
NASA TM- 1998-208470

Field Guide for Designing Human Interaction

With Intelligent Systems

Carroll G. Thronesberv

Metrica

Jane T. Malin

Lyndon B. ,lohnson Space Center

July 1998

https://ntrs.nasa.gov/search.jsp?R=19980210012 2020-06-16T00:17:08+00:00Z

Available from:

NASA Center for AeroSpace Information
7121 Standard

Hanover, MD 21076-1320
Price Code: A 17

National Technical Information Service

5285 Port Royal Road
Springfield, VA 2216 I

Price Code: A 10

CONTENTS

Page

1. Introduction to Field Guide .. 1

2. Rationale for Development Approach ...

2.1 Goal-Oriented Analysis and Design ... 2

2.2 Iterative, Spiral, and Incremental Prototypes .. 3

2.3 Participatory Design ... 3

3. Development Activities and Products ... 4

3.1 Select and Scope the Project ... 6

3.2 Determine and Revise System Goals .. 6

3.3 Develop Task Descriptions and Scenarios ... 7

3.4 Select Objectives for the Current Prototype ... 8
10

3.5 Design the Prototype ..

3.6 Formally Evaluate the Prototype .. 1!
11

3.7 Define Requirements ..

4. Develop a Task Description .. 12

4.1 Uses of the Task Description .. 12

4.2 Elements of the Task Description ... 13

4.3 Sources of Task Analysis Information ... 14
15

4.4 Allocation ...
164.5 Team Architecture ..

4.6 Initial Generic Scenario Description .. 16

4.7 Iteration and Progression Over Project Life Span .. 17

4.8 Implications for Designing Human Interaction .. 17

4.9 Implications for Evaluation Plan and Scenarios ... 18

4.10 Final Cautions ... 18

18
5. Build Scenarios ...

5.1 Scenario Selection .. 18

5.2 Levels of Scenarios ... 19

5.2.1 Nominal Scenarios .. 19

5.2.2 Failure and Off-Nominal Scenarios .. 19

5.2.3 Specific Variations .. 20

5.2.4 Integration Scenarios ... 21

5.3 Scenario Construction ... 21

6. Design the Prototype ...
22

6.1 Storyboards and Design Mockups ..

6.2 Evaluation Prototypes ... 23

6.3 Operational and Integration Prototypes .. 24

iii

CONTENTS

(continued)

Page

7. Evaluation ... 25

7.1 Formal vs Informal Evaluation ... 25

7.1.1 Informal Evaluation .. 25

7.1.2 Formal Evaluation ... 26

7.1.3 Outside Review ... 27

7.2 Preparing a Formal Evaluation: A Products View ... 27

7.2.1 Previous Design Products ... 29

7.2.2 Evaluation Objectives ... 29

7.2.3 Interview ... 32

7.2.4 Scenario Events ... 33

7.2.5 Evaluation Scenarios ... 33

7.2.6 Session Training .. 34

7.2.7 Evaluation Agenda .. 35

7.3 Conducting a Formal Evaluation .. 36

7.4 Reporting Results of a Formal Evaluation .. 36

8. Further Reading .. 37

8.1 Related Documents ... 37

8.2 Iterative, Collaborative Design ... 38

8.3 Use of Scenarios and Task Descriptions .. 38

8.4 Evaluation ... 38

TABLES

1 Development Products and Their Recommended Lengths ... 5

2 Typical Times for an Evaluation Agenda .. 35

FIGURES

1 Development Activities Across the Project Life Span .. 5

2 Changing Focus Across the Project Life Span .. 9

3 Evaluation Plan Products ... 28

4 How the Evaluation Report Is Used .. 30

iv

1. Introduction to Field Guide

The purpose of this document is to describe the methods we are using to design human inter-

actions with intelligent systems which support Space Shuttle flight controllers in the Mission

Control Center at NASA/Johnson Space Center. Although these software systems usually have

some intelligent features, the design challenges arise primarily from the innovation needed in the

software design.

While these methods are tailored to our specific context, they should be extensible, and helpful

to designers of human interaction with other types of automated systems. We review the unique

features of this context so that you can determine how to apply these methods to your project.

The most important feature of our software is that it is innovative, with a number of implications:

• No one can start the project by generating an adequate requirements description. Generating

such requirements documents at the beginning would be a misuse of time--detailed require-

ments must be derived from initial design efforts and interactions with users.

• At the beginning, users cannot give an accurate, detailed description of what they would like

the software to do because they have no previous experience using similar software.

• Developers may be unsure whether they can accomplish some of the technical objectives of

the intelligent automation. The development is not routine.

Additional characteristics are defined by the Space Shuttle context. The highly trained flight

controllers are engineers with specialized expertise in Shuttle subsystems. New software is

integrated into a system of legacy software and processes. When software is certified for flight

support, flight controllers become adept at using that software, but most do not have a

programmer's depth of knowledge about the software.

Throughout this Field Guide, goals of the design methods are discussed. This should help

designers understand how a specific method might need to be adapted to the project at hand.

This guide differs from other documents written by members of this group because it is oriented

to human-computer interaction (HCI) design issues and is intended for use during HCI design.

This guide is intended to have an applied orientation, in a style that provides a new team member

with a written description of how the team works. It is intended to be like a field guide: open

while designing and short enough to find an answer before the bird flies away. When examples

are available, we provide links so that the application of a principle can be more concrete---in

much the same spirit of providing pictures of birds in a field guide for bird identification to

clarify their descriptions.

Our approach cannot be used as a cookbook, guaranteeing perfect "brownies" each time the

recipe is followed. Instead, it is to be used as a quasi-checklist, helping to ensure that you

haven't forgotten something important. It provides just enough reminders to assist a thoughtful

team in building useful, usable applications of advanced technology while avoiding common

distractions and traps.

Thefollowing stepsarerecommendedfor usingthisField Guideefficiently:
1. Preview theentire document,to understandwhatthedocumenthasto offer andhow it is

organized.

2. Readthe "Rationale for DevelopmentApproach" (Section2),a shortdiscussionof key
characteristicsof themethodsin theField Guide.

3. Consult the "Development Activities and Products" section (Section 3), to gain a firm

understanding of the specific design products you are developing. Once you have become

familiar with this design methodology, you can use this section to refresh your memory

before focusing on a specific design product.

4. Read the appropriate activity section (Sections 4 through 7), where four of the key

development products are discussed: task descriptions, scenarios, prototypes, and evalua-

tions. These sections are intended to give in-depth descriptions about how to develop these

products.

2. Rationale for Development Approach

The characteristics of this approach address the problems of designing innovative software to

support user tasks. The requirements for novel software are difficult to specify a priori, because

there is not sufficient understanding of how the users' tasks should be supported, and there are

not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care

must be taken to avoid rushing into detailed design, requirements specification, or implementa-

tion of the wrong product. The challenge is to get the right design and requirements in an

efficient, cost-effective manner.

Goal-oriented analysis and design help designers understand how users can be supported, and

guide the wise use of development resources without cutting quality. Iterative spiral design and

development and incremental deliveries provide the flexibility required to deal with the un-

knowns associated with innovative projects. Finally, participatory design ensures that all the

necessary expertise is applied to the design process.

2.1 Goal-Oriented Analysis and Design

In our approach, determining system goals and selecting prototype objectives occur very early

in the design process. Attempts to develop a detailed requirements specification or implementa-

tion early would be a costly waste of resources. The effort spent on identifying and validating

goals and objectives is essential to keep the design and requirements on target. The goals and

objectives are identified, validated, and prioritized by studying user tasks and defining scenarios

that characterize the supported activities. These scenarios concretely embody the goals and

objectives in a form that challenges the thought and imagination of the design team. They guide

the planning of informal and formal evaluations. They provide a framework that guides the

understanding of design risks and helps ensure that design shortcuts do not sacrifice quality.

Even in projects where detailed requirements are provided up front, it pays to identify or develop

such a framework early.

2.2 Iterative, Spiral, and Incremental Prototypes

Our iterative design approach addresses two sets of difficulties associated with the design of

innovative software: Users often can't specify requirements very well and developers often can't

"design it right the first time." In contrast to a requirements-centered, traditional waterfall

model, an iterative prototyping approach allows users to interact with specific designs within the

context of specific, realistic scenarios. They can respond to a concrete situation with specific,

helpful feedback (e.g., "The scenario is unrealistic. The software doesn't help me with the

hardest part of the task. I can't find the information I need to make the next decision."). Thus,

users can voice their requirements better when the design process is iterative.

Iterative development allows discoveries during the design process to be incorporated into the

design. It also allows the project to accommodate contributions from users, software engineers,

subject matter experts, and graphic design specialists. Consequently, iterative design helps users

and developers alike in dealing effectively with the uncertainty that accompanies innovative

software.

Our iterative approach is closely related to spiral development, because each iteration of the

prototype has different objectives. Product goals and objectives help determine the scope for

each prototype. In our approach, early prototypes are far from implementations. Early designs

address key design risks and core capabilities. Subsequent iterations will add new capabilities

and refine existing ones, and move closer to implementation.

A related strategy to iterative development is the use of incremental deliveries. When feasible.

early restricted-scope deliveries for use in the workplace let the users benefit from the new

application earlier. This provides them with concrete evidence that you are building a useful

application. As the scope of the application is broadened over time and as the existing capabili-

ties are refined, users (and sponsors) can see progress, and can see the potential for improve-

ments with additional funding. Also, as a result of an earlier, longer period of using the new

application, users can provide more feedback during the project.

2.3 Participatory Design

Our approach includes participatory design because the team is composed of users and others

with equally valuable expertise. The important ingredient is that the user's viewpoint is reflected

in the design of the prototype. Not everyone will contribute in the same manner. In fact,

depending on personal preferences, users will not contribute in the same manner for every

project. Some users will prefer to help design the next prototype while others will prefer a more

evaluative role, providing feedback on each design candidate. The following areas of expertise

should be represented on the design team:

• user task performance (usually represented by a user)

• subject matter expertise (technical details about what's being monitored or controlled by the

software---in our case, usually represented by a user)

• design and implementation of advanced software

• human-computer interaction design

• graphic design

Each team member contributes to the design process from his (or her) strengths resulting in a

type of "design dialog." For instance, the following hypothetical scenario illustrates how a

design team with the above areas of expertise can make significant progress on an issue in a

short period of time--progress which, separately, they probably could not make at all:

A user objects to proposed interaction, saying that he needs to see the interim

results of a timer while the motor is driving, not just the final motor drive time.

A short discussion between the subject matter expert and the software expert

satisfies everyone that they know how to provide a reasonable, continual timer

display. Then, the human-computer interaction expert suggests that even more

information might be important--an indication of the expected drive time. The

user concurs, saying that, in fact, that he'd like to see two expected times, one for

single-motor and one for dual-motor drives. A short discussion among the user,

human-computer interaction expert, and graphic designer yields a first cut at a

graphic design that allows the user to watch the time for the motor and maintain

awareness when it approaches alert or alarm limits.

