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ABSTRACT

Experimental data from jet-engine tests have indi-
cated that unsteady blade row interactions and sepa-

ration can have a significant impact on the efficiency

of low-pressure turbine stages. Measured turbine ef-
ficiencies at takeoff can be as much as two points

higher than those at cruise conditions. Several recent
studies have revealed that Reynolds number effects

may contribute to the lower efficiencies at cruise con-
ditions. In the current study numerical experiments

have been performed to study the models available

for low Reynolds number flows, and to quantify the
Reynolds number dependence of low-pressure turbine

cascades and stages. The predicted aerodynamic re-

sults exhibit good agreement with design data.

NOMENCLATURE

M Mach number

P Pressure

Pt Total Pressure

Re Reynolds number (axial chord, inlet vel.)

S Entropy, arc-length distance

U¢_ Free stream velocity
X Axial-direction

c_ Absolute reference frame flow angle

f_ Relative reference frame flow angle

_? Efficiency
Pressure gradient• parameter

u Kinematic viscosity

p Density
_r Intermittency function

_" Turbulence intensity
Momentum thickness
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SUBSCRIPTS

n Wall normal direction

tt Total-to-total quantity

Momentum thickness

1 Vane inlet

2 Vane exit/rotor inlet
3 Rotor exit

SUPERSCRIPTS

• Reference quantity
- Relative reference frame flow quantity

INTRODUCTION

Experimental data from jet-engine tests have in-
dicated that unsteady blade row (wake) interactions

and separation can have a significant impact on the

efficiency of turbine stages. The effects of these in-

teractions can be intensified in low-pressure turbine

stages because of the low Reynolds number operating
environment. Measured turbine efficiencies at takeoff

can be as much as two points higher than those at

cruise conditions [1]. Thus, during the last decade a

significant amount of effort has been put into deter-

mining the effects of transition and turbulence on the

performance of low pressure turbine stages. Experi-

mental investigations have been performed, for exam-

ple, by Hodson et al. [2, 3, 4, 5], Halstead et al. [6, 7],

Qiu etal. [8], Sohn et al. [9] and Boyle et al. [10].

These investigations have helped identify/clarify the
roles that factors such as the Reynolds number, free

stream turbulence intensity, pressure gradient and

curvature have in the generation of losses. In par-

ticular, it has been determined that [1]:

• At low to moderate Reynolds numbers there is

a laminar region extending some distance from

the leading edge.

• The boundary layer may separate, particularly
on the suction surface of the blade. Separation

may occur in the form of a closed bubble, or



asmassiveseparationwithnoreattachment(re-
sultingin largelosses).Thepressuresurfacemay
havecoveseparation,andsmallseparationbub-
blesmayexistneartheleadingedge.Thesepara-
tionbubblesoftenoriginatein transitionalflow,
whilereattachmentisusuallyin turbulentflow.

The interactionof incomingwakeswith the
boundarylayeroftencreatesa convectedtran-
sitionalor turbulentpatch,whichistrailedbya
"calmed"region.Thecalmedregionisa relax-
ationregionbetweenthepatchandthelaminar
boundarylayer.

In parallelto theexperimentalinvestigations,there
havebeensignificantanalyticaleffortsto improvethe
modelingof transition.Examplesof sucheffortsin-
cludethe worksof Mayle[11],Reshotko[12]and
Gostelowet al. [13, 14]. These newer models show

promise of providing accurate transition predictions

over a wide tangle of flow conditions [15], although

they have yet to be implemented into the numerical

flow analyses used by the turbine design community.

Some recent computational investigations of interest
include the works of Chernobrovkin and Lakshmi-

narayana [16], Kang and Lakshminarayana [17] and

Huang and Xiong [18].
The focus of the current effort is to use a

viscous, unsteady quasi-three-dimensional Navier-

Stokes analysis to study the models available for sim-

ulating low Reynolds number flows. The effects of

Reynolds number variations on performance of low-

pressure turbine blade rows have also been investi-

gated. Both cascade and stage simulations have been

performed. The numerical results have been com-

pared with the available design data.

