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ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC.

December 16, 1997

Dr. Yogesh Sud
Code 913

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Re: Final report, contract NAS 5-32861 (AER Project P602)

Dear Dr. Sud:

This report, prepared by Atmospheric and Environmental Research, Inc., will function as
the final report on the project.

We finished our assessments of the NASA Goddard Earth Observing System- 1 Data

Assimilation System (GEOS-1 DAS), regarding heating rates, energetics and angular
momentum quantities. These diagnostics can be viewed as measures of climate

variability. We have done extensive work, including comparisons with the NOAA/NCEP
reanalysis system of momentum and energetics diagnostics. On these subjects, an

extended abstract in the Proceedings of the American Meteorological Society Seventh
Conference on Climate Variations has appeared (Enclosed), and we have also presented a
report to the First International Conference on Reanalyses in October 1997. Our
proceedings for that conference is also enclosed. A manuscript, entitled "Global

momentum signals from reanalysis systems," by D.A. Salstein and R.D. Rosen, is under
preparation for publication on this subject as well.

Two manuscripts on aspects of assessments of model behavior from the Atmospheric
Model Intercomparison Project (AMIP), in which two Goddard general circulation

models participate, have been accepted by journals. They are focused on atmospheric
angular momentum (Hide, R., J.O. Dickey, S.L Marcus, R.D. Rosen, and D.A. Salstein,
1997: Atmospheric angular momentum fluctuations in global circulation models during
the period 1979-1988. J. Geophys. Res., 102, 16423-16438), and water vapor and its
transports (Gaffen, D.J., R.D. Rosen, D.A. Salstein, and J.S. Boyle, 1997: Evaluation of

tropospheric water vapor simulations from the Atmospheric Model Intercomparison
Project, J. Climate, 10, 1648-1661). Copies of reprints are included.

Dr. Salstein submitted two "Diagnostic Subproject proposals" to the Program for Climate

Model Diagnosis and Intercomparison of the Lawrence Livermore National Laboratory
to continue the work on atmospheric diagnostics in the areas of angular momentum and
water vapor. Dr. Salstein will take the lead in the proposal on angular momentum and he

is a participant in the proposal on water vapor and its transports. Both proposals were
accepted. This acceptance will lead to involvement in the AMIP-2 project, in which
more advanced models will be used for these intercomparisons. Here, the model s in the

intercomparison projects will be run for 18-year periods, an extension of the previous
project that will encompass more ENSO events.
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We have noted that GEOS-1 and NOAA/NCEP global atmospheric angular momentum

values are coherent on time scales down to about three days. Furthermore, they agree
with the series of Earth angular momentum, as measured by tiny fluctuations in the

rotation rate of the Earth, reckoned as variations in the length of day. The torques that
effect such changes in atmospheric and Earth momentum consist principally of the
friction torque, acting tangentially, against tile surface of the land and the mountain

torque, based on normal pressure gradients against the mountainous topography. Our
work has shown the influence of particular mountain systems, including the Rockies,
Himalayas, and Andes, upon mountain torques on time scales shorter than about two

weeks. Aspects of this work were presented at the Fall American Geophysical Union in

December 1996. Other portions of the work, as well as a paper on the AMIP project,
were presented at the European Geophysical Society meeting in April 1997. A

manuscript, entitled "Regional sources of mountain torque variability and high-frequency
fluctuations in atmospheric angular momentum," by Iskenderian and Salstein, has been
accepted and is in press at Monthly Weather Review (copy enclosed). We hosted Olivier
de Viron, a visiting student from the Royal Observatory of Brussels, who calculated the

torques from the GEOS-1 DAS analyses that link the surface pressure patterns of the

atmosphere with various motions of the Earth. In so doing we have also investigated the
"gravitational torque" associated with the pull of the Earth on the changing mass of the
atmosphere. A manuscript (De Viron, O., Ch. Bizouard, D. Salstein, and V. Dehant,

1997: Atmospheric torque on the Earth and comparison with the atmospheric angular
momentum variations) is under preparation on the results of this work; a copy of the
abstract is enclosed.

We have been involved in a collaboration with Dr. Sud, of Goddard Space Flight Center,
whose purpose is to examine the impact of mountainous areas on diagnoses of the

atmosphere. To that end we have examined one year of data from three experiments, in
which (1) the full Himalayan mountains are included (2) the Himalayan mountains have
been reduced to 50% of their height, and (3) the Himalayan mountains have been reduced

to 10% of their height. Some initial findings of the study are as follows: The largest
impact of the Himalayas occurs in the Northern Hemisphere during winter season, and,
most specifically, during February and March. This result indicates that the variations of

wind and temperature during this cold season lead to a reduction in the eddy kinetic
energy and eddy-available potential energy, indicating the necessity of this mountainous
area for producing the phenomena under question. We have studied the zonal mean and

eddy kinetic and available potential energy values for the SIB 147 run (full mountains),
SIB149 run ( 50% mountains) and SIB 148 (10% mountains. Interestingly the zonal mean

energy terms appear to affected by the mountains in the Northern Hemisphere, especiallyin the winter.

Earlier in the project, Dr. Salstein convened and chaired a session at the Spring 1996
American Geophysics Union Meeting in Baltimore, on the topic of Earth System
Dynamics. Participants in that session included invited speakers from NASA Goddard



ili!ii:_i_i:ii
!il,_i!iiiillii_

December 16, 1997

Dr. Yogesh Sud
Code 913

NASA Goddard Space Flight Center
Greenbelt, MD 20771

page 3

Space Flight Center, who highlighted the developments of the Goddard Laboratory for
Atmospheres, in relation to the atmospheric component of the planetary angular
momentum balance.

We worked out assessments of the NASA Goddard Earth Observing System-1 Data
Assimilation System (GEOS-1 DAS), regarding energetics and angular momentum
quantities. The energetics diagnostics, in particular, are useful in determining a measure
of the types of climate signals during the multi-year period already analyzed as part of the
GEOS DAS-1 reanalysis effort. For example, we see a distinct difference in the zonal

mean and in the eddy kinetic energy terms between a year featuring a warm Pacific water
E1 Nifio event (1987) and one that had a cold La Nifia event (1988). We presented some

of our results concerning this topic at the Annual NOAA Climate Diagnostics Workshop
in November 1995, in a presentation entitled, "Angular momentum and ener etics in
reanalysis products." There we focused on comparisons of the NASA EOS _AS-1

system with the NOAA NCEP/NCAR Reanalysis Project. Some of the differences in the

energetics terms led us to conclude that the mean zonal winds and eddy terms had
considerable differences. A copy of the relevant Proceedings contribution from that
workshop is enclosed.

In a related vein, we have compared the heating rates from the GEOS DAS-1 with values

of outgoing longwave radiation for an eight-year period. We found, in particular, that
there is considerable correlation in the west central Pacific between (negative) heating
and vertically averaged latent heating. Also, comparisons of latent heating in a Goddard
Global Circulation Model with and without the inclusion of downdrafts were performed.
The effect of such a parameterization is particularly influential in the tropics. An
Extended Abstract for the AMS Tenth Conference on Numerical Weather Prediction,
addresses this subject and is included here too.

A book chapter by D.A. Salstein, Mean Properties of the Atmosphere, in Composition,

Chemistry, and Climate of the Atmosphere has been published with some support from
this NASA Program. Enclosed is a single copy of this chapter in its final form.

Sincerely yours,

-
David A. Salstein

Principal Investigator

Enclosures

cc: Contracting Officer, Code 289, 1 copy

Center for AeroSpace Information, 2 copies, Publications and graphics services section,Code 253.1





3B.3 LARGE-SCALE DIABATIC HEATING IN A MODEL WITH DOWNDRAFTS

David A. Salstein 1 and Yogesh C. Sud 2

1Atmospheric and Environmental Research, Inc., Cambridge, MA 02139

2Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD 20233

1. INTRODUCTION

A physically based scheme was developed and
implemented by Sud and Walker (1993) to include the
effects of convective downdrafts (CD) to complement a
parameterization for moist convection. It calculates the
downdraft mass flux at different levels in the

atmosphere and is designed to augment the
parameterization that includes the re-evaporation of rain
(Sud and Molod 1988).

The CD scheme has been included here in a one-

year simulation with the 17-layer GLA General
Circulation Model (GCM) documented in Table 3 of
Sud and Walker (1993). Parallel to this run is a
CONTROL simulation without the CD

parameterization. Over the maritime tropical continent,
Sud and Walker (1993) note that after implementing
CD, a reduction occurs in the precipitation, which was
excessive there in simulations without CD; other
regions have marginal changes in precipitation.

The simulations were used to examine the impact
of the CD parameterization on diabatic heating
component fields studied by Salstein and Rosen (1990)
for the 9-layer version of the GLA GCM. The
availabifity of the heating component fields allows an

assessment of their relative roles in driving the global
atmospheric energy cycle, through the generation of
available potential energy, G(APE). Thus, we re-
evaluate this aspect of the energy cycle here.

We examine the distribution of diabatic heating and
its roles in the propagation of intraseasonal fluctuations
in the tropics, and also in generating APE in each
hemisphere. Because CD has a strong impact on latent
heating due to the cooling effect of rain re-evaporation,
a particular focus is on that heating component.

2. INTRASEASONAL SIGNALS IN LATENT HEAT

Temporal changes in patterns of latent heating,
like those in precipitation, are related to the large-scale
dynamics of the atmosphere. On intraseasonal time

scales, fluctuations in latent heating produced by
convection in the tropics may be a signature of the
Madden-Julian oscillation. Convection, in turn, is
related to the rising motion, and hence divergence in the

upper atmosphere. Knutson and Weickmann (1987)
have documented intraseasonal oscillations in potential
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fields, related to the divergence, which typically are
manifested as eastward-moving patterns in the deep
tropics. Here we calculate vertically averaged patterns
of latent heating throughout much of the depth of the

free atmosphere in the deep tropics (10S-10N).
Aspects of motion at different time scales of latent heat
patterns produced by the simulation are examined either

by considering the raw fields directly or by filtering
them in specific intraseasonal bands, as Vincent et al.

(1991) did in studying 200-hPa potential fields

calculated from ECMWF analyses. On rapid scales,
some pulses in the raw latent heating, moving westward
across the tropical Atlantic to South America, can be

seen in Fig. 1. After applying a filter in the 40-80 day
band (Fig. 2a), cases of tropical eastward propagation in

latent heating become clear. In this band, propagation
patterns typically start over Africa, or the Indian Ocean,
and travel to the central Pacific, occasionally moving
farther east across the date line with time scales of

motion of about two months. After applying instead a
band-pass filter at shorter periods, between 27-44 days,
eastward propagation also occurs [not shown], though

Latent Heating, CD
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Fig. 1. Distribution in time and longitude of latent
heating between 10N and 10S, averaged between 850
and 200 hPa, from the GLA model including convective
downdrafts for 5 months of a simulation. Contours are
2 Kday -1.



3.DIABATICHEATINGANDENERGETICS

To determine the role of the healing fields from the
CD run on the large-scale energelics of the atmosphere,
we have first calculated monthly and annual

distributions of the four components of diabatic heating.
We isolate from the CD run the mean annual

distribution of the four components of diabatic heating;
zonal mean annual cross-sections are shown in Fig. 3.

with almost double the speed. After band-pass filtering,
the westward-moving pulses in Fig. 1 vanish.

Comparing results from Fig. 2a with a similar
analysis of the CONTROL run (Fig. 2b) reveals some
differences in character. The bands with peaks between

0 and 90E in May and June, for example, have stronger
amplitude in the CD ease than in the CONTROL case.

Also, the patterns have somewhat less of a standing
character near 150E in CD. To isolate the traveling
disturbances more compactly, eigenvector approaches,
such as extended Empirical Orthogonal Function
analysis are useful. Sensible
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Fig. 2(a). Same as Fig. 1, but after applying a 40-80

day band-pass filter. Contours are 0.5 K day-1 (b)
Same as (a), but for CONTROL.

Fig. 3. Annual and zonal mean values of four

components of diabatic heating, from the simulation
with convective downdrafts. Units are K day -1, and
negative values are shaded.
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In addition to the strong latent heating through the
depth of the free atmosphere, a shallow area of cooling
from the evaporative downdrafts is also visible; such
cooling is larger than is the case of CONTROL without

evaporative downdrafts. Correspondingly, sensible
heating of the boun dart layer becomes larger for the
CD simulation as compared to the CONTROL run [not

shown], compensating in part for the latent cooling
there.