3. Development Activities and Products

This section summarizes the development activities and products in our approach. Our approach

includes the following activities performed over the span of a project:

• Select and Scope the Project

• Determine and Revise System Goals

• Develop Task Descriptions and Scenarios

• Select Prototype Objectives

• Design the Prototype

• Formally Evaluate the Prototype

• Define Requirements for Product Implementation

Figure 1 ("Development Activities Across the Project Life Span") shows how these activities and

their products are related to one another. The arrows loosely indicate logical and temporal rela-

tionships. For instance, a project is usually selected and scoped before goals for the software

system are determined (temporal), and the goals will usually depend on the reasons why the

project was selected in the first place (logical). After goals have been decided for the entire

software system, and as some task descriptions and scenarios are developed, specific objectives

are selected for the first prototype iteration. The prototype is iteratively designed and evaluated

within the design team. In this stage, informal evaluations are focused using scenarios and lead

to regular revisions of the prototype and occasional revisions in the prototype objectives. When

the prototype is ready, a formal evaluation is conducted. The developers decide if the improved

understanding should result in minor modifications to the project goals, task descriptions, and

scenarios. Then, objectives are selected for the next prototype. The cycle continues until the

system goals have been met. Then a requirements document is written as a companion to the

prototype.

Table I provides a list of development products. You should use this to identify products as the

project progresses and to get some ideas about the length and content of those products. Not

4

everyprojectshouldgenerateeveryproductlistedin thetable. Thetableis providedto remind
youof thetypesof productsto considergeneratingandto giveyousomeindicationof the length
andlevelof formality with which theyhavebeenhandledonprojectsin our lab.

I Select and Scope Project I

L. One lleralion Per Prolotype

Determine/Revise System Go_ls 1

Develop Task Descriptions and Scenarios

]Task Descriplion]

Select Objectives for I I
Current Prototype _

Prototype Objectives

Define Requirements, Deploy Application

[Requiremenb I_

I Formally Evaluate 1the Prototype

valualion Plan]

Evaluation Report [

h
Design the Prototype [

(Iterative, Participatory) J
cen,,rio [-
Protolype [

Figure 1. Development Activities Across the Project Life Span

Table 1. Development Products and Their Recommended Lengths

PRODUCT WRITTEN LENGTH FORMALITY

System Goals

Prototype Objectives

Task Descriptions

Scenarios -- generic
nominal
failure

variations

integration

Prototype -- storyboard
evaluation

integration

operational

Formal Evaluation Plan

Formal Evaluation Report

Requirements

a page or less

a page or less

enough to develop scenarios and user descriptions

little detail (V2 pp narrative)
detailed
detailed

detailed
detailed

code (document for storyboards)

informal

informal

informal

somewhat formal

somewhat formal
somewhat formal

somewhat formal
somewhat formal

fomml

1-5 pp

5-10 pp

needed when prototype is to be re-implemented

formal

formal

formal

3.1 Select and Scope the Project

The first thing that must be done is to select and scope the project so that it will be successful.

This is a difficult step, and probably most mistakes in selecting and scoping projects result from

an incomplete consideration of what is required for project success. Because resources for

advanced development are extremely scarce, our circumstances require vigorous support from

the users and the proponents of the advanced technology we are applying. While users are often

kind, morally supportive, and generally in favor of advanced automation, they won't get really

excited about your project unless they believe it will make their job easier. Consequently, the

following list includes not only items related to completing the project successfully, but also

items related to making the new application useful. Here are some characteristics to consider

when selecting a new project and scoping it:

• available expertise

• probability of successful implementation

• viewed by user as important to his job

• continually useful (frequent use)

• viewed by user as difficult, laborious, or error-prone

• useful early, allows incremental development where initial products (or iterations) are used

while later ones are being developed

• allows demonstration of full range of proposed functionality

These considerations behind project selection and scoping are of central importance to our

approach. They begin by influencing the determination of system goals and continue by guiding

resource decisions about design risks and shortcuts.

3.2 Determine and Revise System Goals

Probably the greatest reservation held by newcomers to this approach is that the project might be

allowed to wander toward first one goal, then the next, without knowing when the project should

end or if success has been achieved. To prevent this from happening, system goals are identified

at the beginning of the project. Sources of knowledge for setting these goals include the corpo-

rate knowledge of the users' tasks and how software can support those tasks, discussions with

users, and discussions with people who can fund the project. System goals may need to be

reviewed after each prototype evaluation for two reasons: to ensure that the overall system

continues to follow the goals which are set for it, and to make minor adjustments to those goals

based on an improved understanding of the users' tasks and how they can be supported. Conse-

quently, the system goals should help to keep the project focused on solving specific problems,

while allowing minor adjustments in the direction of the project.

The system goal statement could be as simple as a paragraph or two----rarely longer than a page.

It's important, but doesn't need to be lengthy. It's probably good to have the goal statement in

written form for team coordination and agreement. It is also desirable to state the goal in meas-

urable terms (although, for the sake of brevity, you shouldn't include an evaluation plan in the

goal statement). Measurable terms help the team determine when the goals have been met, and

they are concrete enough to improve communication across the development team. In formulat-

ing the statement, consider what you want to demonstrate at the end of the project, what will

make users (and funders) say it was a worthwhile project. It is also good to indicate priorities

(not all goals are equally important, and they will often conflict). The system goal statement

should build on the results of project selection. Try to get it mostly right at the beginning of the

project and consider revising it when the objectives for the next development iteration are
addressed.

3.3 Develop Task Descriptions and Scenarios

Designing is not just a matter of "doing it till you get it right" or, as a colleague termed it, "Now

It's Through, What Do You Think?" (NITWYT). Instead, we use STEP--Scenarios, Task

descriptions and Evaluation to focus Prototyping. The STEP approach helps to focus design

efforts toward effective task support. Developing task descriptions helps to maintain awareness

of the task being supported and the type of support that is needed. Scenarios are developed to

focus the design and evaluation on realistic user tasks. Prototypes provide a concrete basis for

design evaluation.

There is usually some confusion about the difference between scenarios and task descriptions.

Task descriptions are abstract and general. The task description is a system-like description of

the setting within which the new application will fit and an overview of the tasks performed in

that setting. A scenario is a specific traversal through that system.

The task description should be written, since it contains design information not written anywhere

else. The description contains information on the setting, tasks, and activities. Elements relating

to the intelligent system include a description of the automation architecture, including the

allocation (manual, automated, shared) of tasks between users and intelligent software and the

information needs of the users, to perform tasks and coordinate with the intelligent software.

The level of detail of a task description depends on the demands of the project for which it is

written, and on the maturity of the prototyping effort. It doesn't have to be done all at once.

Initially, it can be an overview that focuses on typical tasks and typical users. When determining

what is important for the task description, resist the urge to "dive into the details" prematurely.

A good rule of thumb is that the task description should include just enough detail to guide the

design of the next iteration of the prototype. The task description doesn't need to use models or

formal analysis. While the task description in our method is shorter than a traditional one, it

helps the team focus on goals, objectives, and priorities for design and evaluation.

Scenarios are specific concrete instances of a set of tasks, the surrounding situation, and how the

software is used in carrying out the tasks. Described simply, a scenario tells a story. When data

are received, specific values of that data are identified (not a range of possible values). When a

decision point is encountered, one decision is taken (not a range of possible decisions). The form

in which the scenario is expressed depends on the way it is to be used. It could simply be a

narrative description (either spoken or written) of events that could happen during the use of the

new application. At a detailed level, it might include a rigorously defined data structure that

defines the information that is input during the scenario. Types and levels of scenarios vary over

the course of a project, as the prototyping objectives change to reflect the maturity of the design.

7

Scenarios provide a focus for both design and evaluation efforts. Scenarios contain concrete,

specific information, which assists a team with diverse backgrounds in communicating and

coordinating their design efforts. Furthermore, scenarios tend to help the development team

maintain its focus on design to support user tasks. Scenarios provide a context for evaluation

and help users to focus evaluation on task support. Instead of simply asking users how they like

the new application, a more focused question can be asked: "How well does it support you in

performing this task?"

See Sections 4 and 5 for more details about developing task descriptions and scenarios.

3.4 Select Objectives for the Current Prototype

Using a spiral development model (Boehm, 1988), a subset of the overall system goals is

selected for each prototype. With each additional prototype, a larger subset of the system goals

will be addressed. The formal evaluation of a given prototype will probably reveal that some of

its objectives were not met. Thus, the objectives for the current prototype should include unmet

objectives from the previous prototype as well as some new system goals that had not previously

been addressed. This process should continue until the system goals have been met and the

project is completed.

The order in which system goals are selected for prototyping depends on a number of things:

• For HCI issues, prioritize to support understanding, then utility, then usability.

• Support for common tasks is usually prototyped before support for unusual tasks.

• Support for tasks critical to the success of the application is usually prototyped early.

• Difficult software techniques are usually prototyped early.

• High-risk issues are prototyped before low-risk issues.

The general progression in which HCI objectives should be addressed is illustrated in Figure 2

("Changing Focus Across the Project Life Span") (also see Woods, et al., 1996). The upper

portion of this figure shows a progression in which HCI issues are addressed. Early efforts

should focus on identifying the right user tasks to be supported (understanding). Once critical

user tasks have been identified, the focus should shift to finding the successful strategies for

supporting those tasks (utility). Finally, efforts should shift to identify good display forms for

implementing those strategies (usability). This general progression helps to steer the project into

a productive expenditure of development resources. Following this progression, the develop-

ment team confirms its understanding of which tasks are critical before expending resources to

find effective strategies for supporting those tasks.

Sometimes, it is necessary to prototype alternative strategies for task support to make sure that

you have truly identified which tasks should be supported. Likewise, it is sometimes necessary

to prototype alternative implementations of support strategies to test the relative value of those

strategies. Because new project goals are added to each prototype iteration, a given prototype

iteration may address some issues at greater maturity levels than others. For instance, a given

prototype might focus on finding a good strategy to address one problem and on finding a good

implementation of another strategy. Thus, while the progression shown in Figure 2 is about

right, it should be used as a suggested order, not as a required sequence.

i

UNDERSTANDING:

identify and verify user

tasks to be supported

Focus of Obiectives

UTILITY:

identity strategies for supporting

user tasks: identify information

requirements

USABILITY:

identify display forms to

implernent support strategies

STORYBOARDS & DESIGN

MOCKUPS

Levels of Prototypes

EVALUATION
PROTOTYPES

INTEGRATION &
OPERATIONAL

PROTOTYPES

Levels of Scenarios

NOMINAL FAILURE & SPECIFIC
GENERIC

SCENARIOS OFF-NOMINAl, VARIATION
(use case) SCENARIOS SCENARIOS

INTEGRATION

SCENARIOS

Project Maturity
v

Figure 2. Changing Focus Across the Project Life Span

The sequence in Figure 2 doesn't consider the relative risks of advanced software techniques.

They need to be considered along with the HCI objectives. First address those objectives which,

if unmet, pose the greatest risk to the project. For example, if the project involves a tricky case-

based problem-solving technique and failure to apply the technique properly will kill the project,

then an early prototype should include an attempt at implementing the proposed case-based

approach. If the success of the project depends on displaying operational situations for review,

then the first prototype should include the first attempt at that display. Note that, as high-risk

objectives are addressed and the next prototype is evaluated, the relative riskiness of the objec-

tives changes. If the initially highest risk objective has been addressed adequately with the

previous prototype, it is no longer a high-risk objective. Other objectives can take focus in the

next prototype.