ALGORITHM

The current work is based on an extension of an

approach developed by Rai [19]. The approach is re-
viewed in brief here. The flow field is divided into two

types of zones. O-type grids are used to resolve the
flowfield near the airfoils. The O-grids are overlaid on

H-grids which are used to resolve the flow field in the

passages between airfoils. The tt-grids are allowed to

slip relative to one another to simulate the relative
motion between rotors and stators. The thin-layer or

full Navier-Stokes equations are solved on both the

O- and H-grids. The governing equations are cast in

the strong conservation form. A fully implicit, finite-
difference method is used to advance the solution of

the governing equations in time. A Newton-Raphson
subiteration scheme is used to reduce the lineariza-

tion and factorization errors at each time step. The

convective terms are evaluated using a third-order-

accurate upwind-biased Roe scheme. The viscous

terms are evaluated using second-order accurate cen-
tral differences and the scheme is second-order accu-

rate in time. Details of the solution procedure and

boundary conditions are discussed in Ref. [20]

TURBULENCE MODELS

Two models were used to simulate the effects of

turbulence. The first model is a two-layer algebraic
turbulence model based on the work of Baldwin and

Lomax (BL) [21]. Several modifications were made to

the original BL model based on previous experiences

with compressor and turbine geometries:

• The switchover location between the inner and

outer models cannot move more than a specified

number of grid points between adjacent stream-
wise locations. This eliminates non-physical gra-

dients in the turbulent viscosity near separation

points.

• A second derivative smoothing function is used

on the turbulent viscosity field in separated flow

regions. This also helps remove non-physical gra-
dients in the turbulent viscosity in separation re-

gions.

• A cutoff value is imposed on the turbulent viscos-

ity (nominally 1200 times the free stream lami-

nar viscosity).

The second model is a two-equation k - e turbu-

lence model based upon the work of Towne et al. [22].

In the current implementation, the equations for the

turbulence kinetic energy and dissipation rate are

decoupled from the flow equations and solved using

an alternating-direction implicit integration scheme.

Since Newton-Raphson subiterations are used at each

global time step of the flow solver, decoupling the

k - e equations from the flow solver should not affect

the time accuracy of the analysis. The convective

fluxes in the turbulence equations were discretized us-

ing first-order accurate upwind differences, while the

dissipation terms were discretized using second-order
accurate central differences. The k- e subroutines
were constructed in a modular manner to allow the

use of different low Reynolds number approximations;

the Chien low Reynolds number model has been used

in the current investigation [23].

Note, the k - e equations are solved on both the

O- and H-grids, while the B-L model is solved only

on the O-grids.



TRANSITION MODEL

The low Reynolds number environment in low-

pressure turbines suggests that the flow may be tran-
sitional. In the current investigation, natural transi-

tion is modeled using the Abu-Ghannam and Shaw

(ABS) model [24]. The ABS model determines the
start of transition based on the momentum thickness

Reynolds number:

neo=163+exp F(Ae)-_ j (I)

where

F(A0) -- 6.91+ 12.75Ae +63.64(A0) 2 he < ((2)

F(Ae) = 6.91+2.48Ae- 12.27(A0) 2 A0 > 0 (3)

_2 dUoo
_0 ---- --'_ (4)

u dS

This model is considered valid up to turbulence lev-

els of r = 10%. The end of the transition region is

calculated as

ReL = 31.8(Ree) 1'6 (5)

In the region between the start and end of transition
the intermittency function, a, is determined using the

model developed by Dhawan and Narasimha [25],

= 1 - exp (-4.64_ 2) (6)

Note, the intermittency function, which has a value of
= 0 for laminar flow and _ = 1 for turbulent flow,

is multiplied by value of the viscosity calculated in

the turbulence model. For cases involving separation

bubbles the model developed by Roberts [26], and

modified by Davis et al. [27], is used:

Reo = 250001og10 (1/tanh(0.173205v))

GEOMETRY AND GRID

(7)

Two geometries have been studied in this investi-

gation; one is a low-pressure turbine cascade, while

the other is a low-pressure turbine stage.
The turbine cascade airfoil design is typical of the

rotors found in modern aircraft engines (see Fig. 1).