When each of the four fields is combined with the
temperature fields on a daily basis, values for the

generation of available potential energy by the heating
processes can be obtained. Both the zonal mean portion
and eddy portions of G(APE) can be computed from
these fields. Typically, latent, sensible, and shortwave

processes tend to have a positive G(APE) due to a
positive correlation with temperature; longwave has a
negative correlation and hence reduces the APE.

We present in Fig. 4 the generation of zonal mean

APE in each hemisphere in the "free" atmosphere
between 950 and 50 hPa from CD run. The annual

Generation of Zonal Mean APE
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Fig. 4. Generation of zonal mean available potential
energy in the northern and southern hemispheres, for
each month of the simulation with convective

downdrafts by four components in the free atmosphere
(950-50 hPa), and for latent and sensible heating in the
boundary layer (1000 - 950 hPa). Units are Wm -2.

the two hemispheres are largely out of phase with each
other. The values of G(APE) due to latent and sensible
heating in the low boundary layer, 1000 - 950 hPa, are
small parts (by amplitude) of G(APE). However, the

proportion of these two components produced in the i:_Jboundary layer is relatively large considering the i

theShall°wneSslargestmagnitude°fthat layer. In November, the month of !!!!'__boundary layer value for G(APE) i;i
by latent heating in the NH, its value is nearly 20% of

that in the free atmosphere and it is of opposite sign, :mc_:-_,
reducing the strength of G(APE) by the latent process.

In turn, extra G(APE) from boundary layer sensible i_ iheating tends to compensate for this reduction, i

: ,,.,

J
cycles of these terms are considerable, and the values in _

ACKNOWLEDGMENTS: The work was supported
under NASA Contract NAS5-31333 to AER. We thank
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in production of the data and analyses. R.D. Rosen of
AER made several helpful comments on this work.
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Angular momentum and energetics in reanalysis products

David A. Salstein and Richard D. Rosen

Atmospheric and Environmental Research, Inc., Cambridge, MA 02139

1. Introduction. Questions about climate variability demonstrate the need to reanalyze the
historical state of the atmosphere using a modern analysis system applied to as consistent a set of

observational data as possible. Two such reanalysis sets are now being prepared: one by
NCEP/NCAR, eventually spanning several decades (Kalnay and Jenne 1991); and one using the
NASA Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS), being run
for about a decade but developed with future inputs of space-based data in mind (Schubert et al.
1991).

The currently available pilot series from these reanalyses span more than five years. Here we
examine the potential for these data to contribute to climate studies by considering aspects of the
planetary budgets of atmospheric angular momentum and energedcs.

2. Angular momentum diagnostics. Atmospheric angular momentum (AAM) about Earth's axis
is a well-determined quantity, which has been shown to be remarkably consistent with
measurements of the Earth's rotation rate in that its variations are proportional to those in the

length of day (l.o.d.) on timescales between several days and years. In addition, AAM is being
used as a verification tool for atmospheric models (Salstein and Rosen 1994) such as those

contributing to the Atmospheric Model Intercomparison Project. Estimates of this quantity have
been made from several weather centers (Salstein et al. 1993), and although values produced by
different centers had moderate differences a decade or more ago, they are in better agreement
today. New estimates of AAM based on reanalyses have the potential to reduce the errors that
existed in earlier years.

The difference between AAM and equivalent values of ko.d. for individual years is typically
smaller when the AAM value is based on NCEP/NCAR reanalysis than when it is derived fi'om
operational analyses. Indeed, a seven-year set (1985-91) of values shows the reduction in rms to

be about 30%; this result (Fig. 1) was determined using the full vertical extent of the analysis
domains and after removing a low-order signal not related to atmosphere-solid Earth momentum
exchange.

The differences in AAM between reanalyses and operational analyses appear to derive from
zonal winds in the tropics and southern hemisphere mid to high latitudes. Reanalysis appears to
have stronger easterly momentum than do operational values, in general. Interestingly also,
reanalysis-based AAM values are temporally smoother than their operational counterparts, as a
spectral analysis of such values over the five years demonstrates (Fig. 2).

An advantage of reanalysis data derives from the inclusion of higher levels than was the case
heretofore. Use of such levels is typically required for momentum balances on seasonal scales

(Rosen and Salstein 1991). For example, the semiannual amplitude in l.o.d, of 0.173

milliseconds during 1985-91 is not matched by the troposphere alone (amplitude equivalent to
0.116 ms), but including of the stratosphere up to the 20 millibar level reduces the difference

with the ko.d.-derived value by about one half (amplitude equivalent to 0.144 ms).

Values of AAM, when distributed into zonal belts, can be used to study the structure of climate
anomalies. The GEOS-1 system, for example, shows the 1987 El Nifio maximum and 1988 La

Nifia minimum in the subtropics, each signal with a precursor near the equator one year earlier.
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Such a result, first noted by Dickey et al. (1991), may eventually be generalized over many
decades with the reanalysis-based values.

NCEP/NCAR and NASA GEOS- 1-based values of AAM are in rather close agreement with each

other, with the two sets showing a strong coherence on intraseasonal time scales that remains
statistically significant down to about three days (Fig. 3). From this result, we may infer that the
reanalysis sets have consistent zonal wind fields.

!

Atmospheric Angular Momentum-Length of Day
(low order fit removed)
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Hg. 1. Difference between AAM and equivalent length of day values, given in two proportional scales,
1.o.d. on left and AA.M on right. AAM is derived from NCEP/NCAR reanalyses and NCEP operational
analyses. A low-order fit, representing non-atmospheric effects, is removed from the difference series.
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Fig. 2. Energy density spectra of AAM from

NCEP/NCAR reanalyses and NCEP operational

analyses for 1985-1989, based on once-dally values.
Units are (kg m 2 s-l)2 x day.
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. . The atmosphere may be considered as a heat engine in which potential

energy is converted into kinetic energy (Peixoto and Oort 1992). Moreover, these energy forms
may be partitioned into their zonal mean and eddy components, with conversions taking place
between such components by actions of meridional eddy transports. Potential energy is
generated through differential heating of the atmosphere through diabatic processes; the
generation of its zonal mean form, for example, requires a positive correlation of heating rate and
temperature across the (hemispheric or global) domain. The diabatic processes involved are
those of sensible, latent, longwave radiational, and shortwave radiational heating.

Signals in the strength of atmospheric energy forms, conversions, and generation can be
indicative of important interannual variations. We used the first five years of the NASA GEOS-1

analysis to analyze atmospheric energetics in monthly periods. Potential and kinetic energy
contents of each hemisphere display strong annual signals, with all zonal mean and eddy
components strongest during a hemisphere's winter. Furthermore, the northern hemisphere
signal dominates the seasonal signal. When the mean seasonal cycle is removed, the transition

from 1987 El Nifio maximum to 1988/1989 La Nifia minimum is clearly visible in "the energy
signals in both hemispheres (Fig. 4). The time series of zonal mean available potential energy
generation displays a signal in which the portion associated with latent heat explains much of th
character of total, energy generation (Salstein and Sud 1994). Moreover intera]a n--, -" ..... e

anomaly generatton terms also indicate an impact of the ENSO cycle. ' ,o_,,,u_t _gaaas m

We have also made a preliminary estimate of the differences in the energeties between the

NCEP/NCAR and GEOS-1 DAS reanalyses during the 1987-1988 period, which are relatively
small (only 5% or less of the typical values). Some of the larger differences are in the zonal

mean available potential energy in the southern hemisphere and eddy kinetic energy in both
hemispheres, in which the NCEP/NCAR values tend to be less than those of GEOS-1 DAS.
After examining zonal-mean zonal wind values, we find, for March 1988, the month with the

largest difference in mean kinetic energy, that such a difference is related to the strength and
position of the jets, which tend to be stronger and placed more equatorward in the NCEP/NCAR
analysis. As for eddy kinetic energy, the two-year mean conditions show that the zonal mean

variance in the winds in NCEP/NCAR is less than that of GEOS-1 throughout much of the globe,
but in particular in the southern hemisphere jet, which is centered near 50S and 250 millibars(Fig. 5).

4. Acknowledgments. Support for this study came from NOAA Climate and Global Change
Program grant NA46GP0212, and from NASA EOS Program grant NAGW-2615 and Global
Modeling and Analysis Program contract NAS5-32861.
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ABSTRACT

Global atmospheric angular momentum and energy parameters have been computed four times daily from
the NCEP/NCAR and NASA GEOS-I systems. Global momentum from both reanalyses are significantly
coherent on periods greater than 2-3 days. Atmospheric angular momentum series based on reanalyses
agree better with Earth rotation changes than did operationally-based estimates. Because the reanalysis
domain includes most of the stratosphere, prominent quasi-biennial and semi-annual signals are better
represented than in previous operationally-based products. Moreover, the lengthy reanalyses allow an
investigation of anomalous behavior like that of the current El Nifio event, which is characterized bystrong westerly momentum anomalies between 30 S and 30 N.

Large-scale kinetic and potential energy statistics have also been calculated using reanalysis-based winds
and temperatures. MoreOver, the generation of available potential energy, G(PM) ' is estimated from
diabatic heating fields obtained from the model residing within reanalysis systems. Lengthy series of
zonal mean potential energy, kinetic energy, and G(PM) all display evidence of ENSO forcing. ENSO
anomalies in tropical latent heating are prominent in producing negative anomalies of energy generation.

I. INTRODUCTION

Reanalvsis fields from the National Centers for Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) [1] since 1968 and the NASA Goddard Earth Observing System Data
Assimilation System [2] for 1980-1995 are used here to calculate global and regional values of
atmospheric angular momentum and energetics quantities. These parameters may be used to monitor
various aspects of dynamics within the atmosphere and the whole Earth system, and they also function as
indices of climate. Such global statistics are also useful because they are related to other properties of the
planet including its rotation rate (length of day) and its energy balance, both of which may be monitoredby independent techniques.

Besides the advantage that the reanalyses have removed many of the heterogeneities of operational
analyses, their domain also extends t{igher through much of the upper stratosphere (to 10 hPa for

NCEP/NCAR and about 20 hPa for GEOS-1 DAS), as opposed to the 50 hPa level for earlier analyses.
Thus, global momentum and energetics diagnostics over a broad range of time scales can be moreconfidently assessed.

2. ATMOSPHERIC ANGULAR MOMENTUM (AAM) DIAGNOSTICS

The signature of global mean AAM [3] based on nearly three decades of NCEP/NCAR reanalyses (Fig. 1)
includes a dominant seasonal component and interannual variability with peaks in El Nifio years, the
strongest of which occurred during the 1982-83 ENSO warm event. Global values of AAM from the two

reanalyses are very close, with an r.m.s, difference (after means have been removed) of 0.32 x 1025 kg m 2
s-1 during the 15-year period that both sets overlap. A coherence analysis between the two sets shows

significant agreement on variations of around 2-3 days and longer (Fig. 2). Coherences in Fig. 2 do begin
to fall below 0.6 at around a 10-day period, although there is evidence (not shown) that the two series have
become closer since 1980, especially in the band between 3 and 6 days.

Root-mean-square differences between the angular momentum of the atmosphere and that of the solid
Earth, determined from geodetic measurements of the length of day, are typically small, as would be
expected from the conservation of angular momentum in the Earth-atmosphere system. These differences
(Fig. 3) are about 25 per cent lower when AAM values from NCEP/NCAR reanalysis are used than
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differences based on the operational AAM values. Thus we conclude that a significant improvement has
taken place in the quality of the reanalysis fields, compared with the previous operational product.

The AAM values during the current calendar year have been anomalously high compared to the long-term
record, for several months, particularly since mid-July (Fig. 4a). This anomaly appears to be a

consequence of the current El Nifio that began to form in March/April 1997. When the global signals are
separated regionally into latitude belts [3], positive anomalies spread across most of the low latitudes but
particularly strong between 20 S and 30 S in recent months (Fig. 4b).

The raising of the upper level to 10 hPa in the NCEPINCAR reanalyses allows us to study the long-term
character of stratospheric angular momentum. In this regard, Fig. 5 shows the impact of the stratospheric
quasi-biennial oscillation (QBO) on the global momentum above 100 hPa [4] with higher levels producing
a stronger signal. Further analysis shows that the upper stratosphere is needed to provide enough
momentum for global balance on the quasi-biennial scale. The stratosphere also contains a major
semiannual signature, evident with a more rapid filter [not shown], which may be interpreted as a
combination of annual momentum signatures in the two hemispheres that peak in different seasons.