Ultimately, the decision about the order in which to address system goals is based on a consid-

eration of risk: high-risk issues are prototyped early. There are three reasons for this risk-driven

approach. The first is that if the project is doomed to failure because it simply cannot be done,

it's better to learn that information early--before development resources have been wasted. The

second reason for addressing high-risk objectives first is so that you will have more prototype

iterations to find the right way to address the most critical objectives. If your first attempt is

successful, you can address some of the lesser objectives next and possibly finish the project

ahead of schedule. If not, you can use what you've learned from the first prototype to formulate

the next attempt. If early attempts prove that the goal cannot be rnet, there may be sufficient

time and resources to revise the goal so that the project can still provide a useful software appli-

cation. If, on the other hand, you address the riskiest goal last and fail, you're simply sunk.

Finally, the elements of system design are interdependent. Settling on a specific implementation

of one aspect of design sometimes constrains others. Using the risk-based approach ensures that

the most critical aspects of the design are the least constrained by the remainder of the system.

3.5 Design the Prototype

Designing the prototype is so highly iterative, that it is misleading to think of the component

activities occurring in a particular sequence. However, it is important to give attention to the

component activities.

The prototype is a tool for determining the requirements of the application. In some cases, the

prototype will evolve into the final, delivered application. In other cases, the functions embodied

in early prototypes will be re-coded in a more capable implementation language to form the

delivered product. Regardless of whether the final implementation is the result of a gradual

evolution or the result of a re-implementation late in the project, earlier prototypes are used as a

means of identifying appropriate requirements for improving user task support by the
application.

All other products for the project are developed to ensure that the application is a good one.

These other development products are interdependent with the prototype. Not only do the other

products guide the development and evaluation of the prototype, but also the prototype helps to

refine the other design products. The prototype provides the users an opportunity to evaluate the

accuracy of the information in the scenarios, the task analysis, and the requirements. By interact-

ing with the prototype in the context of the scenario, users are better able to judge how well the

new application will support their task performance. Thus, one of the primary functions of the

prototype during most of the project is to refine the requirements of the intelligent system.

The prototyping section below (Section 6) provides information about how to design human

interaction during the prototyping process and about levels of prototypes, which serve different

functions as the development project matures. The levels of prototypes include:

• storyboards

• evaluation prototypes

• integration prototypes

• fielded (operational) prototypes

Another key to good design is to make certain that it represents a collaboration of several view-

points and levels of expertise. As was illustrated earlier, this participatory design enables the

team to design quickly so that the resulting prototype is acceptable from many viewpoints at

once. The reason for the speedy progress toward an acceptable design is the simultaneous

informal evaluation by team members representing multiple viewpoints and levels of expertise

during the design process. Unacceptable designs are identified quickly and modified based on a

clarification about what makes them unacceptable. The informal evaluations are focused on

relevant issues by using the design scenarios.

io

Figure I identifies only two explicit products from the design process: scenarios and the
prototype. Because of the highly iterative nature of the design activities, we recommend waiting

until after a design is completed before trying to capture the requirements and revisions to task

descriptions in document form, This should save you a considerable amount of editing. The

scenarios and prototype, on the other hand, need to be updated during the design process in order

to coordinate the participatory design effort,

3.6 Formally Evaluate the Prototype

Evaluations in our approach are more formative (providing information about how to improve

the prototype) than summative (evaluating how well the project objectives were met). Both

informal and formal evaluations emphasize formative evaluation: they guide how each develop-

ment product (prototype, scenarios, task description, goals, evaluation plan) should be improved.

The purpose of evaluation is to determine which features of the prototype (also objectives, task

description, and scenarios) need to be changed. The informal evaluations take place during

iterative design, thereby guiding the design. The formal evaluations are also formative, identify-

ing issues that need to be addressed in the next prototype. If the evaluation indicates that the

changes should be numerous, it might be necessary to reexamine priorities so that the most

important changes are made in the next iteration of the prototype.

Formal evaluations involve several users, mostly from outside the design team. They help to

ensure that the design hasn't been biased by the idiosyncrasies of one or two users. This also

helps to ensure that users who haven't been intimately involved in the design of the prototype

can also use it. These evaluations are planned more formally, and more formal data collection

techniques are used. In addition to examining things like understanding of the user tasks,

improving the usefulness of the prototype, and improving the usability of the prototype, formal

evaluations also address specific issues for the next prototype iteration.

The Evaluation Plan for a formal evaluation should tell how the application will be evaluated. It

should focus on what will make the current project a success (project goals, current prototype

iteration goals). It should identify specific evaluation activities, including evaluation scenarios

and interview questions. For a formal evaluation of a major prototype iteration involving several

users, it should identify a detailed usability test procedure.

Section 7 contains a detailed discussion of the evaluation process.

3.7 Define Requirements

When the project goals have been met, then the design phase of the project is over. Require-

ments can be written, for implementing and deploying the application. The prototype embodies

the bulk of the requirements, and a small, supplemental document identifies the critical portions

of the prototype and the purpose behind the designs that appear in the prototype. Putting the

requirements set (prototype plus document) in the language of the user makes it easier to

understand and evaluate the requirements. This also makes the requirements less expensive to

generate, and aids programmers re-implementing the prototype. The prototype shows the new

implementers a good implementation, and the requirements tell the purpose behind the design of

II

the prototype. If the new implementers need to change the design to fit the new environment,

they can make informed design decisions.

Since the requirements document supplements the prototype rather than trying to carry the entire

specification burden, it can be much shorter than the traditional requirements document. Tradi-

tional requirements documents are exhaustive accountings of software functions, data interfaces,

and human interaction design. They are expensive to write and often difficult to read. They are

difficult to evaluate because they are too detailed and written in the language of the developer,

not the user. Their length gives the user an impression of completeness, but makes it difficult to

verify completeness.

4. Develop a Task Description

The development of task descriptions and generic task scenarios is commonly called task analy-

sis. Task analysis for our method of designing human interactions with intelligent system differs

from a traditional one by being much briefer, more flexible, and including an extra phase where a

team architecture is considered. A traditional task analysis can be exhaustive, including multi-

level descriptions of current tasks, reorganized tasks in light of the new applications, new alloca-

tions of tasks, etc. However, projects rarely have sufficient resources for such an exhaustive,

traditional task analysis. Furthermore, by doing all the task analysis work before any design

begins, the traditional methods tend to make the task analysis a static product. An unfortunate

consequence is that if the analysts are mistaken about the task, there is no graceful recovery.

Finally, being static, traditional task analyses don't accommodate the appearance of a new team

member, the intelligent system. By contrast, consider how a new human assistant would be

introduced into the work situation. Some parts of the task would be given completely to the new

assistant. As the assistant demonstrates competence, he may be given more tasks. A way of

sharing information would be "worked out" with the assistant. More importantly, a way of doing

business would be developed to change the allocation of tasks dynamically during critical times

so that the senior panner (the human) can make the really tough decisions. Thus, in order to

accommodate an intelligent system that can provide varying levels of task assistance, task

description methods need to flexible and need to be able to accommodate intelligent system

characteristics that cannot be known at the outset of the project.

4.1 Uses of the Task Description

It is important to avoid the common mistake of assuming that the most exhaustive task analysis

will be the most useful. While we agree that understanding user tasks is imperative, our recom-

mendation is to identify the uses of the task description and to do no more than is needed to

satisfy those uses. In this manner, the design is not delayed and effort is not wasted writing parts

of a document that are never used. Also, while we agree that the bulk of task description is done

before development, we recommend revising the description throughout the project before

designing each new prototype. This preserves flexibility and also discourages developers from

thinking of the task description as a static product that must be perfected before beginning any
design efforts.

12

The principal uses of task analysis are to:

* Identify, confirm, or revise goals, objectives, and priorities for design and evaluation:

- critical functions of the software and user strengths that should be supported

- task difficulties and bottlenecks, the main problems for users that the software should

help overcome

- current human tasks which are performed frequently or consume considerable time,

which could be expedited by software assistance

• Identify the setting--other software, tools and resources that are used. the situation in which

use of the software is embedded (helps identify conflicts and needs for consistency)

• Identify users--types of users and their characteristics

• Help identify task allocations and team architecture for the system of humans and intelligent
software

• Help identify user interface design elements and information needs--flow of tasks, steps,

choice points, task variations

• Perhaps eventually lead to user models (how the user thinks about use of the software---user

actions on objects when using the software, preparation and cleanup) or to formal analysis of

sub-task microstructures (We have not found it helpful to do such detailed modeling or

formal analysis.)

4.2 Elements of the Task Description

While the uses of the task description should be the definitive driver of what information to

include, it is sometimes helpful to see a list of candidate task description elements. You will

need to consider whether the items on the list below are related to the uses your project will

make of the task description. This list is provided to help you to avoid overlooking information

that might be important for designing your application.

• Description of users

- Level of expertise in subject matter

- Expected frequency of use of new software application

- Level of expertise with software in general

- Other relevant user biases and expertise which should influence HCI design

• Purpose of overall person-system task

• Task list, task descriptions---list or diagram of activities and tasks, perhaps showing ordering,

grouping, and dependencies among activities

• How software will support that overall task

• Identification of what is currently difficult (may want to get quantitative measures so that

effectiveness can be demonstrated later)

- error prone

- time constrained

- laborious

13

• Information Requirements

- information needed by the user at each step

- information the user provides the software (and how to make it easy to provide that
information)

• Management of intelligent system--_eam architecture

- keeping user informed (current state, controls issued, effects of controls issued)

- providing controls to user

- sharing tasks

- handing off tasks between the user and the intelligent system

• Failures of monitored system

- how to avoid them

- how to recover from them

• Failures of new software application

- how to avoid them

- how to recover from them

It should be noted that the above information can be made even more useful to the design proc-
ess when combined with scenario information (Section 5). For instance, the above information

includes the identification of information which must be exchanged between the user and the

new software application (user needs to see elapsed time). Additional design constraints include

how this information needs to be displayed (user needs to compare elapsed time to expected

time) and the type of interaction needed (user needs to be able to reset the timers at any time).

4.3 Sources of Task Analysis Information

Gathering task analysis information efficiently requires some knowledge of sources and how to

use them. If it exists, a corporate knowledge base is a good place to become familiar with user

tasks. This knowledge base should include written task descriptions from previous projects.

This should help you gain a better understanding of the tasks performed by these users, what

makes those tasks difficult, and the strategies that have successfully helped users with those tasks

in the past. If that information is not written, it may still be available by asking people who have

developed similar applications. Unless previous applications support the exact same task as the

current one, this source is probably good for gaining a general familiarity with the users' tasks.

