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Abstract

Tile Multiple Mirror Telescope (MMT) under development at the University of

Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-

actuated, thin facesheet deformable mirror at the secondary of an astronomical tele-

scope, thus reducing the effects of emissivity which are important in IR astronomy.

However, The large size of the mirror and low stiffness actuators used drive the natural

frequencies of the mirror down into the bandwidth of the atmospheric distortion.

Conventional adaptive optics takes a quasi-static approach to controlling the de-

formable mirror. However, flexibility within the control bandwidth calls for a new

approach to adaptive optics. Dynamic influence functions are used to characterize the

influence of each actuator on the surface of the deformable mirror. A linearized model

of atmospheric distortion is combined with dynamic influence flmctions to produce

a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal

control problem.

Solving the optimal control problem for a system with hundreds of actuators and

sensors is formidable. Exploiting the circularly symmetric geometry of the mirror,

and a suitable model of atmospheric distortion, the control problem is divided into a

number of smaller decoupled control problems using circulant matrix theory .

A hierarchic control scheme which seeks to emulate the quasi-static control ap-

proach that is generally used in adaptive optics is compared to the proposed dynamic

reconstruction technique. Although dynamic reconstruction requires somewhat more

computational power to implement, it achieves better performance with Iess power

usage, and is less sensitive than the hierarchic technique.
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Chapter 1

Introduction

1.1 Motivation

Traditionally, adaptive optics systems use a small thin deformable mirror with piezo-

electric or magnetostrictive actuators located at a tertiary or quaternary location

in the optical train to compensate for atmospheric distortion. The Multiple Mirror

Telescope (MMT) under development at the University of Arizona is taking a new

approach to atmospheric compensation. To minimize emissivity effects for infrared

astronomy the new approach seeks to place the deformable element at the secondary

location in the optical train.

The MMT is shown schematically in Figure 1-1, taken from Ref. [1]. A 4W laser

tuned to resonate with the sodium layer in the atmosphere is used to produce an

artificial guide star high in the atmosphere The light from this guide star is used to

measure the wavefront distortion caused by turbulence in the atmosphere. Incoming

light from both the artificial guide star and from science objects enters the aperture

of the telescope, and is reflected from the 6.5 m primary mirror. It is then reflected

from an adaptive secondary mirror and focused on the detectors. Just prior to the

detector is a dichroie beamsplitter which sends light from the artificial guide star

which is in the visible range to a wavefront sensor while the science light in the

infrared passes through to the detectors. The wavefront sensor measures the slope

of the wavefront across a number of smaller subapertures. The wavefront computer

15



Figure 1-1:

WAVEFRONT ICOMPUTER
INFRARED DETECTOR
CAMERA (IR QUAD CELL)
12-5 p.m

Schematic diagram of the Multiple Mirror Telescope (MMT).

calculates commands to send to actuators on the adaptive secondary mirror. These

actuators then reshape the mirror so as to cancel measured wavefront error.

This new approach has clear benefits in terms of the signal to noise ratio obtained

when light is bounced from fewer emitting surfaces. However, it poses some technical

challenges as well. Where deformable mirrors are usually small and actuated by

stiff piezoelectric or magnetostrictive actuators, the proposed deformable mirror is

necessarily large. The 6.5 m primary mirror for the MMT requires a 0.65 m secondary.

Furthermore, the correction of global tilt at the secondary mirror requires relatively

large displacements of the mirror. Electro-magnetic voice coil actuators are planned to

provide the actuation necessary to deform the mirror. The combination of large mirror

size and low stiffness force actuation result in a considerably more flexible mirror than
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usual. This extra flexibility results in a large number of flexible vibrational modes

of the mirror within the bandwidth necessary to correct for atmospheric distortion

across the large 6.5 m aperture. It is the need to control these dynamic modes that

motivates the work in this thesis.

1.2 Previous Work

Many approaches to controlling adaptive optics have been taken. This section outlines

three basic approaches which specifically address different issues of the problem. In

all three cases, the control contains a reconstructor which provides estimates of the

wavefront displacement. The objective of the control is then to have the mirror

track the estimated wavefront displacement, thus cancelling the wavefront error in

the system.

1.2.1 Classical Control with a Reconstructor

The standard approach for controlling the mirror is to assume that the problem

is quasi-static. Wavefront sensors are measured. The measurements pass to a re-

constructor (any of the reconstructors from Chapter 2). The reconstructor outputs

position commands for the actuators on the mirror. The commanded positions mini-

mize an estimate of the wavefront displacement error. Following the reconstructor is

a classical PID control loop, often solely integral feedback [2]. This classical control

loop acts to servo the actuators so that the mirror follows the commanded positions

that are output from the reconstructor.

Figure 1-2 shows a block diagram representation for this control system. The

difference between the distorted atmosphere, Yw, and the distorted mirror, Ym, surface

is measured by the wavefront sensor, ywf. The reconstructor, R, reconstructs the

atmospheric distortion from these measurements, and determines the mirror position

commands Yc which best counteract the distortion. The controller K then creates

control commands u which servo the system G so that the mirror position y,,_ tracks yc.

The system G is assumed to be quasi-static, modelling only the time delay associated

17
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Ywf

Ym

Yc

R

Figure 1-2: Block diagram for standard control approach.

with the measurement rate and the DC gain of the actuators [3]. The controller I( is

usually diagonal consisting of identical components. That is, one SISO PID controller

is designed and it is implemented in all the servo loops.

The benefits of this type of control are that it breaks the problem into two com-

plementary parts. The reconstructor provides an estimate of the wavefront and com-

mands to conjugate it, and the servo control follows the commands. This can be a

very effective control when the dynamics of the mirror can be ignored. This usually

happens when high impedance actuators, such as piezoelectric stacks or magnetostric-

tives, are used. The high impedance of the actuator raises the natural frequencies of

the deformable mirror so that the problem is quasi-static in the frequency range of

interest. Because reconstruction is handled independently, this approach also allows

more sophisticated reconstruction schemes [4, 5, 6].

A similar tack is taken by Gully et al. [7] who use integral feedback, but use an

Extended Kalman Filter (EKF) [8, 9] to estimate errors in the registration of the

wavefront matrix. That is, misalignment of the subapertures of a Shack-Hartmann

wavefront sensor which cause errors in the Reconstructor are adaptively corrected.

This again is an approach that allows for more sophistication in the Reconstructor,

but ignores flexible dynamics.

When low impedance force actuators, rather than high impedance position actua-

tors, are used the natural frequencies of the deformable mirror drop significantly and

a quasi-static model of the dynamics can be insufficient.

18



1.2.2 Modern Control with a Reconstructor

Again using high impedance position actuators, Huang et al. [3] use modern multi-

variable control techniques to address the high degree of coupling in multi-actuator

adaptive optics systems. In their approach, the dynamics of the deformable mirror

and wavefront sensors are modelled as constant gains with time delays associated with

the latency in measurements. A Reconstructor is incorporated in the feedback loop as

in Figure 1-2. However, the compensator K is designed using 7-/00 control techniques

and permits feedback between all actuators and sensors unlike the previous approach.

Essentially this control is similar to Gully et aI. [7], in that it addresses the cou-

pling of actuators and sensors. Rather than estimating the coupling through the

Reconstructor matrix online as in Gully et al. [7], Huang et al. [3] create a mea-

surement model with an existing Reconstructor that incorporates all the coupling

amongst actuators and wavefront sensors. They then design diagonal PID controllers

and fully coupled _ controllers to provide good multivariable tracking.

This approach is a step beyond simply using PID control, as the authors show.

However, once again the models used assume that the flexible dynamics of the mirror

are insignificant in the frequency range of interest to their problem. The flexible

dynamics are important in our problem.

1.2.3 Current Force-Actuated Control Scheme

The current control approach planned for use in the MMT seeks to have as much

commonality with the standard quasi-static integral control approach of Section 1.2.1

as possible. Biasi and Gallieni [10] propose a multi-rate control system with an inner

control loop operating at a sample rate ten times faster than the outer reconstructor

loop. The inner loop uses a set of gap sensors which measure the displacement of the

deformable mirror relative to the backplate at each of the actuator locations.

A block diagram showing the elements of this control approach is shown in Fig-

ure 1-3. The outer loop consists of the Reconstructor and integral control exactly as

would be designed for the quasi-static system in Section 1.2.1.

19
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Figure 1-3: Block diagram for hierarchic control approach.

The inner control loop seeks to servo the deformable mirror so that it follows the

commands generated by the outer loop integral control. The model used to design

the control consists of a single resonant second order pole. The approach taken by

Biasi and Gallieni is to select a set of PID control gains using this single mode model

that positions the closed loop poles as those of a Bessel filter [11]. The Bcssel filter

acts as a constant time delay within its bandwidth, and thus the hope is to assign the

closed loop poles so that the closed inner loop servo controller acts as a pure delay

within the bandwidth that is required for the integral control.

The SISO controller that is designed using this approach is then repeated for each

of the collocated actuator and gap sensor pairs on the mirror. There are several

problems that can result from this. The first problem is ignoring all of the high

frequency dynamics. Using a single mode model is inappropriate for a system that

has over 20 modes up to 1 kHz as can be seen in Table 4.3. The second problem is that

simply repeatedly applying a SISO controller, even a well designed SISO controller,

to a large number of highly coupled input and output pairs can easily destabilize the

system. It would take a considerable number of iterations on the SISO single mode

design to find appropriate PID gains that would stabilize the mirror when applied at

multiple input output pairs. The third problem is that identical SISO controllers are
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unable to balance the singular values of the system leading to a wide range of control

effectiveness on various modes. Some "directions" of input will be tracked well, while

others will not. This need to balance the tracking singular values was what led Huang

et al. [3] to use a multivariable control technique for even the quasi-static dynamic

system. Finally, significant interaction can occur between inner and outer control

loops unless the inner loop has a very high bandwidth. Limits on the bandwidth of

the inner loop arise because of phase lag and the high modal density of the system.

In Section 5.2.2 these potential problems are shown in more detail.

1.3 Thesis Statement

The objective of this thesis is to develop a control approach for adaptive optics that

takes account of structural flexibility and its effect on wavefront measurement and

is practical to solve and to implement in real time. The proposed approach differs

from this previous work in adaptive optics in that it directly incorporates a dynamic

model of both atmospheric distortion and the structural dynamics of the deformable

mirror into a control design model to yield global multivariable controllers. The

global control can be viewed as an extension of the reconstruction process used in

this previous work from a quasi-static to a dynamic framework. Hence, the approach

is termed dynamic reconstruction.

1.4 Thesis Outline

Chapter 2 provides an overview of the process by which wavefront measurements are

converted to commands to the adaptive secondary mirror. This process is known as

Reconstruction because in the process, an estimate of the wavefront is reconstructed

from a series of sensor measurements. The process of measuring the wavefront dis-

tortion is discussed first. This is followed by the process of estimating the wavefront

from these measurements. The final step in the process is determining the commands

that must be sent to the actuators in order to correct for the wavefront distortion.

21



When the deformablemirror usedto correct the wavefrontdistortion is very flexible,

having dynamics within the bandwidth that is required for control, thesestandard

reconstructionapproachesareVery limited. The concept of a dynamic reconstructor

is introduced as a reconstructor that takes into account dynamics of both the atmo-

sphere and the deformable mirror, and produces optimal control signals for wavefront

conjugation.

Chapter 3 introduces the concept of circulant matrices and systems. These are

systems which exhibit a degree of circular symmetry that allows them to be divided

into a number of smaller independent systems. There are particular benefits for

control systems that can be split into smaller problems. The smaller problems are

faster to solve and implement, and better conditioned. The process of modelling

systems that are circulant follows.

Chapter 4 discusses the specific details of modelling the system required to design

control for the adaptive secondary mirror. A finite element model of the mirror itself

is presented. The section on structural modelling is followed by a detailed look at how

to model the various actuators and sensors that are used for controlling the mirror.

This includes a discussion of the modelling of temporally averaged sensors. Finally,

a model of expected atmospheric distortion is presented. The combination of these

processes comprises the system modelling.

Chapter 5 begins with a discussion of several possible new adaptive optics control

approaches which use two different kinds of control architecture. A small sample

problem is presented by which the new dynamic reconstruction process is compared

with competing approaches. The chapter ends with the presentation of simulations of

the dynamic reconstruction process on the full scale model of the adaptive secondary

that was produced in Chapter 4.

Finally, Chapter 6 presents a summary of the thesis followed by a listing of the

contributions of this thesis and recommendations for researchers who will carry on

this work.
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Chapter 2

Reconstruction

Control of adaptive optics systems generally breaks into two parts which are related to

the actuation and the sensing of incoming wavefronts. The first step is to reconstruct

a distorted wavefront from measurements of incoming light. The second step is to

have a deformable mirror mimic the shape of the distorted wavefront so that the

distortion in the wavefront, after it is reflected from the deformable mirror, has been

reduced.

Figure 2-1 shows the process known as phase conjugation by which wavefront

aberrations are corrected. In Figure 2-1(a), an aberrated wavefront, shown here

simply as a pulse discontinuity, approaches the deformable mirror. The necessary

conjugation shape has been determined and the mirror has adjusted. In Figure 2-

l(b), the wavefront first contacts the surface of the mirror and is reflected. The

main bulk of the wavefront has hit the mirror, but the aberrated section, which is

delayed, has not yet contacted the mirror surface. Just as the reflected wavefront

reaches the delayed portion of the wavefront, the delayed wavefront is reflected from

the deformed mirror. This is shown in Figure 2-1(c). This reflection of the aberrated

portion of the wavefront occurs just at the right time for the delayed wavefront to

rejoin the remainder of the wavefront, and in Figure 2-1(d) the corrected wavefront

travels away from the deformable mirror towards the focal plane for imaging. Note

that because of the reflection, the wavefront travels twice over the path shown. To

correct wavefront aberrations, therefore, the deformable mirror needs only to deform
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Figure 2-1: The process of wavefront conjugation.
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by half the magnitude of the aberration. This illustrates the process by which the

deformable mirror corrects for wavefront aberration. However, the aberration is not

constant with time. The aberrations change significantly with time as discussed in

Section 4.2. This changing aberration requires the shape of the MMT mirror to

change with a bandwidth on the order of 100 Hz.

2.1 Measuring the Wavefront

In order to correct for any distortion in an incoming wavefront, first the distortion

must be measured. There are many different ways to measure an incoming wave-

front [12]. The information that is most 0ft2n provided by wavefront sensors is the

slope of the wavefront [13] at a location on the mirror, or more precisely the aver-

age slope across an area called the subaperture. In this thesis we concentrate on a

wavefront sensor known as a Shack-Hartmann sensor [12] which is to be used on the

MMT [1].

A Shack-Hartmann sensor is shown in Figure 2-2. The sensor consists of an array

of small lenses known as a lenslet array. The lenslet array divides the aperture of the

telescope into a number of smaller subapertures. The light gathered by each of these

subapertures strikes the appropriate lens in the lenslet array and is focused onto a

detector. The detector is a quadcell, a 2 x 2 pixel grid, of a CCD camera. Figure 2-3

shows the image of the subaperture formed on the quadcell. Clearly no image can bc

resolved from such a coarse detector. All that is required is to measure the centroid of

the beam relative to the center of the quadcell. The centroid is calculated through a

weighted average of the intensities measured in each of the four pixels. The location of

the centroid is proportional to the average slope of the wavefront in the subaperture.

The centroid is found in two dimensions, labeled x and y. Thus, each lenslet provides

wavefront slope measurements for a given subaperture in two directions.

Clearly then, the number of lenslets determines the spatial resolution to which

an incoming wavefront can be measured. From the slope measurements of the wave-
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Figure 2-3: Quad-cell array.

front sensor, a picture of the wavefront can be constructed. Such a process is called

reconstruction.

2.2 Reconstructing the Wavefront

Many simple reconstruction problems consider a square grid of points at which the

phase of the wavefront, or the difference in displacement between an aberrated and

unaberrated wavefront normalized by the wavelength of the light, is to be estimated.

Aligned with the grid points are subapertures for wavefront sensor measurements.
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Figure 2-4: Three common arrangements of slope measurements and wavefront

phase evaluation points. The points represent locations at which

the wavefront phase is to be estimated. The arrows represent slope

measurements at the center of a set of subapertures, and point in the

direction which is assigned to positive slope.

Figure 2-4 shows three common arrangements of the slope measurements and the

phase estimation grid points. Figure 2-4(a) shows the Fried [14] arrangement in

which the phase is to be estimated at the corners of the wavefront sensor subapertures.

Figure 2-4(b) shows the Hudgin [15] arrangement in which the slopes are measured

along a line between adjacent gridpoints. Figure 2-4(c) shows the Southwell [16]

arrangement in which the phase evaluation gridpoints are located at the center of the

wavefront sensor subaperture.

In all three cases, the relation between the slope of the wavefront y and the phase

at the gridpoints ¢ is

y=W¢. (2.1)

The matrix W is the wavefront matrix. For example, with the Fried arrangement,

1
1 (¢ij + ¢i+1,j) _(¢i,j+l "4- ¢i+l,j+l) (2.2)Yxij = "_
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1 1

Yyij = -_(¢i,j "_ ¢i,j+l) -- _((_i+l,j -k- (_i+l,j+l). (2.3)

where i and j represent the row and column on the grid of points, respectively, and

Yx and yy represent the slopes of the wavefront in the x and y directions, respectively.

1
Thus the matrix W is composed of terms that are 0,½, or _.

The simplest estimate of the phase results from solving Equation 2.1 for ¢. If

there are the same number of measurements as gridpoints, the solution is simply

¢= w-Iv= zrv, (2.4)

where Zr is the reconstruction matrix. However, usually more wavefront measure-

ments are available so that the problem is over-determined, and the unweighted least

squares estimate of the phase q_ is

= (w_w)-'wTy = zry (2.5)

This is the solution that is presented by all three authors.

However, the measurements ywf of the wavefront slope y are corrupted by sensor

noise so that

ywf= we + _,

where _ is a white noise process with covariance .--..

wavefront at different points on the grid is correlated

Q = _(¢¢_).

(2.6)

Furthermore, the phase of the

(2.7)

This correlation provides useful information about the wavefront that can be readily

exploited. The optimal linear least squares estimate under these conditions [17, 13]

is

= QwT(WQW T + _)-lywf-- ZrYwf. (2.8)

A model for the correlation of the wavefront phase is discussed in Section 4.2.

