01.

As seen from Fig. 5, only at the highest angle of attack was

a very definite local region of supersonic flow observed
downstream of the shock wave. Downstream of this sonic

region the flow slowly decelerates. For all three conditions,
the shock waves were of the weak solution.

An inviscid flow property not available from in-

terferometry is local flow angle 0 = tan - J (v/u). For the three

test conditions, horizontal scans were made with the laser

velocimeter at Ay/c=0.083 intervals above the airfoil. The
vertical distance was referenced from the chordline at the 25%

chordwise station, which was the point of rotation of the

model. Shown in Fig. 6 are near- and far-field results for _ = 0

deg. Included are the flow angles predicted by the method of

Ref. 3 using free-air boundary conditions. For the near field

0,/c=0.167), the data show a larger flow angle change than

that predicted by theory. The reason for the slight differences

in the near field may be due to the small disturbance ap-

proximations used in the method of Ref. 3. If the particles

were unable to track the flow, too small a change in flow
angle would be the expected result. In the far field, the ex-

perimental data show larger angles in an absolute sense above

the trailing edge than above the forward portion of the airfoil.

This characteristic was even more pronounced for the lifting
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Fig. 6 Inviscid flow angles.

cases, as seen in Fig. 6. Inviscid theory does not predict this

trend even when an attempt is made to model the tunnel walls

a t is possible with the method of Ref. 3. Surprisingly, the
measured far-field flow angles aft of midchord were not

measurably different for the two lifting cases. To what degree
this far-field flow angle trend is a result of viscous effects

(possibly due to entrainment) or a result of wall effects needs

to be investigated. Scans farther downstream, which would

have been of interest, were not possible due to the limitations

of the tunnel window size. Included in Fig. 6 are the near-field

flow angles for oL--6.2 deg. Noteworthy is the flow direction

change at the shock wave, which is consistent with the shock
orientation and strength at that location. These results

demonstrate the degree to which these two optical techniques
used in conjunction can quantify the inviscid flow.

Turbulenl Flow Properties

As a first step in exploring the viscous flow region with the

laser velocimeter, a streamwise station just downstream of the

t_ailing edge (x/c= 1.02) was surveyed. This station was

sufficiently close to the trailing edge for the measured tur-

bulent flow properties to represent the conditions at the

trailing edge, yet sufficiently downstream that possible
measurement difficulties associated with flare from the

model's surface could be avoided. Figure 7 shows the mean

velocity profiles obtained at this streamwise station for the

three angles of attack selected for the study. The vertical

distance is referenced to the trailing-edge location. Evident
from this figure is the dramatic increase in boundary-layer

thickness that occurs when the angle of attack is increased

from 3.5 to 6.2 deg. (Recall that shock-induced separation has

occurred in both cases.) Notice the upward displacement of

the wake for the 6.2 deg case. This rapid displacement of the

wake was also apparent in the interferogram. Surprisingly, at

this streamwise station wake closure has already occurred,

even for the _ = 6.2 deg case.

The corresponding turbulence intensities (u') and (v')
and the velocity correlation _,' v' plotted against y/6 are given

in Figs. 8 and 9. The reader should note that each of the

,20
NACA 64A010

M_ = 0,8

Re c = 2(10) 6

xlc = 1.02

_._ .15 a, degu
O 0

z_ 35

o 6.2

o_

> ,05

0 .2 ,4 .6 .0

u

u_

Fig. 7 Trailing-edge mean velocity profiles.

/

1,0

velocity correlation profiles (Fig. 9) is plotted on a different

scale. From Fig. 8, it is seen that the fluctuation levels in both

the streamwise and vertical direction increase with increasing

angle of attack; however, the increases are greater for the

streamwise fluctuations. The largest changes occur in the

central portion of the layers where the increase in anistropy of
the flow with angle of attack is apparent. For all three con-

ditions, the maximum fluctuation levels occur away from the
wall, as would be expected for a shear flow that has ex-

perienced an adverse pressure gradient.

The Reynolds shear stress for compressible flows is given

by -bu'v' (assuming that the triple correlation, p'u'v', is
negligible). However, in the transonic flow under in-

vestigation, the change in _ across the viscous layer is quite

small_g.., ,_e/h+=0.9 for M_=0.89__o the distribution

of -u'v'/u_ is nearly the sameas -_u'v'/p,.u_. Thus,
-u' v'/u_ can, for practical purposes, be interpreted as the
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Fig. $ Trailing-edge turbulence intensities.
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nondimensional Reynolds shear stress. In the region where the

flow is most energetic, Fig. 9 shows that the velocity

correlation and, accordingly, the Reynolds shear stress, in-

crease dramatically (by over an order of magnitude between

the 0 and 6.2 deg cases), as do the turbulence intensities. This

increase is very nearly equal to the change in turbulence

kinetic energy, q2=(<u')2+(v')2+<w')2)/2, where

< w' ) has been taken equal to < v' ).