3. ENERGETICS AND DIABATIC HEATING

The availability of the reanalysis fields, including those produced by the forecast model at the core of the
reanalysis system, enables one to diagnose the complete energy cycle of the atmosphere. In this

framework [5], the atmosphere can be viewed as a heat engine, producing kinetic energy from the portion
of potential energy due to differential heating that is available for conversion. In earlier studies we focused

on using monthly energy parameters to examine of the energy cycle from an analysis system and we used
these values to assess the quality of the system [6]. Here we consider variability in the 15-year set ofGEOS-1 DAS reanalysis-based energetics values.

Kinetic and available potential energy in its zonal mean and eddy forms have strong annual signatures in
both hemispheres, all peaking in each hemisphere's respective winter season. Time series of anomalies
from the annual cycle during 1980-95 (Fig. 6) reveal a marked decrease in zonal mean potential and
kinetic energies from the El Nifio warm event year of 1987 to the La Nifia phase of cold Pacific sea surface

temperatures in 1988-89. Potential energy, in particular, remains anomalously low for about four years
after that period. The effects of the other E1 Nifio events were less clear by this measure.

Available potential energy in the atmosphere is generated by diabatic heating, whose long-term rates from
latent, sensible, and shortwave and longwave radiational processes are shown in Fig. 7a using GEOS-1
DAS. The strongest heating rates in the mid to upper troposphere derive from the latent process; sensible
heating is strong but confined to the lowest layers. Heating by shortwave radiational processes is more
than balanced by stronger cooling from longwave processes.

The relative importance of these heating terms to the energetics of the atmosphere can be assessed by
examining G(PM) ' the generation of zonal mean available potential energy, which has been calculated for

each month of the record from each heating term separately. This generation term depends approximately
on the spatial correlation between the heating rates and the temperature field. Latent heating, tends to
carry the annual signature of the total [7]. Northern Hemisphere interannual anomalies during El Nifio
years are negative, driven largely by the latent heat contribution (Fig. 7b). The strong 1983 extreme
appears to be due to a southward shift in tropical latent heating compared to the mean position.

CONCLUSIONS

Atmospheric angular momentum (AAM) and energetics series from the NCEP/NCAR and GEOS-1 DAS
reanalyses reflect a number of climatic signals. The AAM records are very consistent with observations of

length of day; AAM values from the two reanalyses are coherent on all but very short time scales (<2-3
days). Inclusion of the stratosphere produces a strong quasi-biennial signal in AAM. Reanalysis-based

series of kinetic and potential energies and mechanisms for energy generation identify El Nifio signals.
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GLOBAL MOMENTUM AND ENERGY SIGNALS FROM REANALYSIS SYSTEMS

David A. Salstein and Richard D. Rosen

Atmospheric and Environmental Research, Inc., Cambridge , Massachusetts

1. INTRODUCTION

Lengthy analyses of the state of the atmosphere are
becoming available in which observations from a

variety of sources over the years have been

combined to produce relatively homogeneous

atmospheric fields. One such set of "reanalyses,"
prepared by the National Centers for
Environmental Prediction_ationa! Center for

Atmospheric Research (NCEP/NCAR), is intended

to span about 40 years of records (Kalnay et al.
1996). Another set, developed mostly to assimilate

upcoming space-based data anticipated during the
era of the Earth Observing System (EOS), is
produced using the NASA Goddard Data

Assimilation System (Schubert et al. 1993).
Reanalyses of the atmosphere from the

NCEP/NCAR system now span more than 17

years, and that of GEOS-1 DAS over 8 years.

Earlier operational analyses were produced by a
succession of systems, each representing the state-
of-the-art extant in its own era, and so introduce

heterogeneities into time series derived from them.

Other important improvements that the reanalysis
systems incorporate are: (i) production of 4-times

daily data (versus twice daily) and (ii) inclusion of

vertical levels through much of the upper
stratosphere (to 10 hPa for NCEP/NCAR and about

20 hPa for GEOS-I DAS), as opposed to the 50

hPa level for earlier operational analyses.

Here we examine a number of global and regional

statistics related to atmospheric angular momentum

(AAM) and energetics. Our goal is to document

the behavior of these indices as captured by the

reanalyses, as a prelude to understanding aspects of

the mechanisms of large-scale atmospheric

behavior and variability. Another goal is to

compare results obtained from the reanalyses with
those based on operational products.

Corresponding author address: David A. Salstein,

AER, Inc., 840 Memorial Drive, Cambridge, MA
02139; e-mail <salstein@aer.com>.

2. ATMOSPHERIC ANGULAR MOMENTUM

The signature of global mean AAM (Fig. la)
includes a strong annual amplitude and interannual

variability with peaks in El Nifio years, the

strongest peak in the reanalysis period occurring
during the major 1982-83 ENSO warm event.

Root-mean,square differences between the angular
m0mentum of the atmosphere and that of the Solid

Earth; determined from geodetic measurements of

the length of day, are typically small (e.g., Rosen

and Salstein 1983), as would be expected from the
conservation of angular momentum in the Earth-

atmosphere system. These differences (Fig. l b)
are about 30 per cent lower when AAM values

from NCEP/NCAR reanalysis are used than

differences based on the operational AAM values.

This result, based on information from totally
independent measurements of Earth rotation, leads

us to conclude that a significant improvement has

taken place in the quality of the reanalysis fields, as

compared with the operational product.

Conversely, the availability of historically
consistent reanalyzed values of AAM and related

parameters is important for assessing global
geodetic properties (Salstein et al. 1993).

Global values of the two reanalyses are themselves

very close, with an r.m.s, difference (after means

have been removed) of 3 x 10 24 kg m 2 s_,

equivalent to 0.05 x 10 -3 s in l.o.d, units, during the

8-year period that both reanalysis sets overlap. A
coherence analysis between the two sets shows

significant agreement on variations of around 3

days and longer, with loss of coherence only at the

very shortest time scales in this global quantity
(Fig. 2).

When global AAM signals are separated regionally
into latitude zones, they typically yield tropical

easterly and middle latitude westerly momentum
values (Rosen and Salstein 1983), as illustrated in

Fig. 3a for the first six months of 1987. Note that

the difference between reanalysis and operational

344 AMERICAN METEOROLOGICAL SOCIETY



angular momentum fields (Fig. 3b) reveals that

reanalyses contain generally enhanced easterlies in
the tropics with dampened westerlies in the

southern subtropics during the March peak
associated with El Nifio.

The elevation of the upper level to 10 hPa in the

NCEP/NCAR reanalyses allows us to study the
character of stratospheric angular momentum

during nearly two decades. In this regard, Fig. 4
shows the impact of the stratospheric quasi-
biennial oscillation (QBO) on the interannual

variability of global momentum above 100 hPa, as
suggested earlier by Chao (1989) and others. The

stratosphere also contains a strong global

semiannual signature, which may be interpreted as
a combination of annual signals in the two
hemispheres that peak in different seasons.

and how these might be used to assess the quality
of that system (e.g. Salstein et al. 1987). Here we

assess their mean state and variability from the 8-

year set ofGEOS-I DAS based energetics values.

Kinetic and available potential energies in their

zonal mean and eddy forms have strong annual

signatures in both hemispheres, all peaking in each
hemisphere's respective winter season. Time

series of energy anomalies from the annual cycle
during 1985-93 (Fig. 5) reveal a marked decrease

in potential and kinetic energies from the El Nifio

warm event year of 1987 to the La Nifia phase of
cold Pacific sea surface temperatures in 1988-89.

Potential energy, in particular, remains

anomalously low after that period.

AAM (100-10 hPa)
I0-

>5_!

Fig. 4. Stratospheric AAM anomalies from
t.he mean annual cycle between l0 and
100 hPa based on the NCEP/NCAR reanal- _ 0
ysis.
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3. ENERGETICS AND DIABATIC HEATING

The availability of the reanalysis fields, along with
fields produced by the forecast model at the core of

the reanalysis system, enables one to diagnose the

complete energy cycle of the atmosphere, In this

framework (e.g. Peixoto and Oort 1992), the

atmosphere can be viewed as a heat engine,

producing kinetic energy from the portion of

potentia', energy due to differential heating that is
available for conversion. In earlier studies we

focused on monthly energy parameters to examine

signals of the energy cycle from an analysis system

Global Energetics
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Fig. 5. Anomalies from the mean annual
cycle of zonal mean available potential
(P_) and kinetic (Ku) energies, based on
the GEOS-1 DAS analysis in t,wo hemi-
spheres. Units are l05 J m -_.

To begin examining the origin of disagreements in

energy terms between the two reanalyses, we
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G(PM) by latent heating tends to determine the

behavior of the total, peaking in the autumn/winter

of each hemisphere. The other three terms largely
balance each other; here longwave radiational

processes generate negative available potential
energy because cooling rates are largest where the
atmosphere is the warmest. On interannual time

scales, series of the generation terms (not shown)

contain some evidence for an ENSO signature, but

this feature is less defined than was the case in Fig.
5.
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Abstract

The purpose of this paper is to compute the atmospheric torque on the Earth

including the oceans, with a particular emphasis on the equatorial components.

This opens another possibility for computing accurately the atmospheric effect on

Earth orientation in space, whose classical approach was focused on the budget-
based analysis of the atmospheric angular momentum. The expression of the total

interaction torque coming from the interaction between the atmosphere and the

Earth is derived from the angular momentum balance equation. Such a torque is
composed of three parts due to pressure, gravitation, and friction. Each of these

torque components is evaluated numerically by a semi-analytical approach and
their orders of magnitude are intercompared.

For the equatorial components, the gravitational torque and the pressure torque
have amplitudes largely above that of the friction torque, with these two main

torques having the same order of magnitude but opposite signs. The numerical

value of the total interaction torque is shown to be close to the atmospheric angular
momentum time derivative, in the time domain. The correlation between the two

time series is investigated as a function of the frequency. It is shown to be very good
at low frequency, and decreases slowly when frequency increases; the correlation is

still significant up to 0.5 cycle per day, but the correlation coefficient reduces to
0.5 in the diurnal frequency band.
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ABSTRACT

Simulations of humidity from 28 general circulation models for the period 1979-88 from the Atmospheric
Model Intercomparison Project are compared with observations from radiosondes over North America and the

globe and with satellite microwave observations over the Pacific basin. The simulations of decadal mean values

of precipitable water (W) integrated over each of these regions tend to be less moist than the real atmosphere
in all three cases; the median model values are approximately 5% less than the observed values.

The spread among the simulations is larger over regions of high terrain, which suggests that differences in
methods of resolving topographic features are important. The mean elevation of the North American continent

is substantially higher in the models than is observed, which may contribute to the overall dry bias of the models
over that area. The authors do not find a clear association between the mean topography of a model and its

mean W simulation, however, which suggests that the bias over land is not purely a matter of orography.

The seasonal cycle of W is reasonably well simulated by the models, although over North America they have
a tendency to become moister more quickly in the spring than is observed. The interannual component of the
variability of W is not well captured by the models over North America. Globally, the simulated W values show

a signal correlated with the Southern Oscillation index but the observations do .not. This discrepancy may be
related to deficiencies in the radiosonde network, which does not sample the tropical ocean regions well. Overall,
the interannual variability of W, as well as its climatology and mean seasonal cycle, are better described by the
median of the 28 simulations than by individual members of the ensemble.

Tests to learn whether simulated precipitable water, evaporation, and precipitation values may be related to

aspects of model formulation yield few clear signals, although the authors find, for example, a tendency for the
few models that predict boundary layer depth to have large values of evaporation and precipitation. Controlled

experiments, in which aspects of model architecture are systematically varied within individual models, may be
necessary to elucidate whether and how model characteristics influence simulations.

1. Introduction

Water vapor and the processes that control its abun-

dance in the troposphere play a major role in the global

climate system. The condensation of water vapor, for

example, with its attendant release of latent heat, pro-

vides much of the energy to drive the atmosphere's cir-

culation. Water vapor also strongly modulates the trans-

fer of radiation within the atmosphere and so, through

this process as well, influences the overall energy bal-

ance of the planet. Finally, with its great mobility and

Corresponding author address: Dr. Dian J. Gaffen, NOAA (R/E/

AR), 1315 East-West Highway, Silver Spring, MD 20910.
E-mail: Dian.Gaffen @noaa.gov

brief atmospheric residence time, water vapor is a cen-

tral component of the global hydrological cycle.