Two different grid densities were used to discretize
the turbine cascade. In the coarser discretization the

O-grid contained 251 x 51 (streamwisextangential)

grid points and the H-grid contained 180 x 45 grid
points, for a total of 20,901 points. The average value

of y+, the non-dimensional distance of the first grid

point above the surface, was 0.2. In the finer dis-

cretization the O-grid contained 281 x 51 and the H-

grid contained 240 × 45 grid points, for a total 25,131

points. Again, the average value of y+ was 0.20. The

boundary layers (on average) were discretized with

25 grid points (see Fig. 2). The dimensions of the O-

grid was arrived at based on the value of y+ and the

number of points within the boundary layer, while

the dimensions of the H-grid was determined by per-

forming wake convection simulations in the absence

of airfoils. The finer grid yielded better wake resolu-

tion; therefore, unless otherwise specified the results

in the following sections will be based on the finer

grid.
The turbine stage was constructed using the same

airfoil section as was used in the cascade simulations.

A 1-vane/2-blade airfoil count ratio was selected for
the simulations to reduce the propagation of pres-

sure waves. The computational grid topology for each

blade passage was similar to that for the cascade and
contained 75,393 grid points. The average value of

y+ was approximately 0.50 for the vane and blade
airfoils.

RESULTS

Turbine Cascade

The Math number at the cascade inlet is M1 -

0.0897, the inlet flow angle is 35 ° (measured from
the axial direction) and the pressure ratio across the

cascade is P2/Ptl = 0.9844. The pitch-to-chord ratio
of the cascade is 0.8856. The Reynolds number, based

on the inlet velocity and the axial chord of the airfoil,

was varied from Re - 40,000 to Re = 120,000.

Figures 3 to 8 illustrate the instantaneous Mach

number and entropy contours predicted in the lam-

inar, turbulent and transitional simulations, respec-

tively, at Re = 40,000 and using the Baldwin-Lomax
turbulence model. The laminar solution did not

reach a steady or time-periodic state. The boundary

layer on the suction side of the airfoil was observed

to intermittently shed large vortical structures (see

Figs. 3 and 6). The turbulent solution reached a time-

periodic state, but still displayed a significant amount
of unsteadiness (see Figs. 4 and 7). The laminar and

turbulent entropy contours (see Figs. 6 and 7) also

show small variations in the entropy upstream of the

blade passage. The transitional solution reached a

time-periodic state with much less unsteadiness (see

Figs. 5 and 8). Two interesting phenomena were ob-
served in the transitional simulations:

• Flow transition occurred with'in the suction sur-

face separation bubble (near the trailing edge)

at Reynolds numbers up to Re ,_ 100,000.

• The location of transition varied in a limit cycle

(with time) between the beginning of the sepa-



rationbubbleandaft portionof theseparation
bubble.

Figures9 and 10displaycomparisonsof the isen-
tropicMachnumberdistributionspredictedin the
turbulentandtransitionalsimulations,respectively,
with thedesignintentfortheblade.Theresultsfrom
boththecoarseandfinegridtopologiesareincluded:
Boththeturbulentandtransitionalsolutionsexhibit
goodagreementwith thedesigndata,althoughthe
turbulentsolutionshowsmorevariationbetweenthe
coarseandfinegrids.Table1containstime-averaged
flowquantitiesat the inlet andexit of thecascade.
Thelosses,APJP_I, are lowest in the laminar flow

simulation and greatest in the turbulent simulation.

The average inlet/exit flow angles and Mach numbers

exhibit good agreement with the design intent.
Simulations were also performed using the k - e

turbulence model. In the simulations the free stream

turbulence intensity was varied between r = 3% and

r -- 6%. In lieu of a dissipation length scale, the cur-

rent implementation of the k - e turbulence model

requires a value for the free stream turbulent viscos-

ity (from which the length scale can be obtained).

