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THREE-DIMENSIONAL HIGH-LIFT ANALYSIS USING A PARALLEL

UNSTRUCTURED MULTIGRID SOLVER

DIMITRI J. MAVRIPLIS *

Abstract. A directional implicit unstructured agglomeration multigrid solver is ported to shared and dis-

tributed memory massively parallel machines using the explicit domain-decomposition and message-passing

approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is

required in partitioning the problem for parallel computing. A weighted partitioning strategy is described

which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional

communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine

and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-

scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing

the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 minion points in

approximately 4 hours of wall clock time on the CRAY T3E.
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1. Introduction. The computation of three-dimensional high-lift flows constitutes one of the most

challenging steady-state aerodynamic analysis problems today. Three-dimensional high-lift is typically char-

acterized by complicated geometries, involving flaps, slats, and hinge fairings, in addition to very complex

flow physics which must bc captured adequately in order to provide a useful predictive capability for the

design process.

Due to the complicated flow physics, Reynolds-averaged Navier-Stokes methods appear to be best suited

for such problems in the long run, despite their higher computational requirements [20]. Such methods require

the use of highly stretched grids in the thin boundary-layer and wake regions, as well as a large overall number

of grid points to adequately resolve the flow physics. Three-dimensional high-lift Navier-Stokes simulations

have been performed with block-structured and overset structured grid methods. However, the large grid

resolution requirements strain the limits of current-day supercomputers. Furthermore, the complicated

geometries associated with high-lift problems result in excessive grid generation time.

Unstructured grid techniques offer the potential for greatly reducing the grid generation time associated

with such problems. Several unstructured grid generation packages suitable for viscous flow solvers have

been demonstrated recently [18, 35, 8, 9]. Furthermore, unstructured mesh approaches enable the use of

adaptive meshing techniques which hold great promise for increasing solution accuracy at minimal additional

computational cost. On the other hand, unstructured mesh solvers require significantly higher computational

resources than their structured grid counterparts. In particular, the large memory requirements of unstruc-

tured mesh solvers have made three-dimensional high-lift analysis, which already strains the capabilities of

structured grid solvers, impractical with unstructured grids.
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One of the often overlooked advantages of unstructured mesh approaches is their superior scalability

on massively parallel computer architectures. In contrast with block-structured or overset-mesh methods,

the data-structures used in unstructured mesh methods are homogeneous across the entire computational

domain, thus enabling near perfect load-balancing and good overall scalabillty on parallel machines, even for

small problems on large numbers of processors.

While the cost of specialized memory used in vector computer architectures has changed very little

over the last several years, the cost of commodity memory used in parallel microprocessor-based machines

has dropped dramatically, leading to the appearance of parallel machines with large shared or distributed

memory systems. This development raises the possibility of performing large-scale unstructured-mesh com-

putations suitable for high-lift analysis on such machines. The purpose of this paper is to demonstrate the

feasibility of performing such calculations by porting a previously developed low-memory directional-implicit

agglomeration-multigrid algorithm [11, 12] to modern parallel computer architectures.

2. Base Solver . The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume

technique on meshes of mixed element types which may include tetrahedra, pyramids, prisms, and hexahedra.

In general, prismatic elements are used in the boundary layer and wake regions, while tetrahedra are used in

the regions of inviscid flow. All elements of the grid are handled by a single unifying edge-based data-structure

in the flow solver [14].

The governing equations are discretized using a central difference finite-volume technique with added

matrix-based artificial dissipation. The matrix dissipation approximates a Roe Rieman-solver based upwind

scheme [22], but relies on a biharmonic operator to achieve second-order accuracy, rather than on a gradient-

based extrapolation strategy [11]. The thin-layer form of the Navier-Stokes equations is employed in all

cases, and the viscous terms are discretized to second-order accuracy by finite-difference approximation. For

multigrid calculations, a first-order discretization is employed for the convective terms on the coarse grid

levels for all cases.

The basic time-stepping scheme is a three-stage explicit multistage scheme with stage coefficients opti-

mized for high frequency damping properties [32], and a CFL number of 1.8. Convergence is accelerated by

a local block Jacobi preconditioner, which involves inverting a 5 x 5 matrix for each vertex at each stage

[21, 15, 16, 17]. A low-Mach number preconditioner [36, 29, 27] is also implemented. This is imperative for

high-lift flows which may contain large regions of low Mach number flow particularly on the lower surfaces

of the wing. The low-Mach number preconditioner is implemented by modifying the dissipation terms in the

residual as described in [11], and then taking the corresponding linearization of these modified terms into

account in the Jacobi preconditioner, a process sometimes referred to as preconditioning 2 [11, 30].