2.3 Correcting the Wavefront

Having produced an estimate of the wavefront phase, the next step is conjugation.

For segmented mirrors [13, 12] this is a relatively simple task. Corresponding to each
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gridpoint of phasecalculation from reconstruction there is an associatedsegment

of the deformable mirror. Each segmentcan be actuated independently in piston

to shorten or lengthen the optical pathlength for this segmentof the mirror. More

sophisticated segmentedmirrors that actuate in piston, tip and tilt exist as well.

However, theseare not relevant for the work consideredherein. To conjugate the

wavefront, eachsegmentis simply positioned to counteract the estimated phaseat

the calculated locations in the manner shown in Figure 2-1. However,segmented

mirrors can encounter discontinuities of multiples of the wavelength of light that

make them useful for applications involving lasersor monochromatic light sources

but limit their usefulnessfor astronomicalobservations.

This processis considerablymorecomplicated for continuousmirrors becauseit

is very difficult to actuate at each gridpoint independently. Each actuator has an

influence on the entire surfaceof the deformablemirror. Proper conjugation then

requiresconsiderationof the effect that eachactuator hasat eachof the grid points,

and more accurately,the effectbetweengrid points aswell. The so-called"influence

flmction" for an actuator must be characterized.

Assumingthat all deformationsin the deformablemirror aresmall, the influence

of any number of actuatorsadds linearly sothat the vector of displacements,y,,, at

locations on the mirror is related to the inputs to the actuators, u, by

ym = Fu. (2.9)

The influence matrix F determines the amount that any point on the surface of the

mirror moves in response to all of the actuator inputs. The displacement required to

conjugate the phase error ¢ is determined by the wavelength of the light A,

(2.10)
ym =

From reconstructing the wavefront, an estimate of the phase error ¢ is known,

and the required actuator inputs can be determined by solving Equation 2.9. If

the number of actuators and the number of phase estimates are equal, the actuator

commands can be simply determined by

u= F-12_$= S$), (2.11)
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whereS is the influence correction matrix. However, if more, or fewer actuators than

phase estimates are available, a pseudoinverse must be used. Then

u = (FTF) -1FT2_ _ = S¢, (2.12)

or

u = F T (FFT) -1 ___A_= S¢. (2.13)
2_

respectively.

Deformable mirrors that are supported and actuated by high impedance piezoelec-

tric or magnetostrictive actuators have relatively narrow influence functions. That

is, the influence of a particular actuator has little effect beyond adjacent actuators.

Low impedance force actuation results in broader influence functions. Let us look at

an example.

Consider for a moment a line of actuators far from any edges of a mirror. Figure 2-

5 shows the static influence function for an actuator on a one-dimensional structure,

with a number of different actuator types. If the actuators are rigid, and command

displacement perfectly, then the influence function for a single actuator looks similar

to a sine function (the solid line in the figure). The displacement of the mirror at the

actuator locations is zero except at the location of the commanded actuator where

it is one. The actuators, however, do not restrict the slope of the mirror, so that

some influence is exerted beyond the adjacent actuator. The influence function is

independent of the stiffness of the mirror, though the mirror stiffness determines the

magnitude of the restraining forces which are applied by each actuator. The influence

function while having a sinc-like shape rolls off more quickly than a sinc function so

that at distances more than three actuators away, the influence of the driven actuator

is negligible.

Actuators are not perfectly rigid, however, so some displacement is encountered

at the actuators which were commanded no displacement. The stiffer the actuator,

the more focused the influence function is around the commanded actuator, and the

closer the response is to the sinc-like rigid actuator influence function. This can be
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then stiff actuators can add sufficient stiffness to the system to raise the natural

frequenciesof the mirror beyond the range of importance to the problem. In this

casea quasi-static approximation for the influence functions can againbe sufficient.

However,whenforce actuators areusedon a flexible mirror, the natural frequencies

of tile mirror aredetermineby the dimensionsof the mirror, not by the inter-actuator

spacing. Thus the natural frequenciesfor this type of structure aremuch lower, with

a smaller quasi-static region.

Figure 2-6 shows the frequency response of a collocated actuator and sensor pair on

a model of the MMT secondary mirror. The modelling of this mirror which provides

this frequency response is discussed in Chapter 4. The frequency response has been

calibrated so that the DC gain is one. It can be seen that for this actuator, the quasi-

static region in which the frequency response is fairly constant extends only to about

2 Hz. Beyond 2 Hz the response is increasingly dominated by resonant behavior of

the mirror. That is, it depends on the structural dynamics. Therefore, the shape of

tile influence functions shown in Figure 2-5 will vary dramatically with frequency as

shown in Figure 2-6. Any reconstruction which attempts to reshape the mirror at

a rate faster than about 2 Hz will have to tackle the problem of dynamic influence

functions.

2.5 Dynamic Reconstruction

Incorporating the dynamic influence functions, and possibly a dynamic model of the

atmospheric distortion, into the reconstruction process results in a procedure that will

be called "dynamic reconstruction." The dynamics of the mirror are an important

factor to consider because wavefront sensors do not measure the atmosphere directly,

but rather the difference in phase between the atmosphere and the optical surfaces of

the telescope. These optical surfaces are all rigid except for the deformable mirror.

Therefore, the wavefront sensor measures the difference in phase of the atmosphere

and the deformable mirror. If there is no distortion in the atmosphere, but the

33



10 2

101

10 0

_P
"0

c 10 -1

10 -2

10 ..3

10 _

10 -1 10410 0 10 _ 10 2 10 3

Frequency (Hz)

Figure 2-6: Dynamic influence function at actuator location.

deformable mirror is vibrating, for example, the wavefront sensor will register a phase

difference.

To begin the process of estimating the phase distortion of the atmosphere, let us

introduce a dynamic model of the atmosphere. In state space this will be represented

as

= Awe + Bww (2.16)

yw= cw¢, (2.17)

where the vector ¢ represents the states of the model which are the phase of the

wavefront at a number of locations across the telescope aperture, w is a vector white

noise input of unit intensity, and y= is an output of the model. Note that with C_ = I

the outputs of the model are the phase of the wavefront itself. The model is derived

more fully in Section 4.2, but the form of the model is introduced here so that the

form of the reconstructor can be presented. Note that the covariance of the wavefront
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seen from the dotted line in Figure 2-5 which shows the influence function for stiff

but not rigid actuators.

A Caussian influence function is commonly used [18, 4] as a simple approximation

which does not depend on a detailed stiffness model of the mirror. The Gaussian

influence function assumes a Gaussian distribution with standard deviation equal to

the distance to the adjacent actuator

F(x)=exp( Ix-x° 12)- 32 (2.14)

where x0 is the location of the actuator, and 5 is the separation between actuators. In

accordance with the Gaussian distribution, the influence of the commanded actuator

drops to 37% at one standard deviation, 2% at two standard deviations and is neg-

ligible beyond this distance. The influence function for stiff but not rigid actuators

similarly is negligible beyond two standard deviations.

The influence function is quite different, however, for flexible actuators. Because

little restoring force is exerted by each actuator, displacing the commanded actuator
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by oneunit displacesnearly the wholestructure. Thus the influencefunction is much

broaderthan for stiff actuators. This is the situation that isencounteredin the MMT.

The electro-magneticactuatorshavezeroDC stiffnessand thus the influencefunction

is very broad, limited only by the boundary conditions of the mirror.

2.4 The Reconstructor

The reconstruction matrix Z_ provides an estimate of the wavefront phase, ¢, fl'om

the wavefront sensor measurements ywf. The influence correction matrix provides

actuator inputs which minimize the error in a given mirror shape. Combined, these

provide a set of actuator commands from the wavefront sensor measurements that

reduce tlle wavefront error after reflection from the mirror.

u : S¢ = SZrywf : Rywf, (2.15)

where R is the reconstructor for the system. However, this is not an optimal recon-

structor because the least squares problems were solved separately. Wallner [19] has

addressed this issue and solved the optimization simultaneously to obtain an optimal

reconstructor.

There is one key step that is still missing however. The assumption to this point

has been that the influence function, which reflects the influence of the actuators

across the mirror, is static. This is not the case. For all systems, the influence func-

tion is in fact dynamic, varying as a function of frequency. For systems with very stiff

actuators, the frequency range over which the actuator response is nearly static can be

large. In this case a quasi-static approximation for the actuator influence function is

sufficient. These stiff actuators can be thought of as displacement actuators. The in-

put impedance is sufficiently high that when commanded, these actuators apply a set

displacement. However, low stiffness actuators are characterized as force-actuating.

That is the input impedance is low enough that these actuators impart forces not

displacements to a structure.

Tlii-s-difference between force:actuated and displacement-actuated structures has

further importance. When the structure is flexible, such as a deformable mirror,
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phase,Q in Equation 2.7, satisfies the Lyapunov equation

A T TA,_Q+Q w+B,_Bw=O. (2.18)

Similarly, the dynamics of the deformable mirror, later derived in Section 4.1, are

represented in state space as

ic,,_ = Amxm + Bmu (2.19)

Ym = Cmxm + Dmu, (2.20)

where xm are the states of the structural dynamics of the mirror, u are the actuator

commands and ym is a vector that represents the displacement of the mirror from

nominal at a number of different locations scaled such that the displacement is in the

units of the wavefront phase.

The wavefront sensor measures the difference of the mirror displacement y and the

wavefront phase yw, not the phase itself, so the measurement equation, Equation 2.6,

becomes,

ywf= w(y - + (2.21)

where c is a white noise process with intensity E representing measurement noise,

and W, from Equation 2.6, represents the conversion from slope measurements to

wavefront phase. Finally, the objective of any control is to minimize the wavefront

error across the entire mirror. So the performance variable for the system is defined

as

(2.22)z=y_-ym.

Combining these two models, yields the combined system dynamics

:_ = Ax + Bu + Lw (2.23)

z = C_x + D=uu (2.24)

Ywf = Cx + Du + _ (2.25)

with

X

¢

Xm

A

A_ 0

0 Am
, B= , L=

BW

0
(2.26)
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[- 1

= [ we. -we., ], andD=WD.,. (2.28)C

The performance objective is to minimize the root mean square (RMS) wavefront

error (z) subject to the atmospheric disturbance (w) and the sensor noise ((). It

would also be advantageous to minimize the use of controls so we are lead directly

into a Linear Quadratic Gaussian (LQG) [20] framework for control.

performance objective as

J = E{zTz + puTu}

the optimal control is given by the compensator represented by

= (A-BK-FC+FDK) b,+Fywf

u = K_

Defining tile

(2.29)

(2.30)

(2.31)

where

K = -!BTP (2.32)
P

F = QcT_-1, (2.33)

and P and Q are the symmetric positive semi-definite solutions of the following Riccati

equations

0 = PA + A:rp + cTc=- 1pBBTp (2.34)
P

0 = AQ + QA T + LL T -- QCT__,-1CQ. (2.35)

The connection between this LQG control problem and the reconstructor of the

previous sections can be seen by splitting the control into its component parts, es-

t|ma-tor and regulator. By the separation principle [20], the LQG controller can be

split into an optimal estimator and an optimal regulator.

The goal of the estimator is to estimate the phase of the wavefront and the states

of the structural model. The optimal linear least squares estimator, the Kalman

Filter[20], for this system is given by the dynamic system

_: = A_ + Bu + F(ywf - C3c - Du) (2.36)
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where5: is the estimate of the states, i.e., the wavefront phase estimates and structural

state estimates. This estimator provides the dynamic and continuous time equivalent

of Equation 2.8.

Given a perfect measure of all the states of the system, the goal of the regulator is

to minimize the performance objective, Equation 2.29. And the result is simply the

full state feedback

u = -1-BTpx. (2.37)
P

This is the dynamic analogue of the inversion of the static influence function given

in Equations 2.11-2.13. The combination of optimal regulator and estimator results

from applying the full state feedback gains K to the estimates of the states 2 since

the states themselves are not available for feedback. This is intuitively what was done

in the static case, and by the separation principle it is optimal in the dynamic case.

Thus it can be seen that solving the LQG problem for this system is the dynamic

equivalent of the two step process of reconstructing the wavefront and inverting the

static influence function. Hence it is "dynamic reconstruction." Having expressed the

reconstruction process as an optimal control problem, it is now possible to generalize

and use any of a wide variety of modern state space control techniques to control the

mirror. This process will be discussed further in Chapter 5.
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Chapter 3

Circulant Systems

Adaptive optics systems typically have a large number of actuators for providing shape

control of a deformable mirror. The number of sensors to measure the distortion of

the atmosphere is also very large. Dealing with such a large number of inputs and

outputs in an optimal control problem can be very difficult. When actuator and sensor

dynamics are included, the number of states of a system increases in proportion to the

number of inputs and outputs. This increase in dimension results in very large Riecati

equations which may be poorly conditioned and take a large amount of computation to

solve. Furthermore, feeding information from every sensor to every actuator through

a compensator requires a large amount of real-time computation. But, adaptive optics

systems also tend to exhibit a high degree of symmetry. Because mirrors are general

circular, the symmetry is circular in nature. It is possible to exploit this symmetry

to make the control problems that must be solved, smaller; and reduce the number of

floating point operations required to implement the resulting controller in real time.

Symmetry is exploited through the use of cireulant matrix theory.

3.1 Circulant Matrices

A circulant matrix [21, 22, 23] is a square N x N matrix characterized by the fact that

every row (or column) has the same elements, except that the elements in subsequent

rows (columns) are rotated one position to the right (down), with the last column
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(row) mapping back to the first on rotation. The general form is shown in the matrix

A

ao aN-1 aN-2 • .. al

al ao aN- 1 a2

a2 al ao a3

: ".. :

aN-1 aN-2 aN-3 "" " ao

(3.1)

A useful property of a circulant matrix is that its eigenvectors are known, and need

not be calculated. The circulant matrix in Equation 3.1 has eigenvectors vi, for

i = 0,...,N- 1, which form the eigenvector matrix

[ ] '
V---- v 0 v 1 ... UN_ 1 --V/- _

1 1 1 ... 1

1 con co_ ... co_N-,)

1 CO_v co4 .,. ¢0_ N-l)

(N-l) 2(N-l) (N-1)(N-I)
1 W N CON " " " CON

(3.2)

where,
27r

CON _ e3N', (3.3)

such that tile matrix A, where

A=V-1AV, (3.4)

is the diagonal eigenvalue matrix. The eigenvector matrix V can be written simply

as

(y_,) __1 ,.__)(j__) (3.5)
_- g/--_ w y '

where V 0 denotes the ij th element of the matrix V. The matrix V is symmetric since

V/j = Vji. (3.6)

Furthermore, because

(V-_)_j_ 1 -(i-1)(j-1)_ 1 (CO;¢)(i-1)(j-1),
V_CON --_

(3.7)
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where 0* indicates the complex conjugate, and V -1 is symmetric, V is a unitary

matrix i.e.,

V-1 = V H

where ()H denotes the Hermitian, or complex conjugate transpose.

eigenvalue matrix can be found from

(3.8)

Therefore the

A = V HAV. (3.9)

However, there is an easier way to calculate the eigenvalue matrix by recognizing

that the circulant matrix A is a matrix operator that represents a circular convolution.

Consider the relation y = Ax written out fully as

Y0

Ya

Y2

YN-1

ao aN-1 aN-2 • • • al

al ao aN-1 a2

a2 al ao a3

: ... :

aN-1 aN-2 aN-3 "'" ao

Xo

Xl

X2

XN-1

(3.1o)

The relationship between individual terms in x and y can be written more succinctly

as
N-1

Yk = E aiX(k-i)modN, (3.11)
i=0

where lmodm denotes the integer n E {0,..., m - 1} such that I + n is divisible by m.

This relation is a circular convolution. The convolution operation can be transformed

to multiplication through a discrete Fourier transform leading to

N-1 N-1

i=O i=O

N-1 N-1

-Sk : E aie-'_ = E aiwNik
i=O i=O

N-1 N--1

i=0 i=0

(3.12)

(3.13)

(3.14)

so that

Yk _ akXk (3.15)
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for k = 0, 1,..., N - 1, which are a set of decoupled scalar equations. If x and y are

temporal variables, then 9 and _ are in the temporal frequency domain with frequency

variable k. If x and y are spatial variables, then _ and _ are in the spatial frequency

domain. In this work, these are spatial variables because they generally represent

positions around a deformable mirror, and a spatial frequency interpretation will be

used.

The discrete Fourier transform can be represented in matrix form by the matrix

V H which is called the Fourier matrix[21] scaled by x/_. Thus,

-_ = v/-NyUy (3.16)

= vr v "x (3.17)

= v_VHAx = VHAV_ = h_ = A_ (3.18)

The matrix A = diag[_k] equals the eigenvalue matrix of A, A, and thus it can be

seen that the eigenvalues of A are the discrete Fourier transform of {ai}, where {ai}

denotes the sequence ao, al,. •., aN-1.

The discrete Fourier transform of {ai} is in general complex, thus the matrix A is

complex. But because {ai} is a real-valued sequence,

ak = a_v-a, (3.19)

the diagonal matrix A can be converted to a block diagonal but real-valued form

An. Also note from Equations 3.2 and 3.5 that eigenvectors vk and Vg-k are complex

conjugates.

Tile columns of V can be reordered so that conjugate pairs of eigenvectors are

adjacent through postmultiplication by a unitary permutation matrix P. Each sub-

matrix of conjugate pairs can be multiplied by another unitary matrix

to form a real-valued matrix.

(3.20)

[Vk Vg-k ]{-/2= I v_Re(vk) x/_Im(vk) ]. (3.21)
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Combining thesestepsresults in the matrix

r = VPU (3.22)

where U is a block diagonal matrix composed of elements that are either 1 or U2

corresponding to real and complex pairs of eigenvalues in V. The resulting matrix T

is once again unitary so that

T-1 = U-1P-1V-1 = u_ pHv H = T n. (3.23)

But T is a real-valued matrix so that

T H = T T = T -I, (3.24)

The matrix T can be formed directly because all the eigenvectors are known a

priori,

{ [v0 v_Re(vl)v/-2Im(Vl).., v/2Re(v@_l) v_Im(V__l)v_] ifNeven
T= [v0 v_Re(vl)v_Im(vl)..-v/-2Re(v___) x/_Im(v____t) ] ifNodd

(3.25)
where

1 27ci(k- 1)

(Re(vi))k = -_cos N (3.26)

_ l____sin2_-i(k- 1) (3.27)
(Im(vi))k- V/_ N

Using this matrix T in place of the eigenvector matrix V yields the block diagonal

real-valued matrix

An = TT AT =

-ao 0 0 0 0 ... 0

0 Re(g,) Im(al) 0 0 0

0 -Im(_l) Re(_l) 0 0 0

0 0 0 Re (a2) Im (a2) 0

0 0 0 -hn (_2) Re (_2) 0

0 0 0 0 0 __
2

(3.28)
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shownhere assumingN is even. The last row and column would not be present if N

were odd. The matrix AR consists of two scalar blocks and (_N _ 1), 2 X 2 blocks if2

N is even, and one scalar block and N-1(--7-, 2 X 2 blocks if N is odd.