From Figs. 7 and 9 it is seen that the point of maximum

shear stress occurs where the strain rate afuay is the greatest.

This would imply that an eddy viscosity description may be

valid in describing the shear behavior. In Fig. 10, Prandtl's

mixing length escaled to the boundary layer thickness

L = ("'
a \u_ / / a(y/6)

(6)

in the middle portion of the layers is compared to the model

suggested by Escudier.)3 Since accurate gradients are ex-

tremely difficult to obtain from experimental data, especially

when the data are sparse, the determination of t was only

attempted in the region where the slope was nearly constant

(i.e., where a2ft/ay 2 was small) and thus, best defined. In

fact, one slope was established for each of the three cases and

the mixing lengths were calculated only for those points for

which this constant slope appeared valid. The behavior of U6

for y/6<0.2 is not discernible from these data due to the

uncertainty of the strain rate in this region. It is astonishing

that the calculated mixing lengths agree so well with the value

of 0.09, suggested by Escudier, in the middle portion of these

layers. These three boundary layers have had entirely dif-

ferent flow histories, yet in the central portion of these layers

equilibrium between the mean flow and the turbulent fluc-

tuations appears to prevail at the trailing edge. The boundary-

layer thickness just upstream of the shock wave is extremely

thin. Thus, the trailing edge is many initial-boundary-layer

thicknesses downstream of the interaction region, which may

account for the unexpected equilibrium between the mean
flow and the turbulent shear.

Measurements at several different streamwise locations

were obtained for o_=6.2 deg. This angle of attack was
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Fig. 12 Turbulence intensity distri-
butions: a=6.2 deg, Moo =0.8, and
Re c =2x 10 6.

selected for studying the streamwise variation of the flow on

the basis of: I) the thick viscous layer present, which
facilitated detailed probing, and 2) the inability of current

numerical methods to predict even closely a flow with such a

strong inviscid-viscous interaction. These data are presented
in Figs. I 1-13. For the measurement stations above the airfoil,

the vertical distance is that from the surface, whereas in the

wake it is referenced to the trailing-edge location. Along the
airfoil, measurements were obtained within 0.5 mm of the

surface, in Fig. I l, the profile plots are vertically displaced in
accordance with the airfoil surface location. The furthermost

upstream measurement station was 0.30 c downstream of the

separation point determined from oil flow visualization.

Noteworthy from the mean velocity profiles are l) the

relatively small reversed velocities observed in the separated

flow region, 2) the free-shear-layer shape to the profiles at the

stations along the wing's surface, 3) the rapid wake closure at

the trailing edge, and 4) the sudden upward displacement of
the near wake. The small reversed velocities imply that the

skin friction is near zero in that part of the separated region.
The experimental evidence suggests that the flow is not wall-

dominated, once separation has occurred. Beyond separation,

the viscous layer appears to take on a free-shear-layer form

with the outer edge of the layer following nearly a horizontal
path.

In Fig. 12, the corresponding streamwise and vertical

fluctuation intensities are presented. At the most upstream

station, the streamwise fluctuations, (u')/u®, are seen to
exceed the vertical fluctuations by more than a factor of 2.

The streamwise fluctuations atlain a level of over 40°70 at

y/6_0.5, indicating the presence of instantaneous negative
velocities at an appreciable distance from the surface.
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0

Proceeding downstream, the streamwise fluctuations and,
correspondingly, the turbulence kinetic energies are decaying,

whereas the vertical fluctuations remain nearly constant. In

the near wake (i.e., the last two downstream measurement

stations), the character of the turbulence intensity

distributions is seen to change r_apidly; at the last station the
flow has attained a nearly isotropic condition.

As seen from Fig. 13, the peak shear ( - u'v'/u2** is taken to

represent bu'v'/pwu _) decreases with downstream distance
as does the turbulence kinetic energy. At the last three

stations, the presence of the lower surface boundary layer

becomes evident from the sign change in the shear. Notice that

the shear does not quite pass through zero where af_/Oy = O,

(i.e., t_min location) indicating nonequilibrium effects. The

location of the peak shear rma , (i.e., the location where
-u'v'/u_ is a maximum) was found in all cases to

correspond to the location where (u')/u= was also a

maximum (see Fig. 12).
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A better illustration of the decay in the maximum shear

stress and turbulence kinetic energy ((w') taken equal to

(v')) with streamwise distance is p__sented in Fig. 14. In-
cluded in this figure is the quantity u' v" (afuay) scaled to u=

and c. This term is the primary source term of turbulence

kinetic energy for this flow. As seen from Fig. 14, the

production rate of turbulence kinetic energy decreases rapidly

with streamwise distance. This is due in a large part to the
decrease in strain rate, cgft/igy, with increasing streamwise

distance. With this rapid decrease in production rate, the

corresponding rapid decay in turbulence kinetic energy is not

surprising. These results, however, are contrary to those

reported for a biconvex airfoil section at 0 deg angle of attack,

where the shear and turbulence kinetic energy downstream of
the shock wave and in the near wake were observed to increase

with streamwise distance although the strain rate was rapidly

decreasing. 14 The observations of Ref. 14 may be a result of

flow unsteadiness caused by having separation on both lower

and upper surfaces.