The single equation turbulence model of Spalart and AUmaras [25] is utilized to account for turbulence

effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with

the exception that the convective terms are only discretized to first-order accuracy.

3. Directional-Implicit Multigrid Algorithm . An agglomeration multigrid algorithm [14, 6, 24]

is used to further enhance convergence to steady-state. In this approach, coarse levels are constructed by

fusing together neighboring fine grid control volumes to form a smaller number of larger and more complex

control volumes on the coarse grid. While agglomeration multigrid delivers very fast convergence rates for

inviscid flow problems, the convergence obtained for viscous flow problems remains much slower, even when

employing preconditioning techniques as described in the previous section. This slowdown is mainly due to

the large degree of grid anisotropy in the viscous regions. Directional smoothing and coarsening techniques

[11, 12] can be used to overcome this aspect-ratio induced stiffness.



Directionalsmoothingisachievedbyconstructinglinesin theunstructuredmeshalongthedirectionof
strongcoupling(i.e.normalto theboundarylayer)andsolvingtheimplicitsystemalongtheselinesusing
a tridiagonallinesolver.A weightedgraphalgorithmisusedto constructthelinesoneachgridlevel,using
edgeweightsbasedonthestencilcoefficientsforascalarconvectionequation.Thisalgorithmproduceslines
of variablelength.In regionswherethemeshbecomesisotropic,the lengthofthelinesreducesto zero(one
vertex,zeroedges),andthepreconditionedexplicitschemedescribedin theprevioussectionisrecovered.An
exampleof thesetof linesconstructedfromthetwo-dimensionalunstructuredgridin Figure3.1isdepicted
in Figure3.2.

FIG. 3.1. Unstructured Grid ]or three-element air]oil; Number o] Points = 61,104, Wall Resolution = 10 -6 chords
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FIG. 3.2. Directional Implicit Lines Constructed on Grid o] Figure 3.1 by Weighted Graph Algorithm

In addition to using a directional smoother, the agglomeration multigrid algorithm must be modified

to take into account the effect of mesh stretching. The unweighted agglomeration algorithm which groups

together all neighboring control volumcs for a given fine grid vertex [14] is replaced with a weighted coarsening

algorithm which only agglomerates the neighboring control volumes which are the most strongly connected

to the current fine grid control volume, as determined by the same edge weights used in the line construction

algorithm. This effectively results in semi-coarsening type behavior in regions of large mesh stretching, and

regular coarsening in regions of isotropic mesh cells. In order to maintain favorable coarse grid complexity, an



aggressivecoarseningstrategyisusedinanisotropicregions,where for every retained coarse grid point, three

fine grid control volumes are agglomerated, resulting in an overall complexity reduction of 4:1 for the coarser

levels in these regions, rather than the 2:1 reduction typically observed for semi-coarsening techniques. In

isotropic regions an 8:1 coarsening ratio is obtained. However, since most of the mesh points reside in the

boundary layer regions, the overall coarsening ratios achieved between grid levels is only slightly higher than

4:1. An example of the first directionally agglomerated level on a two-dimensional mesh is depicted in Figure

3.3, where the aggressive agglomeration normal to the boundary layer is observed.

Fxc. 3.3. First Agglomerated Multigrid Level for Two-Dimensional Unstructured Grid Illustrating 4:1 Directional Coars-
ening in Boundary Layer Region

4. Parallel Computer Architectures . For the purposes of this paper, parallel computer architec-

tures can be classified by the configuration of their memory systems. These include:

• Multi-processors with uniform shared-memory access

• Cache-based processors with uniform (out-of-cache) shared-memory access

• Cache-based processors with non-uniform (out-of-cache) shared-memory access

• Cache-based processors with distributed memory

In the following we consider the computational model of an unstructured grid solver as an edge-based

loop updating vertex-based values. For shared-memory architectures, parallelization can be achieved simply

by reordering and grouping the edges of the loop, whereas for distributed-memory systems, explicit domain

decomposition and message passing must be performed. Traditionally, only vector machines have been

available with uniform shared-memory access. On these machines, vectorization is achieved by sorting the

edges of the mesh into groups (colors), such that within each group no two edges access the same vertex.