Because of the importance of water vapor in the cli-

mate system, and, presumably, in climate models, a

number of assessments of simulations of humidity by

general circulation models (GCMs) have been per-

formed. Rind et al. (1991) and Del Genio et al. (1994)

compared satellite observations of upper-tropospheric

humidity with simulations by the GISS GCM. (See Ta-

ble 1 for model abbreviations.) Gaffen and Barnett

(1992) compared interannual variations of specific hu-

midity from radiosonde observations with simulations

from the University of Hamburg version of the ECMWF

GCM, and Chen et al. (1996) compared a more recent

version of that model with satellite-derived estimates of

!cD 1997 American Meteorological Society
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TABLE 1. Model abbreviations.

GAFFEN

BMRC

CCC

CNRM

COLA

CSIRO

CSU

DERF

DNM

ECMWF

GFDL

GISS

GLA

GSFC

JMA

LMD

MGO

MPI

MRI

NCAR

NMC

NRL

SNG

SUNYA

UCLA

UGAMP

UIUC

UKMO

YONU

Bureau of Meteorology Research Centre. Australia
Canadian Centre for Climate Research

Centre Nationale de Recherches M6t6orologiques.
France

Center for Ocean-Land-Atmosphere Studies
Commonwealth Scientific and Industrial Research

Organization. Australia

Colorado State University

Dynamical Extended Range Forecasting (GFDL)
Department of Numerical Mathematics of the

Russian Academy of Sciences

European Centre for Medium-Range Weather
Forecasts

Geophysical Fluid Dynamics Laboratory

Goddard Institute for Space Studies

Goddard Laboratory for Atmospheres

Goddard Space Flight Center

Japan Meteorological Agency

Laboratoire de Mdt6orologie Dynamique. France

Main Geophysical Observatory, Russia

Max-Planck-Institut fiir Meteorologie. Germany

Meteorological Research Institute. Japan

National Center for Atmospheric Research

National Meteorological Center I now the National

Centers for Environmental Predictiom

Naval Research Laboratory
SUNYA/NCAR Genesis model

State University of New York at Albany

University of California. Los Angeles

Universities Global Atmospheric Modelling Pro-

gramme, United Kingdom

University of Illinois at Urbana-Champaign

U.K. Meteorological Office

Yonsei University, Korea

precipitable water and upper-tropospheric relative hu-
midity. Roads et al. (1992) compared the Los Alamos

GCM with NMC analyses of water vapor, water vapor

flux, and water vapor flux divergence. Boyle (1993) and
Phillips et at. (1995) examined the effect of horizontal

resolution in the ECMWF model on precipitable water,
among other things. Soden and Bretherton (1994) com-

pared the ECMWF and NCAR GCMs' precipitable wa-
ter and upper-tropospheric humidity fields with opera-

tional analyses and with satellite observations. Bony and
Duvel (1994) and Bony et al. (1995) used satellite ob-

servations and ECMWF analyses of precipitable water
to evaluate the LMD GCM for the period of the At-
mospheric Model Intercomparison Project (AMIP), and

Salath6 et al. (1995) compared GLA model simulations
of upper-tropospheric humidity for the AMIP with sat-

ellite observations. Thompson and Pollard (1995) com-

pared satellite-derived observations of precipitable wa-
ter with simulations by the SNG model, and Roads et

al. (1996) compared NMC analyses of precipitable water

and moisture flux convergence with climatological fields
from the NCAR GCM.

While shedding light on aspects of particular models'
humidity simulations, these studies do not give a broader

sense of the state of the science in the ability of GCMs
to model humidity and moisture flux fields. The At-
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mospheric Model Intercomparison Project has provided
an opportunity to compare systematically various as-
pects of many GCM humidity simulations with obser-

vations. Here, we compare humidity and meridional
moisture flux simulations produced for the AMIP with
observations to evaluate GCM simulations of both the

climatology and the seasonal and interannual variability
of tropospheric water vapor.

2. The Atmospheric Model Intereomparison
Project

A project of the World Meteorological Organization's

World Climate Research Programme, the AMIP is an
international effort to evaluate the ability of atmospheric

GCMs to simulate the global climate of the decade

1979-88 (Gates 1992). The 30 participating modeling
groups followed a common experimental plan that in-
volved using identical model boundary conditions of

observed monthly mean sea surface temperature and sea
ice, a constant concentration of atmospheric carbon di-
oxide (345 ppm), and a solar constant of 1365 W m -2.

Model output was provided for a specified set of fields
in a standard format.

Twenty-five diagnostic subprojects have been ex-

amining various aspects of the simulations. This paper
reports on some of the work of AMIP Diagnostic Sub-

project 11, entitled "Validation of Humidity, Moisture
Fluxes, and Soil Moisture in GCMs." Results concern-

ing soil moisture are reported by Robock et al. (1995).
Other AMIP results related to the hydrological cycle

can be found in the following studies: Lau et al. (1995)
on precipitation and evaporation, Duvel et al. (1997) on

the clear-sky greenhouse effect of water vapor and the
distribution of water vapor over ocean regions, Weare
et al. (1995) on cloudiness, and Srinivasan et al. (1995)
on tropical precipitation.

This study involves several AMIP monthly mean
standard output fields: gridded precipitable water W,

evaporation E, precipitation P, and zonal-mean specific
humidity q. We were unable tO examine relative hu-

midity simulations because gridded relative humidity
fields were not required as standard output. The avail-
ability of monthly mean values directed our attention

to seasonal and longer timescales. We analyzed output
from 28 of the AMIP models, listed in Table 1, that
passed the quality control tests made at Lawrence Liv-

ermore National Laboratory by the Program for Climate
Model Diagnosis and Intercomparison, which is re-
sponsible for AMIP coordination.

Because water vapor is a short-lived atmospheric con-

stituent with high spatial and temporal variability, its
distribution is particularly difficult to measure. There-

fore, a reliable global water vapor dataset for model
evaluation over the AMIP decade is not available. Over

land, radiosonde data are most useful, despite their
known shortcomings (Elliott and Gaffen 1991; Soden
and Lanzante 1996). Over ocean, where surface micro-
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wave emissions are reasonably homogeneous, satellite mi-

crowave measurements are becoming suitable but are not
available for all years of the AMIP decade. We used dif-

ferent observational datasets for three different regions,

and we will present our results for each in the following
three sections. We discuss first the results for North Amer-

ica, where our observational data are plentiful and most

reliable. Then, we examine a region of the atmosphere
with a different underlying surface: the Pacific Ocean.

Third, we follow with a look at the global scale.

3. Precipitable water over North America

a. North American radiosonde data

Our best verification data for the AMIP period are
radiosonde observations over the North American con-

tinent. We used a dense and homogeneous network of
129 stations, depicted in Fig. la, in Canada, the United
States, and Mexico, most of which used the VIZ radio-

sonde (Gaffen 1993, 1996). Daily soundings for the

AMIP period (1979-88) were used to create monthly
means of W, the integral of specific humidity with re-
spect to pressure, in the column from the surface to 300

hPa, at each station. [Details about the data processing

can be found in Ross and Elliott (1996a,b).] Monthly
values were accepted only if at least 10 days of data
were available for the month.

The station monthly mean data were then interpolated
onto a 4 ° 1at × 4 ° long grid (Fig. 1a). Gridpoint values

were computed as a simple linear, distance-weighted
average of observations from all stations within a'radius

of 2° lat of the grid point. To ensure the representa-

tiveness of gridded climatological values for the 10-yr
period, a nearby station needed to report at least 9 of
the 10 possible values for each calendar month for each

grid box. For this spatial resolution, the radiosonde net-

work samples Mexico and the United States quite well;
typically about 95% of the grid boxes in each zonal

band have stations within the specified radius. Poleward
of 50°N sampling is worse--the comparable statistic is

about 75%--in part because of the sparser network but
also because of missing humidity data at 300 hPa in
winter.

Examination of the data for both 0000 and 1200 UTC

showed that, over most of the continent, the observed

climatology of precipitable water is only minimally af-
fected by choice of observation time. The North Amer-
ican decadal mean W for 0000 and 1200 UTC differs

by less than 1%. Only over Mexico are the 0000 and

1200 UTC monthly means noticeably different, prob-
ably because some Mexican stations did not make 0000

UTC observations during the latter years of the period.
Therefore, we chose to analyze North American 1200

UTC monthly means only. The monthly means for the

models, however, were based on at least four samples
per simulated day.

For comparison, model W fields over continental

North America were regridded to the same 4 ° resolu-

tion as the observations. The observed and modeled

monthly means were used to create 10-yr mean values
for each calendar month, and monthly and seasonal
anomalies were defined as the difference between a

given value and the 10-yr mean for the appropriate
month or season.

b. Climatological precipitable water

Figure 1 shows the observed and simulated clima-

tologies of W over North America, namely, observed
decadal mean values (Fig. la) and the median of the

decadal mean simulations for the 28 models (Fig. lb).
Throughout this paper, we use the median as a measure
of central tendencies of the GCM simulations because

it is robust (in dealing with a non-Gaussian distribu-

tion) and resistant (to outliers). Likewise, we use the
interquartile range (IQR; the difference between the

upper- and lower-quartile values) as a robust and re-

sistant measure of the spread among the 28 simulations.
[See Wilks (1995) for a recent discussion of these sta-
tistics.]

As expected, both the observations (Fig. 1a) and sim-
ulations (Fig. lb) show a general decrease of W with

latitude and lower W values over the high terrain of the
western mountains. The differences between the median

of the model simulations and the observations (Fig. lc)

are small relative to either value and are generally less
than 2 mm. As indicated in Fig. lc, the models tend to
be slightly moister than observed in the central and

northeastern parts of the continent, and slightly drier
than observed over western North America and the
southeastern United States.

1) CONTINENTAL AVERAGES

To facilitate intermodel comparison, we examined the
average W for the entire continent for the entire AMIP

decade. The observations were averaged using the grid-

ded data and assigning the appropriate zonal average
value to any land grid boxes without data (see Fig. la).
Spatial averages for the simulations were computed us-
ing all available continental values and the land masks

appropriate to each model. Offshore island regions were
excluded from the continental averages.

Figure 2 shows the observed mean North American

Wvalue of 15.2 mm (1 mm = 1 kg m -2) and values
for each of the 28 models. The median value from the

models is 14.5 mm, 5% less than observed, and is shown

in the box plot, which, following Tukey (1977), also
gives the 25th and 75th percentile values (and thus the

IQR) and the minimum and maximum values. The IQR
of model values is 1.4 mm, about 10% of the median

value; the full range is 3.6 mm.
We note that the minimum observed annual mean

North American W is 14.8 mm (for 1979) and that fully
half the models never achieve an annual mean value as
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FIG. 1. (a) Decadal mean W as observed over North America and
the locations of radiosonde stations for which data were used in this
part of the study. (b) Median values of 28 model simulations of the
decadal mean W at the locations of the observations. (c) The differ-
ence between the model median and observed fields.

large as this during any of the 10 yr of the simulations.

This lack of overlap in the annual results suggests that
the differences between the models and the observation

are significant. By the same token, three models had all

10 annual mean values higher than the maximum ob-
served annual mean of 15.6 mm (for 1986).

The extreme model mean values are from the SUNYA

and NCAR models (Fig. 2), which represent successive
generations of the Community Climate Model. This in-

dicates that models derived from the same original code
can produce highly dissimilar results.

2) TOPOGRAPHY AND PRECIPITABLE WATER

Because W is a column-integrated quantity, and be-

cause water vapor content decreases rapidly with height,

Decadal Mean W over North America

......Obso ed - ,I

16 i::

15 .......................... Ill...........................

:lli lll,li I11111,
FIG. 2. Decadal mean W averaged over North America from 28

AMIP models (bars) and as observed by radiosondes (dashed line).

The box plot at right gives the distribution of model values including

the minimum, 25th, 50th, and 75th percentile, and maximum values.

surface topography has a strong influence on W, which

may provide a possible explanation for the dry bias in
many of the models. The average elevation of the North

American continent, as "sampled" by the 129-station
radiosonde network (Fig. la), is 290 m. For the 24
GCMs with available surface elevation data, the mean

North American elevation ranged from 470 to 886 m,

with a median value of 556 m. The discrepancy between
the radiosonde network mean elevation and those of the

GCMs is due, in part, to the tendency for radiosonde
stations to be located in low elevation areas, and, in

part, to the enhancement of orography in five of the

GCMs (Phillips 1994). Thus the models are "missing"
about 270 m of the planetary boundary layer, which

could account for about 1 mm of precipitable water.
We cannot explain each model's individual bias, how-

ever, by invoking topographic considerations. Thus, it
is not the case that the driest models have the highest

mean elevations. In fact, there is no significant corre-
lation between mean model elevation and decadal mean
W over North America.