The next recommended source is the user representative on your design team. In the initial visit,

you want to gain some understanding of the relevant tasks, what makes them difficult, what

strategies have been tried to deal with those difficulties, which strategies were successful, and

which strategies were not. In addition, it's a good idea to ask about good written sources for

learning more about the tasks. Written sources allow you to become more familiar with the

users' tasks without having users continually "spoon-feed" you. Reading them communicates

your respect for the value of their time. Written documentation is also probably less likely to

make small errors in details than the users themselves would. However, written sources should

be discussed with the user. Users can help you consult the most reliable sources. Usually, you
have two objectives when looking at written documentation: (1) Build better intuitions about

14

your users' tasks, and (2) get a lot of details when building specific HCI designs. It_ probably

not productive to study this documentation enough to try to duplicate the users' expertise--They

have already studied, they have already practiced, they are good at it, and they are available for

consultation. Below are some written information sources we have found useful for our projects:

• console handbook

• training manuals

• operations checklists

• reports (post-flight, post-phase)

• flight controller written flight logs

• telemetry logs

Finally, it will be necessary to observe users performing the tasks. At a minimum, this is to

acquaint you with small details no one considers important enough to mention. (Oh, sure, we

always write these figures down on a scratch pad because we need them later.) Depending on

the application, observations can also reveal things about the task that users never noticed. (For

example, because they are so intent on performing the task, they may not even notice that they

have to place their fingers on the screen to mark places for repeated scanning and data compari-

sons.) Also, because some tasks require coordinated efforts of many people, there may not be a

single individual who is intimately familial" with every aspect of the task.

In the interest of good risk management, you should consult with multiple users to gain a good

understanding of the task early in the project. The user representative on the design team will

have unique characteristics and may approach tasks in a slightly different way from some other

users. Your broader experience with users early in the project will give you a better perspective

from which to view the inputs from the user representative. It will also help your communica-

tion with the user representative by giving you a more common understanding with him or her

from the beginning. Later, evaluating each prototype iteration will give you the opportunity to

verify (and refine) the generality across the user population of the task information provided by

the user representative.

4.4 Allocation

Task analysis may include allocation of tasks to the intelligent system, to the human, and to both

(shared tasks). In this activity, all the development team members can have active roles. The

user knows what tasks have been error-prone, laborious, and time-consuming. The user also

knows the times when things get so hectic they are difficult to manage--times when some of the

work needs to be off-loaded to the intelligent system. The subject matter expert knows what

tasks are critical and demand the highest levels of accuracy. The human factors engineer knows

the cognitive/perceptual strengths of humans (creativity, insight, dealing with the unexpected,

evaluation of trends, etc.). The software engineer knows what software systems do well

(vigilance; comparing large sets of numbers repeatedly; executing rapid, routine sequences of

commands; making elaborate logical evaluations; entertaining multiple hypotheses simultane-

ously; etc.). As a team, they should be able to allocate tasks so that the new application will be

useful, usable, reliable, and safe.

15

As stated earlier, these methods are to be applied with thought and creativity, not with mechani-

cal rigor. In light of this consideration, the initial task allocation might be attempted as part of

the generic scenario descriptions. The advantages of this suggestion are that (1) the entire team

can be involved in something more concrete (easier to visualize) than the typical task descrip-

tion, (2) it maintains a focus on the overall objectives of the user tasks, and (3) there is less of a

temptation to "dive into the details" prematurely.

4.5 Team Architecture

Task allocation can lead to definition of a team architecture. A team architecture specifies how

human and intelligent system activities will be coordinated. It is an important aspect of building

reliable systems because it also provides alternative ways of achieving goals when planned
activities are not effective:

• degraded performance due to high workload

• goal or plan changes due to failures in the domain system being monitored

The team architecture identifies alternative ways of accomplishing tasks, and it defines points of

coordination between the human and the intelligent system. Even an extraordinarily talented

software development team cannot anticipate every situation that the intelligent system will

encounter. A good intelligent system-human team architecture will preserve the human

capability to take over a task when an unanticipated situation is encountered.

Providing summaries of intelligent system activities and making raw data continually available

to the user is a good way to preserve human options for taking over intelligent system tasks.

When it is necessary for the intelligent system to interrupt the human, it should assist the human

in responding to the interruption. Sometimes message priorities are used to assist the human in

prioritizing responses to these interruptions.

A common way of implementing dynamic task assignment is to provide alternative task alloca-

tions in the form of multiple modes of operation. For example, the intelligent system may have

different control modes that vary its level of autonomy in executing activities. Modes enforce

task reassignment by constraining what the intelligent system can do in a particular mode. Modes

can also provide a context for the presentation of information. Intelligent system capability,

information, and style of interaction can all vary by mode.

As with the task allocation, you are encouraged to consider initially addressing the architecture

with scenarios. They help to maintain a focus on the user's tasks, they help to make development

team contributions more concrete, and they encourage the right level of detail for early architec-
tural decisions.

4.6 Initial Generic Scenario Description

Generic scenario descriptions, the first type of scenarios to be constructed, are an important

product of task analysis. They are abstracted narrative profiles of the most common types of

situations the new application is intended to support. They should read more like a narrative

than a system description or a list of requirements. The intent of the generic scenario is to

identify how the new application will support users, to outline the task allocation, and to outline

16

theuser-intelligentsystemteamarchitecture.Genericscenariosassistthedevelopmentteamin
establishingtheobjectivesof thenew application.

Genericscenariosshouldillustratewhatmakesthenewapplicationuseful. While theyare
important,theyneednot be long. Their purpose is to build a common understanding of how the

new application wilt support user task performance. When done well, they will guide decisions
about

• allocating tasks to the person, the intelligent system, or both

• the important information to capture in the task analysis

• how to demonstrate the prototype to show off its capabilities and usefulness

• how to evaluate the utiiity and usability of the prototype

• additional scenarios to build for evaluating prototypes as the project matures

4.7 Iteration and Progression Over Project Life Span

Construction and evaluation of the first prototype results in improved understanding of the users'

tasks, their allocation, mad the team architecture. This information can be helpful in document-

ing the system for user training and for future software maintenance. As understanding is

improved and details stabilize, they should be identified in the task description to improve

coordination among the development team and to expedite future system documentation and

evaluation. Improved understanding of allocation and architecture policies are identified as

much for development team coordination as for system documentation. Efficient expenditure of

development resources is a prime consideration. Details are captured when they are readily

available (as they are uncovered) rather than after they are partially forgotten. Furthermore,

details are captured only to the extent that they will be usefuI for team coordination, design or

evaluation decisions, or specific training or maintenance documents. Traditional, final-form

system documentation is not attempted until the system is formally delivered.

Iteration is a means of spending fewer development resources while controlling the risk of

having an incomplete task analysis. Initially, you should perform enough task analysis to gain a

general knowledge of the users" tasks that will be supported by the new application. In addition,

the specific tasks addressed by the first prototype iteration should receive a little more attention.

If designing the prototype reveals an incomplete understanding of the task, then the task analysis

should be revisited. Also, when additional functions are added to future prototype iterations,

additional task analysis wiI1 probably be required. Thus, by iterating between design and task

analysis, you can be assured that the details you add to the task description are indeed useful to

the design process.

4.8 ImpIications for Designing Human Interaction

The task analysis yields requirements for human interaction design. It identifies information

that should be exchanged between the human and the intelligent system, the task architecture for

tasks shared by the human and intelligent system, and restrictions on the way in which the

human and intelligent system wiit interact.

I7

If theapplicationis innovative,thetaskanalysisis almostguaranteedto beinaccurate.Conse-
quently,while thetaskanalysisisa goodplaceto begin thedesignof interactionbetweenthe
intelligentsystemandthehuman,theprocessis iterative. Problemsmaybediscoveredin the
taskanalysisduringhumaninteractiondesign,andyou mayneedto refinethetaskanalysisby
comparingit to a scenariowhich, in turn,mayforcea refinementof thescenarios.These
changesmayalsohaveimplicationsfor theevaluationplanandthegoalsfor thenextprototype
iteration. This activity helpsto inform yourhumaninteractiondesignchoicesandimprovethe
prototype.

4.9 Implications for Evaluation Plan and Scenarios

Task analysis and generic scenarios can help focus prototyping by leading to an initial definition

of an evaluation plan and fragments of evaluation scenarios. While we don't recommend trying

to complete these products before designing the prototype, we have found rough drafts of these

products helpful in focusing the design efforts toward the upcoming evaluation.

4.10 Final Cautions

In summary, it is imperative to understand the users' task in order to design a software system to

support that task. That understanding will influence not just the prototype designs; it will influ-

ence the development and revision of every development product. However, it is also imperative

to avoid two common mistakes associated with task analyses. First, you should not try to have a

completely finished task description before you begin your prototype design. Even if you could

write an accurate description at this point, the prototype itself would probably render it obsolete.

Second, you should not write a more exhaustive task analysis than you plan to use in your

project. There is no guarantee that anyone beyond the current project will ever want to read

the task analysis, and it will probably be rendered obsolete when the new software system is

deployed. You will experience less of a tendency to commit these mistakes if you make certain

that you have user involvement throughout the design process because the users themselves can

be the best providers of task information.

5. Build Scenarios

In this section, we describe how to select events for a scenario, how to identify what type of

scenario it should be, and how to construct scenarios. Scenarios are selected and developed to
influence both design and evaluation of prototypes.

5.1 Scenario Selection

Selecting of events for scenarios is similar to selecting a project in that two questions should be

kept in mind: "Is it worth doing?" and "Can we do it?" The user representative on the develop-
ment team should help with the assessment of what is valuable to demonstrate. "If we include

this event (in the scenario), would it demonstrate valuable assistance to you?" (Is it worth doing?

Will it illustrate the successful support of a part of the task which is currently difficult? Does it

highlight the aspects of your job that you currently find difficult, which need better computer

18

support?)Thesubjectmatterexpertshouldassesswhetherthe events in the scenario are

probable, possible, and plausible. The software engineer, human factors engineer, and graphics

designer should all assess whether the scenario can be supported with the next iteration of the

prototype (Can we do it?).

5.2 Levels of Scenarios

As a project progresses, different types of design scenarios are needed. Each type of scenario

identified below serves a different purpose. We have found the following progression to apply to

our projects:

1. generic scenarios (developed as part of the task description)

2. nominal scenarios

3. failure and off-nominal scenarios

4. specific variations and less frequent scenarios

5. integration scenarios

This progression, also illustrated in the lower portion of Figure 2, is only approximate.

Generally, there should be a progression from simple scenarios to complex: from frequently

occurring to rare; from scenarios featuring absolutely required capabilities to those featuring

nice-to-have capabilities. For formal evaluation, events are extracted from these design
scenarios and recombined into new scenarios.

5.2.1 Nominal Scenarios

Nominal scenarios describe the most common situations that will be supported by the new

application. Unlike the generic scenarios, the nominal scenarios are concrete enough to be

specified with a time-ordered event list. In fact, in many instances, a simulated data stream with

these common scenarios should be built to evaluate the prototype.