This enables vectorization of the edge loop over each color. Each color can then itself be split into multiple

sub-groups, each of which is assigned to a particular processor. This approach is simple to implement and

has been shown to work well on moderate numbers of processors, delivering speedups of up to 13 on 16

processors of the CRAY C90 [13]. Since each edge color extends across the entire mesh, this approach is

only effective when a uniform memory access is available.

In the case of cache-based processors, locality becomes important, and alternative ordering strategies

such as those suggested in [7] are required. In these methods, vertices and edges are reordered for locality,

and separated into groups which can then be processed in parallel. This strategy can be used on cache-

based machines with uniform shared-memory access such as SGI Power Challenge architectures, as well as



oncache-basedmachineswithnon-uniformshared-memoryaccess,suchasSGIOrigin2000architectures.
In the latercase,thememoryarchitectureis shared,in that it is globallyaddressable,but theaccessis
non-uniform,in that it isphysicallydistributed,andreferencesto off-processormemorylocationsaremore
expensivethanreferencesto localprocessormemorylocations.Forsuchmemoryarchitectures,(whichcan
beviewedasanadditionalcachclevel),datalocalityisevenmorcimportantforperformancethanforcache-
baseduniformshared-memoryarchitectures.Theabovestrategyisattractivebecauseit canbeimplemented
througha relativelysimplerun-timedatareorderingoperation,for anysolverwhichalreadymakesuseof
edgegroupings(asforpreviousvectorizedcodes).Thisapproachworksrelativelywellforsmallnumbersof
processors,buthasbeenfoundto scalepoorlyforlargernumbersofprocessors.

Fordistributed-mcmoryarchitectures,memoryisnotgloballyaddressable,andanexplicitdomainde-
composition/messagepassingimplementationmustbeperformed.Unstructuredmeshdomaindecomposition
or partitioningcanbeaccomplishedbyanumberof well documented and available partitioning strategies,

which attempt to maintain load balancing and reduce communication volume by producing cuts that mini-

mize the total number of edges which are intersected by the partition separators [19, 4, 1]. The partitioned

data must also be optimized for cache efficiency by reordering the vertices and edges in each partition using

a bandwidth minimization technique such as the Cuthill McKee [2] reordering algorithm applied locally in

each partition.
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FIG. 4.1. Illustration of Creation of Internal Edges and Ghost Points at Inter-processor Boundaries

Inter-processor communication is generated by mesh edges which straddle two adjacent mesh partitions.

Such edges are assigned to one of the partitions, and a "ghost vertex" is constructed in this partition which

corresponds to the vertex originally accessed by the edge in the adjacent partition, as depicted in Figure

4.1 During a residual evaluation, the fluxes are computed along edges and accumulated to the vertices. The

flux contributions accumulated at the ghost vertices must then be added to the flux contributions at their

corresponding physical vertex locations in neighboring partitions in order to obtain the complete residual at

these points. This phase incurs interprocessor communication. A standard technique to reduce the latency

associated with this communication consists of packing all messages to be transmitted between adjacent pairs

of communicating processors into a single large message buffer, which is then transmitted and unpacked on

thc receiving processor [3, 33, 1].

The explicit domain decomposition and message passing approach can also be implemented on shared-

memory machines. In fact, for large numbers of processors, this approach generally scales more favorably

than the simple reordering strategies discussed previously. This is largely due to the fact that reordering



basedtechniquesonshared-memorymachinesimplicitlygeneratecommunicationat the looplevel,each

time an off-processor or non-local memory reference is encountered. In the explicit approach, duplicate

remote memory references are omitted through the use of local ghost points and pre_computed optimal

communication patterns, which are invoked only at critical locations in the program, such as at the end of

a residual evaluation.

The implementation described in the remainder of this paper makes use of the explicit mcssage passing

approach using the MPI library. This makes for a portable program which can be run on distributed-

memory parallel machines such as the CRAY T3E, as well as shared-memory machines such as the SGI

Origin 2000. For shared-memory architectures, the isolated communication routines, which make use of the

MPI libraries, could be replaced with simple copies of data from local to remote memory locations, although

this has not been attempted. (The "shmem" routines on the CRAY T3E and SGI Origin 2000 also provide

a similar functionality, although this has not been exploited in the present implementation, in the interest

of portability).