Unless specified, the value of free stream turbulent

viscosity was set to 10 times the free stream laminar

viscosity. Figure 11 illustrates instantaneous entropy

contours at Re = 80,000. The flow field achieves a

nearly steady-state condition at this Reynolds num-

ber. A comparison of the predicted and design isen-

tropic Mach number distributions is shown in Fig. 12.

There is good agreement between the two distribu-

tions. Figures 13 shows the variation of the skin fric-
tion as the free stream turbulence intensity level is

varied. The solutions are similar, except near the

leading edge on the suction surface where the skin

friction decreases with increasing turbulence inten-

sity. Figure 14 shows the variation of the skin fric-

tion as the free stream turbulent viscosity (dissipa-

tion length scale) is varied. It is observed that the

solution is very dependent on the length scale. This

underscores the need for experimental guidance in de-

termining the dissipation length scale.

Several wake-passing simulations were performed

using a hyperbolic tangent distribution to simulate

the wake profile. The wake was moved across the

inlet of the cascade using the boundary conditions

outlined by Dorney and Verdon [20]. There was one

wake specified for two blade passages and the velocity

deficit was set at 5% of the average inlet velocity. The

Reynolds number was specified to be Re = 120,000
and the flow was assumed to be transitional. Fig-

ures 15 - 22 show instantaneous entropy contours and

momentum thickness distributions at 0%, 25%, 50%

and 75% of a wake-passing cycle, respectively. The

momentum thickness distributions are for the lower

blade in the cascade. At the beginning of the cycle

(see Figs. 15 and 16) the wake has just passed over

the leading edge and has started moving along the
pressure surface of the blade. The corresponding mo-

mentum thickness distribution displays elevated val-

ues from approximately 20% to 60% of the axial chord

on the pressure surface. The relatively large values of

the momentum thickness on the pressure surface are

caused by the existence of a cove separation bubble.

As the wake is convected along the :pressure surface

of the blade (see Figs. 17 and 18), the values of the
momentum thickness are decreased in the mid-chord

region. At 50% of the wake-passing cycle (see Figs. 19

and 20), the wake is being slowly convected along the

pressure side of the blade passage. The wake is be-

ing stretched from the pressure surface of one blade
to the suction surface of the adjacent blade because

of differences in the convection speed. During this

time the peak value of the momentum thickness con-
tinues to decrease, and elevated values are observed

over only 30% of the pressure surface. Thus, the

size of the cove separation bubble is decreased by

the passing of the wakes. At 75% of the cycle the

next wake has just impinged on the leading edge of

the blade (see Figs. 21 and 22). The corresponding
momentum thickness distribution again displays ele-

vated values on the pressure surface near mid-chord.

Throughout the wake-passing cycle the suction sur-
face values of the momentum thickness varied only a

small amount. The small variations were caused by

unsteady changes in the location of (natural) transi-
tion.

Turbine Stage

Numerical simulations were performed for the stage

configuration (see Fig. 23) at Reynolds numbers from

Re = 27,000 to Re = 120,000 (based on upstream

flow quantities). The inlet flow conditions for the

stage were similar to those for the cascade. The ro-

tational speed of the rotor was chosen such that the

time-averaged relative flow angle entering the rotor

passage was approximately equal to that used in the

isolated blade row simulations (35°). Both turbulent

(BL model) and transitional flow simulations were
conducted on the stage geometry. Two techniques

were used to perform the transitional simulations:

• The location of transition was allowed to "float"

as the solution advanced in time (i.e., the tran-
sition model is used to calculate the location of

transition at each time step).

• The location of transition was "fixed" at the



time-averagedpositiondeterminedfrom the
floatingtransitionsimulation.

Figure24 illustratesthevariationin the locationof
transitiononthesuctionsurfaceofthevaneandro-
tor asfunctionoftheReynoldsnumber.In thestage
simulationsthetransitionfromlaminarto turbulent
flowalwaysoccurredasbubbletransition,andusu-
allyoccurrednearthetrailingedge.

Figures25 to 28 illustrateinstantaneousMach
numberandentropycontoursat Reynoldsnumbers
of Re = 40,000 and Re = 120,000, respectively, for

turbulent flow conditions. The Mach and entropy

contours at Re = 40,000 indicate thicker boundary

layers and more unsteadiness than at Re = 120,000.

