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Introduction and Overview

This final report for the grant NAGW-4896 covers the period 1/1/97-12/31197. The main
results have been published (Mustard and Head, 1996, attached) or are currently being reviewed
in the refereed literature, which we expected to be completed by the fall of this year (Mustard et
al., 1998; Li and Mustard, 1998, attached). This report serves to provide a modest amount of

background material with the details to be found in the attached manuscipts which are in review
or will be submitted for publication in the near future.

The role of vertical and lateral mass transport of crustal materials on the observed patterns of
lunar surface composition, and the effects on our understanding of the geologic evolution of the

planet, have been the subject of much debate in the lunar science community. The primary
consensus that emerged from analyses of these processes in the 1970's and 1980's was that
vertical and lateral mixing through impact gardening was a relatively inefficient process, and not
likely to have contributed significantly to compositional units and variations on the Moon. The
supporting evidence for this view is that unit boundaries (e.g. mare-highland contacts, contacts
between mare color units) are still apparently quite distinct and sharp despite several aeons of

impact activity, and cores from the Apollo landing sites did not show any evidence of
widespread homogenization of the surface composition, nor distinct compositional gradients
across geologic boundaries (e.g. McKay et al, 1991). In addition, modeling of vertical and
lateral transport generally showed that the effects on composition should be confined to
horizontal scales of about a kilometer and vertical scales of a meter (Arvidson et al, 1975;

Quaide and Oberbeck, 1975; Langevin and Arnold, 1977).
The problem with this consensus is that there is ample contradictory evidence. The

fundamental discovery of Wood et al. (1970) was made possible by significant horizontal

transport of highland material to the center of Mare Tranquillitatis. The continuous and
discontinuous ejecta from the crater Copernicus has clearly influenced the surface composition
of a large area of the lunar maria, while rays and ejecta from many highland craters are easily
recognized in and around the nearside maria. Despite this contrary evidence, there have been
few detailed studies to quantify the amount and rate of material redistribution through impact
processes (a notable exception is reported in the paper by Pieters et al, 1985), largely because
data adequate to critically analyze this process were lacking. However, the multispectral images
acquired by the Galileo and Clementine missions now permit the investigation of this process. In
fact, recent studies using such data have shown that compositional gradients across mare-
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highlandcontactsarethenorm, thoughthespecificcharacteristics(i.e. width, gradient,position
relativeto geologiccontact)vary substantially(Fischeret al., 1995; Staidet al, 1994;Mustardet
al, 1994;MustardandHead,1996).Theavailabilityof thesenewdatathusprovideanexcellent
opportunityto re-evaluatethe importanceof verticalandhorizontaltransporton theMoon and
assessthecurrentlyavailablemodels.

Thecompletedresearchcontainedtwoprimarythrusts.Thefirst wasto characterizeand
quantifytheamountof verticalandhorizontalmixing acrosshigh-contrastgeologicboundaries,
principallymare-highlandboundaries.Thisprovidedfundamentalnewdatathat wasusedto
determinetheimportanceof theseprocessesin redistributingmaterialsacrossboundaries.The
secondprincipal thrustwasto relatedtheobservedabundancedistributionsto thefundamental
geologicprocessesresponsiblefor creatingthem. A third componentof theresearchwasthe
recognitionthatnonlinearmixing wasarequiredanalyticaltechnique.Theuseof linearspectral
mixtureanalysiswasdemonsratedto beinaccurateby asmuchas15%absoluteand30% relative
(Mustardet al., 1998).
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