While the flow solver implementation does not make use of the globally addressable memory capability

of shared-memory machines such as the SGI Origin 2000, this feature has been instrumental in enabling the

execution of the various pre-processing operations which are required by the multigrid algorithm prior to the

flow solution phase. In particular, the implicit line construction and multigrid agglomeration algorithms, as

well as the mesh partitioning procedure [4], require little overall cpu time, but significant memory resources.

Additionally, these routines involve considerable amount of logic, and their parallelization using explicit

message passing is a relatively involved task. The shared-memory architecture of the SGI Origin 2000 enables

the execution of these routines using a single processor, but accessing large portions of the entire 128 cpu

machine memory (36 Gbytes). These partitioned pre-processed results were then employed as input data for

the flow solver running either on the SGI Origin 2000, or the CRAY T3E. For increasingly massively parallel

applications, the parallel implementation of these pre_processing applications will eventually be required.

However, the complexity of this task should be substantially reduced using the shared-memory paradigm.

5. Parallel Implementation. Distributed-memory explicit message-passing parallel implementations

of unstructured mesh solvers have been discussed extensively in thc literature [13, 1, 34]. In this section

we focus on the non-standard aspects of the present implementation which arc particular to the directional-

implicit agglomeration multigrid algorithm.

In the multigrid algorithm, the vertices on each grid level must be partitioned across the processors of

the machine. Since the mesh levels of the agglomeration multigrid algorithm are fidly nested, a partition

of the fine grid could be used to infer a partition of all coarser grid levels. While this would minimize

the communication in the inter-grid transfer routines, it affords little control over the quality of the coarse

grid partitions. Since the amount of intra-grid computation on each level is much more important than the

inter-grid computation between each level, it is essential to optimize the partitions on each grid level rather

than between grid levels. Therefore, each grid level is partitioned independently. This results in unrelated

coarse and fine grid partitions. In order to minimize inter-grid communication, the coarse level partitions

are renumbered such that they are assigned to the same processor as the fine grid partition with which they

share the most overlap.

For each partitioned level, the edges of the mesh which straddle two adjacent processors are assigned to

one of the processors, and a "ghost vertex" is constructed in this processor, which corresponds to the vertex

originally accessed by the edge in the adjacent processor (c.f. Figure 4.1). During a residual evaluation, the



fluxesarecomputedalongedgesandaccumulatedto thevertices.Thefluxcontributionsaccumulatedat the
ghostverticesmustthenbeaddedto thefluxcontributionsat theircorrespondingphysicalvertexlocations
in orderto obtainthecompleteresidualat thesepoints.Thisphaseincursinterprocessorcommunication.
In anexplicit(or pointimplicit)scheme,the updatesat all pointscanthenbecomputedwithoutany
interprocessorcommunicationoncetheresidualsat all pointshavebeencalculated.Thenewlyupdated
valuesarethencommunicatedto theghostpoints,andtheprocessisrepeated.

Theuseof line-solverscanleadto additionalcomplicationsfordistributed-memoryparallelimplemen-
tations.Sincetheclassicaltridiagonalline-solveisaninherentlysequentialoperation,anylinewhichissplit
betweenmultipleprocessorswill resultin processorsremainingidlewhiletheoff-processorportionof their
lineis computedona neighboringprocessor.However,theparticulartopologyof the linesetsin theun-
structuredgridpermitapartitioningthemeshin sucha mannerthatlinesarecompletelycontainedwithin
anindividualprocessor,withminimalpenalty(intermsofprocessorimbalanceoradditionalnumbersofcut
edges).Thiscanbeachievedbyusingaweighted-graph-basedmeshpartitionersuchastheCHACOparti-
tioner[4].Weightedgraphpartitioningstrategiesattemptto generatebalancedpartitionsofsetsofweighted
vertices,andto minimizethesumofweightededgeswhichareintersectedbythepartitionboundaries.
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FIG. 5.1. illustration of Line Edge Contraction and Creation of Weighted Graph for Mesh Partitioning; V and E Values

Denote Vertex and Edge Weights Respectively

In order to avoid partitioning across implicit lines, the original unweighted graph (set of vertices and

edges) which defines the unstructured mesh is contracted along the implicit lines to produce a weighted

graph. Unity weights are assigned to the original graph, and any two vertices which are joined by an edge

which is part of an implicit line are then merged together to form a new vertex. Merging vertices also

produce merged edges as shown in Figure 5.1, and the weights associated with the mcrged vertices and

edges are taken as the sum of the weights of the constituent vertices or edges. The contracted weighted

graph is then partitioned using the partitioner described in [4, 5], and the resulting partitioned graph is

then de-contracted, i.e. all constituent vertices of a merged vertex are assigned the partition number of that

vertex. Since the implicit lines reduce to a single point in the contracted graph, they can never be broken

by the partitioning process. The weighting assigned to the contracted graph ensures load balancing and

communication optimization of the final uncontracted graph in the partitioning process.