The number of real eigenvalues and eigenvectors for A depends on whether N is

even or odd. If N is even there are two, and therefore there are two smaller blocks

in AR, otherwise there is only one. To understand why this is so, observe that the

eigenvector vi composed of elements

1 27r(k- 1)i 3 27r(k- 1)i (3.29)
(vi)k = _ cos N + _ sin N '

is real when

sin 27r(k - 1)i _ 0 Vk, (3.30)
N

N is not an integer, andN If N is odd then 5-which occurs only when i = 0 or i = -i-"

there is only one real-valued eigenvector. Another way to view this is to plot _ as

in Figure 3-1 which shows w_ plotted for N = 16. There are only N distinct values

for w_ which is a periodic function. For a given i, the terms in the eigenvector vi can

be found by starting at the 'x' for which w_ = 1 moving counterclockwise around the

unit circle by i steps, N - 1 times. In doing this, complex values for the eigenvector

occur unless you never move, i = 0, or you move half way round the circle with each

step, i - N Thus, only if N is divisible by two can one move half way round the
-- --_.

circle with each step, and there is only one real block if N is not divisible by two.

3.2 Block Circulant Matrices

A block circulant matrix is an Nl x Nm matrix in which l x m matrices Ao,..., AN-1

replace the scalars in the eirculant matrix A in Equation 3.1 to yield the matrix

A

Ao AN-1 AN-2 "" A1

A1 Ao AN-1 A2

A2 A1 Ao A3

: "o ,

AN-1 AN-2 AN-a Ao

(3.31)
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The eigenvectors of block circulant matrices are not known a priori as they are for

circulant matrices. However, the matrix V and discrete Fourier transform are still

relevant. The utility of the circulant form in Section 3.1 is that the matrix A can

be easily diagonalized. Block circulant matrices can be easily block diagonalized in a

similar manner. The matrix

Vm = V ®[m (3.32)

where Im is tile m × m Identity matrix and ® is the Kronecker product, can be used to

block diagonalize the block circulant matrix A in the same manner as V diagonalizes

the circulant matrix A.

Ao 0 0 ...

0 A1 0

0 0 A2

• ,

AN-1

(3.33)
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where
N-1 N-1

-& = _ &e-'_- = _ Ai_o__k. (3.34)
i=O i=O

Note that {A} is the discrete Fourier transform of {A} on an element by element

basis in the matrix•

A is again complex in general, but a real-valued block diagonal matrix can be

formed by using the transformation

Tm=T®I,,.

The resulting real-valued transformed matrix is

Z_ = T_ATm=

Ao 0 0 0 0 ... 0

0 Re (A1)Im (A1) 0 0 0

0 -Im(A1) Re(A1) 0 0 0

0 0 0 Re (A2) Im (A2) 0

0 0 0 -Im (A2) Re (A2) 0

0 0 0 0 0 AN
2

shown here assuming N is even.

(3.35)

(3.36)
m

The matrix An consists of two l x m blocks and

N-I), 21 x 2m blocks(@ - 1), 2l x 2m blocks if N is even, and one l x m block and (-T-

if N is odd.

3.3 Circulant Systems

A standard input output system can be represented in state space as:

",i:= Am + Bww + Buu

z = C,x + Dzww + Dz,,u (3.37)

y = Cyx + D_ww + Dy,,u,
w

where x E ]Rn= represents the states of the system, w C ]R'_'_ is a set of disturbances,

u C IRTM are control inputs, z C ]R"Z are performance variables, y C ]R_ are mea-

surements used for feedback, and n_, nw, n,,, nz, and ny are the number of states,
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disturbances,control inputs, performancevariables and feedbackmeasurementsin

the system,respectively.

For a systemto be block circulant, all the matrices in Equation 3.37- A, Bw, B_,,

Cz, Cy, Dzw, Dzu, Dvw, and Dye- must be block circulant. Furthermore, the number

of circulant blocks N in each matrix must be the same. Under these circumstances,

the system can be decoupled into N smaller systems with complex-valued matrices,

or ftoor(_ + 1) systems with real-valued matrices, where floor() indicates rounding

down to the nearest integer. The decoupled system dynamics are obtained by using

the transformations

H= V_ x (3.38)
N

= VHy (3.39)
N

= V_ z (3.40)
N

z H (3.41)N= l-_w
N

H-g = V_u (3.42)
N

where the scale factor of _ has been dropped to obtain complex-valued systems, or

gn = T Tx (3.43)
N

YR = T_y (3.44)
N

_R = rL z (3.45)
N

NR = TTw (3.46)
N

_R = T Tu (3.47)
N

to obtain real-valued systems. The decoupled dynamics after these transformations

are applied are

Xi = "-Aixi + Bwiwi + Buui

-Zi = Czi'xi "_- -Dzwi_i or Dzui_i (3.48)

m

Yi = CyiXi "Jr" Dywiwi "k Dyuiui,

for i = 0,..., nb- 1, where the subscript R has been dropped so that both complex

and real blocks can be represented, nb= N for complex matrices or nb= floor(_ + 1)
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for real-valuedmatrices•The dimensionsof the decoupledsystemscorrespondto the

variablesnhi where h = {x,w, u, z, y} Then nhi = _h for complex blocks and the• N

smaller real blocks, and nhi _ for the larger real blocks.N

Circulant systems exhibit the property that the transfer function matrix of the

system

a w(s) az (s)
G(s) = , (3.49)

ayw(8) ay (8)

consists of circulant blocks G_j(s) where Gij(8) -- C_(sI- A)-IBj + Di3. That is,

each of the input/output, input/performance, disturbance/performance, and distur-

bance/output relationships is circulant.

To interpret what it means for a system to be eirculant, consider Figure 3-2. In

this figure, a system is represented which consists of four subsystems (rib = 4). The

interaction between each of the subsystems, Ai for i = 1, 2, 3, including the self inter-

action, A0, is represented by arrows connecting the subsystems. Two characteristics

make this system circulant. First, all of the subsystems are identical. They have

the same self dynamics A0. Second, the interaction between a particular subsystem

and the remaining subsystems is exactly the same for all of the subsystems. Another

way to view this is that there is an arbitrariness about the origin of the system. The

system looks exactly the same under the current ordering of subsystems, as it would

if all the subsystems were shifted circularly so that subsystem 0 becomes subsys-

tem 1, subsystem 1 becomes subsystem 2, and so on. It is this rotational symmetry

which results in the circular convolution of Equation 3.11 and distinguishes this as a

eirculant system.

This decoupling of the system dynamics into smaller systems is precisely the ad-

vantage that can be derived by exploiting circulance. In the control of finite dimen-

sional systems, Lyapunov and Riccati-type equations very often arise for the calcula-

tion of properties such as performance and optimal feedback gains. The computation

required for solving these equations goes as O(n_). It would be advantageous if these

equations also decoupled along with the system dynamics•

To show that these equations do decouple, a few preliminaries are required. In
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Figure 3-2: The dynamics of a circulant system consisting of 4 identical subsys-

tems with identical interaction shown schematically.

Ref. [22] it is noted that A T = ----_H. AT R is composed of blocks of the form (Equa-

tion 3.28)

Re(AH) Im(AH)
-Ira(_) _o(_,")
_e(_:) -Im(_)
Im(_) .e(_)
Re(-A 0 Im (Ai)

-Im (-Ai) Re (-Ai)

T

(3.50)

(3.51)

(3.52)

Therefore

ATR = "-ART. (3.53)

The Lyapunov equation

0 = AP + PA T + BB T (3.54)
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can be block diagonalized through the following steps,

0 = T T APT,_ + TT pATTn_ + T T BBTTn_ (3.55)nx

0 = T T AT,_=T T PTn= + T T PTn_T T ATT,,= + T T BTn,,T T BTT,_ (3.56)

0 = ARPR + PRATR + BRBTR (3.57)

0 = ARPR + "PR-AR T -[- BRBR T (3.58)

so that

for i = 1,...,nb- 1.

0 = AiRPiR + -ffiiR--_iRr+ BiRBiR r (3.59)

Thus the computation required to solve this equation has

[")( N {2n_._ ]3)dropped from O(n 3) to roughly v_7 _ N J J plus the cost of transforming to and from

the circulant form which is O((_)2Nlog_ N) if a fast Fourier transform can be used,

i.e., if N is a power of 2.

Similarly Riccati equations such as

PA+ATp+cTc_ T -1 T-- PB_,(D_,,Dy,,) B,,P = 0 (3.60)

decouple to become

. T-- _I-- T--
PRAR + -ART-pR -[- CzRTCzR -- PRBuR(DyuR Dyu R) BuR PR = 0. (3.61)

Henceforth the subscript R will be dropped, and it is assumed that the real-valued

transformations are used unless otherwise specified.

The solution of these equations is generally done off-line, so while it is a great

benefit that it is faster to compute the solutions by exploiting circulance, it may

not have been necessary in order to solve the problem. However, the reduction in

dimension of the problem also means that for very large order systems, where the

numerics of solving these equations become very poorly conditioned, solving these

equations becomes possible.

For implementation of real-time control, computation time is much more impor-

tant, and for large numbers of actuators and sensors, significant savings can be made.

Any linear controller can be put in the form

:fc = Aczc +Bcy

u = Ccxc + D_y, (3.62)
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where xc C ]RTM represents the states of the compensator, representing a system in

which measurements y drive a dynamic system of gains to create control signals u.

Typically full order compensators are generated from optimal control problems so

that nc = nz. However, A_ can always be transformed to a block diagonal form

with 2 × 2 blocks (unless the system has large Jordan blocks). Thus the overall

computation required to implement the control is (2+ny+nu)nc+nyn,_ multiplications.

A circulant compensator, which results from circulant Riccati equations, requires only

It nil

about 2(1 + h + _)n_ + 2 7 multiplications for the circulant compensator, andg

(ny + nu)N multiplications to transform the inputs and outputs to circulant form,

where N is the number of symmetric subsystems into which the problem can be

divided. For compensators with only a small number of inputs and outputs (though

it should be noted that there must be at least some multiple of N), the computational

savings may be small. However for systems in which n v and n_ are large, the savings

can be substantial.

There is a trade-off between computation required for compensator calculations

and computation required for the transformation into the decoupled coordinates.

Therefore there is an optimum amount of decoupling. Given ny, nu, and no, it is

possible to calculate the N that minimizes the function, F(N), which is the number

of floating point multiplications

ny ?"tu 7_y?t u

F(N) = 2(1 + _- + --_)nc + 2----_ + (ny + nu)N. (3.63)

To find the minimum number of computations, differentiate F(N) with respect to N

and set the derivative to zero.

dF 2(ny + n,,)n_ + 2nyn_
dN - N2 + ny + n_ = 0 (3.64)

+ + (3.65)
ny + nu -- N2

(Nopt = 2 nc + ny + n_/.

Finally, verify that a minimum is achieved by checking that the second derivative is

positive.

d2F 4(n_ + n_,)n_ + 2nyn_,
-- > O. (3.67)

dN 2 5 3
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Unfortunately, N is not a continuous function, but is in fact an integer that is a

common factor of n_,, ny, and no. Thus, the optimum is achieved at either the

nearest permissible N < Nopt or the nearest permissible N > Nopt. In addition, other

constraints in the problem, such as geometric distribution of sensors and actuators,

may prevent one from realizing all of the computational savings

3.4 Modelling of Circulant Systems

The continuum dynamics of structures are represented mathematically by partial

differential equations (PDEs). However, only under exceptional circumstances can

these PDEs be solved analytically. Therefore the dynamics of structures are gener-

ally solved through the use of the second order ordinary matrix differential equation

(ODE)

Mi_ + CD_I + Kq = Fu, (3.68)

where M is the mass matrix, CD is the damping matrix, K is the stiffness matrix,

F is the forcing matrix for the system, q is the vector of degrees of freedom, and u

is the input vector. Outputs of interest, y, are generally of the form of some linear

combination of states which correspond to the degrees of freedom of the system and

their rates.

y = Spa + Svil, (3.69)

where Sp selects the position component of the output and Sv selects the velocity

component of the output. The matrices for this ODE can be arrived at through

many different techniques such as the Finite Element Method[24] or the Rayleigh-

Ritz Method[25] just to name a few. However, the ODE only approximates the PDE

for the system, and thus the solutions of the ODE are only approximate. It is often

difficult to arrive at an analytical measure of damping in continuum dynamics, so

modal damping is often assumed. When Co is not known explicitly, to achieve the

same damping ratio, (, in all modes, the damping matrix CD can be set to

1

CD = 2(M½ M-_KM-_ M_, (3.70)
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where 0 ½,indicates the symmetric matrix squareroot.

For control systemsanalysisand synthesis,first order differential equationsof the

form of Equation 3.37are typically used. Two methods for converting the second

order ODEs to first order ODEs will be presented. The first is called the direct

method becauseit dealsdirectly with the mass,stiffnessand damping matrices. This

method is most applicablewhen the number of degreesof freedom in the system is

small. The secondmethod is called the modal method, and it useseigenvaluesand

eigenvectorsof a modal solution to the ODE,

3.4.1 Direct Method

The first step in the direct method is to define the states of the system

q

4
(3.71)

Combining the disturbances, w, and control inputs, u, and labeling it u', and similarly

combining performance z and measurement outputs y together as y', then the system

can be represented as

Jc = Ax + Bu'

y' = Cx + Du', (3.72)

with

0
A=

M-1K

0
B=

M-1F

c= sp &]

D_O.

I

-M-1CD
(3.73)

(3.74)

(3.75)

(3.76)

The number of degrees of freedom in a FEM may be very large, so that a model of this

form will be very large. All of these degrees of freedom are not usually necessary, but
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are included in a FEM to improvethe accuracyof modal frequencyand modeshape

calculations. Thus an alternative method for deriving the system matrices A, B, C,

and D depends only on the results of a modal solution.

3.4.2 Modal Method

A modal model is constructed from the results of the generalized eigenvalue problem

[K - w2M]q = O. (3.77)

Solving for w 2 yields a diagonal eigenvalue matrix f2 2 and an eigenvector matrix

which can be mass normalized so that

(I)TM_ = I (3.78)

(_TI(42 = f_, (3.79)

where the columns of (I) are the eigenvectors ¢i. Then through a change of variables

q = _571 (3.80)

Equation 3.68 can be transformed to

g2TM_i? + _TCD_) -t- oT K_T] = g2TFu, (3.81)

Assuming modal damping, though not necessarily equal damping in each mode

i7 + 2Zf_i] -t- _2rl = gpTFu, (3.82)

where Z is the diagonal matrix of damping ratios. The output variables are similarly

transformed so that

y'= SpCr 1 + S_(I)7). (3.83)

This system can be placed in first order form (Equation 3.72) by considering the new

states to be

7/
z = (3.84)
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Then

A

0
B=

_TF

D:-O.

(3.85)

(3.86)

(3.87)

(3.88)

The advantage of the modal model is that it is easier to reduce the dimension

of the model to include only the dynamic modes that are important to the control.

Thus if the model has a large number of degrees of freedom in order to get low fre-

quency modes accurately, the high frequency modes can be truncated from the model

resulting in an accurate model over a finite bandwidth. Partitioning the eigenvector

matrix

= [ ]
where ()K indicates terms kept, and ()T indicates terms truncated, then the system

matrices become

A

S

0

[oT
q_KF

(3.90)

(3.91)

(3.92)

In order to get the static gain of the system correctly, i.e., to include the static effect

of all the truncated modes, a static correction[26] should be applied. This is done by

solving for static deformations

42s = K-1F. (3.93)

Then the static gain can be corrected by adding the D term

D = Sv(¢s - CK(_TM_s)). (3.94)
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3.4.3 Direct Method Applied to Circulant Systems

For structural systems that exhibit circulance, either or both of these methods can

be used to derive the model of the system dynamics. To apply the direct method,

the degrees of freedom of the system must be arranged so that M, K, Co, F, S v and

Sv are block circulant (Equation 3.31). Then the transformation T can be applied to

Eqs. 3.68 and 3.69 to get

and

)79 + U2j + K---_= ,v---_, (3.95)

= Sv----_+ __x. (3.96)

Where the second order ODE now decouples into nb smaller ODEs.

These second order ODEs can be converted to the first order forms as in Sec-

tion 3.4.1 to obtain nb decoupled systems represented by matrices

0
Ai =

o]Bi = __71_pi

Ci = [ SPi Svi ]

I

----1--

-Mi CDi
(3.97)

(3.98)

(3.99)

(3.100)Di =0

for i = 0,..., nb -- 1.

As with the fully coupled system equations, the dimension of these system matrices

may be excessively large, and a modal approach can be taken.

3.4.4 A Hybrid Method Applied to Circulant Systems

Once the second order ODEs are decoupled, a modal method for converting to first

order form as in Section 3.4.2 can be applied to each independently. Then the system

matrices for each of the nb decoupled systems are represented by

0 I
Ai = (3.101)
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0]B i = (i)/T-_i

Di = O,

(3.102)

(3.103)

(3.104)

where _i and f_ are the eigenvector and eigenvalue matrices of the ith generalized

eigenvalue problem

[Ki - w2--Mi]_i = 0 (3.105)

for i = 0,..., nb -- 1. Note that in converting to the modal form a state transformation

has occurred

z = ¢_i 0 77 (3.106)

o _i 7)

This means that the 77is are no longer related by a discrete Fourier transform to the 7/

of the full coupled system. In fact, since both 77iand r/represent modal states, the 77is

comprise 77. There is a very specific ordering however. Because the transformation

to the circulant matrices produced independent blocks, it has grouped certain eigen-

values together. These are eigenvalues whose eigenvectors have a spatial frequency

corresponding to the frequency of the block. With the modal degrees of freedom in 77

so arranged, stacking the rhs results in the vector 77without any further transformation

required.