The entropy contours at Re = 40,000 also indicate

the presence of waves upstream of the vane passage.

Figures 29 and 30 illustrates the unsteady pressure

envelopes at the two Reynolds numbers. Under tur-

bulent flow assumptions the two sets of pressure en-

velopes are similar with the exception that there are

somewhat larger excursions about the time-averaged

values at Re = 40,000.

Figures 31 to 36 display skin friction envelopes un-

der the turbulent, floating transition and fixed transi-

tion flow assumptions, respectively, for Re = 40,000

and Re = 120,000. Assuming turbulent conditions

(see Figs. 31 and 32) the flow remains attached on
the vane at both Reynolds numbers. There is a cove

separation bubble on the pressure surface of the rotor

at both Reynolds numbers, but the extent of the sep-

aration is much greater at Re = 40,000. Under the
turbulent flow conditions, the efficiency of the stage

at Re = 120,000 is approximately 1 point higher that

at .Re = 40,000 (see Tables 2 and 3). Note that due
to the low Mach number of the flow small changes in

the total temperature and/or total pressure can result

in a large change in the efficiency. In the case of the

floating transition (see Figs. 33 and 34), the solution
at Re = 40,000 shows significant unsteadiness and

flow separation. The separated flow regions include:

1) the aft 25% of the vane suction surface, 2) the aft
25% of the rotor suction surface and 3) the first 40%

of the rotor pressure surface (cove separation). These

large separated flow regions result in a very low stage

efficiency (see Table 2). At Re = 120,000 the float-

ing transition simulation displays much less unsteadi-
ness. The flow separates on the suction surface of

the vane, but quickly reattaches. The time-averaged
solution on the rotor suction surface contains only

a small separated flow region, although the size of

the separation region alternately grows much larger

and disappears completely during a blade-passing cy-

cle. Using the floating transition assumptions the ef-

ficiency at Re = 120,000 is 10 points higher than

at Re = 40,000 due to much smaller separated flow

regions (see Tables 2 and 3). In the case of fixed tran-

sition, the extent of the flow separation on the suc-
tion surface of the vane and blade are substantially

reduced at both Reynolds numbers. The cove separa-

tion on the pressure surface of the rotor, however, is

slightly larger at both Reynolds numbers. In general,
there is much less unsteadiness when the transition

locations are fixed at their time-averaged positions.

The stage efficiency at Re = 120,000 is still 10 points

higher than at Re = 40,000, and, surprisingly, at

both Reynolds numbers the efficiency is lower when
the location of transition is fixed than when it is al-

lowed to float (see Tables 2 and 3).

Figures 37 to 42 display the momentum thickness
envelopes under the turbulent, floating transition and

fixed transition flow assumptions, respectively, for

Re = 40,000 and Re = 120,000. The momentum

thickness distributions, in general, follow the same

trends as the skin friction. The interesting feature

of the Figs. 37 to 42 is the size of momentum thick-

ness in the cove region on the pressure surface of the

airfoils. The momentum layer is thicker and exhibits

more unsteadiness in this region than over the ma-

jority of the suction surface.

CONCLUSIONS

A series of cascade and stage simulations have been

performed for a low-pressure turbine geometry. The
numerical models used to simulate the physical mech-

anisms, as well as the physics associated with low

Reynolds number flows, have been investigated. Both

the cascade and stage simulations revealed that the

predicted losses and efficiency are highly dependent
on the assumed state of the boundary layers (i.e.,

laminar, transitional or turbulent). In the transi-
tional simulations the location of transition was in-

fluenced by both the periodic (wake or blade passing)

and random (boundary layer shedding) unsteadiness
in the flow. Work is in progress to incorporate more

sophisticated transition models into the flow analysis.
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M1

M2
M3

M2
M3
o_1

o_2

o_3

_2
_3

7]tt

Table 2:

- stage -

Turb. Float Trans. Fix Trans.