The CHACO partitioner [4] provides options for various partitioning algorithms. We use the multi-level

bisection partitioning option exclusively [5] in this work since it provides good partitions at low computational

cost. As an example, the two dimensional mesh in Figure 3.1, which contains the implicit lines depicted

in Figure 3.2, has been partitioned both in its original unweighted uncontracted form, and by the graph

contraction method described above. Figure 5.2 depicts the results of both approaches for a 32-way partition.

The unweighted partition contains 4760 cut edges (2.6 % of total), of which 1041 are line edges (also 2.6 %



of total),whiletheweightedpartitioncontainsnointersectedlineedgesanda totalof 5883cutedges(3.2
%oftotal), i.e.a 23%increaseoverthetotalnumberofcutedgesin thenon-weightedpartition.

FiG. 5.2. Comparison of Unweighted (above) and Weighted (below) 32-Way Partition of Two-Dimensional Mesh

Although the resulting partitions are balanced in terms of the number of vertices in each partition, no

attempt is made to balance the number of line edges in each partition. In fact, most often there is great

disparity in the number of line edges in the various partitions, b-hrthermore, it is not feasible to attempt to

modify the vertex partition balance in order to account for the extra work incurred by the line-solves. This is

due to the fact that each stage of a multi-stage time-step consists of a residual evaluation followed by a point

or line-solve, with communication (and synchronization) occurring at the end of the residual evaluation and

the point/line-solve. Thus, ideally, the partitions must be vertex balanced for the residual evaluation phase,

but line balanced for the solution phase. Fortunately, the amount of work involved in a residual evaluation is

much larger than that involved in the solution phase, and the additional work of a (block) line-solve versus

a (block) point-solve is such that the line imbalance does not appreciably affect the overall computational

efficiency.

6. Results. The scalability of the directional implicit multigrid algorithm is examined on an SGI

Origin 2000 and a CRAY T3E machine. The SGI Origin 2000 machine contains 128 MIPS R10000 195 Mhz

processors with 286 Mbytes of memory per processor, for an aggregate memory capacity of 36.6 Gbytes. The

CRAY T3E contains 512 DEC Alpha 300 Mhz processors with 128 Mbytes of memory per processor, for an

aggregate memory capacity of 65 Gbytes. All the cases reported in this section were run in dedicated mode.

The first case consists of a relatively coarse 177,837 point grid over a swept and twisted wing, constructed

by extruding a two-dimensional grid over an RAE 2822 airfoil in the spanwise direction. Figure 6.1 illustrates

the grid for this case along with the implicit lines used by the solution algorithm on the finest level. The

grid contains hexahedra in the boundary layer and (spanwise) prismatic elements in regions of inviscid flow,

and exhibits a normal spacing at the wing surface of 10 -6 chords. Approximately 67% of the fine grid

points are contained within an implicit line, and no implicit lines on any grid levels were intersected in the

partitioning process for all cases. This case was run at a freestream Mach number of 0.1, an incidence of

2.31 degrees, and a Reynolds number of 6.5 million. Figure 6.2 illustrates the computed solution obtained

on this grid as a set of density contours on the surface. The convergence of the directional implicit multigrid



algorithmiscomparedwiththatachievedbytheexplicitisotropicmultigridalgorithm[14]ontheequivalent
twodimensionalproblemin Figure6.3. Thedirectionalimplicitmultigridalgorithmis seemto bemuch
moreeffectivethantheisotropicalgorithm,reducingtheresidualsbytwelveordersof magnitudeover600
multigridW-cycles.In thethree-dimensionalcase,the turbulencemodelwasfrozenafter200multigrid
cycles.
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FIG. 6.1. Unstructured Grid and Implicit Lines Em-

ployed for Computing Flow over Three-Dimensional Swept

and Twisted RAE Wing

FIc. 6.2. Computed DensiSy Contours for Flow over

Three-Dimensional Swept and Tw_sSed RAE Wing. Mach

= 0.1, Incidence -- 2.31 degrees, Re number : 6.5 million

The second test case involves a finer grid of 1.98 million points over an ONERA M6 wing. The grid