Thus, the properties of circulant systems have been used to decouple the in-

put/output nature of the problem, but the states have been transformed to modal

degrees of freedom. This allows some model reduction to be done independently in

the decoupled problems. As in Section 3.4.2, unimportant modes can be truncated

so that the system dynamics are now represented by

A i =

0
Bi =

T--
d_iK Fi

(3.107)

(3.108)

(3.109)c, = [ Ne, N,e, ]
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Di = Spi(_is _ aSiK(_iKMi_iS)),T-- (3.110)

where

1--

C_is = K i Fi. (3.111)

Note also that each of the nb decoupled systems can be truncated to different

degrees, thus the number of states in each of the subsystems is not necessarily the

same. It is also no longer possible to recreate the states x of the original full order

system. However, it should be emphasized that the circulant input/output behavior

of the system has been maintained though the internal states have not.

3.4.5 Modal Method Applied to Circulant Systems

The hybrid approach resulted in nb decoupled input/output systems whose internal

states are the modal states of the fully coupled system. It should therefore be possible

to create the decoupled systems from a purely modal model of the full system, without

having to do the circulant transformation of the mass and stiffness matrices of the

full system.

The hybrid approach transformed Equation 3.68 twice to yield

qgTTTMTk_i_ + qgTTTCDTqgi7 + qyTTTKTk_u = qgTTTFTTTu qgTTTFu, (3.112)

where • is tile block diagonal matrix composed of the eigenvectors from the sub-

problems in the hybrid approach (Ih, and 77 is the vector composed of the rhs of the

subproblems stacked below one another.

Comparing Equation 3.112 with Equation 3.81, it is clear that the combination of

these two transformations is simply the eigenvector matrix of the full order problem

= T¢, (3.113)

albeit with the very specific ordering of the eigenvectors and eigenvalues discussed in

the previous section.

Thus a purely modal approach to system modelling can begin with the A, B, C

and D matrices in Equations 3.90, 3.91, 3.92 and 3.94. It is now necessary only to

58



perform the circulant transformation on the inputs and outputs of the system

_=TTu
N

(3.114)

= T y, (3.115)
/V

to decouple the B, C and D matrices into the appropriate blocks.

Note that it is not necessary to reorder the eigenvectors and eigenvalues before

the input and output transformations are applied. Thus it is not necessary to know

which eigenvectors correspond to which circulant block. Applying the input and

output transformations to the matrices in Equations 3.91, 3.92 and 3.94, results in B,

C and D matrices that are sparse. The necessary reordering of degrees of freedom to

form block diagonal matrices B, C and D becomes obvious and results in subsystems

that are identical to those derived via the hybrid approach, Equations 3.107-3.110.

3.4.6 Modelling Summary

The three approaches to modelling a circulant system listed in Sections 3.4.3, 3.4.4,

and 3.4.5 are summarized in Figure 3-3. The figure shows three streams leading from

a mass and stiffness matrix representation to a state space (A, B, C, D) represen-

tation. In the direct approach from Section 3.4.3, the leftmost stream, and in the

hybrid approach from Section 3.4.4, the center stream, the circulant mass and stiff-

ness matrices are transformed to produce decoupled mass and stiffness matrices, M

and I--(, as shown by the transformation T. These two approaches are then distin-

gnished by a modal solution. The direct approach goes directly to decoupled state

space A, B, C, and D matrices whereas the hybrid approach applies a modal solution

to the decoupled mass and stiffness matrices. It then builds the state space system

from the modal solution.

By contrast, the purely modal approach of Section 3.4.5, represented by the right-

most stream applies the decoupling transformation, T, only to the inputs and outputs

of the system after a full modal solution has been obtained. The benefit of this ap-

proach is that it allows one to create a decoupled model directly from the modeshapes

and frequencies output from a finite element package.
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T

Figure 3-3: Summary of the modelling approaches for circulant systems.
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Chapter 4

Modelling

This chapter discusses the modelling of the adaptive secondary mirror system for

control design purposes. This modelling process consists mainly of two parts. The

first is structural modelling, the second is atmospheric distortion modelling. In the

preceding chapter, the standard state space form of the system model

ic = Az + B_,w + Buu

z = C_z + D_,w + Dzuu

y = Cyx + Dyww + D_,,u,

(4.1)

was presented. In this form, the vector x contains the states of the system, w contains

the disturbance inputs, u contains the control inputs, y contains measurement outputs

for control, and z contains all the performance outputs of the system including both

state and control effort terms in a control formulation.

For the control design model, the disturbance inputs w are inputs to a model of

atmospheric distortion that is presented in Section 4.2. The control inputs u are a set

of 270 voice coil actuators, and are discussed in Section 4.1.1. Measurement outputs y

consist of 126 wavefront sensors and 270 gap sensors which measure the displacement

of the deformable mirror. The performance outputs z are the optical pathlength

difference (OPD) for starlight reflecting from various points on the secondary mirror

of the MMT. All of these outputs are discussed in Section 4.1.2.
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4.1 Structural Modelling

The deformable secondary mirror for the Multiple Mirror Telescope (MMT) [1] is an

annular hyperboloidal shell which has an outer diameter of 642 mm, inner diameter

of 60 mm, and is 2.25 mm thick. The mirror is constructed from Zerodur glass which

has a near zero coefficient of thermal expansion. It is supported on the inner radius

by a thin (0.3mm) annular aluminum flexure, with outer diameter 60mm and inner

diameter 30 mm, which is itself clamped to a central shaft which is the only means

of structural support for the mirror. The center shaft is connected to a 75 mm thick

aluminum backplate which has a hyperboloidal surface that follows that of the mirror

with a gap of 50 pm. The mirror is deformed by voice coil actuators for which the coil

is located on the backplate and the permanent magnet is bonded to the non-reflecting

concave surface of the mirror. This back surface of the mirror is also aluminized to

provide a conducting surface which is used as part of a set of capacitive sensors to

measure the gap distance. A schematic drawing of the deformable secondary mirror

is shown in Figure 4-1. The reflecting surface of the mirror is convex since it is the

secondary mirror, and faces down. The central shaft is shown as the cross-hatched

area, and the clamping of the aluminum flexure can be seen close to the central

axis. The backplate is shown with two actuators attached. Channels are cut in the

backplate through which the actuator mechanisms are placed. None of this portion of

the actuator contacts the mirror surface. Forces are applied to the magnet attached

to the concave surface of the mirror.

The shape of the deformable secondary mirror satisfies the conic equation

r 2- 2Rz + (1 + K)z 2 = 0 (4.2)

where r is the radial distance of a point from the axis normal to the center of the

mirror, z is the height above the origin, R is the radius of curvature of the surface at

the origin, and K is the conic constant. Note that by convention, positive R defines

a concave surface and negative R defines a convex surface. The conic constant I(
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Figure 4-1: Schematicdrawing of deformablemirror, backplateand support.

Table 4.1: Geometricpropertiesof the deformable secondary mirror

Property Value

Inner Diameter (Aluminum)

Inner Diameter (Zerodur)

Outer Diameter (Zerodur)

Thickness

Radius of Curvature (R)

Conic Constant (K)

30 mm

60 mm

642 mm

2.25 mm

-1783.496 mm

-1.406165

defines four different shapes

K = 0 spherical

0 > K > -1 ellipsoidal

K = - 1 paraboloidal

K < -1 hyperboloidal

(4.3)

The radius of curvature and conic constant are listed along with other geometric

properties of the mirror in Table 4.1. The mirror shape is shown in oblique view in

Figure 4-2 without the backplane. With the given values of R and K, the height of

the edge of the mirror is 25.4 mm greater than at the center. The degree of curvature

that this represents can be seen clearly in Figure 4-1 recalling that the diameter of

the mirror is more than half a meter.

A finite element model (FEM) of the hyperbolic adaptive secondary mirror was

made in MSC/NASTRAN TM. The model contains 984 CQUAD4 and 192 CTRIA3
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HYPERBOLIC ADAPTIVE SECONDARY

Figure 4-2: Oblique view of deformable secondary mirror.

Table 4.2: Material properties for components of the secondary mirror

Material Young's Modulus

(N/m
Poisson's Ratio Density

3)
Zerodur 70 x 109 0.22 2100

Aluminum 75 x 109 0.30 2770

isoparametric elements for modelling the glass, and 24 CQUAD4 isoparametric el-

ements to model the aluminum flexure. The baekplate is not modelled. The inner

diameter of the flexure is constrained in all directions to represent the clamped bound-

ary conditions that exist. In addition, concentrated masses and inertias were placed

at each actuator location to account for the mass and inertia of the 1.5 g - 6.35 mm

cubic permanent magnets attached to the glass at these locations. The model has a

total of 6984 degrees of freedom. Table 4.2 lists the properties of the materials that

were used to model the glass and aluminum components of the model.

Figure 4-3 shows the layout of gridpoints and elements in the model. The inner

two rings of elements represent the aluminum flexure while the remaining elements

compose the Zerodur glass deformable mirror surface. The large number of gridpoints

is dictated by the geometry of the actuators and sensors. There are 126 optical wave-

front sensors which measure the distortion of incoming light. These are oriented in

six annular rings of different radii and cover the full surface of the mirror. There are
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Figure 4-3: Top view of Finite Element Model (FEM) grid point and element

locations.

270 actuators with collocated gap sensors positioned in 9 rings. For commensura-

bility, 18 rings of elements (19 rings of nodes) are required in the glass. The layout

of these actuators and sensors, to be discussed subsequently, requires an increasing

number of grid points in each ring. Thus, the number of grid points in each ring is

not commensurate, and a regular grid point spacing is not possible. The triangular

elements allow the increase in number of grid points as the radius of the annulus

increases resulting in the element layout shown in Figure 4-3.

The modal structure of the model is characterized by three groups of modes; ra-

dial modes, circumferential modes, and higher frequency modes that are both radial

and circumferential. These mode types are identified by the number of node lines in

the radial and circumferential directions. Figure 4-4 compares the [2-8] modeshape

(31.3 Hz) for the mirror with the undeformed mirror. Circumferentially following the

outer edge of the mirror, there are two peaks and two valleys in the mode shape.

Between each of these are node lines on which no displacement of the mirror oc-
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Figure 4-4: Mode shape for [2-0] mode (31.3 Hz).

HYPERBOLIC ADAPTIVE SECONDARY

Figure 4-5: Mode shape for [8-8] mode (458.3 Hz).
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5::}Wi_{_..'

Figure 4-6: Mode shape for first mirror radial mode [l-r] (460.2 Hz). Note that

there is a second node line which involves the annular flexure.

curs. Similarly, Figure 4-5 shows the [8-0] mode (458.3 Hz) which distinctly shows 8

peaks and valleys circumferentially. All circumferential modes appear in pairs. The

modeshapes for these two circumferential modes are identical only rotated by 7r/2N

radians, with N being the number of circumferential peaks. The mode shapes are

not unique since it is only a relative difference of 7c/2N radians that distinguishes the

modes. Both of these modes must be included in any dynamic model of the structure.

Purely radial modeshapes vary only as a function of radial distance from the

center of the mirror. These modeshapes are unique, not appearing in pairs as do the

circumferential modes. Figure 4-6 shows the deformed shape of the first radial [l-r]

modeshape (460.2 Hz). This is in fact the second radial mode since there are two

node lines, however one of these is at the root of the flexure. This is the first radial

mode that has significant bending in the glass, and the radial modes are numbered as

such. Because of the hyperbolic shape of the mirror, a considerable amount of shell

stiffening has been added. For a flat plate with equivalent dimensions, the first radial

mode occurs at 40 Hz rather than 460 Hz. As a result, most of the structural modes

in the frequency range that is important to the control are circumferential modes,

and the modal density in this frequency range is slightly lower than it would be for a
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Figure 4-7: Mode shape for [3-0, l-r] mode (533.9 Hz).

fiat mirror.

At frequencies above the first radial mode, the third type of mode shape starts

to occur. These are modes that have both radial and circumferential node lines.

Figure 4-7 shows an example of these with the [3-_,l-r] mode (533.9 Hz). Because

these modes have a circumferential component, they again occur in repeated pairs

with non-unique eigenvectors.

The first 55 natural frequencies of the FEM, up to a frequency of 1 kHz, are

listed in Table 4.3. The table includes the characterization of modes into radial,

circumferential, and circumferential-radial modes; the number of circumferential and

radial node lines; the uniqueness of modeshapes through listing of the number of

repeated modes; and finally a categorization into one of four groups (0, 1, 2 ,3)

representing to which circulant block each mode belongs.

Note that the tilt, piston, and torsion modes are singled out in the table. These

are all pseudo-rigid body modes. Were the flexure not present, and the mirror un-

constrained, these would be rigid body modes. Because the flexure has very low

transverse stiffness, most of the strain energy of these modes occurs in the flexure.

The remaining two translational rigid body modes are highly stiffened by the in-plane

stiffness of the mirror and flexure. These modes have a frequency greater than 1 kHz.
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Table 4.3: Natural frequenciesof the deformablemirror up to 1 kHz.

Freq. Node Lines Type Number Group
(Hz) (0,r) (j)

7.0 (1,0) Circumferential (Tilt) 2 1
31.3 (2,0) Circumferential 2 2
32.2 (0,0) Radial (Piston) 1 0

72.5 (3,0) Circumferential 2 3

89.7 (0,0) Torsion i 0

126.6 (4,0) Circumferential 2 2

192.3 (5,0) Circumferential 2 1

269.1 (6,0) Circumferential 2 0

358.0 (7,0) Circumferential 2 1

458.3 (8,0) Circumferential 2 2

460.2 (0,1) Radial 1 0

464.8 (1,1) Circumferential-Radial 2 1

481.7 (2,1) Circumferential-Radial 2 2

520.4 (0,2) Radial 1 0

533.9 (3,1) Circumferential-Radial 2 3

554.7 (1,2) Circumferential-Radial 2 1

570.1 (9,0) Circumferential 2 3

599.1 (4,1) Circumferential-Radial 2 2

628.6 (2;2) Circumferential-Radial 2 2

686.4 (5,1) Circumferential-Radial 2 1

686.7 (0,3) Radial 1 0

695.7 (10,0) Circumferential 2 2

749.4 (3,2) Circumferential-Radial 2 3

775.2 (1,3) Circumferential-Radial 2 1

795.2 (6,1) Circumferential-Radial 2 0

833.4 (11,0) Circumferential 2 1

881.2 (4,2) Circumferential-Radial 2 2

924.8 (2,3) Circumferential-Radial 2 2

926.6 (7,1) Circumferential-Radial 2 1

983.4 (12,0) Circumferential 2 0

Note that the torsion mode is neither radial nor circumferential in character as there

are no node lines.

Both of the methods described in Section 3.4 were used to develop state space

models of the mirror dynamics from the FEM results. When using the modal method

of Section 3.4.5, an important factor in modelling is determining to which circulant

group, i.e., what spatial frequency, each of the modes belongs. This is quite straight-

69



forward and can be achievedby looking at the modeshapes.The spatial frequency

is directly related to the number of circumferential node lines. As will be described

in subsequentsections,this system hasactuator and sensorlayouts that result in a

circulant systemof order six (N = 6). Thus for a complex-valued representation of

the system, the modes can be arranged into six groups (0-5). All modes in group i

satisfy

i = 0modN (4.4)

where 0 is the number of circumferential node lines in the mode shape. Since groups i

and N-i are combined in the real-valued representation, four groups (j), result when

N = 6. The first group (j = 0) contains those modes for with i = 0. In the second

(j = 1) group, i = 1,5; in the third (j = 2), i = 2, 4; and in the fourth (j = 3), i = 3.

Table 4.3 shows to which group each of the modes belongs. This division results in

the decoupling of system models that was presented in Section 3.4.5.

This mode shape identification was relatively easy for the modes in the model

up to 1 kHz which, fortunately, is the range of interest for this model. For modes

at higher frequency ranges it was not always as easy to determine the number of

circumferential node lines. However, while this step makes identification of the groups

easy, it is not strictly necessary. Simply multiplying the modeshape matrix for the

selected actuators by the transformation T from Equation 3.22 of the appropriate

dimensions results in a decoupling of the mode shape matrix which then makes it

easy to arrange the modes into the correct groups.

To complete the dynamic modelling of the mirror, several static runs were made to

calculate the static correction terms shows in Section 3.4.2. Finally, modal damping

of 1% in the structure was assumed. This damping level is considered high for glass,

but there is additional damping provided by the constrained motion of air in the 50

micron gap between the glass surface and the reference surface behind the glass, and

damping added by the voice coil actuators. Until measured values for the mirror are

available, this value will be used.
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Figure 4-8: Orientation of Shack-Hartmann wavefront sensors, whose subaper-

tures are shown by regions enclosed by the solid lines, and orientation

of collocated voice coil actuators and capacitive displacement sensors

(x) on the deformable mirror.

4.1.1 Actuators

The mirror is deformed through forces applied by voice coil actuators arranged in 9

rings of 6, 12, 18, 24, 30, 36, 42, 48, and 54 actuators shown in Figure 4-8. This

arrangement has six identical sectors which enables the circulant transformations of

Chapter 3 to be performed. The forces applied at each of these locations are normal

to the surface. The FEM contains a grid point at each of the actuator locations,

so finding the modal influence of an actuator is simply a matter of transforming the

modeshapes from the Cartesian coordinates of the FEM to the directions aligned with

the actuators.

The shape of the mirror was determined from Equation 4.2. The normal direction
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is simply the direction of the gradient. Rewriting Equation 4.2 in terms of Cartesian

coordinatesyields,

f(x,y,z) = x 2 + y2_ 2Rz + (1 + K)z 2 = O. (4.5)

From this the gradient can be calculated,

Vf=
V/4(x 2 + y2) + ((1 + K)z - 2R) _

2x

2y

(1 + K)z- 2R

(4.6)

The modeshape in the normal direction for the jth actuator and ith mode (j¢iN) is

j¢iN = jcTv f, (4.7)

where j¢i = _¢i Y zj ¢i j¢i is the modeshape of an actuator location j for tile ith

mode of the system in Cartesian coordinates x, y, and z.