The uv correlation coefficients R,,,, for the three upstream

stations are given in Fig. 15. In this figure the zero-pressure

gradient boundary layer results of Klebanoff rs and the free-
shear layer results of Leipmann and Laufer 16 are also shown

for comparison. As seen from Fig. 15, the present data could
be represented quite well by a single curve. In the inner half of

the boundary layer the correlation decreases. This behavior

has also been observed for incompressible boundary layers

subjected to an adverse pressure gradient. _7
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The mixing lengths at the points of maximum shear (scaled

to 6) (this also corresponds to where the strain rate is a

maximum) are presented in Fig. 16 as a function of distance

along the airfoil. As shown earlier for the trailing-edge

station, f/_5 for the two upstream stations is well described by

the value of 0.09 suggested by Escudier. In the wake, the

mixing length scaled to 6 (the distance from the t_mm location

to the upper edge of the wake in this case) is increasing. This
behavior in ¢/(5 is reasonable considering that for an in-

compressible far-wake f/b_0.18 (Ref. 18). The mixing

lengths in the lower part of the wake where trP attains
another relative maximum are smaller as a result of the

thinner lower surface boundary tayer. These mixing lengths at

x/c= 1.17 and 1.33 are approximately one-third and one-half,

respectixely, those in the upper part of the wake, which in-

dicates an even more rapid increase in mixing length with
streamwise distance in this part of the wake.

The Escudier model has been shown to be reasonably ac-

curate in relating the Reynolds shear stress to the strain rate

Ou/O), over the aft one-third of the airfoil's upper surface for

an extremely strong interaction case and at the trailing edge

for weaker interactions. Although measurements were ob-

tained only at the trailing edge for the two weaker in-

teractions, the results for c_=6.2 deg strongly suggest the

same would be true for these two cases. Yet, predictions for a
64A010 airfoil section using this turbulence model have been

found to be inaccurate for lifting cases. 5 It appears that this

mixing length model fails in the immediate vicinity of the
shock wave. Extrapolation of the turbulence kinetic energy

forward of the upstream-most measurement station in Fig. 14

suggests extremely high fluctuation levels at the stagnation

point. An accurate accounting of the Reynolds normal

stresses at and near the separation point may be what is

needed to predict the initial perturbations to the flow. Once

the initial perturbation to the boundary layer is accurately

modeled, the present results suggest that a zero equation
model such as Escudier's would be appropriate in the

downstream regions if modifications were made to account

for the increasing length scales in the nearwake region.

Concluding Remarks

Measurements of the flow behavior about a 64A010 airfoil

section at transonic conditions have been presented. The
results include Mach number contour plots and flow angles
for the inviscid flow regions, and the turbulent flow
properties of the upper surface viscous layer on the aft
portion of the airfoit and of the near wake.

In view of the apparent inadequacies of current models for
the turbulent Reynolds stresses, the turbulent flow
measurements presented must be considered the most relevant

results of the study. The present results show that equilibrium
between the turbulent fluctuations and the local mean flow

occurs much more rapidly in the central portions of the

viscous layers than expected with I/6 _ 0.9 in this region. This

condition was found to hold even at the furthermost upstream

measurement station (x/c= 0.67) for o_= 6.2 deg. Although
measurements were only obtained at the trailing edge for the

two weaker interactions, the results for ot = 6.2 deg strongly

suggest the same would be true for these two cases. At o_ = 6.2
deg, measurements were obtained at several streamwise

stations along the airfoil and in the near wake. These data

reveal a rapid decay in the production rate of turbulence

kinetic energy with streamwise distance. Associated with this

rapid decay in production rate is a decay in the turbulence

kinetic energy and Reynolds shear stress. In the near wake,

the streamwise fluctuations decay more rapidly, with a near

isotropic condition being established at x/c= 1.33. As ex-

pected, the mixing length increases in the near wake as the

flow establishes a wake character. The mean velocity

measurements suggest a free-shear-layer type flow down-

stream of separation with very rapid closure of the wake near

the trailing edge.

The results of this study suggest that it is at or very near the

separation point that improved turbulence modeling is

needed. Downstream of the separation point, a zero equation

model would appear adequate. An accurate accounting of the
Reynolds normal stresses at and near the separation point

may be what is needed to predict the initial perturbations to
the flow.
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