3) ZONAL AVERAGES

To summarize the models' performance as a function
of latitude, we examined the zonal and decadal mean

precipitable water over North America. Figure 3 shows
the distribution of the models' meridional profiles of W,
in zonal bands of 4 ° latitude in width, and the observed
values. The medians are about 5% lower than the ob-

servations for much of the region between 32 ° and 68°N
latitude, which includes most of the United States and

Canada. Again, the IQRs of the model values are about

10% of the median values. As noted earlier, the obser-
vations used here are based on measurements at 1200

UTC only. Because the 1200 UTC zonal mean values
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FIG. 3. Decadal and zonal mean distribution of W over North Amer-

ica as observed (circles) and the distribution of 28 modeled values

(box plots).
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FIG. 4. Climatological seasonal component of W averaged over
North America as observed (circles) and the distribution of 28 mod-

eled values (box plots).

are, on average, about 1.5% lower than the 0000 UTC
values, it is likely that the low bias we find in the models

compared with the 1200 UTC data (Fig. 3) is an un-
derestimate of the true bias.

South of 32°N, over Mexico, the models tend to be

drier than is observed by as much as 28%, as anticipated

by Fig. lc. We note that the models with high horizontal
resolution tend to produce lower simulated W values

over Mexico than low-resolution models, perhaps be-
cause the high-resolution models better represent the
high topography, while the radiosonde stations tend to

be in lower elevation, coastal locations (Fig. la).

c. Seasonal cycle

Over North America the climatological seasonal cycle
of precipitable water is readily apparent. The radiosonde
observations indicate that summer (JJA) continental-av-

erage W reaches 23.9 mm, compared with 9.0 mm in

winter (DJF). These extreme season values are not sym-
metric about the annual average of 15.2 mm; the summer

departure from the annual average is larger than the
winter departure. This asymmetry is consistent with the

fairly constant relative humidity from month to month
over North America (Gaffen et al. 1992b; Ross and

Elliott 1996a), so that W increases roughly exponentially
with temperature according to the Clausius-Clapeyron
relation.

Figure 4 shows the climatological seasonal compo-
nent of W over North America, defined, for each model

and for the observations, by the twelve monthly mean
W values for the decade minus the annual mean W for

the decade, to remove biases among the latter (Fig. 2);

The median values from the models are quite close to
the observed, differing by no more than 1.1 mm for any
given month.

A noticeable difference between the models and ob-

servations is that the models tend to become moister in

spring more quickly than the atmosphere, but in the
summer the models' medians are drier than observed.

This tendency is consistent with a possible systematic

error in GCMs' land surface parameterizations, namely,

excessive evaporation in spring and insufficient evap-
oration in summer (P. Viterbo 1996, personal commu-
nication; Viterbo and Beljaars 1995).

Most of the models are in good agreement, but some

model values are significant outliers. The IQRs and the
full ranges of the model values are typically less than

1.5 and 4.5 mm, respectively, except during July and
August when they are about twice as large.

One might expect model biases in W to be seasonally

consistent, that is, that models that are overly dry in
summer would also be biased dry in winter. Examining
the seasonal model values in more detail, we note a

distinct lack of association, however, between the sum-

mer and winter W values, as shown in Fig. 5. The non-
parametric Spearman rank correlation coefficient (Wilks
1995) between JJA and DJF W values for the models

is an insignificant -0.03. This result suggests that the
model biases are not simply related to model architec-

ture but are somehow linked to the treatment of physical

processes that vary seasonally, such as convection,

evaporation, and precipitation. We examine this possi-
bility in more detail later.

The range of the seasonal cycle of W over North
America, defined as the difference between the summer

and winter mean climatological W values, is 14.9 mm

in the radiosonde observations, as shown in Fig. 6. Mod-
el values range from 10.5 to 21.3 mm, but the median

model value, 14.1 mm, is remarkably close to the ob-

served. The observed peak of the seasonal cycle occurs
in July, and the minimum is in January (Fig. 4). More

than three-quarters of the models correctly simulate this
measure of the phase of the seasonal cycle. The rest
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values of W over North America for each model and as observed

(horizontal dashed lines). The box plots give the distribution of model

values.
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FIG. 6. The summer-minus-winter range of the climatological sea-

sonal cycle of W over North America (top) and its fall-minus-spring

asymmetry (bottom) from 28 models and as observed (horizontal

dashed lines). The box plots give the distribution of model values.

have a maximum or minimum, or both, one month later

than is observed, which is a small error given the close-

ness of the observed January and February values and

of the observed July and August values (Fig. 4),
Beyond the asymmetry of the summer and winter W

values from the annual average, there is an additional

asymmetry in the climatological seasonal cycle related

to differences between spring and fall; that is, the spring
(MAM) and fall (SON) W values tend to resemble those

of their preceding seasons (DJF and JJA, respectively)

more than the following ones (Figs. 4 and 6). This asym-
metry of atmospheric water vapor for the equinoctial

seasons has been noted previously by Peixoto et al.
(1981) over the Northern Hemisphere. The sense of this

asymmetry is consistent with the thermal lag of the
oceans in the Northern Hemisphere, but, because the

North American W data show similar asymmetry, the
phenomenon is not limited to ocean regions. A tendency
for seasonal cyclone totals and their distribution over

the continent to show a similar lag relationship was
noted by Changnon et al. (1995). The radiosonde ob-
servations for North America show a 3.5-mm difference

in W between fall and spring, which is about 23% of

the summer minus winter range. As shown in Fig. 6,

each model shows a positive difference as well, although
typically the models underestimate this asymmetry by

about 30%, which is consistent with the overly rapid
moistening of the models in spring noted above.

d. Interannual variability of precipitable water

Although some climatic forcings of the AMIP decade,
including the eruption of E1 Chich6n in 1982, were not

incorporated in the AMIP simulations, the models were

forced by observed sea ice and sea surface temperatures,

so there is reason to expect that they will have captured
some of the interannual variability of the atmosphere

during that decade. Even if all external climate forcings
had been incorporated, we would not expect the models'
interannual variations to match those of the atmosphere

completely because interannual predictability is low
outside the Tropics (e.g., Stern and Miyakoda 1995).

Model simulations contain variability associated with
randomness and a predictable component, which are
impossible to separate in a single run. An ensemble of

runs with different initial conditions is needed (e.g.,
Barnett 1995; Stern and Miyakoda 1995).

Nevertheless, swings in the Southern Oscillation,

which are related to anomalies of sea surface temper-
ature in the tropical Pacific, are associated with anom-

alous precipitation (Ropelewski and Halpert 1989) and

temperature (Halpert and Ropelewski 1992) patterns

over parts of the globe, including parts of North Amer-
ica. Because of the links between temperature, precip-
itation, and precipitable water, the Southern Oscillation
index (SOI) and W might also be associated in some
regions.

We find, however, that the observed continental mean

W anomaly time series (Fig. 7) is not correlated at a
statistically meaningful level with a time series of the

SOI (Ropelewski and Jones 1987; extended), whether
monthly, seasonal, or annual anomaly values are used.

(In each case, the number of degrees of freedom used
to calculate statistical significance was n - 2, where n

is the number of elements in the 10-yr time series. This
choice is based on the very low autocorrelation in the

W anomaly time series, as discussed below.) As an aside,
we note that when longer monthly time series (for 1973-

93) of W (Ross and Elliott 1996a,b) and SOI are used,
we find a significant but small negative correlation be-
tween them.
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PIG. 7. Distribution of seasona! anomalies of W over North America

from 28 models (box plots) and as observed (circles). The linear trend

of the observed anomalies is also shown.

The observed anomaly time series is also poorly cor-
related with the simulated time series for the AMIP

decade. As shown in Fig. 7, it is not uncommon for
most individual models to have seasonal anomalies of

opposite sign to the observed. For 23 of the 28 models,
the correlation r between the model and observed sea-

sonal anomaly time series is not significantly different

from zero at the 95% confidence level (r exceeding
about 0.31). The maximum r value is 0.48 for the

UKMO model, with the time series based on the median

of the 28 models obtaining the next highest r value of
0.42.

Having assessed correlations between modeled and

observed monthly, annual, and individual season time
series, we find that, overall, time series based on the

median of the models perform considerably better than
almost all models. This result indicates that a "consen-

sus" of the models is better related to the variability in
the observations than are individual models. The vari-

ance of the models' median seasonal anomaly time se-
ries is, however, only about 20% of the observed value
of 0.17 mm 2, whereas all the individual model simu-

lations have seasonal anomaly variances comparable to
the observed. Such a reduction in variance is what would

be expected from combining a population of 28 ran-
domly distributed time series. These two results can be
interpreted as follows: the median of the 28 model runs

captures some of the predictable component of the vari-
ability of W but is missing some of the random com-
ponent.

We note that the observations are marked by a trend

of 0.55 mm decade _ (Fig. 7), based on linear regres-
sion. This linear trend explains 15% of the total variance

of the time series. [For a more thorough analysis of
North American humidity trends over a longer period,
see Ross and Elliott (1996a).] All but four of the models

also show a positive trend in W over North America,

although only 10 of the 24 positive trends are signifi-
cantly different from 0, on the basis of being more than

OF CLIMATE VOLUME 1(3

twice the standard deviation of the trend estimate. The

time series based on the median anomalies has a sta-
tistically significant trend of 0.25 mm decade -j.

Despite the trends, neither the observed nor the mod-
els' time series of W anomalies over North America

shows substantial autocorrelation. For monthly time se-
ries, the observed lag-one autocorrelation is 0.16, which

is not significant at the 95% confidence level (r ex-
ceeding about 0.19). The median lag-one autocorrela-

tion for the models is only slightly higher: 0.30. At
longer lags the autocorrelations are not significant. For

the seasonal time series, the comparable lag-one auto-
correlation for the observations is 0.06 and the median

from the models is 0.15, neither exceeding 0.30, the
95% confidence level value.

e. Precipitable water, evaporation, and precipitation

The major source of water vapor in the troposphere
is evaporation E from the surface, and its main sink is

precipitation P. Although the focus of this study is water
vapor, we also examined the AMIP P and E fields to

see whether the differences among model W fields might

be related to these other components of the hydrological
cycle. Lau et al. (1995, Figs. 2 and 3) found that, glob-

ally, models with high rates of evaporation have high
rates of precipitation. Because atmospheric water vapor
is the link between E and P, one could hypothesize that

models with high E and P also have high W.

Using rank correlation analysis, we found no signif-
icant relationships, however, between model simulations
of decadal mean W over North America and either P or
E fields over the continent. We also tested the associ-

ation between W over North America and both P and

E upstream over the North Pacific Ocean and, again,
found no significant correlation. On the other hand, rank
correlations between E and P are 0.75 over North Amer-

ica and 0.82 over the North Pacific. Thus, we find, and
we infer from the results of Lau et al. (1995), that, both

globally and regionally, models with high rates of evap-

oration tend to have high rates of precipitation. They
do not, however, necessarily have high W. This result
may seem counterintuitive, but we should recall that P

is more directly related to relative humidity than to W,
and temperature differences among models could be

playing an important role in determining differences in
W. Evaporation and precipitation rates are indicative of
the vigor of the hydrologic cycle and, thus, the mean

residence time of water vapor, not its absolute amount.

4. Humidity over the Pacific Ocean

As a counterpoint to the analysis over North America,
we considered part of the Pacific basin, between 150°E

and 130°W and between 60°N and 60°S, to compare the
models over a homogeneous water surface. Radiosonde
data are sparse over this region, but satellite-derived

estimates of W from the Special Sensor Microwave/
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Decadal Mean W over Pacific Basin
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FIG. 8. Decadal mean W over the Pacific basin (60°N to 60°S,

150°E to 130°W) for each model (bars) and the distribution of the

model values (box plot). The horizontal dashed line indicates the

observed value for the period 1987-93 from SSM/I data.

Imager (SSM/I) instrument for the period 1987-93 (A1-
ishouse et al. 1990) provide a useful alternate estimate

of the climatological W fields. Because there are only
2 yr of overlap between the SSM/I data period and the
AMIP decade, we limit our discussion to the climato-

logical fields.

Figure 8 shows the Pacific basin average, decadal
mean W from each of the 28 models and as estimated
from the SSM/I data. The observed and model median

W values are 30.8 and 29.3 mm, respectively, a differ-
ence of 5%. For the models, the ratio of the IQR to the
median is 6%, which, although smaller than the 10%

value found over North America, is still notable, sug-
gesting that the specification of sea surface temperature
is not sufficient to produce identical oceanic W fields.