Nominal scenarios are used to design the first truly interactive prototypes. They don't include

off-nominal events because the prototype is not ready for that level of sophistication. These are

the first prototypes to include both user interaction and intelligent system functioning. The

nominal scenarios are the first to have sufficient detail for testing an interactive prototype. As a

consequence, they are the first that can provide concrete evidence whether the newly introduced

task of managing the intelligent system has been designed well. It is important that when you

introduce new intelligent system functions, you also develop scenarios that enable the users to

evaluate their ability to perform the emergent tasks of controlling and coordinating with the

intelligent system.

5.2.2 Failure and Off-Nominal Scenarios

Once the prototype has been proven useful in the context of the nominal scenarios, it is time to

expand its ability to deal with errors. This is the role of the failure and off-nominal scenarios.

There are three classes of error that should be included in this group of scenarios.

19

The first class is failures in the monitored process. Most of the software we develop monitors

external processes to help a human operator recognize and identify failures and off-nominal

conditions. An example of a failure in a monitored process would be an aborted end effector

grapple for the Shuttle arm.

The second class of failures to represent in these scenarios is human error. The design of human

interactions with an intelligent system should include the prevention, reversal of, and recovery

from human error. Examples of this type of error can range from a data entry error to a Shuttle

arm operator initiating a procedure before all the preconditions have been met.

Finally, the third class of failures is that of the intelligent system errors. It may be painful to

admit, but your intelligent system will make mistakes. Also, even though there may be no fault

in the intelligent system, the user may need to reject its conclusions or override a recommenda-

tion. Scenarios that illustrate the ability to override individual conclusions and the ability for the

user to take over intelligent system tasks are important for building user confidence. These

scenarios show users that, even if the worst thing happens (they don't trust the expert system),

they can always take over its tasks. The objective is not to build a perfect system, but rather to

build a system tolerant of failures. An interesting example of this type of scenario was provided
early in the DESSY project (Malin, Thronesbery, & Land, 1993). The scenario was that there

would be a loss of signal from the Shuttle for a few minutes, during which the ann would have

been moved to a new position--which would appear to the software system as a sudden change

from one position to another without having occupied any of the interim positions. While it is

not common to receive arm configuration data in this sequence, it does occasionally happen
(because of data dropouts), and using that scenario helped to make DESSY a more robust

application.

Failure and off-nominal scenarios can usually be built more easily once the common scenarios

are well understood by the design team. While it is probably not possible to be exhaustive in

testing all combinations of failures and errors, it is a good idea first to test each failure in isola-

tion (e.g., single-fault, rather than multiple-fault) and later to look at some of the most probable

failure combinations. Often, in scoping operations monitoring intelligent systems applications,

the users will agree that the complexity of dealing with multiple failures results in a diminishing

return for the large amount of development effort. If they are outside the scope, then multiple-
failure scenarios aren't needed in prototype evaluation.

5.2.3 Specific Variations

Specific variations and less frequent scenarios are usually developed next. Examples of this type

of scenario for the remote manipulator subsystem end effector DESSY project would include end

effector checkout scenarios. Because there is no payload to grapple, the sequence of events that

must be accommodated is slightly different from a normal grapple or release. In addition, a

checkout often involves backup systems that probably wouldn't be involved in the common

scenarios. Also included in the specific variations scenarios would be some less common types
of failures or errors.

2O

5.2.4 Integration Scenarios

Integration scenarios should be employed to ensure that the new application can be integrated

into the software environment and the task environment where it will ultimately be used. The

software environment integration includes connecting to a data stream, interpreting it correctly,

dealing with erratic data. and making certain that real-time processing constraints are met. Task

environment integration includes ensuring that information is available to the operator when it is

needed and ensuring that the task loading of the operator is not overwhelming. An important

problem to avoid is the situation where the new intelligent system is most demanding during a

time when the operator is already busy with other tasks.

5.3 Scenario Construction

Once you have decided what the next scenario should be and the rnajor events that should occur,

you must then construct the scenario, with specific events and time-stamps. The following

description of a three-pass construction process should help you get going:

First, observe the user in performing the task with few (if any) interruptions so that you can

write a gross-level description of the scenario. For the generic scenarios, this is as far as the

construction process goes. The only thing remaining is to verify the accuracy with the user. For

other scenarios, the user might arrange for playback data for those events. However, when narra-

tive descriptions of scenarios are being developed, it might be sufficient for the user to describe

what data changes, when, and what he or she must do about it--while sitting in front of the

current operational displays.

The purpose of the next pass is to add details. This is accomplished by having the user step

through the scenario slowly, with interruptions to answer detailed questions. You can supple-

ment this information by reading reference and training manuals.

The final pass is to edit the details so that they are correct and realistic. Correctness can be

verified by the user and subject matter expert and by referring to manuals. Realism is a little

more difficult, but can be approximated by building a simulated data stream, running the proto-

type, and having the user-designers and subject matter experts evaluate the scenario as they see it

unfold. Later, it would be good to compare it to recordings of actual data streams, if they are

available. For software systems we have developed, recordings of data streams during Shuttle

missions were helpful for ensuring realism.

Sometimes this sequence cannot be followed. For instance, when building a completely new

facility, there are no users to be observed performing the task to be supported. In such a case, the

three-step process identified above cannot be followed literally. Probably, the best approach in

such a case is to build the scenario in an iterative fashion, using requirements and operations

concepts documents and consulting with domain experts. The goals of the three steps can still be

used in this case: First, try to identify the general events which should occur in the scenario, then

add details, and finally, verify the accuracy of those details. It is important to consult with the

domain experts during the verification of the details of the scenario.

21

A scenario will be constructed to guide the design and evaluation of a specific prototype itera-

tion. However, once it has been used to evaluate the prototype, it will continue to be useful in

evaluating subsequent iterations of the prototype as well. Consequently, there will be refinement

of the scenario based on the evaluation, as well as refinement of the prototype.

6. Design the Prototype

At the heart of our methods is designing the prototype. Designing the prototype is participatory

(involving users, subject matter experts, software engineers, and human interaction engineers)

and iterative. The iterations involve informal evaluations (discussed in Section 7). Design

scenarios are used to focus the team on user task support and provide a common language for

people with varying perspectives and expertise.

In the following discussion, we will focus on the design of the human interaction, though it

should be kept in mind that there are a number of concurrent design activities required to make

the prototype interactive, to make it intelligent, and to make its processing accurate. In this

section we discuss levels of prototypes and their relation to levels of evaluation.

Before you can get started, you must decide the medium in which you plan to prototype. A

comparison of the following levels of prototypes and the purposes served by each to your goal

statement for the next iteration should help you to decide whether to use paper storyboards,

computer display storyboard, a special-purpose prototyping language, or a high-performance

programming language. As a rule of thumb, initial feedback for a new human interaction design

should be obtained from a low-cost implementation, whereas refinements require increasing

approximations to the final implementation medium.

Following the principles of spiral development, we have identified different levels of prototypes,
corresponding roughly to the maturity of the project:

1. storyboards and design mockups

2. evaluation prototypes

3. operational and integration prototypes

The general progression of these levels is illustrated in the middle portion of Figure 2.

6.1 Storyboards and Design Mockups

Initially, it will probably make sense to build a storyboard of the user interaction--before a

functioning, interactive software prototype is attempted. The goal of such a prototype is to

verify (and refine) the initial, generic scenario, the initial task analysis, and the general manner in

which the new application will support the users' tasks. By starting with a storyboard, you will
have invested less effort before getting your first evaluative feedback of the human interaction

designs. You are also not dependent on the completion of initial software engineering efforts

before obtaining initial feedback on the type of human interaction you are planning.

22

Dependingon the tools at hand, the storyboard may be paper-based, World Wide Web-based, or

may be supported by some other tool. A critical factor is that developing the storyboard should

not be labor intensive. Consequently, there is typically no automated processing behind a story-

board. Sometimes computer-based storyboards may allow navigation from one screen to the

next, depending on the button pressed, but it would not involve intelligent system processing.

The storyboard is used to explore the accuracy of the scenario and the design of the human

interaction.

The purpose of the storyboard is to elicit feedback from the user (usually the user representative

on the design team). Since this is likely an early experience in the project for the user represen-

tative, the storyboard should have some initial, orienting description telling how the software is

to support the user during the course of the scenario. The initial description should be short (a

page or less). It should be followed by a series of frames or "screen snapshots" which show

important parts of the interface as the scenario develops. Since the intent is to test human

interaction designs without investing much implementation time, the screen snapshots should be

hand-drawn. As you gain confidence that the designs are meeting the user's needs, you can

invest more into an interactive prototype design, rather than a hand-drawn sketch of how a

display might look. Each of the frames should also be supplemented by some text pointing out:

• scenario developments that caused the display to look the way it does

• design decisions that you think support the users' task performance

• design decisions for which you especially want feedback from the user representative

• specific information questions for the user representatives (or any other design team member)

that you need in order to improve the human interaction design

The practice of anticipating the interaction with the user representative around the storyboards

will help to orient you for similar activities when meeting around subsequent interactive

prototypes.

6.2 Evaluation Prototypes

Following the storyboard is a series of evaluation prototypes, whose primary purpose is to elicit

an informative evaluation from users to refine the requirements of the new application. Eval-

uation prototypes will probably constitute the largest number of prototypes for the project,

beginning with the first implementation, which offers user interaction, and culminating in an

implementation which accomplishes the project goals of supporting specific users' tasks.

At the time in the project when evaluation prototypes are to be developed, you will need to

determine what prototyping medium or computer language to use. On one hand, a special

prototyping medium is ideal for the evaluation prototypes because they can be modified,

sometimes dramatically, without a great deal of effort. This will encourage the exploration of

alternative ways of supporting users' tasks, and it will encourage users to provide a frank

evaluation (rather than just approving of a design because the developers seem to have worked

so hard). Sometimes prototyping languages do not have the speedy performance of a lower-level

programming language. So, if your system has some difficult performance constraints, you

might be forced to translate the system into another language, later, as it becomes an operational

prototype. Translating the system into another language is difficult, error-prone, and consumes

23

development resources. Furthermore, different languages place different restrictions on graphic

forms available to implement a design. As a consequence, the developer may prototype graphic

forms that cannot be implemented in the final application, or graphical forms that would serve

the user even better may be overlooked in the prototype because the prototyping language did

not easily accommodate them. Consequently, as early as the initial evaluation prototypes, you

will be faced with making a calculated risk in selecting the language in which to write the

prototype.

The selection of a development language can be difficult, but perhaps the following discussion

will help. If you anticipate a number of false starts in designing the intelligent system and the

human interaction, then the special prototyping language should be favored. If real-time proc-

essing constraints are severe and the intelligent system and human interaction are relatively

straightforward, the low-level language should be favored. However, for some projects, where

both intelligent system and software performance requirements are expected to be difficult to

achieve, it might actually be better to identify requirements (with evaluation prototypes) using a

prototyping language and then to develop operational and integration prototypes using a lower-

level language. Other factors to consider include the:

• programming expertise of the human interaction designer

• availability of programming expertise to convert prototype to operational system

• tools available to you at the time of prototype development

Since the purpose of the evaluation prototypes is primarily to elicit feedback from the user

representative, you should plan the meeting with the user representative, just as you did with the

storyboards:

• provide a scenario context for the user representative to help him or her stay task oriented

• point out design decisions and get feedback about whether they achieved their goals

• be prepared to ask for specific information which you need to improve the prototype designs

6.3 Operational and Integration Prototypes

After the evaluation prototypes are the operational and integration prototypes, in which the new

application is nearly fully operational and integrated into the software and task environment

where it will be used. Software integration involves connecting to data streams, dealing with

noisy data, exchanging information with other processes, and sharing computing and display

resources with other software applications. Task integration involves evaluating the new

application in the workplace, with all the other concurrent activities, interruptions, etc., which

typically occur while the user is performing the tasks supported by the new application.