was generated using the VGRID program [18]. A post-processing operation was employed to merge the

tetrahedral elements in the boundary layer region into prisms [14]. The final grid contains 2.4 million

prismatic elements and 4.6 million tetrahedral elements, and exhibits a normal spacing at the wall of 10 -7

chords. Approximately 62% of the fine grid points are contained within an implicit line, and no implicit lines

on any grid levels were intersected in the partitioning process for all cases. The freestream Mach number

is 0.1, the incidence is 2.0 degrees, and the Reynolds number is 3 million. The convcrgence for this case

is depicted in Figure 6.4, where the residuals are reduced by seven orders of magnitude over 600 multigrid

W-cycles.

Figures 6.5 and 6.6 show the relative speedups achieved on the two target hardware platforms for the

RAE wing case, while Figures 6.7 and 6.8 depict the corresponding results for the ONERA M6 wing case.

For the purposes of these figures, perfect speedups were assumed on the lowest number of processors for

which each case was run, and all other speedups are computed relative to this value. In all cases, timings

were measured for the single grid (non-multigrid) algorithm, the multigrid algorithm using a V-cycle, and the

multigrid algorithm using a W-cycle. Note that the best convergence rates, i.e. those displayed in Figures

6.3 and 6.4, are achieved using the W-cycle multigrid algorithm.
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FIG. 6.3. Uomlmr_son of Convergence Rate Achieved

by Directional Implicit Agglomeration Multigrid versus Ex-
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FIG. 6.4. Multigrid Convergence Rate for 1.98 million

Point Grid over ONERA M6 Wing; Mach -- 0.1, Incidence

= g. 0 degrees, Re number = 3 million.

For the coarse RAE wing case, the results show good scalability up to moderate numbers of processors,

while the finer ONERA M6 wing case shows good scalability up to the maximum number of processors on

each machine, with only a slight drop-off at the higher numbers of processors. This is to be expected, since

the relative ratio of computation to communication is higher for finer grids. This effect is also demonstrated

by the superior scalability of the single grid algorithm versus the multigrid algorithms, and of the V-cycle

multigrid algorithm over the W-cycle multigrid algorithm (i.e. the W-cycle multigrid algorithm performs

additional coarse grid sweeps compared to the V-cycle algorithm). Note that for the RAE wing test case on

512 processors of the T3E, the fine grid contained only 348 vertices per processor, while the coarsest level

contained a mere 13 points per processor. While the W-cycle algorithm suffers somewhat in computational

performance for coarser grids on high processor counts, the parallel performance of the W-cycle improves

substantially for finer grids. Numerically the most robust and efficient convergence rates are achieved using

this cycle.

Figures 6.6 and 6.8 clearly illustrate the superior scalability on the T3E for these cases. In Tables 6.1

through 6.4, the timings per cycle and estimated computational rates are shown. These computational rates

were estimated by running the same problem on a CRAY C90, and scaling the computational rates measured

by the hpm command by the ratio of wall clock time on the target machine to the total cpu time on the

CRAY C90. As the tables indicate, the individual processors of the Origin 2000 are up to 70% faster than

those of the T3E. For example, on 64 processors, the ONERA M6 wing single grid case (a case which incurs

little communication overhead) requires 10.2 seconds per cycle on the ORIGIN 2000, while the same case

requires 17.1 seconds per cycle on 64 processors of the T3E.

10
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FIG. 6.8. Observed Speedups for ONERA M6 Wing

Case (1.98 million grad points) on CRAY T3E

However, the better scalability demonstrated on the T3E is indicative of its lower latency and higher band-

width communication capability. (Additionally, the newer T3E-1200 using 600Mhz processors should provide

faster computational rates). In all cases, the fastest overall computational rates are achieved on the 512 pro-

cessor configuration of the T3E. In this configuration, the RAE wing test case can be solved to machine zero

in just 10 minutes (i.e. 600 W-cycles as per Figure 6.3). The 1.98 million point grid for the ONERA M6

wing case requires just 4.9 seconds per cycle on the 512 processor T3E, or 14.2 seconds per cycle on the 128

processor Origin 2000. From Figure 6.4 it can be deduced that a calculation to engineering accuracy can

be performed in approximately 300 W-cycles, which requires 25 minutes on thc T3E or 71 minutes on the