We should not expect that W in models be a strict func-

tion of local sea surface temperatures because other vari-

ables, such as tropospheric temperature, lapse rate, and
relative humidity, which are related to large-scale dy-

namics, influence oceanic W (Gaffen et al. 1992a; Bony
and Duvel 1994). The reduced spread among the models

over the sea compared with the continent might be due
to model differences in resolving topography, as we
discuss in the next section.

The zonal mean values of W, shown in Fig. 9, reveal
that the underestimates of W over the Pacific basin are

the result of underestimates between 20°S and 20°N,

where the median model values are up to 10% smaller

than the SSM/I observations. It is likely, moreover, that
the SSM/I Wretrievals used here are biased low. Jackson

and Stephens (1995) found that the Alishouse et al.

(1990) SSM/I W values are larger than colocated ra-
diosonde-derived values at midlatitudes but smaller than

the radiosonde values in the Tropics. The SSM/I data

we are using have been adjusted to remedy this bias
partially (Colton and Poe 1994), but a low bias in the

Decadal Mean Meridional Profile of W over Pacific Basin

[r :z::'"
(SSM/I, 1987--93) , . ,' ',

01
1 [ i i i
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FiG. 9. Meridional profile of W over the Pacific basin as observed

(circles) and modeled (box plots).

Tropics probably remains (R. Ferraro 1995, personal

communication). An additional bias of unknown mag-
nitude is related to the difference between the period of
the SSM/I data record (1987-93) and the AMIP decade

(1979-88). Duvel et al. (1997) made a direct compar-
ison of W from 10 AMIP models with satellite data for

the period 1985-88, and they also found a dry bias in
the Tropics. Thus, we conclude that the models are sub-

stantially drier than the real atmosphere over the tropical
Pacific basin; however, unlike over North America, we
cannot point to orography differences between models

and observations as a factor contributing to the bias.

a Mode Median W
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FIG. 10. (a) Median values and (b) the ratio of the interquartile

range to the median of 28 model simulations of the decadal mean W

over the globe.
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Decadal Mean W over Globe
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FIG. 11. Globally integrated decadM-mean W for each model (bars)
and the distribution of the model values (box plot). The horizontal
dashed line indicates the value observed for the same decade based
on analyses of radiosonde observations by Oort (1983).

5. Global preeipitable water and meridional
moisture flux

Broadening our coverage to the global scale, Fig. 10a
depicts the median of the 28 AMIP models' simulations

of W over the globe. The expected features of the global
W climatology are evident, including the general de-

crease of W from the equator poleward, low W values
over high terrain and known desert regions, and max-

imum W over the tropical Pacific warm pool.
The global map of the ratio of the IQR to the median

(Fig. 10b) shows that this measure of the intermodel

variability of the W simulations is between 10% and
20% over most of the world's oceans and over low

elevation continental regions. Over high terrain, the ra-

tio is generally between 40% and 80%. It appears, there-
fore, that the variation in how models resolve topo-
graphic features is the main source of disparity among

model simulations of climatological W fields. The ex-
ceptionally large ratios, exceeding 100%, over Antarc-

tica are also related to very low W values there (Fig.
10a).

The global- and decadal-mean values of W for each
of 28 AMIP models and their distribution are shown in

Fig. 11. For comparison, we also present the global-
and decadal-mean W computed using gridded analyses
of the 0000 and 1200 UTC radiosonde observations

during 1979-88 produced by Oort (1983) and Oort and

Liu (1993). Monthly mean fields of q on a 2.5 ° × 5 °
latitude-longitude grid at individual pressure levels
have been integrated between the surface and 300 hPa

to produce global W maps, from which global averages
were calculated.

Although these analyses suffer from well-known

problems associated with the irregular distribution of
radiosonde stations across the globe, they nevertheless
represent the most comprehensive and homogeneous

Seasona Component of W over Globe

" /AMIP Models
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FIG. 12. Climatological seasonal component of globally integrate
W as observed (circles) and the distribution of model values (bo
plots).

source of upper-air global circulation statistics currentl,

available for the AMIP perio& Those analyses of V

based on fields from analysis-forecast systems are prob
lematic because such analyses can depend considerabi:
on the architecture of a particular system, which, more

over, typically changes with time (Trenberth and Guil
lemot 1995). Atmospheric reanalyses, which are begin

ning to become available (e.g., Kalnay et al. 1996), ma,
be useful for future studies, although differences amont
reanalyses from different modeling centers will have t_
be reconciled.

Evident in Fig. 11 is a tendency for the model at

mospheres to be drier than observed over the globe, a;

found over North America and the tropical Pacifi,
Ocean. We note, however, that estimates of the tota

precipitable water over the globe, { W}, vary consid

erably, although the value reported here based on th_
Oort analyses (25.1 mm) lies well within the range o

other observations, as summarized by Wittmeyer an(
Vonder Haar (1994). In any case, the model median { W
is some 4.4% (1.1 mm) smaller than the observed value

and nearly one-fifth of the model values are more thai
10% smaller than observed.

The IQR is 4.8% of the median model value, whict

is smaller than the comparable statistics over Nortt
America or the Pacific basin. On the other hand, th_
IQR is comparable to the amount by which { W} wouh

increase during two decades of global warming, assum

ing a warming of 0.7 K and no appreciable changes it
relative humidity (Del Genio 1993). The current dis
crepancy among GCMs in simulating { W} for the AMIt

decade is, therefore, of consequence for interpretin_
GCM predictions of climate change.

Despite such difficulties in reproducing the decadal
mean { W}, it is reassuring to discover (Fig. 12) that th_

models can produce reasonable seasonal variations ii
{ W}, as they were observed to do over North Americ_

(Fig. 4). The global seasonal cycle has the signature o
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Interannual Component of W over Globe
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FIG. 13. Distribution of seasonal anomalies of globally integrated
W from 28 models (box plots) and as observed (circles).

the Northern Hemisphere where W peaks in summer.

The tendency for a larger range of model values during
northern summer deserves further investigation.

Interannual variations in the models' { W} values (Fig.
13) are marked by an ENSO signal. The correlation

between the median of the models' seasonal { W} anom-

aly time series and seasonal values of the SOI (Rope-
lewski and Jones 1987; extended) is -0.42, significant
at the 99% confidence level. The extension to a domain

beyond North America here appears to incorporate the
influence of warm sea surface temperatures in the east-

ern tropical Pacific on modeled { W}. The reality of this
signal is difficult to confirm with the available obser-

vations, although Jackson and Stephens (1995) find an

E1 Nifio-Southern Oscillation signal in W integrated
over the global oceans from SSM/I measurements dur-
ing July 1987-June 1991. On the other hand, Sun and

Oort (1995) and Soden and Lanzante (1996) note prob-
lems in capturing this signal properly with the radio-
sonde network alone because of the poor data coverage

in the eastern Pacific. Perhaps as a result the corre-
spondence between the observed and model median

curves in Fig. 13 is less than ideal (r = 0.47), and the
correlation (r = 0.17) between the observations and SOI

values is not significant.

Because it is important to the global energy and water
cycle, we consider briefly the large-scale flux of mois-

ture over the globe. Figure 14 shows profiles of the net

meridional transport of water vapor for the AMIP de-
cade. The model profiles have been deduced from the

archived AMIP standard output of evaporation, precip-
itation, and W; however, the observed profile of this
transport has been determined directly from Oort's anal-

yses of meridional vapor fluxes through evaluating the
relationship [Q.] = S[qv] dp (where v is the meridional

wind component, p is pressure from the surface to 300

hPa, and the square brackets denote zonal mean values).
The figure reveals a clear tendency for the models to

overestimate systematically the poleward flux of mois-

Decadal Mean Meridional Water Vapor Flux
10

. ::.:_ii:iii:.:.:.-
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FIG. 14. The median (solid line) of the 28 model profiles of the
total meridional flux of water vapor, 2_ra cos(qS) [Qj (where a is the
earth's radius and q5is latitude), as inferred from water vapor budget
considerations. The shaded area indicates the interquartile range of
model values. Positive values indicate northward fluxes. The observed
value is also shown (dashed line).

ture (and latent heat) over much of the globe, although
uncertainties in the observations are potentially large
and need to be taken into account. Interestingly, Gleck-
ler et al. (1995) find that the AMIP models also tend to

overestimate the poleward total atmospheric energy
transport; the results in Fig. 14 suggest that as much as
50% or more of this bias may be accounted for by ex-
cessive moisture fluxes.

6. Potential sources of model differences

To determine the possible reasons for the spread
among the model simulations of precipitable water (and
other hydrological variables), we measured the associ-
ation between several aspects of the models' formula-

tions, as summarized by Phillips (1994), and their sim-
ulations of decadal mean W, P, and E over North Amer-

ica and the Pacific basin and of global W. We also con-
sidered possible associations between model
formulations and the net meridional moisture flux but
in a much more limited fashion.

The 14 facets of model formulation considered are

given in the top row of Table 2. Two of these are the
models' horizontal and vertical resolution, and, as nu-

merical quantities, they were rank correlated with the
hydrological variables tested, which are summarized in
the first column of Table 2.

The remaining 12 variables are dichotomous. For ex-

ample, a model either does or does not contain pre-
scribed soil moisture fields. For the characteristics de-

scribed by dichotomous variables, the table shows the
number of models with that characteristic. We note that

only in the case of soil moisture schemes does the num-

ber of models in the three categories sum to 28. The

two model characteristics associated with the planetary
boundary layer are independent, as are the two asso-
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TABLE 2. Relationships between aspects of GCM formulation and the tendencies in simulated precipitable water (W) and evaporation (E)
and precipitation (P) rates. Statistically significant relationships are indicated according to whether the model characteristic is associated

with higher or lower values of the variable in question, otherwise a dash appears. (Note that in the case of Northern Hemisphere moisture
flux, only relationships with model spatial resolution were tested.)

Planetary Convective scheme

boundary layer Mois-

Spatial Vertical Numerics Moist Inter- ture Reeva-

resolution Prog- diffu- con- active con- Soil moisture scheme pora-
nostic sion Finite Mois- vective cumulus ver- Bulk tion of

Hori- PBL above differ- ture adjust- suben- gence mass Pre- Vege- precip-
Vertical zontal depth PBL ence filling ment sembles closure flux Bucket scribed tation itation

Number of models -- 3 21 10 20 5 8 7 5 20 4 4 17

North America W .... low high
Pacific basin W -- -- low -- -- --

Global W -- -- -- low -- --

North America E -- high low -- high -- -- high --
North America P low high -- low -- __

Pacific basin E high ....

Pacific basin P -- high .....
Northern Hemi-

sphere moisture
flux

ciated with numerics. The convective schemes include

the possibility of hybrid approaches (for which a model

would fall into more than one category) but do not
include all approaches used in the AMIP models.

We used the Student's t test to determine whether the

group of models with a given characteristic have mean

values of simulated hydrologic variables that are sig-
nificantly different from the mean of the remaining mod-
els. The results of these tests are summarized in Table

2. If a t test shows the difference in the means to be

significant at the 95% confidence level or better, or if

the rank correlation is significant at that level, the table
shows whether the model characteristic is associated

with higher or lower values of the variable in question.
We stress that finding an explanation for the rela-

tionships revealed is not straightforward and may be
impossible because of the complexity of the GCMs.
Determining the effects of different model character-

istics by comparing various GCMs may be impossible.
Controlled experiments in which characteristics are

changed one at a time may be needed to determine the

sensitivity of a particular model to particular aspects of
its construction.

Furthermore, the model properties we examined are

interrelated. For example, models using convective
schemes with interactive cumulus subensembles are of-

ten offsprings of the UCLA model and so share other

traits as well. Thus, the models are not independent in

a statistical sense, and a relationship among them might
have nothing to do with the convective scheme but an-

other aspect(s) of their construction.

a. Vertical and horizontal resolution

Model vertical resolution, measured as the total num-

ber of vertical levels, shows no significant correlation

with any of the variables tested. Models with high hor-
izontal resolution have low P over North America. We
find little association between model horizontal reso-

lution (as measured by the total number of grid points
globally) and W except, as noted before, that high res-
olution models simulate lower W over Mexico than low

resolution models. As noted above, we suspect that dif-
ferences in model horizontal resolution account for the

high intermodel variability noted in regions of high ter-
rain (Fig. 10b).

Our result differs from those of Phillips et al. (1995)
and Williamson et al. (1995), who found tendencies for
total precipitable water in the ECMWF and NCAR mod-

els, respectively, to decrease with increasing horizontal
resolution, although for the ECMWF model the effect

was most pronounced in the Tropics and was not mono-

tonic. Our result that the peak northward flux of mois-
ture in the Northern Hemisphere is insensitive to hor-
izontal resolution differs from that of Manabe et al.