An operational prototype is a functional implementation that can support the user. Occasionally,

it may need to be re-implemented in a more efficiently executing language. At any rate, if the

application is a useful one, it will need to continue evolving after the initial deployment. Keep-

ing an easily modified prototype around will enable you to continue the iterative development so

that the application's evolution will continue to be useful. For instance, if users want a new

capability added, the new designs can be refined in the prototype, so that only the best designs

need to appear in the deployed system product.

24

As with otherprogressionsidentifiedin ourmethod(Figure2), theprogressionaccordingto
levelsof prototypesisnot hardandfast. Forexamplesomeintegrationprototypingmay occur
beforeall theevaluationprototypingiscompleted.Also, it mightmakesenseto havemorethan
onelevelof prototypewithin thesameproject. For example,whenaddinganewcapabilityto an
evaluationprototype,it mightmakesenseto storyboardthatcapabilityto refinethescenarioand
new interactionrequirementsbeforeaddingmorecodeto theevaluationprototype.

7. Evaluation

During evaluations, users determine if the prototype is providing the right task support in the

context of a specific scenario. They report their evaluations either with words (by answering

questions or volunteering information) or with actions (by performing the task quickly, without

hesitation, and with few errors). The results of the evaluation will indicate where the prototype,

scenarios, and task understanding need improvement.

7.1 Formal vs Informal Evaluation

We use three types of evaluation: informal, formal, and outside. Informal evaluations are an

integral part of the design process. They take place on a continual basis during the design and

development of a prototype iteration. Formal evaluations, on the other hand, are used between

prototype iterations. They involve evaluators who were not involved in design, and are used to

ensure that the design team hasn't "taken a wrong turn." Occasionally, an outside review can

help to supply a perspective that is difficult to achieve from within the design team.

7.1.1 Informal Evaluation

Informal evaluations are performed by development team members, including the user represen-

tatives. They are extremely important in producing a usable, useful prototype in a very short

amount of development time. In fact, we have referred to the informal evaluations in this Field

Guide under the discussions of scenario generation, task analysis, and prototyping. Informal

evaluation is most productive in rapid, collaborative design sessions where there are representa-

tives with user task knowledge, subject matter expertise, human factors expertise, and software

development expertise. Note that, depending on the individuals involved, two people could

represent all four viewpoints. Using this method, the developer leads the user (and subject

matter expert) through a scenario and a demonstration of the prototype. When a point of discom-

fort is encountered, modifications are made. The type of modification depends on the type of

difficulty: human factors, task support, or subject matter accuracy. Modifications may be

needed for both the scenario and the prototype. Suggestions for the modifications could come

frown anyone--the value of having representatives from so many viewpoints is that the modifica-

tion can be given a preliminary review from all viewpoints at once. If an idea is obviously

impractical from any of these viewpoints, it won't live long, and not much effort will be invested

in it--another idea can be offered in its place. Ideally, changes can be made to the prototype on

the spot to see if it works as everyone anticipated. If the suggested change is too extensive to

make on the spot, it's probably a good idea to try to sketch out the implications of the change so

that everyone is clear about what is intended. This way, the software developer can be more

25

certainthat thesolutionwill beaboutrightbeforeinvestingthetimeto implementthisextensive
changefor thenextgroupdesignsession.Thestrengthof this typeof interactive,collaborative
designsessionis that manydevelopmentiterationscanbeexploredin averyshorttime interval.

A potentialweaknessis thatit coulddegenerateinto supportinga singleuser'spersonalprefer-
ences.Thisdesignpitfall hasbeendubbed"designby Mikey likes it," emphasizingthefact that,
evenamongactualusers,personalpreferencesdiffer. (JustbecauseMikey likes thatbreakfast
cerealdoesn'tmeanI will.) Thegoalof humaninteractiondesignis not to caterto asingle
user'spersonalpreferences,but to supporttaskperformanceby all users.Oneway to avoidthis
pitfall is to consultwith multiple usersduring theinitial taskdescriptionandgenericscenario
definition and,later,to involvemultipleusersin theformalevaluation. Anotherway to avoid
this pitfall is to bringa strongtaskorientationto thecollaborativedesign(evaluation/modifica-
tion/iteration)session.Directivequestionscanhelpprovideataskorientation:
• Will this helpyou to performyour task?
• Canyou find all the informationyouneedfor thenextdecision?

Anotherway to helpensureacontinualtaskfocusis to workwithin thecontextof scenarios:
• As themicroswitchfailurebegins,doesthisdisplayprovideyou withenoughinformationto

recognizewhat is happening?
• Canyou distinguishthis failurefrom otherpossiblefailureswith the informationin this

display?

• Is thereothercontextualinformationthat shouldbeprovidedsothatyoucanrecognizewhat
failure isdeveloping?
Is theremoreinformationthatshouldbeshownsoyoucandecidewhatto doaboutthe
developingsituation?

During aninformal evaluation,behaviorobservationtypically amountsto watchingfor
unexpectedbehaviors,noticingwhenusersseemto havedifficulty (provideobviouslywrong
responses,takelongerto respondthanexpected,appearconfused,or appearfrustrated).Try to
selectamomentwhenyou will not interrupttheuser'staskperformance,butbeforehehas
forgottenwhatwascausingthedifficulty. Then,askwhatwasgoingon:

• I expected you to push the blue button, here. What caused you to push the green one? How

might the wording be changed (or How might the task be re-arranged) so that you would

have pushed the blue button (made the expected response)?

• That last question seemed to be harder to answer than I expected. Did it seem difficult to

you? What could we do to the prototype to make that question easier?

After a few of these questions, most users will be giving you all kinds of constructive criticism

(and creative ideas) with very little additional prompting.

7.1.2 Formal Evaluation

Whereas informal evaluations tend to have extensive involvement of a single user representative,

formal evaluations usually involve many users--users who have not been participating in the

design of the prototype. Formal evaluations help to ensure that you aren't tailoring an interface

26

to a singleuser. Theyarelessfrequentthantheinformalevaluationsandarenormallydonefor
majorprototypeiterations. Anotherdistinguishingfactorfrom theinformalevaluationis that
modificationsarenot madeduringtheformalevaluationsession(nocooperativedesignses-
sions). Usually,multipleuserswill completetheformalevaluationfor thesameversionof the
prototype.

Formal evaluations are typically more objective than informal ones. Objectivity is an important

characteristic, ensuring that you are reliably measuring usability and usefulness across an entire

group of users. Objective measurements include quantitative measurements (e.g., response times

or number of correct answers). They also include multiple choice questions and short comple-

tion answers that can be tabulated and summarized across users in the evaluation report. Even

subjective judgments from users are treated more rigorously in the formal evaluations. For

instance, you can provide multiple choices to a preference question (Which capability would be

most helpful if added in the next prototype iteration?).

7.1.3 Outside Review

Occasional outside reviews are recommended. They can be helpful for all aspects of design;

however, most outside reviewers will not already have an in-depth knowledge of your users'

tasks and the best ways to support them. Probably the most efficient use of outside reviewers is

to provide them with a description of the users' tasks, what makes those tasks difficult, your

strategies for addressing those difficulties, and the prototype and scenarios. By giving the out-

side reviewers all this information, you will make it easier for them to comment on all aspects

of the design and to offer suggestions for improvement and alternatives to consider. Outside

reviewers might be consulted early in the project to ensure that you haven't overlooked any

obvious strategies for addressing users' tasks needs. Outside reviewers are probably even more

valuable in concentrating on the usability of a more mature prototype, performing a heuristic

usability analysis. The outside reviewer is especially important at this point because develop-

ment team members will most probably have lost objectivity for evaluating the usability in the

later stages of the project. Also, because of the fresh look at the prototype that outside reviewers

can bring, they can help evaluate the consistency with which interactions are handled across the

application. Finally, an outside reviewer can often zero in on specific usability problems

whereas users may only be able to express that they are having difficulty with specific parts of
their tasks.

7.2 Preparing a Formal Evaluation: A Products View

This section is illustrated by Figure 3. Evaluation objectives are based on the prototype objec-

tives, which are, in turn, based on a knowledge of the supported user tasks. Interview questions

and evaluation scenario events are based on the evaluation objectives. Scenario events are used

to develop evaluation scenarios and to determine what session training will be needed so new

users can perform the tasks to support the evaluation. Finally, the interview, evaluation scenar-

ios, and session training are combined into an evaluation agenda so that each evaluation session

will be conducted according to a specific plan.

27

I Task Description(previous design product) 1

Prototype Objectives
(previous design product)

Evaluation Objectives
• Understanding user tasks

• Utility of support strategies

• Usability of implemented user

interactions

Interview

• objective questions

• subjective questions

Evaluation Scenarios
• main prototype

• paper prototype

• alternative displays

Events
• user tasks

Design Scenarios _ • emergenttasks(previous design product) (automation management)
• events to exercise tasks

Evaluation A_,enda
• session training

• practice
• tasks & scenarios

• questionnaire

Trainine
• Orientation

- evaluation objectives

- evaluator's role

• Training Materials

- how to use prototype

- cue cards

Figure 3. Evaluation Plan Products

The arrows in this diagram are not intended to imply a strict sequence for creating each product,

but rather a loose set of dependencies. The need for caution against a sequential interpretation of

the arrows is illustrated by the following: In the course of determining the evaluation objectives,

designers discover that a prototype objective was overlooked because of an incomplete under-

standing of the supported user task. The prototype objectives should be modified to fit the

improved understanding, as well as all the other products with dependencies on the prototype

objectives. Designers need to be alert for this type of opportunity for improving the prototype.

The paragraphs below describe each of the evaluation plan products in more detail. Although a

strict sequence of actions cannot be stated for developing an evaluation plan, the designer can

plan a formal prototype evaluation by attending to each of these products in a somewhat iterative
fashion.

Finally, the products described below should probably all appear in written form, but need not be

standalone, formal documents. For an example write-up of the supported users' tasks, prototype

objectives, and evaluation objectives, see http://tommy.jsc.nasa.gov/-clare/methods/sit_eval/and

http://tommy.jsc.nasa.gov/-clare/methods/artis_eval_plan.rtf.

28

7.2.1 Previous Design Products

Evaluation is an integral part of design. If the design is attempting to achieve a particular

objective, the evaluation should see if that attempt was successful. To ensure unity of purpose

between evaluation and the design being evaluated, the evaluation makes use of information and

understanding gained earlier in the design process: supported users' tasks, prototype objectives,

and design scenarios.