Origin 2000.
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SGI Origin 2000

Single Grid (1.98 million points)

No. of Procs Time/Cyc Gflop/s Speedup

16

32

64

128

44.6

21.24

10.18

5.82

1.27

2.67

5.56

9.73

1.0

2.10

4.38

7.66
TABLE 6.1

Timings and Estimated Computational Rates for Sin-

gle Grid ONERA M6 Wing Case on SGI Origin _000 Ar-

chitecture

SGI Origin 2000

Multigrid W-Cycle (1.98 million points)

No. of Procs Time/Cyc Gflop/s Speedup

16

32

64

128

94.02

45.12

22.36

14.22

1.04

2.16

4.36

6.87

1.0

2.08

4.20

6.61
TABLE 6.2

Timings and Estimated Computational Rates for W-

cycle Multigrid ONERA M6 Wing Case on SGI Origin

2000 Architecture

CRAY T3E

Single Grid (1.98 million points)

No. of Procs Time/Cyc Gflop/s Speedup

64

128

256

512

17.13

8.60

4.32

2.28
TABLE 6.:

3.30

6.57

13.07

24.8

1.0

1.99

3.96

7.51

Timings and Estimated Computational Rates for Sin-

gle Grid ONERA M6 Wing Case on CRAY T3E Architec-

ture

CRAY T3E

Multigrid W-Cycle (1.98 million points)

No. of Procs Time/Cyc Gflop/s Speedup

64

128

256

512

31.3

16.02

8.43

4.90

3.12

6.10

11.57

20.00

1.0

1.95

3.71

6.39
TABLE 6.4

Timings and Estimated Computational Rates for W-

Cycle Multigrid ONERA M6 Wing Case on CRA Y T3E

A rchitecturc

The next test case involves the computation of flow over a three-dimensional high-lift component geom-

etry. The geometry consists of an unswept wing with a partial span fap, which has been the subject of both

experimental and computational investigations [26, 23, 28]. The wing is mounted between two end walls,

and the flap extends to the mid-span location. The flap deflection is 30 degrees, while the overall incidence

of the geometry with respect to the undisturbed flow is 10 degrees. The freestream Mach number is 0.2, and

the Reynolds number is 3.7 million. The flow over this geometry has been computed on an initial grid of

1.7 million points, and on a finer grid of 13.5 million points. The coarse grid exhibits a normal spacing at

the wing surface of 10 -8 chords, and the height of the cells in the boundary layer region follows a geometric

progression with a growth rate of 1.2. This grid was generated using the VGRID program and originally con-

tained 10 million tetrahedra, which were merged into 2.1 million prisms and 3.6 million tetrahedra through

postprocessing. The finer grid was obtained through a uniform subdivision of the previous grid, using the

mixed element adaptive meshing program described in [10], resulting in 17 million prisms, and 29 million

tetrahedra. The high degree of resolution of this mesh is depicted in Figure 6.9. For both grids, approxi-

mately 70% of the vertices belong to implicit lines. The scalability of the coarser mesh is very similar to that

displayed by the previous ONERA M6 wing case, and is therefore not reproduced here. This case was run for

600 W-cycles on 512 processors of the T3E, which required 3.76 seconds per W-cycle, or 38 minutes for the

entire run, during which the residuals were reduced by just over five orders of magnitude. The fine grid case

required 28 seconds per cycle on 512 processors of the T3E, or 236 minutes for a run of 220 W-cycles, during

which the residual were reduced by just under four orders of magnitude, as depicted in Figure 6.11. At this
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point, the fine grid achieves approximately the same level of convergence as the coarser grid for the same

number of cycles, which is deemed sufficient for engineering accuracy. Although the computation has not

been carried out further due to computational expense, an asymptotic slowdown similar to that observed on

the coarser grid can be expected for the fine grid. For the fine grid case, the solver required approximately

69 Mbytes of memory per processor, or a total of 35.5 Gbytes of memory, which constitutes just over half the

available memory on the machine. This total is approximately 50% higher than the memory requirements of

the sequential solver on a per grid point basis, and is most likely due to imbalance between the processors,

(dimensioning uses the maximum processor data-set size on all processors) as well as additional memory

required for the ghost points and other message passing data-structures.

FIG. 6.9. Illustration of 13.5 million point grid used to compute flow over partial span flap geometry.

!