4.1.2 Sensors

Two different types of feedback sensors exist in the MMT system. The first is a set

of capacitive displacement sensors. These sensors measure the capacitance of the air

gap between the mirror and the backplate. The capacitance is proportional to the

distance between the mirror and the backplate. Thus, these provide a measure of the

displacement of the mirror relative to the backplate in the direction normal to the

surface at each location and are thus collinear with the actuator directions. There are

270 of these sensors each collocated with one of the voice coil actuators. Thus, the

mode shapes for these sensors are identical to those of the actuators in the previous

section.

The performance of this system will be evaluated at 546 locations across the sur-

face of the mirror. At each of these the wavefront error, i.e., the difference between

the displacement of the mirror and the wavefront displacement, which is presented in

the following section, is calculated. To incorporate the structural component of this

error, the displacement of the mirror, a set of performance pseudo-sensors that mea-

sures displacement is required. The term pseudo-sensor is used because these sensors

72



donot actually exist, but aremodelledto provide the modelwith a performanceboth

to optimize in control designand to evaluatein terms of performance.Thesesensors

are modelled in the sameway as the capacitivedisplacementfeedbacksensors,the

only differencebeing that the locationson the mirror aredifferent. Figure 4-8shows

the orientation of feedbacksensorsrelative to the wavefrontsensorswhich cover the

full area of the mirror. Thesesensorsare collocatedwith the voice coil actuators.

Figure 4-9 showsthe orientation of performancelocations relative to the wavefront

sensors.More performancelocationsthan wavefrontsensorsareusedin order to eval-

uate the wavefront error betweensensors.This allows for calculation of the 'waffle'

effectwhich results in greaterresidual pathlength error betweensensedand actuated

locations on the mirror. Note that the performancelocations and wavefrontsensors

purposely divide the mirror surface into six identical sectors. This partition also

enablesthe circulant transformationsof Chapter 3 to be made.

The secondtype of feedbacksensoris a set of 126 Shack-Hartmann wavefront

sensorsarrangedin 6 rings consistingof 6, 12, 18, 24, 30, and 36wavefront sensors,

shownin Figs. 4-8 and 4-9. Thesewavefrontsensorsmeasurethe slopein two direc-

tions of the wavefront error definedearlier as the differencebetweenthe wavefront

displacementand the mirror displacement.The Shack-Hartmannsensor[12] focuses

the incoming light of a portion of the mirror termed the subapertureon the centerof

a quad cell array of a CCD. The slopeof the wavefront error is proportional to the

ccntroid of the intensity in the quad ceil. Note that this providesa measureof the

differencebetweenthe mirror shapeand the distorted wavefrontthat is spatially av-

eragedover the areaof the subapertureand temporally averagedover the integration

time of the CCD. Thesetwo effects,averagingin both time and spacemust both be

accountedfor in a modelof the sensor.

First, time averagingwill beconsidered.Considera signalr(t). The average value

of this signal over the time interval to - T < t < to indexed with the final time is

given by

1£o r(T)dT. (4.8) (t0) =
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Figure 4-9: Orientation of Shack-Hartmannwavefront sensorsand performance
locations (x) on the deformablemirror.

This is equivalent to a convolutionof r(t) with the averaging operator h(t)

where

_(t) = h(t- T)r(T)d7,
OO

(4.9)

0 t <O,t> T
h(t) = (4.10)

1
0<t<T

Taking Laplace transforms of both sides converts the convolution to multiplication.

_(s) = h(s)r(s), (4.11)

so that there is a direct relation between the frequency domain representation of the

signal r and its average value over the previous time interval T, T.

Tile Laplace transform, h(s), can be derived by looking at the impulse response

h(t) plotted in Figure 4-10. This impulse response is simply a scaled version of a unit
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step uo(t) followed after an interval T by a negative step.

1

h(t) = _(uo(t) - uo(t- T))

where

_0(t) = {

Calculating the Laplace transform gives

(4.12)

0 t < 0 (4.13)

1 0<t

h(s) = £{h(t)} (4.14)

= [u(t) - r)]e- rdt (4.15)
1 - e -sT

- (4.16)
sT

This is the same as the response of a zero-order hold [27] except for a scaling of _.

Just like the zero-order hold, the effect is to introduce a time delay of length r_, and

to filter the magnitude of the signal by ] sinc(_) [. The frequency response of h

__aeY. . ,cOT_

h(3co) = e 2 smct-_-) (4.17)

is shown in Figure 4-11. The magnitude effect is fairly small up to the frequency

wT = re. If T for the averaging operator is equal to the sample rate for the system,

i.e., a full sample period is integrated, wT = rc is the Nyquist frequency for the

system. In such cases, the change in magnitude is negligible over the frequency range

of interest in the problem, and the time delay can be added to the system through

a Pad6 approximation [28] as would normally be done for a zero-order hold itself.

If the averaging is calculated over larger time periods, the magnitude effects can be

significant as has been shown in an example by Smith [29].

Spatial averaging is considerably more complicated particularly when the structure

is more than one dimensional. A considerable amount of work has been done on 1-

D structures [30, 31] to determine shapes over which to average signals to obtain

certain system properties. The shape of the wavefront sensors, however, is already

determined. The objective in this work is to get an accurate representation of the

response of the system measured by the wavefront sensors.
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The wavefront sensormeasuresaverageslopein two directions acrossthe areaof

the subaperture.On a modalbasis,this meansthat the modeshapesfor the two slope
x Y

measurements provided by the jth wavefront sensor (jew,s and jCwrs) are given by

jew,s = As-----7

_¢w_s = --As,1ffsj

OCN(X, y) dxdy (4.18)
Ox

OCN(x'Y)dxdy (4.19)
Oy

where Sj is the jth subaperture for the wavefront sensor, Ass is the numerical value

for the area of the jth subaperture and f fs indicates the double integral over the

subaperture surface, S.

However, the disturbance model that will be shown in the following section pro-

duces a displacement not a slope model of the wavefront of the incoming light. The

important factor to both measure and control is the displacement of the mirror rel-

ative to the incoming wavefront. Thus a conversion from slope to displacement is

necessary.

This is conveniently provided by Green's Theorem [32]. Green's theorem states

that for a vector function

F(x, y) = P(x, y)_ + Q(x, y)) (4.20)

where _ and ) are orthogonal unit vectors, and P and Q are scalar functions of the

spatial variables x and y,

cF(r) dr= -_x _ dxdy (4.21)

where r = x_ + y_, fc indicates the integral around the closed curve C and f fs

indicates the double integral over the area S which is enclosed by C.

With Q = CN(x, y) and P = 0 Equation 4.21 gives

l fc l OCN(x,Y)dxdy" (4.22)As Cr,(x,y)_.dr = A---7 Oz

With Q = 0 and P = --¢N(X, y),

1£ l oCN(x,Y) dxdy" (4.23)As CN(X,Y))" dr -- As cqy
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Thus

,¢wFs = CN(x,y)).dT (4.24)

 ¢wFs 1 /cj- Ass CN(x,y))'dT, (4.25)

and the modeshape for the wavefront sensor measurements is now described in terms

of displacement modeshapes not slopes.

We are now dealing with displacement mode shapes and one integral has been

removed from the problem. It is still necessary to perform the line integral around

the boundary of the subaperture. This requires evaluation of the displacement mode-

shapes at points other than those in the finite element model, so interpolation is

required. The CQUAD4 and CTRIA3 elements are isoparametric elements [33].

Isoparametric elements use a bilinear interpolation [24] as a shape function. Thus

a bilinear interpolation has been used to calculate the line integral.

The procedure for bilinear interpolation is fairly simple. A quadrilateral defined

by four corner nodes is shown in Figure 4-12. The properties at a point interior to

the quadrilateral can be expressed as a linear combination of the properties at the

corner nodes.
4

P = E hiPi (4.26)
i=1

where P is the desired property, Pi is the value of that property evaluated at Node i,

and the weighting functions hi are

1(1 + r)(1 + s) (4.27)
hi :

h2 = _(1 - r)(1 + s) (4.28)

1 r)(1 s) (4.29)
ha = _(1- -

h4 = 4(1 + r)(1 - s) (4.30)

with r and s as the 'natural coordinates' [24] of the quadrilateral.

The natural coordinates, r and s, are calculated from the geometry. The two
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Figure 4-12: Four node quadrilateral with natural coordinate system r, s.

equations that describe the location of the desired point in the quadrilateral

4

x = _ hixi
i=1

4

(4.31)

y = _ h,y, (4.32)
i=1

can be solved to obtain the two unknown natural coordinates. These are simultaneous

quadratic, not linear, equations. But if the desired point is in the interior of the

element, there is a unique solution for r and s. A triangular element is a degenerate

quadrilateral in which Node 4 and Node 1 are equal. The same procedure can be

used to determine r and s.

From this interpolation, we now have an expression for the normal eigenvector,

CN(z, y), anywhere on the mirror in terms of jCN, the normal eigenvectors evaluated

at the performance locations shown in Figure 4-9. The integration in Equations 4.24

and 4.25 can be performed. This integration results in a matrix equation where the

eigenvectors of all the wavefront sensor measurements (q_w_s) are a linear combination
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of the normal eigenvectors

• wFs= (4.33)

where W is the transformation matrix that transforms displacements at the perfor-

mance locations to wavefront sensor measurements, and _N is the matrix of eigenvec-

tors for the performance locations.

Thus the method for modelling the performance pseudo-sensors, the capacitive

feedback sensors, and the wavefront sensors has been shown. This completes the

structural modelling of the system. The modelling of the actuator inputs, and feed-

back sensor and performance outputs has been shown. What remains is to describe

the modelling of the disturbance. The disturbance model for this system does not

have a structural component. The disturbance enters the system entirely at the out-

put and is reflected in the wavefront sensor measurements. The following section will

describe the modelling of the atmosphere

4.2 Atmospheric Model

Small variations in temperature cause turbulent motion in the atmosphere. These

temperature differences also change the index of refraction of the atmosphere. The

accumulation of these changes in index of refraction over the path that starlight travels

from the top of the atmosphere to the aperture of the telescope results in a distorted

wavefront. The objective in controlling the deformable mirror is to minimize the

shape difference between the distorted wavefront and the deformable mirror so that

light entering the detector of the telescope is undistorted. A model of the distortion

effects of the atmosphere on the distorted wavefront is the disturbance model for this

system. These effects are correlated both spatially and temporally across the area of

the telescope aperture.

4.2.1 Spatial Correlation

To generate the disturbance model, avon Karman spectrum [12, 34] with outer scale

length L0 = 100 m and coherence length r0 = 0.9 m has been used. The outer scale

8O



length is the assumedmaximum size of turbulent eddies in the atmosphere. The

coherencelength is roughly the sizeof aperture abovewhich uncorrectedatmospheric

distortion limits performance [12]. In this case,a larger aperture gains no better

resolution becauseof the limits of atmosphericdistortion. Thesematch parameters

usedby Lloyd-Hart and McGuire [4] for the site of the MMT.

The von Karman spectrumhasa phasespectrumof
I1

47r2_ 6 (4.34)S(n)=0.033C_ K:2+ L2]

where n is the wavenumber of the phase across the aperture, and C_ is the refractive

index structure constant which is a measure of the strength of atmospheric turbu-

lence, and is a function of r0. This spectrum gives an idea of the correlation of the

distortion at different points across the aperture of the telescope. The spectrum is

flat for low wavenumbers (long wavelength distortions) and rolls off at -11/3 for high

wavenumbers (short wavelength distortions). The wavelength at the effective break

frequency corresponds to the outer scale length, L0.

To develop a state space model of this disturbance that can be used in control

design and analysis, the covariance of samples of the atmosphere must be known. A

relationship for the phase covariance of two simultaneously sampled points on the

wavefront derived from the phase spectrum in Equation 4.34 is given by Roggemann

et el. [34]

0
E[O(Xl)O(x2)]=R(p)- F(_) \ ro / \ 4T_ ] K._(27rp/Lo) (4.35)

where E denotes the expectation operator, xl and x2 are vectors describing the posi-

tion in the telescope aperture of two points, ¢(x) denotes the phase of the wavefront

at z, K_(.) is the modified Bessel function of the second kind of order 5/6, F is the

gamma function, and p =[ zl - x2 [.

The atmospheric distortion is a 2-D spatial continuum, as are the structural dy-

namics. For the system disturbance model, the atmospheric continuum is discretized

at 546 locations across the aperture of the telescope which has a diameter of 6.5m (ap-

proximately 10 times the size of the adaptive secondary mirror). The corresponding
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locationson the secondarymirror that focuslight propagatingnormal to the aperture

at the focusof the systemareshownin Figure 4-9. Eachof thesepoints is treated as

the location of both a disturbance input (w) and a performanceoutput (z), aswell

as contributing to the wavefront sensormeasurementas discussedin the previous

section. The systemperformanceis measuredby the wavefront error: the accumu-

lated error of the atmosphericdistortion acrossthe aperture minus the displacement

of the mirror. For wavefront sensormeasurements,a bilinear interpolation between

disturbanceinput locations is usedasit was for the modeshapesof the system.

Applying Equation 4.35for all combinationsof the 546disturbancelocationsnets

the 546 x 546covariancematrix R. Because the disturbance locations are arranged

in six identical sectors as shown in Figure 4-9, R is a block circulant matrix. Thus

the disturbance and performance as well as the structural dynamics for the system

are circulant. This covariance matrix describes the relationship between the phase of

the wavefront at the various locations, measured at the same time. But thc temporal

frequency spectrum of this disturbance is not white.

4.2.2 Temporal Correlation

In addition to this spatial correlation in the phase, there is also temporal correlation.

In the absence of winds, spontaneous changes to the turbulent eddies that produce

the wavefront distortion would result in slowly changing distortion patterns, so-called

'boiling' of the atmosphere [35]. However, atmospheric winds carry these eddies

across the aperture of the telescope. Under the 'frozen flow' hypothesis [12, 34, 36],

the change in turbulent eddies, 'boiling', is negligible for the duration of time in

which the eddies are blown across the telescope aperture by winds. The 'frozen flow'

hypothesis thus assumes that the eddies remain unchanged. The temporal correlation

of a point (x) is given by

]E[¢(x(tl ))¢(x(t2))] = E[¢(x(tl))¢(x2(tl))] (4.36)

where x2 = xl - v(t2 - tl), and v is the velocity of the wind. Thus the temporal

correlation is determined from the spatial correlation. The temporal correlation of the
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distortion at a givenpoint is equalto the spatial correlation of the distortion between

the given point and the points from which the wind hasblown the turbulence. The

resultingpowerspectrumfor asinglepoint with atmosphericdistortion passingabove

it is flat at low frequenciesandrolls off asco-s/3 at high frequencies [12, 36]. Note that

Equation 4.36 assumes a single atmospheric layer in which the turbulence propagates

at a constant velocity v. More complex models can be derived which use multiple

layers each with its own strength of turbulence and its own wind velocity [34, 4].

Accurately representing co-s/a as a rational transfer function requires using a large

number of poles and zeros. This translates to having a large number of states in the

state space representation. This is highly undesirable because this number of states

must be repeated for each disturbance location.

Instead, a low order approximation is made for representing this in state space.

A system with a single pole is used having a power spectrum that is flat at low

frequency and rolls off as co-2. The resulting system has a shallower roll off than

the actual atmosphere, and thus has more energy at high frequency than with the

true spectrum. To compensate for this, the pole location was set so that the RMS

output of this filter is equivalent to the correct RMS for the co-s/a spectrum of the

atmosphere. The temporal structure function, D(t), of this disturbance at a given

location

D(t) = E[(¢(x(to)) - ¢(x(to + t)))2]

= 2(R(0)- n(t))

(4.37)

(4.38)

is shown in Figure 4-13. This structure function was compared with the structure

function generated from a multi-layer atmosphere model that appears in Ref. [4]

to determine if the single pole approximation is appropriate. For large time, the

magnitude is the same, indicating that the overall RMS disturbance signal is correct.

For short times, the slopes of the structure functions are different owing to the single

pole approximation. However, the error is not large.

The true atmospheric disturbance, assuming the frozen flow hypothesis and a

multi-layer atmosphere, is nonlinear because the phase at time tl at location xi is
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Temporal structure function D(t) for one pole approximation to the

true atmosphere.

directly correlated with the phase at time t2 and xj for all i and j. However, the

model used here is effectively a linearized model of the true disturbance. It exhibits

the correct spatial correlation from x, to xj at any particular time t, and a one pole

approximation to the correct temporal correlation at x for time ti to tj but neglects

the remaining correlation.

The next step in the disturbance model generation is to neglect the effect of 'pis-

ton'. The optics are insensitive to a phase error that is constant across the aperture.

Therefore, the piston component of the disturbance, which constitutes the vast ma-

jority of the phase, is removed,

1 fs ¢(x)dx (4.39)• (x) = ¢(x)

where the integral is over the region S, the aperture of the telescope, with area equal

to As. Because the phase ¢(x) has been discretized, the integral is actually a weighted

summation over the 546 disturbance locations. The weights, or local areas, used in

the summation are calculated using a rectangular rule integration. The disturbance
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locations are found in 19 rings. The area associated with each annulus, which lies

between concentric and consecutive rings, was assigned to the points on the ring at the

outer radius of the annulus, and divided by the number of points on that ring. Other

integral approximations could be used, however this was chosen to maintain radial

symmetry in the disturbance. The subsequent phase disturbance _(x) is converted

to an optical pathlength disturbance by scaling the phase by the wavelength of light,

A = 2.2 microns.

Finally, the disturbance model was placed in state space as follows. The symmetric

spatial covariance matrix R was factored through a singular value decomposition to

get its symmetric square root Bw,

1 H 1 H T (4.40)R = UEV H = UEU H = UE_U UE_U = BwBw,

where U and V are identical unitary matrices, and E is the diagonal matrix of the

singular values of R. Bw acts as the input matrix to the dynamic system

_,, = A,,x,, + Bww (4.41)

y,,, = Cwx_ + Dww, (4.42)

where x_ E R s46 is the disturbance state vector in which each state represents the

disturbance phase at a location on the mirror, C_ = A(I - W), Dw = 0, Aw =

-WoI, w0 = 16.6667 rad/sec is the frequency of the single pole, and W is the matrix

whose rows are identically the weights used to calculate the piston component of the

disturbance. With this system driven by 546 uncorrelated unit intensity white noise

processes contained in the vector w, y_ is the optical path difference (OPD) between

undistorted and distorted wavefronts.