0.0897 0.0848 0.0844

0.i3380.1409 0.1357

0.0914 0.0858 0.0840

0.0909 0.0859 0.0839

0.1422 0.1366

-35.00 ° -35.00 °

0:1344

-35.00 °

58.27°57.71 ° 58.17 °

-34.67 ° -33.95 ° -32.84 °

33.29 ° 32.33 ° 32.20 °

-58.15 ° -58.74 °

0.925 0.847

-58.43 °

0.826

Time-averaged inlet and exit flow quantities

Re=40,000.

Design Lam. Turb. Trans.

M1 0.0897 0.0907 0.0927 0.0934

M2 0.1500 0.1474 0.1440 0.1468

_1 35-00 ° 35-00 ° 35 .00° 35.00°

_2 -60.00 ° -58.65° -58.65° -58-27°

-- 0.00122 0.00063 0.00082A.t:>U&I

Table 1: Time-averaged inlet and exit flow quantities

- cascade - Re=40,000.

M1
M2
M3
M2

M3

o_i

G2

G3

Z2
Z3

Table 3:

- stage -

Turb. Float Trans. Fix Trans.

0.0903 0.0902 0.0890

0.1419 0.1431 0.1410

0.0919 0.0923 0.0907

0.0916 0.0923 0.0903

0.1429 0.1437 0.1419

-35.00 o -35.00 ° -35.00 °

57.82 ° 58.24 ° 58.25 °

-34.88 ° -35.53 ° -35.11 °

33.88 ° 34.90 ° 34.40 °

-58.17 ° -58.49 ° -58.51 °

0.934 0.947 0.929

Time-averaged inlet and exit flow quantities

Re=120,000.
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Figure 1: Low-pressure turbine cascade. Figure 3: Instantaneous Mach contours - P_e=40,000
- laminar.
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Figure 2: Velocity profiles on blade suction surface - Figure 4: Instantaneous Mach contours - Re--40,000
Re--40,000 - laminar. - turbulent - BL.
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Figure 6: Instantaneous entropy contours
Re=40,000- laminar.

Figure 8: Instantaneous entropy contours -

Re--40,000- transitional- BL.
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Figure 9: Isentropic Mach number distribution - Figure 11: Instantaneous entropy contours -

Re=40,000 - turbulent - BL. Re=80,000 - k - e - Tu _ 3% - ]-tToo = 10.0.
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Figure 10: Isentropic Mach number distribution - Figure 12: Isentropic Mach number distribution -
Re--40,000 - transitional - BL. Re=80,000 - k - c- Tu = 3% - #Too = 10.0.
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Figure 13: Effects of turbulence level on skin friction
distribution- Re=80,000.

Figure 15: Instantaneous entropy contours at 0%
wake-passing cycle - Re=120,000.
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Figure 14: Effects of dissipation length scale on skin
friction distribution - Re=80,000.

Figure 16: Momentum thickness distribution at 0%
wake-passing cycle - Re=120,000.
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Figure 17: Instantaneous entropy contours at 25% Figure 19: Instantaneous entropy contours at 50%

wake-passing cycle - l_e=120,000, wake-passing cycle - Re=120,000.

0.0090

0.0060

o(in)

0.0030

P.S.

0.0090

/
/ I

Ir'_['_"\ I I

, " s s/ II k\
I \ / I
I N\ j_-,' [

;,,,j ._./ ',
I ,_,1" "_ _------',1

' O.lS ' o._o ' o._5
x(i.)

0.0060"

o(i_)

0.0030"

O.O00C _ 0.0000

-0.20 1.20 -0.20

II
11
II
II

P.S. z II

J _ S.S.
/
I _ /' I
I _ rJ t
i \ / i

/,., / _ I' I

I ," _ _------_--......_.'

i i ! ! ! J
0.15 0.50 0.85

x(i.)
!

.20
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Figure 23: Low-pressure turbine stage.
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Figure 24: Time-averaged transition locations.
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Figure 26: Instantaneous Mach contours
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Figure 28: Instantaneous entropy contours -

Re=120,000- turbulent- BL.
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