The task description identifies those parts of the user's job which are to be made easier by the

software you are designing. The relevant parts of the task description should be identified in

your evaluation plan for a given formal evaluation.

The prototype objectives are the specific objectives to be achieved by the current prototype

iteration. There should be a strong relationship between the supported users' tasks and the

prototype objectives. However, depending on the maturity of the project, the current prototype

may not attempt to address all of the difficulties facing the user in the performance of the

supported tasks. The prototype objectives identify which portions of the users' tasks are being

addressed by the current prototype.

Finally, the design scenarios that have been used to help design the prototype can be instructive

in identifying the scenario events that should support the evaluation. In design, these scenarios

complete the supported user task definition by supplying specific details and they exercise the

prototype in accomplishing its new objectives. Since both of these features are needed in the

evaluation, it makes sense to borrow from the design scenarios. However, in the interest of

making sure that the prototype doesn't just support one scenario, it is a good idea to borrow

events from the design scenarios rather than just copying it wholesale for the evaluation.

7.2.2 Evaluation Objectives

The evaluation objectives provide direction to the evaluation. When conflicts arise, solutions

must be based on meeting the important evaluation objectives. They should be understood in

relation to the prototype objectives, their role in improving the prototype, whether emergent

tasks are supported, and how they add to corporate design knowledge.

7.2.2.1 Evaluation Objectives: Based on the Prototype Objectives

The evaluation objectives are guided by the prototype objectives and by design scenarios which

are, in turn, influenced by the prototype objectives. Because the design scenarios should be

oriented to address the prototype objectives, evaluation scenario construction should go a little

easier if you use events from the design scenarios. (Evaluation scenarios shouldn't be identical

to the design scenarios, however, so that you can be sure the prototype isn't oriented to support-

ing .just one case.) Scenario events are identified to address as many of those objectives as

possible. When objectives cannot easily be addressed by scenario events, interview questions

are constructed to allow the evaluators to address those objectives. This is the relationship of the

evaluation objectives to the other evaluation plan products, as illustrated in Figure 3 ("Evaluation

Plan Products").

29

7.2.2.2 Evaluation Objectives: To Improve the Prototype

To identify evaluation objectives, you should look beyond the stated prototype objectives to ask,

"What parts of the prototype need improving?" The questions below should suggest additional

important objectives to the evaluation planner:

I. Does the human interaction design provide sufficient task support?

2. For those designs that need to be improved, how should they be improved?

3. What new capabilities should be added to the next prototype iteration?

4. What changes need to be made to the scenarios to make them more realistic?

5. What changes need to be made to the scenarios to make them reveal the usefulness and

usability of the prototype?

6. What changes should be made to the other design products (project goals, task description,

evaluation plans)?

Another way to ensure that needed improvements are found during the evaluation is to consider

how the evaluation report will be used. Figure 4 ("How the Evaluation Report Is Used") shows

that the evaluation report provides inputs for improving the prototype design, revising

requirements for the final implementation, and adding to the corporate design knowledge. The

requirements path was added because some of our projects involve handing off a prototype for

final implementation by an external development organization--one that specializes in writing

and certifying operations software. The value of looking at this wider scope is to ensure that the

evaluation covers all the issues that should be addressed in the final report.

EValuation Report

..... "_ (Prototype Obiectives for next_'_

rrotmype Improvements ___,:__ // l --
• prototype & scenano mprovements / /" _ /

...... , I.._..._l • Priority-ordered improvements /
• Drlorltlzed a¢corolnl_ to UTIDaCIto task n vi _ 1

. /l Addmonal goals (expanded scope) of I
peI'[oFn'l_lnce // /

<
Revised Requirements

• pre-evaluation requirements

• changes suggesled by evaluation

\
_land Off to Development 1
]Organization

r "final" implementation

Corporate Desi_,n Knowledge
• Lessons learned (all three levels)

- Understanding

- Utility

- Usability

• Design Patterns

• Candidate Requirements for fulure prnject

J

Figure 4. How the Evaluation Report Is Used

3O

7.2.2.3 Evaluation Objectives: To Evaluate Support for Emergent Tasks

Another set of evaluation objectives can arise from the fact that innovative automation often

causes new user tasks to emerge. For instance, intelligent systems, while providing valuable

assistance, need to be managed. It is important to evaluate how easily the intelligent system can

be managed. Below are some candidate objectives for you to consider in relation to the emer-

gent task of managing the new intelligent system intelligent system:

i. If the user loses confidence in the intelligent system at this point in the scenario, can he/she

stop the intelligent system or safely ignore it?

2. If the user has special evidence that the intelligent system is wrong in a particular instance,

can he/she override the intelligent system conclusion (e.g., change the assessment from

"operational" to "questionable)?"

3. If. up to this point, the intelligent system has been performing this task alone, can the user
take over the task now?

4. Can the user describe what the intelligent system is doing at any given point in its execution?

5. Is adequate feedback provided to the user showing the intelligent system management actions

that have been taken? (e.g., Is it obvious when the user has switched to manual mode? Can

users see which manual commands have been issued?)

7.2.2.4 Evaluation Objectives: To Add to Corporate Knowledge

Woods et al. (1996) describe the design process as occurring on three levels: understanding.

utility, and usability. At the first level, the designer works to understand the users' tasks, what

makes them difficult, and how users are managing the difficulty. At the second level, the

designer works with strategies for addressing some of the things that make the users" tasks

difficult--the application is made useful. Finally, at the third level, the designer works with

specific implementations of those strategies--the application is made usable as well as useful.

After completing the design of an application, a designer will have gained some knowledge

which can be useful in similar future projects concerning these three levels of design: under-

standing, utility, and usability. While adding to this corporate knowledge probably shouldn't be

a primary driver for the evaluation, the knowledge for satisfying these objectives is normally

gained during the course of seeking to improve the prototype design.

,, Verifying and refining an understanding of the users' tasks. The understanding should

already be about right because of your previous involvement with the user representative in

the early formative stages of building the prototype. The formal evaluation provides an

opportunity to verify the understanding you have obtained from the user representative and to

refine it by interacting with several additional users who have not been involved in the design

process. Beyond addressing prototype improvements, the long-term knowledge identifies the

types of tasks which are difficult for users to perform. Candidate objectives to consider:

- What are the tasks?

- What makes the tasks difficult?

- Which ones are done frequently?

- Which ones are time-consuming?

- Where do errors usually occur?

31

- What strategies, practices, job aids, etc., help to manage the task difficulty? (This is

oriented toward things external to the prototype which help task performance.)

• Verifying and refining usefulness. The refinements could be more extensive than with

understanding the tasks. Again, the strategies for supporting the user should not be too far

afield, because of the input from the user representative on the development team. Depend-

ing on how many more prototype iterations are planned, new strategies might be explored to

see how the larger group of users responds to them. The long-term knowledge to be gained

is the types of strategies that are effective in addressing difficulties in user task performance.

Candidate objectives to consider:

- What parts of the prototype really help with task performance? Why?

- What parts are of little help? Why?

- What parts are in the way?

- What additional assistance would be desirable?

- Was all the relevant information presented when a decision was needed?

- Can users see at a glance the current state (configuration) and status (health) of the

intelligent system and of the monitored system?

- Can users see what control actions are available? Can they see what actions have been
taken?

- Can users take over part of the automated system's task manually? If so, is it apparent

how that can be done? Can it be done without confusing either the automated system or
the users?

Improving usability. Depending on the goals of the project, the last iteration should proba-

bly be done to refine the usability to a highly finished level. The long-term knowledge is

which display and interaction forms are successful for implementing strategies identified
above. Candidate objectives:

- What interaction forms were easy to use?

- Which display forms were effective? Which were not?

7.2.3 Interview

In our evaluations, we are primarily interested in observing people using the prototype to per-

form a task in the context of a scenario. We are also very interested in the verbal reports that

person can give us telling how well the prototype helped and where it can be improved. The

interview questions sometimes help to explain the observations and verbal reports from the more

objective portions of the evaluation. In addition, the interview can address evaluation objectives
which might not otherwise arise during the execution of a user task:

• What needs to be changed?

• How does it need to be changed?

• What should be added for the next prototyping iteration?

32

Objectivequestions(multiplechoice)tend to be preferable when trying to combine the results

from several evaluators so that the design team will understand how well a particular aspect of

the design worked or how much users would like to see a proposed feature in the next ite,ation.

However, subjective (open-ended) questions need to be included as well, to allow users to

communicate needs and viewpoints the evaluation planners haven't anticipated.

This collection of questions to be addressed has been called an interview because it is conducted

in an informal manner, with a developer asking questions orally and an evaluator answering

them orally. However, in some respects, it resembles a questionnaire, because most of the

questions are written--many are written with multiple choice response options. They are written

so that the developer can be sure that all the objectives received adequate coverage with each

evaluator. They are delivered in an interview format so that it will feel like less work to the

evaluator and to allow an opening to ask follow-up questions to the evaluator's responses.

Sometimes even subtle, non-verbal responses indicate that there is a lot more to learn about a

topic if only you'll ask a follow-up question.

Frame questions so that evaluators will respond from their expertise, rather than having them

give opinions about matters in which they are not expert. For example,

• GOOD: Present a scenario and two displays, asking evaluators which new coding scheme

helps them to locate anomalous data more quickly.

• NOT AS GOOD: Ask what coding scheme (bold print vs. blue text for anomalies) they

prefer for a type of information display.

• DIFFERENCE: No task information to orient the evaluators; phrasing of the question

implies that personal preference is being sought; less concrete assistance for judging coding
schemes.

7.2.4 Scenario Events

Scenario events are the key to constructing evaluation scenarios efficiently without compromis-

ing the quality of the evaluation. The design team scenarios are constructed to ensure that the

prototype addresses the prototype objectives. Because evaluation scenarios have a very sirnilar

function, it would be most efficient just to reuse the scenarios that were originally used to design

the prototype. Unfortunately, this practice could result in a prototype which addresses only one

case: the specific scenario used in both the design and the evaluation. To make the evaluation a

better test of a more general task support, events are extracted from the design scenarios. They

can be modified slightly and recombined to form new scenarios, which can then be used in the

evaluation. This practice improves efficiency by reusing selected scenario events but also results

in a more independent assessment of task support.

7.2.5 Evaluation Scenarios

Scenario events are integrated into connected stories so that the user can evaluate the prototype

in a realistic context. The scenarios help the user to stay task-oriented in his/her evaluation,

which helps to prevent the evaluation session from deteriorating into some disconnected set of

personal preferences. In other words, the scenario helps him/her evaluate how well the prototype

supports task performance rather than whether he/she personally prefers blue backgrounds.

33

Because part of the evaluation is intended to explore directions for future prototypes, some of

the scenarios may call for capabilities that have not yet been built into the current prototype. To

address these questions, it might be necessary to make paper prototypes or to mock up small,

disconnected, exploratory prototypes to elicit better answers from the evaluators about future

capabilities. These techniques can also be used to investigate alternative approaches the

prototype could have taken.