The RMS open loop optical path difference is given by the square root of the

diagonal elements of the output covariance matrix R_,

R_ =C_XC T (4.43)

where X is the solution of the Lyapunov equation

AwX + XA T + BwB T = O. (4.44)
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Figure 4-14: RMS optical path difference from disturbance model plotted as a

function of position on the mirror.

The results are plotted in Figure 4-14. Note that the result is counterintuitive. One

might expect that the OPD would be constant across the surface of the mirror, given

that the atmosphere should have no preference of location on the mirror. This is

true if the disturbance is not referenced to the surface itself. However, because piston

is removed from the disturbance, the average across the surface of the mirror is

subtracted, and the disturbance is referenced to the surface. Because the covariance

of the phase between points on the surface decreases super-linearly (_ (Sx) -5/3 for

x << L0), tile center of the mirror has greater correlation with the average across

the mirror than do the edges. Thus the center has a reduced disturbance when the

average is subtracted.

Let us look at a modal basis for the disturbance. The atmospheric disturbance can

be subdivided into an orthogonal basis of modes called Zernike modes [37]. The first

Zernike mode is piston which has been removed from the disturbance. The second
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and third Zernike modes,tip and tilt, satisfy

Zt,p = r cos 0 (4.45)

Zt,,, = r sin 0 (4.46)

where r and 0 are polar coordinates of a location in the aperture. Subsequent Zernike

modes have higher order radial polynomials and higher frequency circumferential

values (20, 30, etc.). Noll [37] determined the contribution of each of these modes

to the RMS OPD, and found that the majority is found in the tip and tilt modes.

Higher order Zernike modes contribute a decreasing amount to the overall OPD RMS.

Figure 4-14 shows this in that the RMS at the edges is much greater than the OPD

RMS at the center. If tip and tilt were the only contributing modes, the OPD RMS

would appear to be a cone, with zero OPD at the vertex. However, the higher order

Zernike modes do contribute to the optical path difference, and thus the center is not

zero.

The disturbance system was simulated with a vector of white noise inputs for a

period of ten seconds to produce sample disturbance wavefronts. Four of these are

plotted in Figs. 4-15-4-18. These wavefronts correspond to times at 10 msec intervals

starting 9.8 seconds after the beginning of the simulation to allow the effects of initial

conditions to die out. First, note that the wavefront distortion clearly exhibits spatial

correlation. Uncorrelated distortion would appear much more jagged than any of

these sample wavefronts. Because the spatial correlation of the distortion rolls off

11

as _ 3, low spatial frequency components are much more significantly represented

than high frequency components. The general shape of the figures is bowl-shaped,

with the depth of the bowl changing at each sample time. The fact that the shapes

in each of the four figures are closely related, demonstrates the temporal correlation

of the distortion. The wavefront distortion at each time instant is not independent,

the atmospheric distortion can be seen to change slowly from the deep bowl shape

of Figure 4-15 to the tilted, almost planar wavefront of Figure 4-18. Higher order

Zernike modes are much more difficult to track from one figure to the next, but it
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canbeseenfrom Figure 4-18 that thesedo contribute significantly in addition to the

dominant tilt.
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Figure 4-15= Simulated distorted wavefront t=9.80 s.
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Figure 4-16= Simulated distorted wavefront t=9.81 s.
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Figure 4-17: Simulated distorted wavefront t=9.82 s.
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Figure 4-18: Simulated distorted wavefront t=9.83 s.
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Chapter 5

Control Systems for Flexible

Adaptive Optics

In this chapter, the processes developed in the previous three chapters are combined

to produce a new control approach for force-actuated, thin facesheet adaptive optics.

The chapter begins with a discussion of a number of different multivariable control

approaches that could be used to design control systems for the deformable mirror.

This discussion culminates in the presentation of a global control approach that is

tile dynamic reconstructor presented in Chapter 2.

A small sample problem is presented and the global control approach is compared

to the approach used by Biasi and Gallieni [10] which was discussed in the introduction

to this thesis. Following the comparison, stability robustness issues of the global

control approach are discussed.

Finally, the full-scale problem is simulated and the results are presented. The

simulation represents proof of concept for the global control approach, and shows the

capabilities of this control methodology.

5.1 Force-Actuated Adaptive Optics

The primary difference between a high-impedance position-actuated system and a

low-impedance force-actuated system is the presence of structural dynamic modes at
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Figure 5-1: Block diagram for hierarchic control approach.

a much lower frequency. Thus control approaches for force-actuated adaptive optics

should take the structural dynamics into account. Several different multivariable

control approaches can be used to properly account for the structural dynamics. All

of these rely on the structural modelling of Chapter 4.

The first three approaches use a hierarchic control approach similar to that used

by Biasi and Gallieni which was discussed in the first chapter. This approach is shown

schematically in Figure 5-1. An inner control loop is used, operated at a higher sample

rate than the outer loop and at a high bandwidth so that the dynamics do not interact

with the outer loop control. This inner loop feeds back gap sensor measurements to

the actuators as in the Biasi and Gallieni approach. Then an outer loop contains

a reconstructor with integral control. All three of these techniques take a different

approach to designing the inner loop.

The first approach is to design a high bandwidth LQ servo [38] controller. This is

essentially a multivariable PID controller in which the PID gains are designed using

a Linear Quadratic Regulator (LQR) [20]. The LQR gains permit, in fact require,

feedback from all gap sensors to all actuators. This non-collocated feedback, cou-

pled with allowing collocated channels to be different, allows the closed loop singular

values to be balanced thus enabling good tracking performance on all commanded

92



shapes,i.e., input "directions." This control approach requires some modifications

to the control design model so that the states of the system are the displacements

at the actuator locations. This can be obtained through Guyan reduction [39, 40].

The dynamic reduction of the system down to the degrees of freedom at the actua-

tor locations is an approximation, but for a large number of actuators should be a

good approximation. This approach ignores actuator and sensor dynamics such as

measurement delays. However, since LQR provides some guaranteed gain and phase

margins [41, 42], the effect of these delays on stability can be ascertained.

The second approach is not to restrict oneself to full state feedback as the LQR

controller requires. Thus one could design a high bandwidth servo controller using

LQG [20] or °A_ [43, 44, 45] based control techniques. These controllers would be

designed similar to the LQR controller except that all the states of the system need

not be available for feedback. Guyan reduction would not be necessary for these

techniques, and a modal model of the system as shown in Section 3.4.2 could be used.

This would allow the incorporation of sensor and actuator dynamics which could not

be added in the LQR controller. Presumably a more accurate model of the sensor and

actuator dynamics, in particular the delays associated with the actuation, would make

for a better controller than LQR would provide. The penalty associated with this type

of control is the larger number of states that would result from incorporating sensor

and actuator dynamics. This would substantially increase the computation required

to run the controller in real time. However, using a modal model of the system enables

a large number of very high frequency modes to be truncated from the model of the

system. It further would allow a more accurate model of the dynamics within the

bandwidth since no Guyan reduction need be performed.

A third approach is to use Independent Modal Space Control (IMSC) [46, 47, 48].

In this approach, sensors and actuators would be combined into groups which are

modally orthogonal. Each group would control only a single mode with some high

frequency spillover before which each controller would have to roll-off. The large

number of actuators and sensors means that a large number of modes can be con-

trolled independently. Controlling enough modes and stiffening these modes so that
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Figure 5-2: Block diagram for Global architecture control approach.

they are pushed outside of the bandwidth required for the outer loop would result

in a quasi-static response of the mirror in this bandwidth. The resulting influence

flmctions of the actuators could be measured and lumped into the existing recon-

structor. This type of control would still require a very large amount of real time

computation. Though the controllers are independent, they couple many actuators

and sensors. Feedback from a large number of sensors to a large number of actuators

is still required, and this implies that the computational burden will be high.

All three of these approaches use the hierarchic topology of Figure 5-1. The

drawback of all of these is that in order to design the outer loop independently, the

dynamic effects of the inner loop must be negligible in the bandwidth of interest for

the integral control. The bandwidth of interest includes not only the frequency range

over which the atmosphere must be tracked, but also a suitable range of frequency

to roll-off the control. These requirements force the bandwidth and the sample rate

of the inner loop to be quite high. Higher bandwidth implies that more dynamic

modes are important, and a more accurate model is necessary. Higher sample rate

implies that a large amount of computation is required in order to implement these

controllers. Because all of these require feedback of all sensors to all actuators, and

use a sample rate ten times higher than the outer loop, the costs are exorbitant.
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A final approach,and the main approachof this thesis,usesa global architecture

which operatesat a singlesamplerate, and allows feedbackof both wavefrontsensors

and gap sensorsto the actuators. This feedbackarchitecture is shownin Figure 5-2.

The global architecturecombinesthe actions of both the inner and outer loop. It

simultaneouslyprocessesinformation from the wavefrontsensorand the gap sensors

and feedsthis back through the forceactuators. The primary benefit is that because

both loopsaredesignedsimultaneously,there is no needfor the inner loop bandwidth

to be considerablyhigher than the outer loop. Thus the global approach will use

lesscontrol and needa lessaccuratemodel. The model must be designedwith full

knowledgeof the interaction betweenthe actuators and both groupsof sensors,and

thus there is no unmodelledinteraction to destabilizethe systemasin the hierarchic

architecture. This architecturecan useany of the moderncontrol techniques.How-

ever, in this thesis, LQG-based control is used. The disturbance model defined in

the previouschapter is basedon filtering a white noise input, and the performance

measuresof importance are RMS wavefront errors, thus the problem falls naturally

into an 7-t2control framework.

5.2 Sample Problem

The problem of controlling a system with nearly 300 inputs and more that 500 outputs

is immense. In order to test that the principles involved in performing dynamic

reconstruction are of benefit, a smaller problem was first considered. This sample

problem is representative of the control of the full mirror, but is considerably smaller

in size. The sample problem is representative of the full order problem in two key

ways. First, the system is circulant. Exploiting circulance is not a necessary step for a

small problem, since it would not be difficult to solve the problem without circulance.

However, as a test of exploiting circulance, it is a necessary step. Secondly, in order

to have a problem for which the influence functions of the actuator are dynamic, and

thus testing that the principal of using a dynamic reconstructor works, the dynamics

of the low order problem must be representative of the full order problem.
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In accordancewith thesedirectives, the sampleproblem consistsof controlling

an annular mirror with the samedimensionsas the adaptive secondaryso that the

structural dynamics are in the correct frequencyrange. However, to simplify the

modellingof the structure, the hyperbolicshapeis ignored. A flat mirror isconsidered.

The sampleproblem laysout six actuators around the mirror so that the system is

circulant of order N = 6, just as the full scale problem.

5.2.1 Model development

For simplicity in the sample problem, the mirror is modeled as a flat plate. Oth-

erwise, the dimensions of the mirror are the same as the full problem: outer di-

ameter, 642 mm; inner diameter 60 mm. A finite element model consisting of 36

MSC/NASTRAN TM CQUAD4 elements is considered to represent the true dynamics

of the system for the sample problem. Figure 5-3 shows a layout of the finite element

nodes and elements for this model. The inner ring of nodes is constrained horizon-

tally, but is elastically supported vertically to allow the piston, tip and tilt modes to

approximate those of the large model discussed earlier. The bandwidth of this model

is limited to about 1.5 kHz due to the small number of elements. However, it should

suffice to evaluate the control techniques even if the dynamics are not correct at high

frequency.

To drastically reduce the input and output dimensions, a set of only six actuators

is used. The six actuators, and collocated sensors, are located at grid points 25, 27,

29, 31, 33, and 35. These grid points are equally spaced around the next to outer

radius of the plate. In addition, grid points 25 through 36, i.e., all the grid points

in this ring of nodes, are considered performance outputs. The six non-actuated grid

points in this ring, 26, 28, 30, 32, 34, and 36 are used to evaluate performance at

locations at which actuators are not located.

The modelling of the wavefront sensors is simplified from that of Section 4.1.2.

Rather than measure slope of the wavefront error, the wavefront sensor is assumed to

measure the wavefront error itself at these twelve gridpoints. Thus for the hierarchic

control architecture, the reconstruction matrix R is simply the identity matrix.
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Figure 5-3: Arrangement of grid points for the Finite Element Model of the fiat

mirror sample problem.

The atmospheric model used in the sample problem is essentially the same as

that described in Section 4.2. However, rather than being evaluated at 546 locations

across the mirror aperture as in the full model, the atmosphere is measured at only

12 locations. These are the locations of gridpoints 25 through 36 in Figure 5-3.

The correct spatial correlation in the wavefront at these locations is obtained from

Equation 4.35. Temporal correlation between successive wavefronts is obtained again

in the same manner as in Section 4.2.

5.2.2 Hierarchic PID control Approach

One objective of investigating the sample problem is to compare the multivariable

control and dynamic reconstruction approach to the hierarchic PID control approach

of Biasi and Gallieni [10] described in Section 1.2.3. Before doing so, it is useful to

look first at the potential problems that lie in using the PID control approach. The
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inner loop PID control consistsof identical collocatedPID controllersdesignedon a

SISObasis.At high frequencythe derivative feedbackis rolled off so that the control

remainsproper. However,there is no generalroll-off of the control at high frequency

to make it strictly proper. Thus, this PID control relieson the natural rolloff of the

systemdynamics.

Four distinct problemsmay be encounteredusing this type of control which can

act to limit the performanceof the system when controlled using this hierarchic

approach. The first problem is basedon the fact that the PID controller doesnot

roll off at high frequency. The PID inner control loop essentiallyrelies on having

little or no phaseloss in the system so that the bandwidth can be extended. In

fact, bandwidth will be limited becauseof phaselag associatedwith time delay,anti-

aliasing filters, and imperfect collocation. The secondproblemarisesfrom designing

the SISOPID controller independentof closingother control loops. The dynamicsof

the mirror are suchthat thesecontrol loopsare all highly coupledso that separately

designedPID loops may unstably interact. The third problem results from using

the sameSISOcontroller on every loop. While the SISO controller wasdesignedto

provide good tracking to input commands,the multivariable tracking of the system

may be poor becauseof a large spreadin the singular valuesof the system. Finally,

having to reducethe controller gain to solvethese three problemsmay result in an

inner loop controller that now interacts with the outer loop integral control. The

bandwidth of the outer loop may have to be reducedto stabilize the system. This

would result in a significant decreasein performance.

Let us now look at eachof these four problems in a bit finer detail. The first

problem is oneof phaseloss in the system.Figure 5-4showsthree transfer functions

for the full order modelof the hyperbolic mirror, i.e., not the sample problem. These

transfer functions show the significant effects of time delays and non-collocation on

the phase of the system. In the figure, the dotted line is the transfer function for a

collocated actuator and gap sensor in the second largest ring of actuators in Figure 4-

8. Overlaying this line in magnitude, but not phase, is the same transfer function with

a half time step delay for a sample and hold process, and a full time step delay for
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computation. The sample rate is 10 kHz. The dashed line is a non-collocated transfer

function from the same actuator to an adjacent sensor in the outermost ring of sensors

in Figure 4-8. The solid line shows clearly that significant phase loss occurs by 1-

2 kHz, so that expecting a bandwidth of control wider than this is unreasonable. Next,

the non-collocated transfer function has nearly the same magnitude as the collocated

transfer function, but because of missed zeros in the alternating pole-zero pattern,

the phase drops precipitously at around 700 Hz. This indicates two things. First, the

non-collocated and collocated transfer functions are very highly coupled since their

magnitudes are comparable. Second, small amounts of non-collocation, in this case

only about 30 mm can have a calamitous effect on the phase. Now, 30 mm is a very

large error in collocation. Such large errors will not exist in the system. However, at

some frequency, which can be very difficult to gauge a priori, non-collocation effects

such as this will occur. The rapid loss of phase that is associated with this will further

limit the bandwidth of the SISO controllers.
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Thesetransfer functions from the full-order hyperbolic model of the mirror were

used becausenear collocation was much more readily available for demonstration

than on the low order sampleproblem. Returning to the sampleproblem, we look

to designSISO controllersaround the collocatedactuators and sensors.The Bode

magnitudeand phaseof the loop transfer function of a candidatecontrollerareshown

in Figure 5-5. At low frequency,the integral gain is limited by the presenceof modes

in the 6-30 Hz range. Higher integral gain would causethe phasemargin at the first

crossover(10 Hz) to be reduced. In the 100-1000Hz range,rate feedbackfrom the

derivativegainkeepsthe magnitudeof the loop transfer function high, andthe system

doesnot roll off quickly. Note that above1kHz there is a sparsenessof modesdue to

the coarsenessof the Finite ElementModel. Comparisonof this loop transfer function

with the transfer function in Figure 5-4 showsthat a much higher density of modes

exist above1 kHz for the true system. At any rate, the gain of the control in the

100-1000Hz rangeis dominatedby two things. The desirefor goodphasemargin at

crossover,and the needto roll-off with sufficientphasemargin. The phasemargin of

this controller wasoptimized for a frequencyof 100Hz sincethis is the frequencyat

which manygain peaksarecrossingunity. Higher overallgain is not possiblebecause

of the phaselossabove1 kHz. The loop must be rolled off by this frequency.

This SISOPID control yields a sensitivity, (I + GK) -1, and complementary sen-

sitivity transfer function, GK(I + GK) -1, that are shown in Figures 5-6 and 5-7.

The complementary sensitivity transfer function shows that up to about 8 Hz the

system is tracking well. This is a very small range of frequencies for good tracking

response. However, it was difficult to extend this bandwidth because of the difficulty

in raising the integral gain because of the presence of the low frequency modes. The

complementary sensitivity also shows that significant control authority is exerted at

frequencies up to 1 kHz because of the slow rolloff of the system frequency response.

The sensitivity transfer function indicates similar information. The residual tracking

error is small for frequencies at which the sensitivity transfer function is small.

When this SISO compensator is copied and implemented at each of the six col-

located sensor-actuator pairs, the results are even worse. The singular values of the
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Figure 5-6: Sensitivity transfer function for the SISO PID controller.
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MIMO sensitivity and complementary sensitivity transfer function matrices are shown

in Figures 5-8 and 5-9 respectively. First note that while there are six singular values

for each of these transfer functions, two pairs are identical due to the symmetry of

the problem, so that only four distinct singular values are evident in the figures. Near

1 kHz there are several sharp spikes in the sensitivity transfer function. This indicates

that the system is close to instability [49]. In fact, the PID gains have already been

reduced because higher gains caused instability. This indicates the second problem.