(1991), who report that this flux decreased with increas-
ing horizontal resolution in their version of the GFDL
model.

b. Planetary boundary layer formulation

In three of the models, the depth of the planetary
boundary layer is a prognostic variable, rather than a

fixed value. Because the boundary layer contains a large

fraction of the total column W and because mixing of
water vapor from the boundary layer to the free tro-
posphere is limited by atmospheric stability, we would

expect that the depth of the boundary layer will have a
strong influence on W. The models with prognostic

boundary layers tend to have high E and high P over
both North America and the Pacific basin but there is

no significant association with W. The use of schemes
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to allow the verticaldiffusion of moistureabovethe
planetaryboundarylayer in 21 of themodelsis asso-
ciatedwith low NorthAmericanE values but with no

other tendencies in the simulated moisture variables
shown in Table 2.

c. Numerical approaches

The application of finite-difference numerical

schemes or spectral methods to solve the governing
equations has no particular impact on the variables ex-

amined. The use of moisture filling techniques to elim-
inate spurious negative values of humidity is associated

with low W values over the Pacific basin and globally.

d. Method of parameterizing convection

To examine the relationship between the parameter-
ization of atmospheric convection and simulated hy-

drological variables, we considered four broad catego-
ries of models. We caution that some models use hybrid

approaches so that a model might fall into more than
one category. In addition, the parameterization of at-

mospheric convection is a complex matter, and because
each approach is sensitive to the details of implemen-
tation (e.g., Bony et al. 1995) and to other related GCM

parameterizations, categorizing models in this way is
an oversimplification.

Five of the 28 models employ moist convective ad-
justment schemes (e.g., Manabe et al. 1965), and the t

tests show no significant differences between this group
and the remaining 23 models. Eight models employ con-
vective schemes with interactive cumulus subensembles

(e.g., Arakawa and Schubert 1974), and they tend to
have high E over North America.

Seven models parameterize convection based on

moisture convergence closure (e.g., Kuo 1974), and they
are associated with low P over North America. The use

of bulk mass flux schemes (e.g., Tiedtke 1989) in five
models has no significant association with the simulated

W, E, or P examined. Direct comparison of the models

using bulk mass flux and moisture convergence closure
schemes showed no significant differences. This finding

differs from the results of Colman and McAvaney
(1995) who found that a mass flux convective scheme

produced a moister troposphere in the BMRC model
than did a moisture convergence convective scheme.

e. Soil moisture

Following the classification developed by Robock et
al. (1995) for the treatment of soil moisture in the AMIP
GCMs, we tested the association between W and use of

1) "bucket" models in 20 GCMs, 2) prescribed soil
moisture in four GCMs, and 3) soil moisture schemes

involving vegetation models in four GCMs.
Bucket models tend to be associated with low W over

North America, and models with prescribed soil mois-

ET AL. 1659

ture tend to have high North American W and E values.

The models incorporating :vegetation show no particular
tendencies with respect to W, E, or P.

f Evaporation from falling precipitation

Seventeen models allow for the reevaporation of

moisture from falling precipitation, which one might
expect to enhance tropospheric water vapor. Our anal-
ysis shows no significant differences, however, between

these 17 models and the remaining 11.

g. Can we explain model differences ?

The most striking aspect of Table 2 is the large frac-
tion of cells that are blank; the number of filled ceils is

not large, although it is higher than what would be ex-
pected by chance. The useful information in Table 2 is

where there are consistent tendencies in different hy-
drological variables, such as is seen with prognostic
PBL depth. Nevertheless, overall, and in agreement with
the results of Weare et al. (1995), who studied AMIP

total cloudiness simulations, the statistical results pre-
sented here do not point to obvious connections between

specific aspects of model architecture and simulated hy-
drological variables.

7. Conclusions

Comparisons of observations and 28 AMIP simula-

tions of tropospheric water vapor show the following.

l) The models tend to underestimate the decadal mean

precipitable:water by approximately 5% over North
America and globally as compared with radiosonde

observations, and over the Pacific basin as compared
with satellite SSM/I observations.

2) The largest disparity among models' decadal mean

W fields occurs over regions of high terrain, probably
because of differences in resolving topography. Over
North America, the relatively high elevation in the

models compared to the radiosonde network is a par-
tial explanation for the dry bias of the models as a
group. There is no significant correlation, however,
between the individual models' mean elevation and

their mean W values, and topography is clearly not
the source of the dry bias over the Pacific basin.

The mean seasonal cycles of precipitable water are

reasonably well simulated but with a wide range
among models.
The models do not capture much of the observed

interannual variability in precipitable water. Overall,

a consensus of the models, as defined by the median
of the 28 models considered, gives a better simu-
lation of the observed interannual variability than do
individual models.

The models appear to overestimate the poleward flux

of moisture, which probably contributes to the gen-

3)

4)

5)
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eral overestimate of atmospheric poleward energy

flux found by other investigators.
6) There is little association between aspects of model

formulation and simulated hydrological variables. A
more fruitful approach would probably involve con-
trolled experiments with individual GCMs, in which

one aspect of the model is changed systematically
and the impact on the simulations is assessed. Such

an approach is currently under consideration as part
of a successor to AMIR AMIP II, which could also

involve multiple simulations from each participating

model to extract the predicted interannual signal
from random noise and would better specify the

boundary conditions and forcing functions for the
period of simulation.
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Abstract. Changes in major global dynamical phenomena in the Earth's atmosphere are mani-

fested in the time series of atmospheric angular momentum (AAM), as determined directly from

meteorological observations and indirectly from geodetic observations of small fluctuations in the

rotation of the solid Earth which are proportional to length of day. AAM fluctuations are inti-

mately linked with energetic processes throughout the whole atmosphere and also with the stresses

at the Earth's surface produced largely by turbulent momentum transport in the oceanic and conti-

nental boundary layers and by the action of normal pressure forces on orographic features. A strin-

gent test of any numeriCal global circulation model (GCM) is therefore provided by a quantitative

assessment of its ability to represent AAM flUctuations on all relevant timescales, ranging from

months to several years. From monthly data provided by the Atmospheric Model Intercomparison

Project (AMIP) of the World Climate Research Prograrmne, we have investigated seasonal and in-

terannual fluctuations and the decadal mean in the axial component of AAM in 23 AMIP GCMs

over the period 1979-1988. The decadal means are generally well simulated, with the model me-

dian value (1.58 × 1026 kg m 2 s -l) being only 3.5% larger than the observed mean and with 10 of

the models being within 5% of the observed. The seasonal cycle is well reprodUced, with the me-

dian amplitude of the models' seasonal standard deviations being only 2.4% larger than observed.

Half the seasonal amplitudes lie within 15% of the observed, and the median correlation found

between the observed and model seasonal cycles is 0.95. The dominant seasonal error is an under-

estimation of AAM during northern hemisphere winter associated with errors in the position of

subtropical jets. Less robust are the modeled interannual variations, although the median correla-

tion of 0.61 between model simulations and observed AAM is statistically significant. The two El

Nifio-Southern Oscillation events that occurred during the AMIP decade 1979-1988 have the ex-

pected positive AAM anomalies, although the AAM signature of the 1982-1983 event tends to be
underestimated and that of the 1986-1987 event overestimated.

1. Introduction

Atmospheric winds are driven l_y buoyancy forces due to the

action of gravity on density inhomogeneities produced and main-

tained by differential solar heating. Their large-scale patterns are

strongly influenced by Coriolis forces associated with the Earth's

comparatively rapid rotation. In accordance with the thermal wind

equation, the westerly component of atmospheric flow increases

in strength with height above the Earth's surface at a rate propor-

tional to the latitudinal temperature gradient. Because the equato-

rial regions of the lower reaches of the highly compressible atmo-

sphere are wanner than the polar regions, the troposphere and
overlying stratosphere, which contain more than 99% of the total

mass of the atmosphere, "_superrotate" [see Hide, 1986] on aver-
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age at about 7 ms -I relative to the underlying planet. If the angular

momentum associated with this average relative superrotation of

the tropospere and stratosphere were transferred to the much more

massive Solid Earth, the length of the day (LOD) would decrease

by about 4 parts in 100 million, roughly 3 InS.

Geodetic observations going back several decades reveal irreg-

ular LOD fluctuations of up to about 1 ms on interannual, sea-

sonal, and intraseasonal timescales (see Figure 1), and detailed

studies using modern meteorological and geodetic data have es-

tablished that these fluctuations are largely of meteorological ori-

gin (for reviews, see Hide and Dickey [1991], Rosen [1993],

Dickey [1993], Eubanks [1993] and references therein).

Fluctuations in the equatorial components of atmospheric angular

momentum (see Appendix) are associated with nonaxisymmetric

features of the global atmospheric circulation and make a sub-

stantial contribution to polar motion (the observed wobble of the

rotation axis of the solid Earth with respect to geographical coor-

dinates) on subdecadal timescales. On decadal and longer

timescales, the dominant forcing of Earth rotation is due to non-

meteorological agencies, including angular momentum exchange

between Earth's liquid metallic core and the overlying solid man-

fie and "spin-orbit" coupling between Earth and Moon largely as-
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Figure 1. Time series of irregular fluctuations in the length of the day (LOD) from 1963 to 1992 (curve a) and its

decadal, interannual, seasonal, and intraseasonal components (curves b, c, d, and e, respectively). The decadal

(curve b) component largely reflects angular momentum exchange between the solid Earth and the underlying liquid
metallic outer core produced by torques acting at the core-mantle boundary. The other components (curves c, d, and

e) largely reflect angular momentum exchange between the atmosphere and the solid Earth, produced by torques
(proportional to the time derivative of the LOD time series) acting directly on the solid Earth over continental

regions of the Earth's surface and indirectly over oceanic regions (adapted from Hide and Dickey [ 1991 ]).

sociated with tidal friction in the oceans. The angular momentum

of the oceans is not well determined owing to the paucity of data;

however, fluctuations in magnitude in its axial component are no

more than 10% of those of the axial component of atmospheric

angular momentum (AAM) with which this paper is concerned.

The task of improving the performance of numerical models of

the atmosphere by identifying and correcting weaknesses in their

formulation requires systematic methods for testing model per-

formance. The inclusion of diagnostics based on analyses and

forecasts of AAM offers several advantages. The most obvious is

the unique opportunity it provides, in principle at least, for com-

paring on a clear-cut physical basis the output of a global quantity

from the models with observations that are completely indepen-

dent of meteorOlogical data, namely, those of short-term fluctua-

tions in the LOD [see, e.g., Bell et al., 1991]. The axial torques at

the Earth's surface responsible for meteorologically induced

fluctuations in the Earth's rotation are produced by (1) tangential

stresses in turbulent boundary layers and (2) normal (pressure)

stresses acting on irregular topography. These stresses are trans-

mitted directly to the solid Earth over continental regions and indi-

rectly over the oceans.

Second, considerations of AAM fluctuations bear directly on

fundamental aspects of the energetics of the global atmospheric

circulation and cannot be separated from them. In the absence of

energy sources, the atmosphere would rotate with the solid Earth

like a rigid body (i.e., no winds), for this would be a state of

minimum kinetic energy of the whole system for a given total an-

gular momentum. Differential solar heating produces atmospheric

winds, the kinetic energy of which derives from the available po-

tential energy of the atmosphere (associated with gravity acting on

the density field maintained by the heating) through the action of

vertical motions. Angular momentum is thereby redistributed

without any change occurring in the total amount in the whole

system (since solar heating produces no net torque) but with an in-

crease in the total kinetic energy. A substantial contribution to this

energy is associated with "superrotation" of the atmosphere at the

average azimuthal wind speed U of about 7 ms -l, namely
l/2MU 2 if M is the total mass of the atmosphere. Observed

fluctuations in AAM amount to a considerable fraction of the

mean MU-R in magnitude (where R is the mean radius of the

solid Earth). Concomitant fluctuations in the kinetic energy
associated with the superrotation amount to a considerable

fraction of the mean 1/2MU 2. By energy conservation arguments,

these can only be produced by dynamical processes involving

nonlinear interactions between the zonal wind field, the nonzonal

wind field, and the field of available potential energy in the

atmosphere. Successful models of the global circulation of the

atmosphere must of course represent these interactions correctly.

(For fnrther details, see Bell et al. [1991].)