7.2.6 Session Training

Session training includes an orientation supplemented by training materials. The orientation

helps evaluators understand why you are building the prototype, and they need to understand

their role in evaluating it. Fortunately, much of what you have done to prepare for the evaluation

can be used in the introductory materials. For instance, the evaluators should be informed of the

high-level evaluation objectives (e.g., "usefulness, rather than usability"). It is important to

avoid setting false expectations, which could damage the future credibility of the development

team. Tell how the evaluation report will be used in your project (see Figure 4, "How the

Evaluation Report Is Used").

• What is the overall goal of the project?

• If this is one drop in a plan of incremental drops,

- What are the others?

- When are the others expected?

- How is the current drop useful in the short run?

- How will it be useful in the context of future drops?

- Where do evaluator inputs fit within the plan of incremental drops?

What are the evaluation goals? Which are primary and which are secondary?

What will be done with the evaluators' comments, suggestions, and reactions?

Training materials are used to make the evaluators familiar with the prototype so that they can

evaluate it. The evaluators you select should be future users of the system. As such, they should

already be familiar with the supported tasks and they should easily recognize the scenarios.

However, because the prototype is new, they need to be trained to use the prototype to perform

the task. How much training they receive depends on the way in which they are expected to use

the new software. If you were developing a walk-up-and-use information kiosk, the evaluation

probably should not have any training. However, most of our prototypes are for people to use on

a frequent basis. Consequently, it is more important that they be able to use the software well

after receiving some training than to be able to use it without any training at all. We usually tell

them how to perform each task and lead them through an execution of the task using the

prototype.

If the task is somewhat complex, we make graphical cue cards illustrating how each task is

performed. If cue cards are used, they should also be evaluated. An excessive dependence on

the cue card may indicate weakness in the user interface--perhaps a task orientation needs to be

integrated more tightly into the interface. If the evaluator indicates the cue card was useful but

could be discarded after becoming accustomed to the new software, then it should probably be

delivered along with the software--perhaps included as online help, as well.

34

Finally, part of the user training is to set expectations for the users' role in the evaluation. They

aren't being evaluated, the software is (that's why we call them evaluators, not subjects). The

evaluators are helping you by providing insights from the user's viewpoint. You are not only

concerned with how well the software supports them in performing a task, but you are also

interested in how to improve your prototype. Finally, you need to let them know what aspects of

the prototype are of greatest interest at this point in time. In other words, they are the evaluators,

and you are providing them with a view of the evaluation objectives. Initial prototypes will be

concerned more with whether the right tasks are being supported in reasonable ways. Evalua-

tions of later prototypes will be centered more on how effectively that support was delivered.

Consider using the following steps in the session training:

• Explain low-level interaction details.

• Introduce cuecard.

• Lead user through task.

• Gain experience with the basics of the human-computer interaction.

7.2.7 Evaluation Agenda

The agenda identifies everything that should happen during an evaluation session and the

approximate amount of time to be spent on each. Table 2 identifies a typical agenda. The order

is important and has been rather constant across our previous evaluations. The specific times

will vary, depending on the evaluation--often the times will vary with each evaluator.

Table 2. Typical Times for an Evaluation Agenda

15 min introduction & project description

15 min session training & practice

45 min task execution with prototype (2 or 3 scenarios)

15 min interview and debriefing

30 min take notes & prepare for next evaluator

2 hours total (schedule evaluators 2 hours apart)

This is an example of a high-level agenda. You'll want to add more details before the evalua-

tion. The web page at http://tommy.jsc.nasa.gov/~clare/methods/contains links to some

examples of evaluation agendas for specific projects.

35

7.3 Conducting a Formal Evaluation

The most important results of the evaluation arise from observing the evaluator interacting with

the prototype to perform a task in the context of a scenario. If the observations are done well,

they can be quite valuable. For instance, if you notice unexpected behaviors (slowness, wrong

answers, mistakes, signs of confusion), you can ask the evaluator what was going on. Was the

prototype doing something different from what the evaluator expected? Was the prototype

providing inappropriate information? Was a message worded badly? Was the meaning of

graphic form unclear?

No matter how carefully the evaluation is planned, it is unlikely you'll have it right the first time.

If so, you probably spent too much time planning it. Consequently, we recommend doing "dry

runs" for development team members who have been less active in planning the evaluation. If

the user representative fits that description, he/she will be able to provide valuable feedback for

improving the evaluation sessions.

The following list is a compilation of advice (lessons learned) for guiding your evaluators

through a session:

• Keep evaluation objectives in mind. Sometimes deviations from the plan are required in

order to ensure that the main objectives are met.

• Try not to explain too much. Part of the purpose of the evaluation is to see how clearly the

prototype communicates with the user.

Try not to defend the application as implemented. You are there to learn how to improve

it. Defensiveness on your part can shut off the flow of helpful information. Your dedication

to improvement should always show--this is important in gaining the evaluator's trust that

you will act on the results of the evaluation, that the evaluator's efforts will be used to a good
effect.

Correct misunderstandings when they threaten the value of the evaluator's responses.

Even if you are testing a walk-up-and-use system, if the initial instructions are bad, you

should step in and correct them so that additional features of the prototype can then be

evaluated. Be sure to note any corrections that were necessary--if you had to interrupt to

explain, something about the prototype probably needs improving.

Temper the evaluation objectives with a concern for the evaluator.

- Don't stress the evaluator.

- Don't allow the evaluator to leave with ill feelings toward the project.

- Don't allow the evaluator to leave with misconceptions of the project.

7.4 Reporting Results of a Formal Evaluation

Once the evaluation is complete, the development team needs to determine the design implica-

tions and prioritize them for future development iterations. For the most part, the report should

answer each of the evaluation objectives:

• How well did the prototype perform with respect to each evaluation objective?

• What parts of the prototype need improving?

36

• What did the evaluators see as important new capabilities to add to future prototypes?

• What additional lessons were learned about the supported user tasks?

• What additional lessons were learned about strategies for supporting those tasks?

• What additional lessons were learned about the specific implementations of those strategies

which were used in the prototype?

The improvements and new features should be prioritized so the design team can make a

reasonable decision about when to implement them.

Before writing the report, review Figure 4 ("How the Evaluation Report Is Used").

8. Further Reading

The reader may wish to gain more in-depth knowledge about some of the information discussed

in this "Field Guide." The following list is an attempt to identify some of the more important

sources for this purpose. The references have been categorized to make it easier to find specific
information.

8.1 Related Documents

A related set of documents has been written describing other aspects of our approach. These

documents emphasize the role of an intelligent system as a team player:

Land, S. A., Malin, J. T., Thronesbery, C., and Schreckenghost, D. L. (1995, July). Making

Intelligent Systems Team Players: A Guide to Developing Intelligent Monitoring Systems.

NASA Technical Memorandum 104807. Available from Springfield, VA: NTIS.

Malin, J., Schreckenghost, D., Woods, D., Potter. S., Johannesen, L., Holloway. M., and Forbus,

K. (1991). Making Intelligent Systems Team Players: Case Studies and Design Issues.

Volume 1. Human-Compttter Interaction Design, Volume 2. Fatdt Management System

Cases. NASA Technical Memorandum 104738. Available from Springfield, VA: NTIS.

Malin, J. and Schreckenghost, D. (1992). Making Intelligent Systems Team Players: Overview

.]?w Designers. NASA Technical Memorandum 104751. Available from Springfield, VA:

NTIS.

Malin, J., Schreckenghost, D., and Rhoads, R. (1993). Making Intelligent Systems Team
Players: Additional Case Studies. NASA Technical Memorandum 104736. Available

from Springfield, VA: NTIS.

Roth, E., Malin, J., and Schreckenghosl, D. (1997). Paradigms for intelligent interface design. In

T. Helander, P. Landauer & P. Prabhu (Ed.), Handbook of Human-Computer Interaction

(2nd ed). Amsterdam: Elsevier, pp. 1177-1201.

37

8.2 Iterative, Collaborative Design

Boehm, B. (1988, May). "The Spiral Model of Software Development and Enhancement," IEEE

Computer, 21 (5), pp.61-72.

Malin, J. T., Thronesbery, C.G., and Land, S.A. (1993). "End-Effector Monitoring System: An

Illustrated Case of Operational Prototyping," Proceedings of the Seventh Annual Workshop

on Space Operations and Applications Research (SOAR'93) (NASA Conference

Publication). Houston, TX: NASA-Johnson Space Center, pp. 461-467.

Thronesbery, C.G., and Malin, J. T. (1993). "Operational Prototyping: A Development

Approach for Improved Support of User Task Performance." Proceedings of the MITRE

User Interf'ace Symposium. McLean, VA: The MITRE Corporation.

Thronesbery, C.G., and Malin, J. T. (1993)."Operational Prototyping: A Development

Approach for Innovative Technology Applications," Paper presented at the Joint

Applications in Instrumentation, Process, and Computer Control (JAIPCC '93)

Symposium. Houston, TX: University of Houston-Clear Lake.

Woods, D.D., Patterson, E.S., Corban, J.M., and Watts, J.C. (1996). Bridging the Gap Between

User-Centered Intentions and Actual Design Practice. Proceedings of the Human Factors

and Ergonomics Society 40th Annual Meeting. Santa Monica, CA: Human Factors and

Ergonomics Society.

8.3 Use of Scenarios and Task Descriptions

Jeffries, R. (1997). The Role of Task Analysis in the Design of Software. In M. Helander, T.K.

Landauer, & P. Prabhu (eds). Handbook of Human-Computer Interaction (2nd ed).

Amsterdam: Elsevier, pp. 347-359.

8.4 Evaluation

Wixon, D., and Wilson, C. (1997). The Usability Engineering Framework for Product Design

and Evaluation. In M. Helander, T.K. Landauer, & P. Prabhu (eds). Handbook of Human-

Computer Interaction (2rid ed). Amsterdam: Elsevier, pp. 653-688.

38

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reportingburden for this collectionof information is estimated to average 1 hourper response, including the time for reviewing instructions,searchingexisting data sources, gatheringand
maintaining the data needed, and completing and reviewing the collection of information Send commentsregarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden,to WashingtonHeadquarters Services, Directorate for informationOperations and Reports, 1215 JeftersonDavis Highway,Suite 1204, Arlington,VA 22202-4302,
and to the Office of Management and Budget,Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1998 NASA Technical Memorandum

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Field Guide for Designing Human Interaction With Intelligent Systems

6. AUTHOR(S)
Carroll G. Thronesbery* & Jane T. Malin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lyndon B. Johnson Space Center
Houston, Texas 77058

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D,C. 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBERS

S-841

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

TM-1998-208470

11. SUPPLEMENTARY NOTES
* Metrica

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7121 Standard

Hanover, MD 21076-1320 (301) 621-0390 Subject category: 66

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum200 words)
The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The

requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks

should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care

must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The

challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the

methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the

Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the

design challenges arise primarily from the innovation needed in the software design, While these methods are tailored to our specific

context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review

the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide,

goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to

the project at hand.

14. SUBJECT TERMS

man-computer interface; computer programs: software engineering: software tools;

computer systems design:

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-t02

15. NUMBER OF

PAGES

46

16. PRICE CODE

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

20. LIMITATION OF ABSTRACT

Unlimited