Because of the high degree of coupling between actuators and sensors, independently

designed SISO compensators do not perform as well when implemented simultane-

ously. The third problem is indicated by the variation in the singular values of the

transfer functions. The SISO controller resulted in good tracking up to about 8 Hz.

From the MIMO Complementary Sensitivity it can be seen that even nearly two

decades below this at 0.1 Hz, the minimum singular value is only 0.5. This indicates

that there are directions, or shapes of the mirror, that cannot be tracked well. This

is not a suitable control system.

Finally, supposing that this control did achieve good tracking, the fourth problem

102



MIMO Sensitivity
10 2 , ,

10 0

10 -1

Figure 5-8:

10 -2

10 -3
10 -1 10 ° 101 10 2 10 3 10 4

Frequency (Hz)

Singular values of the sensitivity transfer function matrix for the

MIMO PID controller.

MIMO Complementary Sensitivity
10 2 , , , ,

10 -2

10"
10 -1 10 0 101 10 2 10 3 10 4

Frequency (Hz)

Figure 5-9: Singular values of the complementary sensitivity transfer function

matrix for the MIMO PID controller.

103



102

100

_r_

10-2

10 -4
10 -1

o -200

2-

-4 O0

10 -1

Figure 5-10:

Integral Control in Outer Loop

,-.,. _ ...... i i _ p

_ _ _ _ " /'%%% ,,

_8 _ / _'

',A' bIts/ _ _'_ /_;I
V \A I _ _' ',, ,;,,, ",_
v V

................... - Y'V.WG,,,,
10 0 101 10 2 10 3

Frequency (Hz)

104

100 10 t 102 10 3 10 4

Frequency (Hz)

Loop transfer function of integral control in the outer loop with the

inner loop closed. Dashed line represents gain that would be used for

quasi-static system. Solid line gives the gain that is used to stabilize.

can arise: interaction between the inner and outer control loops. Figure 5-10 shows

a SISO loop transfer function for the outer loop of the system with the inner loop

closed. The dashed line in the figure is the loop transfer function for the integral

gain that would be used if the system were quasi-static. With the phase frequently

crossing the -180 ° line with the loop gain greater than one, it is not surprising that

the outer is unstable at this gain. The gain must be reduced by factor of nearly 60

to stabilize this loop. Lower gain means lower bandwidth. Lower bandwidth means

lower performance.

Each of these four problems arise because there is insufficient modelling informa-

tion in the control design model. The SISO PID controllers designed individually do

not take into account more than one or two modes of the system. Implementing iden-

tical SISO PID controllers ignores the coupling between non-collocated actuators and

sensors. It also causes an imbalance in the singular values of the closed loop system

resulting in poor multivariable tracking. Finally, ignoring the coupling between the
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inner and outer loops results in low bandwidth control designswhich will perform

poorly.

5.2.3 Comparison of Dynamic Reconstruction and Hierar-

chic PID Control Approach

In this section, the dynamic reconstruction approach is compared to that of the

hierarchic PID control approach. The comparison is made on the basis of the following

criteria: performance, robustness/margins, bandwidth/power usage, and complexity

of implementation. The implementation costs are better investigated on the full-scale

problem because of the strong influence of the number of actuators and sensors on

the complexity of the implementation. The implementation comparison is therefore

left until Section 5.3.

To place realistic limitations on each of the control techniques, the time delay

associated with real-time implementation has been added to both models. For the

hierarchic approach this is 1.5 times the sample period of 0.1 msec (one sample pe-

riod for computation, one half period to approximate the zero order hold process of

sampling the signal) for the gap sensors and 2 times the sample period of 1 ms for

the wavefront sensors. In this case sample periods are accounted for by adding one

full cycle for computational delay, one half cycle for the zero order hold process, and

a further half cycle delay to represent the temporal average that the wavefront sensor

measures. For the dynamic reconstruction approach, the gap sensors have time delay

of 1.5 sample periods and the wavefront sensors have time delay of 2 sample periods.

For this approach the sample period for both sensors is 1 ms since these loops are

operated simultaneously.

Performance for these two different control architectures is measured as the resid-

ual RMS optical pathlength difference at twelve points on the mirror: grid points

25 through 36 in Figure 5-3. The performance is evaluated by solving for the Lya-

punov equation associated with the closed loop covariance of the system. Robustness

is compared on the basis of gain and phase margins for the system. Multivariable
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gain and phasemargins are obtained for thesesystemsfrom the Sensitivity transfer

function of the systemin closedloop. From this transfer function it is possibleto get

conservative(sometimesvery conservative)valuesfor gain and phasemargin of the

system [50]. Multivariable gain and phasemargin can be calculatedfor this system

basedon the magnitude of the maximum singular value of the Sensitivity transfer

function (I + GK) -1. With

1
oe = (5.1)

+ oK)-1)

the phase margin for the system, independently and simultaneously in every channel

is given by

and the gain margin is given by

PM = +2 sin -1 ct2' (5.2)

1

GM - 1 -I- o_" (5.3)

The power usage of a controller is important also, because the temperature of the

mirror must be tightly controlled to prevent additional phase error caused by heating

of the air around the mirror. The overall power usage is calculated as the RMS of

the actuator signals. For electromagnetic actuators with short time constants, the

actuator command is proportional to the voltage applied to, or the current passed

through, the actuators. The voltage and current are then proportional to the square

root of the power usage. Therefore a measure of the power usage in terms of the

actuator commands (forces) is sufficient to measure the power consumption of the

actuators.

The measure of performance is the residual RMS optical pathlength difference

(OPD) between the mirror and the incoming wavefront. Figure 5-11 shows the RMS

optical path difference in nanometers for light with a 2.2 micron wavelength at the

twelve performance locations located cireumferentially around the mirror. In open

loop, the figure shows that the OPD is approximately 1180 nm RMS at each of the

twelve performance locations. The atmospheric disturbance shows no preferential

direction, and the OPD is constant at a given radius of the mirror. The hierarchic
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Figure 5-11: Open and closed loop optical pathlength difference for the hierarchic

PID controller and for the global controller.

PID control design results in a closed loop residual RMS OPD of approximately

920 nm at the actuator and sensor locations, and a slightly higher 950 nm at the

intermediate performance locations. The performance was limited primarily because

the bandwidth of the outer loop integral control algorithm was limited to about 8 Hz

by the presence of flexible modes still in the bandwidth. The problem was discussed

in the previous section, and shown in Figure 5-10.

The controller designed using the global control approach performs better than

this PID controller. It achieves an RMS OPD of about 420 nm at the actuator

locations and about 600 nm at the performance locations between the actuators. Note

that the high residual error between actuators occurs because of the small number of

actuators in this sample problem. The wavefront at the intermediate locations on the

mirror is sufficiently decorrelated with the wavefront at the actuator locations that a

difference of almost 200 nm occurs between these locations.

Performance is only one metric of comparison. Sensitivity of the design to phase

lag and modelling errors is another. The maximum singular value of the Sensitivity

transfer function, (I + GK) -1, is shown in Figure 5-12 for the global controller, and
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in Figure 5-13 for the PID controller. The peak of the Sensitivity transfer function

for the dynamic reconstructor, global controller, is approximately 2.1, so that a _ .48

yielding a phase margin of +28 ° and gain margin of 0.67 - 1.9. These are fairly good

classical gain and phase margins, though perturbations in lightly damped dynamics

can result in very large gain and phase changes so that one must be careful in using

the concept of these margins with lightly damped structures. By comparison, the

margins on the hierarchic control are not nearly as good. The peak of the Sensitivity

transfer function for the compensator formed by both the inner and outer loop closed

simultaneously (Figure 5-13) is almost 10. The resulting gain and phase margins are

very low: phase margin of =t=6° and gain margin of 0.91 - 1.11. Admittedly, these

margins are much lower than is necessary to achieve the level of performance that

is obtained by this PID controller. The performance of the PID controller is limited

by the interaction of the inner and outer control loops. This interaction manifests

itself as the peak in the sensitivity transfer function at about 16 Hz. Because this

interaction limits the performance, the bandwidth of the inner loop is unnecessarily

high. A lower bandwidth inner loop, with the same gain at low frequency, would give

similar performance, but would not exhibit the high sensitivities that result above

300 Hz. However, the bandwidth for these controllers was not altered in this way

because the intended control approach for the hierarchic PID control is to have a

wide bandwidth inner loop around which the integral outer loop is closed. This is

what has been done.

In terms of bandwidth and power usage, the global controller again outperforms

the hierarchic PID controller. The PID control has a bandwidth of 1200 Hz where the

global controller bandwidth is only 166 Hz, measured by the last drop below -3 dB of

the Complementary Sensitivity transfer function. The PID controller is required to

have much higher bandwidth in an attempt to remove the flexible dynamics from the

bandwidth of the outer integral control loop. This wider bandwidth results in control

signals of 19.7 mN RMS from the PID controller while the global control uses only

14.1 mN RMS.

The bottom line is that the multivariable control approach to this problem gets
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better performancewith lowerbandwidth, lowerpowerusage,and greaterrobustness

than the hierarchic PID control schemethat is currently planned for use. There is a

price to be paid, however. Becauseof the large number of actuators and sensorsin

the full control problem,real-time computation is moreexpensive.This will be shown

in Section5.3.1when the full-scaleproblemwith 270actuators, 270gap sensorsand

252wavefrontsensormeasurementsis considered.Beforeproceedingto the full-scale

problem, a further look at the issuesof robustnessfor the global control is necessary.

5.2.4 Robustness

In order to handle the very large number of sensors and actuators in the full-scale

control problem, this thesis has relied on the symmetry of the mirror to enable the

dynamics and control of the mirror to decouple into essentially four smaller problems.

The question arises: what are the effects of asymmetry on the system?

Clearly, if the system does not fully exhibit circulant symmetry then it will not

fully decouple. The effects of asymmetry can be characterized in two ways; its effect

on the eigenvalues, and its effect on the eigenvectors of the system.

In modelling the structural dynamics of the mirror, it was possible to first build a

modal model of the structure, and then transform the inputs (B) and outputs (C) with

the circulant transformation T. The transformation of the B and C (and D) matrices

resulted in a decoupling of the dynamics of the system into groups of modes. These

modes were characterized by their Fourier number. The number of circumferential

nodes in the mode shape was related to the "frequency" of the transformed mode.

Many forms of asymmetry will result in changes in the eigenvalues of a structure.

Irregular mass distribution, variations in the stiffness of material, and variations in

thickness of the mirror will all cause perturbations that will alter the eigenvalues of

the system. However, regardless of whether a model is circulant, it can be placed in

modal form so long as the eigenvector matrix is full rank. In this modal form, the

circulant transformation can still be applied to the B and C matrices of the system,

and the amount of decoupling can be observed. The remaining coupling is due to the
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asymmetryof the system,and thus the amount of decouplingis primarily affectedby

the eigenvectors,not the eigenvalues.

Uncertainty and variability in modal frequenciesis a characteristic of structural

control that has receivedconsiderableattention [51,52,53,54, 55,56,57,58] because

it is the dominant form of uncertainty. The control techniquesthat havebeenusedto

provide robustnessto frequencyuncertainty include Classicalcontrol techniques[59,

60], robustifiedLQG-basedtechniques[61,62,51,63], Maximum Entropy [64,65,63,

52, 57, 58], Multiple Model control [66,67, 51,63, 52], Popov Control Synthesis[53],

7-/_ control [54, 52], # synthesis [55, 52], and real-# synthesis [56]. Because the

systems decouple in modal groups, frequency uncertainty, so long as it is treated

as independent uncertainties for each mode, can be addressed after the circulant

transformation is applied and the system is decoupled. At that point, any of these

control techniques can be applied to the circulant decoupled systems.

The more difficult problem is dealing with asymmetry that results in coupling

of the eigenvectors after the circulant transformation. It would be very difficult

to analyze, or synthesize control for such a system using techniques that employ

parameter robustness. The sheer number of parameters, all of the mode shapes for

all of the modes, makes this infeasible. Instead one would hope to use the small gain

theorem [68] to bound errors between the nominal and perturbed plants.

Two examples were created to demonstrate the effect of asymmetry on the cir-

culant transformation. The first considers eigenvector asymmetry only, the second

considers asymmetry that causes both eigenvector coupling and eigenvalue changes.

The first example uses the existing finite element model for the sample prob-

lem. The actuator locations are considered to be uncertain to within a tolerance of

0.6 mm from the nominal location. The locations were randomly perturbed within

a 0.6 mm square from their nominal location. The perturbed modeshapes were ob-

tained through bilinear interpolation from the original eigenvectors. The results are

mixed. Figure 5-14 shows the four distinct transfer functions that make up the nomi-

nal system. Overplotted with those are the same transfer functions for the perturbed

system. The transfer functions are indistinguishable. This indicates that the pertur-
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bation is verysmall andshouldbebenign. To corroboratethis, Figure 5-15showsnine

transfer functions of thesetwo systemsafter the circulant transformation is applied.

For the nominal system(solid line), the transformation diagonalizesthe transfer func-

tion matrix. However,for the perturbed system(dashedline) it canbeseenthat this

portion of the transfer function matrix is diagonallydominant, but not diagonal. The

diagonal terms are indistinguishablefrom the nominal system. But the off-diagonal

transfer functions arenot zero. The perturbed systemis not circulant and therefore

not diagonalizedby the transformation. However,it canbe seenthat the magnitudes

of the off-diagonalterms aresmall, more than two ordersof magnitude lessthan the

diagonal. This seemsto indicate that the perturbation is negligible.

The off-diagonalelementsappearsmall for this perturbation. Howeverif we try

to usethe small gain theorem[68]to bounda measuresuchasthe multiplicative error

causedby the perturbation, we areout of luck. The multiplicative error reflectedat

the input of the plant for this systemis givenby

(5.4)

where G(s) is the nominal transfer function of the system and G(s) is the actual

transfer function. By the small gain theorem, a closed loop system is guaranteed to

be stable if

1

< (5.5)

where C(s) = K(s)G(s)(I + K(s)G(s)) -1 is the complementary sensitivity transfer

function. Figure 5-16 shows the singular values of the multiplicative error of the

perturbed system. At several of the resonances the magnitude of the singular values

is very large, despite the small perturbations. Figure 5-17 shows the small gain test

from Equation 5.5 applied to the system. The inverse of the maximum singular value

of the multiplicative error, e(s), is clearly less than the maximum singular value of

C(s) at several of the resonances indicating that stability cannot be guaranteed with

this test. The magnitude of the maximum singular value of the multiplicative error

indicates that the complementary sensitivity would have to be less than O. 1 at the first

resonance in order to guarantee stability via the small gain test. This implies that
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Figure 5-14: The four distinct transfer function of the nominal system (-) with

the transfer function of the perturbed system (- -).

to use this test would severely limit the performance attainable by any controllers.

An important point to note is that the multiplicative error is independent of the

form of the controller. The error is not caused by the fact that a circulant controller

has been used, we are simply more aware of the fact that we have relied upon the

circulant nature of the system to design the controller. The multiplicative error is the

same regardless of the type of controller. Therefore, any controller no matter what

technique was used in control design would be faced with the same restrictions by

this test. Clearly, this is an overly conservative test.

Finally, for a definitive test, the perturbed system was simulated with the con-

troller designed for the nominal system. As can be expected from the very small

differences in the system, the perturbed system is stable and obtains only marginally

worse performance than the nominal system as shown in Figure 5-18. This figure

shows the RMS optical path difference for the nominal and perturbed system, as well

as for the system in open loop.

As an example of asymmetry causing eigenvalue changes, a finite element model
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of the sample problem was created in which the thickness of each of the 36 CQUAD4

elements of the mirror, nominally 2.0 mm, was given a randomly selected thickness

with a Gaussian distribution with 3a of 0.1 mm with a mean value of 2.0 ram. The

results of the frequency perturbations are shown in Table 5.1. For both the nominal

model and the perturbed model, the first 29 modal frequencies are listed. It can be

seen that with a thickness variation on the order of 4-5% (3a) the errors in frequency

for the model are less than 1% for all but one of these 29 modes. This is a fairly

benign effect.

Variation in the thickness across the mirror results in both eigenvalue and eigen-

vector perturbations. Not only are the eigenvalues different, but the system no longer

fully decouptes. For this perturbation, the results are very similar to that of the

actuator location perturbation. At the resonances, the multiplicative error test is

violated. Yet in simulation, the system was stable and performed nearly as well as

the nominal system.

The multiplicative error test is clearly unworkable at the structural resonances. If
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Table 5.1: Perturbedfrequencies

Nominal Perturbed Frequency Percent
Frequency Frequency Difference Difference

(Hz) (Hz) (Hz) (%)
5.00 4.97 -0.03 -0.69
5.00 5.00 0.00 0.01

16.54 16.53 -0.01 -0.08
30.60 30.64 0.03 O.11

30.60 30.74 0.14 0.44

77.35 77.79 0.44 0.57

77.35 77.81 0.46 0.60

87.75 87.85 0.10 0.11

131.92 131.96 0.04 0.03

131.92 132.59 0.66 0.50

156.10 157.05 0.95 0.61

156.10 157.60 1.50 0.96

230.03 230.91 0.88 0.38

230.03 231.72 1.69 0.73

251.67 251.96 0.29 0.12

294.80 295.88 1.07 0.36

294.80 297.99 3.19 1.08

368.99 371.50 2.51 0.68

368.99 371.67 2.67 0.72

441.42 443.39 1.96 0.44

465.92 466.47 0.55 0.12

465.92 469.20 3.28 0.70

574.31 577.97 3.66 0.64

574.31 578.61 4.30 0.75

861.43 862.87 1.44 0.17

861.43 865.91 4.48 0.52

878.88 883.30 4.43 0.50

878.88 885.48 6.60 0.75

1082.02 1088.63 6.62 0.61

we consider, however, that at the resonances uncertainty and variability of the system

can be handled through parametric uncertainty, and use the multiplicative error as a

guide away from resonances, a workable controller which achieves good performance,

and is robust to realistic perturbations may result.
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5.3 Full-Scale Problem

We now consider simulations on the full-scale problem. The models for this problem

have been presented in Chapter 4. The system has 270 actuators, 270 gap sensors,

and 252 wavefront measurements in the form of two slopes for each of 126 wavefront

sensors. The atmospheric model for this system contains 546 disturbance inputs and

546 performance outputs. The dynamic model consists of 55 modes up to a frequency

of 1 kHz and contains the static component of modes above 1 kHz.