I

I
FIG. 6.10. Computed Density Contours on 13.5 million point grid for flow over part-span flap geometry. Mach= 0.2,

Incidence = 10 degrees, Reynolds number -- 3. 7 million.
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A summaryof the resource requirements for the coarse and fine grid runs on the partial-span flap geometry

is given in Table 6.5. Although the fine grid contains eight times the resolution of the coarse grid, the

memory and cpu time required by the fine grid run are less than eight times that of the coarse grid run.

This is due to the larger ratio of computation to communication in the fine grid case. Additionally, the

fixed (non-data) memory requirement of the solver instruction set occupies 2.8 Mbytes per processor, which

represents a smaller portion of the total memory requirements in the fine grid case.

The computed surface pressures for both grids are compared with experimental values at four spanwise

locations in Figure 6.12. The coarse grid values tend to underpredict the suction peaks on the leading edge

of the main wing. Much better agreement is obtained on the finer grid. The suction peaks are slightly

overpredicted on the fine grid, although this is in agreement with previous numerical computations of this

flow on block structured grids, which also over-predict the lift in these regions [28].

_ _ _ 1.7 MILLION POINT GRID

__ 13,5 MELLON POINTGRID

Number of Cycles

i J i t i

100 20_ 3o0 40D 500 600

FIG. 6.11. Multigrid Convergence Rates for Fine (13.5 million points) and coarse (1.7 million points) Grid over Part-Span

Flap Geometry.

The poor agreement of the coarse grid suction peaks with experimental values may be somewhat surprising,

considering the better agreement obtained on previous unstructured computations performed with grids of

similar overall size [14]. However, in these previous computations, the grids contained much lower boundary

layer resolution, which was traded off for increased chordwise resolution. The boundary layer resolution

employed in the current grids was derived from the resolution requirements established in two-dimensional

high-lift computations [20, 31], and is believed to represent the necessary level for capturing detailed flow

physics. On the other hand, no spanwise grid stretching was employed and thus a substantial savings in the

total number of grid points with minimal accuracy degradation could probably be obtained by reducing the

spanwise resolution. The fine grid calculation on the partial span flap geometry is intended to demonstrate

the size of problems that can be attempted using this type of solver on present-day massively parallel

computer architectures, rather than to define the number of grid points required for an accurate calculation

of this type.
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FIG. 6.12. Comparison of Computed Surface Pressure Distribution with Experimental Results at Four Spanwise Locations

on Partial Span Flap Geometry for Fine and Coarse Grids
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CRAY T3E (512 procs)

Part-Span Flap Geometry (Multigrid W-Cycle)

Grid Mere Req. Time/Cyc Time to Sol.

1.TM 7.1 Gbytes 3.76 13 rain

13.5M 35.5 Gbytes 27.75 236 rain

Ratio (=8) 5.0 7.39 7.39
TABLE 6.5

Comparison of Coarse and Fine Grid Resource Requirements for Partial-Span Flap High-Lift Geometry. Time to Solution

Represents Wall-Clock Time Required for 220 Multigrid W-Cycles in both Cases.

7. Conclusion. The combination of a low-memory rapidly converging directional implicit multigrid

algorithm and massively parallel computer architectures with large shared or distributed memory has enabled

the solution of very large unstructured grid problems in reasonable turnaround time. The 13.5 million grid

point case described in this paper, which requires approximately half the available memory of a 512 processor

T3E with 128 Mbytes per processor, is believed to be the largest unstructured grid problem attempted to

date. An accurate solution of a full transport aircraft high-lift configuration will require several times

more resolution. Such a calculation should be feasible on some of the largest currently available parallel

machines. Furthermore, the relatively low cost of commodity memory employed by microprocessor-based

parallel computers implies that it is now feasible to configure cost-effective mid-size machines with 32 to 64

processors and 1 Gbyte of memory per processor, thus enabling large scale unstructured grid computations

suitable for high-lift analysis with overnight turnaround.

Future work will concentrate on improving the performance of the three dimensional multigrid algorithm

which often produces sub-optimal convergence rates as compared to the equivalent two-dimensional algorithm

[12]. Furthermore, many of the preprocessing operations required for the parallel computations, such as mesh

partitioning, implicit line construction, and multigrid agglomeration are currently performed sequentially,

and must eventually be parallelized. Finally, adaptive meshing techniques must be incorporated into the

overall parallel solution strategy to take full advantage of the potential of unstructured meshes.
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