Let us begin this section with a final comparison of the dynamic reconstructor

approach (global control) versus the hierarchic control approach. The question that

remains is the implementation costs associated with the two techniques. The discus-

sion of implementation has been left until this section because the cost of implemen-

tation depends very heavily on the number of actuators, so that a fair comparison of

implementation costs could not be obtained from the sample problem.

5.3.1 Implementation Comparison

It makes more sense to compare the implementation procedure for the control archi-

tectures at full scale because the number of computations required rise as the square

of the number of actuators and sensors.

Any linear controller can be put in an A, B, C, D form for implementation as

shown in the the following equation:

(5.6)

(5.7)

In general, the A matrix can also be block diagonalized with 2x2 blocks. Thus the

computations required in the A matrix multiplication, which are linear with the

number of states, are negligible when a very large number of actuators and sensors

are present. Thus it is mostly B, C, and D matrix multiplications that matter.

The number of computations required for each control architecture is shown in

Table 5.2. For the global control architecture, the B, C, and D matrices are in general
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Table 5.2: Summaryof implementationcosts

Control Type Computations per lkHz cycle

Hierarchic with collocated PID

Hierarchic with global PID

Global without circulance

Global with circulance

68040 +1350(10)

68040+65824(10)

395020

110014

fully populated. Thus every cycle would require 395020 computations. However,

because the system is circulant, these can be made block diagonal. This sparseness

results in about one quarter of the computation of the fully populated matrices, and

only 110014 computations are required with no loss in performance.

For the hierarchic PID control approach, the outer loop computation requires

only multiplication of the reconstructor R which is a 252 × 270 matrix requiring 68040

computations. The inner loop calculation is much smaller because of the restriction to

collocated feedback. It requires only 1350 calculations per cycle, but is implemented

at 10 kHz so there are 10 cycles per outer loop cycle. If global feedback of the

inner loop is permitted (and assuming that this feedback is circulant) the number

of computations in the inner loop is 65824. At 10 kHz this would require 726280

computations per 1 kHz cycle including the reconstructor computation.

Again the final result is that the global architecture requires about 35% more

computation than the hierarchic loop: 110014 computations versus 81540.

5.3.2 Optimization of Implementation

Recalling from Section 3.3, it is possible to find an approximate optimum degree of

circulance for the system in order to minimize the number of real-time computations

that must take place. Equation 3.66 give the optimum degree of circulance as

No, t = 2 nc + • (5.8)
rty + rtu

For our system, n_ = 270, n v = 270+252, and nc is equal to the number of states of the

structural dynamics that are kept plus the number of states in the disturbance model.

The number of states in the disturbance model is nominally 546. Approximately 25
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modesof the system are important up to the Nyquist frequencyof 500 Hz. This

leads one to pick nc _ 600. Then substituting into Equation 3.66 yields Nopt ,w, 40.

This implies that much more computational savings could be gained by increasing

the degree of circulance. This optimization is not quite accurate, however, because it

ignores the fact that n_ and n_ must be multiples of N. But it does indicate that an

increase in the degree of circulance would yield computational savings.

5.3.3 Results

Finally, having performed the comparison of the two control approaches on the sample

problem, it remains to be shown that a solution can be obtained for tlle full scale

problem. A circulant model of the system was obtained through the procedures shown

in Chapter 4. The decoupled model consisted of four components. Two of these

components have 45 actuators and 87 sensors, and the other two have 90 actuators

and 174 sensors. Each of these four can be solved independently, in parallel if necd

be.

For each of the four problems, the control problem was set up independently and

the two Riccati equations were solved using Matlab TM on a Sun Ultra1. Figure 5-19

shows the results of the widest bandwidth controller that seemed feasible. The open

loop RMS optical pathlength difference ranges from about 800 nm at the center of

the mirror, but is larger at the edges with a value of approximately 1700 nm. It can

easily be seen from Figure 5-19 that the closed loop control has significantly reduced

the pathlength difference. The closed loop RMS pathlength difference varies radially

with peak performance not at the center of the mirror, but slightly further out.

This can be seen more clearly in Figure 5-20 which shows just the closed loop OPD.

From a maximum of about 520 nm to a minimum of 380 nm, there is a variation of

approximately 140 nm OPD across the mirror. Overall, the performance improvement

is 1200 nm at the mirror edges where the open loop OPD is the largest to 300 nm at

the center of tile mirror.

Tile bandwidth for this controller is approximately 150 Hz. With significant con-

trol being exerted on some modes up to 500 Hz as can be seen from the maximum
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Figure 5-19: RMS OPD in open and closed loop.

singular values of the Complementary Sensitivity transfer function shown in Figure 5-

21.

From Figure 5-20 it is also possible to detect the beginning of "waffle" in the

output RMS. Looking along the edge of the mirror, "waffle" is observed to be a

residual wavefront error that looks like a waffle. Rather than having a uniform output

error across the surface, there are regions in the interior of each wavefront sensor

subaperture that have higher residual error than on the edge. The cause of this

waffle is that we have no measure of the wavefront in the interior of the wavefront

sensors. Recall that the Shack-Hartmann sensor measures the average slope across

the subaperture. This integral of average slope over the area of the subaperture was

converted to a line integral of the wavefront phase on the boundary of the subaperture.

Thus the only positions on the mirror for which information is obtained are on the

boundary of subapertures.

Viewed in a slightly different manner, if the wavefront phase is fixed on the bound-
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Figure 5-20: Closed loop OPD RMS as a function of position on tile mirror.

ary of a subaperture, regardless of what is in the interior, the average slope is unaf-

fected. Thus waffle is an unobservable mode of the atmosphere for which correction

can be made only on the basis of a model of the correlation of the system, and not

on the basis of measurements.

Finally, Figure 5-22 shows the maximum and minimum singular values of each

circulant block of the sensitivity transfer function for this controller. From the low

magnitude of the maximum singular value, we obtain a measure of the robustness of

this compensator.

Multivariable gain and phase margin can be calculated for this system based on

the magnitude of the maximum singular value of the Sensitivity. From Equations 5.2

and 5.3, the gain and phase margins are calculated from the inverse of the maximum

singular value of the sensitivity transfer function,

1

_- _(S)" (5.9)
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tary sensitivity transfer function for the full scale global controller.

The maximum singular value of the Sensitivity transfer function shown in Figure 5-22

is _(S) = 1.56 so that the gain margin is roughly from 0.61 to 2.8, and the phase

margin is 4-37 ° . These indicate that in classical terms, the compensator exhibits good

stability margins.

This simulation of the full-scale system has shown, first of all, that the global con-

trol approach is feasible for a system of this size. It is not trivial to solve the control

Riccati equations for a system as large as this, and the application of the circulant

transformation has been beneficial in reducing the complexity of the computation.

It has also been shown that the circulant transformation reduces the real-time com-

putation required for implementing this controller by a factor of almost four over

the standard implementation of a global controller. Finally, the Sensitivity transfer

function singular values showed that the compensator designed using this approach

yield good classical stability margins in gain and phase.
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Chapter 6

Conclusions

6.1 Summary

Traditionally, adaptive optics systems use a small thin deformable mirror with piezo-

electric or magnetostrictive actuators located at a tertiary or quaternary location

in the optical train to compensate for atmospheric distortion. The Multiple Mirror

Telescope (MMT) under development at the University of Arizona is taking a new

approach to atmospheric compensation. To minimize emissivity effects for infrared

astronomy the new approach seeks to place the deformable element at the secondary

location in the optical train. Incoming light reflects from the primary mirror to the

deformable secondary mirror, and is focussed on the science detector eliminating the

need for additional bounces. A series of w0_vefront detectors provides a measure of

the wavefront phase error which is corrected by the deformable secondary mirror.

This new approach has clear benefits in terms of the signal to noise ratio obtained

when light is bounced from fewer emitting surfaces. However, it poses some technical

challenges as well. Where deformable mirrors are usually small and actuated by

stiff piezoelectric or magnetostrictive actuators, the proposed deformable mirror is

necessarily large. The 6.5 m primary mirror for the MMT requires a 0.65 m secondary.

Furthermore, the correction of global tilt at the secondary mirror requires relatively

large displacements of the mirror. Electro-magnetic voice coil actuators are planned to

provide the actuation necessary to deform the mirror. The combination of large mirror
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size,and low stiffnessforceactuation result in a considerablymoreflexiblemirror than

usual. This extra flexibility results in a large number of flexible vibrational modes

of the mirror within the bandwidth necessaryto correct for atmosphericdistortion

acrossthe large 6.5m aperture.

Flexibility within the control bandwidth calls for a new approach to adaptive

optics. In this thesissuchan approachhas beenput forward. The traditional adap-

tive optics approach takesa set of wavefront slope measurementsand reconstructs

an estimated wavefront basedon the statistics of an atmosphericmodel. Then the

appropriate controls are applied to conjugate the wavefront by inverting the static

influencematrix which accountsfor the influencethat eachactuator hason the en-

tire surfaceof the mirror. This processneglectsthe dynamic nature of the mirror,

and is suitable only in the quasi-static frequencyrange of the mirror. Becausethe

dynamic modesof the MMT adaptivesecondarymirror areat much lower frequency

than other deformablemirrors, the mirror is not quasi-static in the frequencyrange

necessaryto correct for the atmosphericdistortion. Dynamic influencefunctions, the

transfer function of an actuator to a position on the mirror, are required to conjugate

the wavefrontovera wider frequencyrange.

Dynamic influencefunctionsare incorporatedinto a wavefrontestimator utilizing

a Kalman filter, which becomesin essencea Dynamic Reconstructor. The Kalman

filter estimatesnot only the atmosphericstates,but alsothe structural dynamicstates

of the mirror. Optimal control is then applied havingan estimateof the atmospheric

and structural states. In others words,a Linear Quadratic Gaussian(LQG) control

problem resultswhich requiresaccuratestructural and disturbancemodels.

On the order of 300actuators and sensorsare usedto improve the seeingof the

mirror. The amount of real-time computation required to implementsucha control

system,and the magnitude of the modelsrequired to designsucha control system

make this a formidable control problem. Exploiting the circularly symmetric nature

of the mirror, and a suitablemodel of atmosphericdistortion, the control problem is

divided into a numberof smallerdecoupledcontrol problems. The control systemis

recognizedas beingcireulant, and eirculant matrix theory is applied to decouplethe
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control problem.

A method was then developedfor creating dynamic modelsof circulant systems.

For structural systems,characterizedby massand stiffnessmatrices,circular symme-

try results in circulant massand stiffnessmatrices. Circulant matrix theory canbe

applied to these to decouplethe equationsof motion of the structure. Recognizing

that the decouplingprovided by circulant matricessplits the dynamicsof a structure

into modal groups,a modalapproachto placinga systemin circulant form wasdevel-

oped. It wasfound to be unnecessaryto apply circulant transformationsto the mass

and stiffnessmatrices. Rather, a modal solution from a finite elementpackagecould

beobtained, and the modeshapestransformedto decouplethe systemdynamicsinto

the samemodal groupsidentified through circulant matrix theory.

With the dynamic systemsdecoupled,the optimal control problem to determine

the dynamic reconstructor for the systemdecouples. Furthermore,becausethe dy-

namicsaredecoupledinto modalgroups,frequencyuncertainty, commonin structural

systems,canbe treated independentlyin eachproblem. The resulting controllersare

themselvescirculant, and the decouplednature of the controller permits real-time

computation savingswhen implementing the controller.

Finally, the processof dynamicreconstructionand multivariable control wascom-

pared to an alternative control approach. The alternative approachseeksas much

commonalitywith the traditional approachaspossible.The processof reconstruction

is treated asthough the mirror is quasi-static. A high bandwidth inner control loop

is required to ensurethat with this loop closed,the flexible mirror is in fact quasi-

static. The dynamic reconstruction processwasdemonstrated to be superior to the

alternative in that it achievesbetter performancewith lower bandwidth, at the cost

of about 30%more real-time computation for the full scalemirror.

6.2 Contributions

(i) A procedure was developed for incorporating the dynamic nature of force-

actuated, thin facesheet deformable mirrors into the adaptive optics reconstruc-
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tion process.The standardadaptiveoptics reconstructionprocessassumesthat

the deformablemirror can be treated as a quasi-staticdevice. It incorporates

the influenceof the deformablemirror through a seriesof static influencefunc-

tions. The new procedurecombinesdynamic influence functions with a lin-

earizedatmosphericdistortion model in a multivariable control problem that

can be interpreted as a dynamic reconstructor.

(ii) A procedurewasdevelopedfor obtaining adecoupledmodelof a circulant struc-

tural systemdirectly from a modal solution output from a finite elementmod-

elling package.

(iii) Using circulant matrix theory, the complexity for both calculation and imple-

mentation of control for circulant systemswith unconstrainedfeedbackpaths

has been reduced. Circulant matrix theory has been used to break up the

large but circulant control problem into a number of smaller decoupled control

problems. This decoupling of the control problems enables parallel computa-

tion of the optimal compensator, and allows parallel computation in real-time

implementation of this compensator.

(iv) In Appendix A, preliminary design laws for thin facesheet adaptive optics con-

ceptual design are presented. On the basis of dynamic parameters of both the

deformable mirror and the atmospheric distortion, general guidelines on prop-

erties of the deformable mirror are given.

(v) A procedure for modelling temporally averaged sensors has been developed.

The model results in modifications which are identical to those that occur when

modelling a zero-order hold for sampled data systems. The time period over

which the average is taken is equivalent to the sample period for the zero-

order hold approximation. As such, the magnitude effects of the averaging

affect the frequency range above the Nyquist frequency for the average, and are

neglected. The model results in a time delay model for the averaging sensor

that incorporates one-half average period delay as a sensor model.
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6.3 Recommendations

(i) One drawback of using multivariable control is the "curse of dimensionality" [69].

With a very large number of actuators and sensors, the amount of real-time com-

putation increases as the square of the number of actuators and sensors. Utiliz-

ing circulant matrix theory, the amount of real-time computation has been cut

by a factor of about four for this problem. Restricting the feedback structure by

a method such as that proposed by Mercadal [70] could result in large compu-

tational savings if the feedback could be restricted so that only a small number

of sensors feeds back to any one actuator. Similarly the schemes proposed by

Wall [22] and How and Hall [23] are possible.

(ii) As an extension to the previous recommendation, determining methods for

calculating the "optimal" feedback structure would be very useful. Most ap-

proaches for restricting feedback are ad hoc and use principles such as nearest

neighbor feedback. However, the circulant system transformations show that

decoupling of the control problem can result from other feedback combinations.

A rigorous method to trade-off computation for performance rather than picking

the feedback architecture and making the best of a potentially poor architecture

would be very useful.

(iii) Optimizing the degree of circulance N, for the system could result in reduced

real-time computation requirements.

(iv) Real-time computation could be reduced if the degree of circulance of the sys-

tem could be set to a power of two. In such cases, an FFT could be used to

perform the transformation of input and output signals to the compensator.

Transformation using an FFT is an O(N log N) process rather than the matrix

transformation which is O(N2).

(v) A major drawback of the proposed dynamic reconstruction is the limitations

of using a linearized atmospheric model. The atmospheric model could be

extended to be nonlinear by utilizing an Extended Kalman Filter instead of
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simply a Kalman filter in the atmosphericestimation. Developingan approach

to enablean arbitrary reconstructor to be placed into the estimator would be

very usefulas it would allow otherapproachesto ReconstructionsuchasNeural

Networks[5,6, 4] to be utilized.
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Appendix A

Wavenumber

Relationships

- Frequency

For both the dynamics of the deformable mirror, and the dynamics of atmospheric

turbulence, there is a relationship between the temporal frequency (w) and the spatial

wavenumber (tz) and its associated wavelength.

For the mirror, which is modelled as a plate, the structural dispersion relationship

is quadratic.
f

_2 / _E_ (A.1)O2

Vl2p(1 - v2)'

where E is the modulus of elasticity, t is the thickness of the mirror, p is the density

of the material, and v is Poisson's ratio for the mirror material.

It was seen in Chapter 4 that atmospheric distortion is often modelled using

the 'frozen flow' hypothesis. This hypothesis states that over the relevant period

of time, changes in the turbulent eddies in the atmosphere are negligible relative to

the translation of the turbulent eddies traveling across the aperture of a telescope. In

this case, the atmospheric distortion is fundamentally non-dispersive. No matter what

wavenumber (wavelength) of distortion the atmospheric distortion has, the shape of

the distortion remains unchanged as it travels. Therefore the relationship between

frequency and wavenumber for the atmospheric distortion is simply

(A.2)
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Figure A-l: Wavenumber-frequency relationship for mirror structure and atmo-

spheric distortion.

where v_ is the velocity of the wind.

At different temporal frequencies, the structure and atmosphere support different

wavelengths of motion. Figure A-1 shows the two wavenumber-frequency relation-

ships plotted as a function of wavenumber. At low temporal frequency, atmospheric

distortion has a longer wavelength than is naturally supported by the mirror. Thus

the control must fight the inertia of the mirror in order to follow the correct shape. At

high temporal frequency, atmospheric distortion wavelengths are shorter than those

supported by the mirror. Here the control must fight stiffness. At aJcrit , the control

fights only the damping.

The density of actuators determines in which region the control lies. For systems

in which the number of actuators places the system in the region above (Merit, more

Zernike modes of the distortion are important than structural dynamic modes. This

means that the system is one that requires actuators to follow the Zernike modes, not

necessarily to control the structural dynamics. Below 0Jcrit, the structural dynamics

dominate. Modes of the system may result with wavelengths less than inter-actuator

spacing. Clearly, the desirable region is the stiffness dominated region in which the
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actuatorsare requiredfor Zernikemodetracking. Otherwise, the flexibility will result

in significant dynamic wavefront error which cannot be tracked.

The critical wavenumber can be determined by equating Equations A.1 and A.2.

Then

/12p(1 - u 2) (A.3)= vwv

For the MMT adaptive secondary mirror, Vw = 15 m/s, E = 70 x 109 N/m 2, t =

0.00225 m, p = 2100 kg/m 3, and p = 0.22. This yields _crit = 3.90 m -1. For this

system the inter-actuator spacing is roughly 0.03 m which gives the system an actuator

based wavenumber of 15 m -x (assuming two actuators per wavelength), well above

the critical wavenumber. Thus this system is characterized as stiffness dominated.

Equation A.3 provides guidelines by which the properties of the mirror can be tailored

to make sure that the dynamics are in the correct region.
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