Thanks to the First GARP Global Experiment (FGGE) of the

Global Atmospheric Research Programme (GARP) it became pos-

sible to obtain useful daily determinations of the total AAM for

comparison with geodetic data on LOD variations [Hide et al.,

1980]. Manifold subsequent developments following this early

work include practical arrangements for producing and dissemi-

nating routine daily or more frequent determinations not only of

the axial component of the AAM vector but also of the equatorial

components [Barnes et al., 1983; Salstein et al., 1993]. These de-

terminations (see Appendix, equations A7 to A9) are now made

from analysis (and in some cases also from forecast) fields by

several meteorological centers, namely, the European Centre for

Medium-Range Weather Forecasts (ECMWF), Japan

Meteorological Agency (JMA), United Kingdom Meteorological

Office (UKMO), and U.S. National Meteorological Center (NMC)

(recently renamed National Centers for Environmental Prediction,

NCEP). Plans are now in hand at some centers for producing

routine determinations of surface torques, which will supplement

the AAM data and facilitate diagnostic studies.



<_ • : •_ :_ : •: :i: : ! _i:_:ii̧ :! __i_i!:_i::<7_!;:%_i_!_iii_i_!_i/_i!_i_i_i!ii:ii!iii_iiiiiii!iiiiiii_!ii_iiiiiii_iii_ii_iii_i_

HIDE ET AL.: ATMOSPHERIC ANGULAR MOMENTUM SIMULATED BY GCMs 16,425

The ambitious Atmospheric Model Intercomparison Project

(AMIP) of the World Climate Research Programme (WCRP) is

one of the main activities initiated by the WCRP's Working

Group on Numerical Experimentation in its efforts to refine atmo-

spheric models and improve their ability to produce useful fore-

casts of changes in weather and climate [Gates, 1992; Phillips,

1994]. Thirty atmospheric modeling groups cooperate unselfishly

in AMIP, together with more than 20 groups engaged in diagnos-

tics subprojects of AMIP concerned with the thorough testing of

models by means of quantitative intercomparisons of their ability

to reproduce various aspects of the behavior of the atmosphere.

In the experiment analyzed here, the models performed simula-

tions of the decade January 1979 to December 1988 using uni-

form, monthly data sets of observed sea surface temperature (SST)

and sea ice extent as surface boundary conditions, along with

specified values of the solar constant (1365 W m -2) and carbon

dioxide concentration (345 ppm) [Phillips, 1994]. Because the

models were not updated with observed atmospheric conditions

during the integration, they are not expected to simulate synoptic-

scale variations in detail. However, intercomparisons of the mod-

els' seasonal-to-interannual response to observed SST forcing,

along with their decadal mean (climatological) fields, can yield

considerable insight into their ability to realistically simulate cli-

lnatic processes on these longer timescales. Our efforts in the at-

mospheric angular momentum diagnostics subproject of AMIP

bear directly on the extent to which zonal winds and the exchange

of angular momentum between the atmosphere and the underlying

planet are represented correctly by the models being tested.

Specific dynamical phenomena produce strong signatures in

observed AAM fluctuations, and the study of the angular momen-

tuna balance of the Earth-atmosphere-ocean system is relevant to

many climate dynamics issues. Earth rotation variations provide a

unique and truly global measure of changes in the atmosphere,

oceans, and cryosphere, on tilnescales ranging from days to cen-

turies. The variation of AAM has now been convincingly linked to

subdecadal changes in the length-of-day down to timescales of

about a week [Dickey et al., 1992a]. The axial component of the

total AAM shows a characteristic seasonal variation and pro-

nounced "broadband" intraseasonal fluctuations (Figure 1, curves

d and e). Oscillations on intraseasonal timescales, including those

related to the Madden-Julian oscillation, have been shown to in-

volve AAM changes propagating within the tropics [Anderson and

Rosen, 1983], with contributions from orographically forced oscil-

lations in the extratropics [Dickey et al., 1991; Marcus et al.,

1994, 1996]. The accurate characterization of the seasonal AAM

cycle [Rosen et al., 1991b] involves the correct simulation of the

varying atmospheric temperature gradient between the tropics and

extratropics, which controls the strength and positioning of the

subtropical jet streams.

LOD and AAM also exhibit interannual variations, on quasi-bi-

ennial and longer timescales [Chao, 1984, 1988, 1989; Dickey et

al., 1992b, 1994; Eubanks et al., 1986; Jordi et al., 1994; Rosen et

al., 1984; Salstein and Rosen, 1986] (see Figure 1, curve c). Well

correlated with E1 Nifio-Southern Oscillation (ENSO) events,

these are associated with large-scale zonal wind anomalies which

appear to propagate from tropical to extratropical regions.
Teleconnections between different latitude bands have been dis-

covered in AAM data on these timescales, providing insights into

the global structure of interannual climate variations [Dickey et

al., 1992b; Marcus and Dickey, 1994; Black et al., 1996; Mo et

al., 1997]. Indeed, much progress has been made during the past

20 years with the investigation of AAM fluctuations on sub-

decadal timescales, hnportant new results can be expected from

future studies, including numerical simulations of AAM fluctua-

tions on decadal and longer timescales [Rosen and Salstein, 1996].

Such studies, in addition to their intrinsic interest in meteorology

and oceanography, will indirectly facilitate investigations of angu-

lar momentum exchange between the Earth's liquid metallic outer

core and overlying mantle and other nonmeteorological processes

which, though evidently relatively unimportant on subdecadal

timescales in the excitation of irregular fluctuations in the Earth's

rotation, play dominant roles on longer timescales.

The data used and methodology employed in our study are out-

lined in section 2, setting the scene for the axial AAM intercom-

parisons of decadal means and on seasonal and interannual

timescales, presented and summarized in sections 3 and 4. In fu-

ture work it will be important to investigate the extent to which

atmospheric models can reproduce fluctuations in the equatorial

components of atmospheric angular momentum. These excite

measurable movements in the Earth's pole of rotation on sub-

decadal timescales, including a Chandlerian free wobble with a

period of 14 months (see Appendix).

2. Data and Methodology

2.1. Observed Values of Angular Momentum

The most complete series of AAM and zonal wind fields gen-

erally available for the AMIP decade (1979-1988) are those pro-

duced operationally by the NMC. Comparisons of the NMC AAM

series with one from the ECMWF [Rosen et al., 1987; Rosen,

1993; Dickey et al., 1993] indicate that the differences between

the two series are so small that we can confidently use either for

validating the AMIP model results. Up to twice-daily values of

zonal mean zonal wind [u] from the NMC have been archived on

a 2.5 ° latitude grid at standard pressure levels between 1000 and

50 mbar. We created monthly mean fields of [u] by averaging all

data available within each calendar month during 1979-1988.

These fields were then used to create a monthly series of the rela-

tive angular momentum (M w) of the atmosphere about the polar

axis by applying equation (AI3) and evaluating

1000 7rl2

MW = 2/Z'Rgg-I I I[u] cOs2 0 dO dp.
50 -Jr/2

(1)

In addition to the global M w values, we also computed the rel-

ative angular momentum of the atmosphere in each of 46 equal-

area belts (mb w) over the globe to help isolate regional sources of

model errors in M w. As explained by Rosen and Salstein [1983],
the number of belts is dictated by the 2.5 ° latitude resolution of

the NMC analyses and the constraint that all belts should have the

same area as that between the equator and 2.5°N. The latitudinal

boundaries of the resulting 46 belts are listed by Rosen and

Salstein [ 1983]. Within each belt, mb TM is given by

1000

mb w = 2_R3g-llb Itu] cOs2 0 dO dp,
50

(2)

where q_ runs between the southern and northern boundaries of

belt b. In evaluating this expression numerically, care was taken to

ensure that Y_rn_' = M w is satisfied each month. Although the
46belts

creation of mb w values precludes consideration of variability

within a vertical column, the results of Rosen and Salstein [1983]
suggest that such variability is often more coherent than that in the
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Table1.ListofAMIPModelsIntercomparedinThisStudyTogetherWithanIndicationofTheirPerformance

i__ , Model Affiliation

Decadal Seasonal Interannual

Mean crs crI

:,i _iI i

! _:_iI

_ _!: ii!i_
H,

i! •

)'

BMRC Bureau of Meteorology Research Centre (Australia) -4 -4 -4

CCC Canadian Centre for Climate Research -4 _ -4

CNRM Centre National de Recherches M6tdorologiques (France) - -4 -4

CSIRO Commonwealth Scientific and Industrial Research Organization (Australia) -4 -4 -

DERF Dynamical Extended-Range Forecasting (at GFDL) -4 -4 +

DNM Department of Numerical Mathematics (of the Russian Academy of Sciences) - + -

ECMWF European Centre for Medium-Range Weather Forecasts -4 - -4

GFDL Geophysical Fluid Dynamics Laboratory -4 + -4

GLA Goddard Laboratory for Atmospheres, NASA -4 -4 -4

GSFC Goddard Space Flight Center, NASA -4 -4 -.-

JMA Japan Meteorological Agency -4 + -4

MGO Main Geophysical Observatory, Russia -4 + -4

MPI Max-Planck-lnstitut f'tir Meteorologic, Germany -4 - +

MRl Meteorological Research Institute, Japan -4 -4 _

NCAR National Center for Atmospheric Research + + _

NMC National Mcteorological Centcr (now NCEP) - - -4

NRL Naval Research Laboratory, Monterey -4 +

RPN Recherche en Prdvision Numdrique, Canada -4 - _

SNG State University of New York at Albany/NCAR -4 + _

SUNYA State University of New York at Albany -4 -4 _

UCLA University of California at Los Angeles + _

UGAM P The United Kingdom Universities' Global Atmospheric Modelling Programme -4 -4 -4

UKMO United Kingdom Meteorological Office -4 + +

Cbeck indicates that the model gives a value within 15% of that observed; minus sign, a value more than 15% lower than obscrvcd; and plus sign, more
than 15% higher.

_J

meridional direction. To maintain a manageably sized regional

dataset, therefore, we feel it sufficient to limit the bulk of our in-

ta'aglobal analyses here to mb w.

2.2. Model Values of Angular Momentum

Monthly mean values of [u] were available from 29 global cir-

culation models (GCMs) at the time of writing as part of the stan-

dard output archived by AMIP [Gates, 1992]. All but five of the

GCMs include pressure levels up to 50 mbar, and these five mod-

els were eliminated from further consideration to maintain consis-

tency with the depth of the atmosphere in the NMC observations.

(Output from Goddard Institute for Space Studies was also disre-

garded, because of its unusual vertical distribution.) By the same

token, levels above 50 mbar that may have been available for an

AMIP model are disregarded here. The model values of [u] are

given on two-dimensional latitude-pressure grids whose resolu-

tions vary from model to model. To simplify computations, how-

ever, we interpolated all model output to the same 2.5 ° latitude

grid as the NMC observations, although we retained each model's

archived distribution of pressure levels when computing M w and

ti_lb w .

Model results shown here are identified by the acronyms de-

fined by Gates [1992], as updated by Phillips [1994] (see Table

1). (An exception is the SUNYA/NCAR model, which we

abbreviate as SNG.) The latter report summarizes the major

characteristics of each AMIP model, and no attempt to reproduce

that information in any detail is made here. It is clear from this

documentation, however, that the set of AMIP models is

heterogeneous, embodying a wide range of choices in resolution

and physical parameterizations; hence an assumption that the

relatively small sample ofM w values available to us is drawn from

a statistically normal population is not justified. We therefore

avoid using the mean and standard deviation as measures of

central tendency and spread, respectively, of the distribution of

model M _ values. Instead, we use the median and the interquartile

range (IQR) described by Lanzante [1996] for these statistics. The

IQR is simply the difference defined by the upper quartile minus

the lower quartile of values in the distribution; that is, it measures

the distance spanned by the middle half of the distribution. An

advantage of the IQR is that it is relatively resistant to the

presence of large outliers, unlike the standard deviation. For a

Gaussian distribution, however, the two statistics are related: in

this case the IQR is 1.349 times the standard deviation [Lanzante,

1996].

2.3. Temporal Decomposition

Rosen et al. [1991b] and Hide and Dickey [1991] illustrate that

the temporal variability in the Earth-atmosphere system can be

usefully separated into three frequency bands: intraseasonal, sea-

sonal, and interannual. A decomposition for LOD, which also ex-

periences substantial decadal variability due to core-mantle inter-

action, is shown in Figure 1. The seasonal cycle is by far the

dominant subdecadal signal, being -1 ms in peak to peak ampli-

tude and typically explaining more than 75% of the variance in the

total series (see Figure 1, curves c, d and e). Hence our inability to

consider intraseasonal variations in M w here because of the
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monthlymeanresolutionof theAMIPstandardoutputis not
overlylimiting.Todefinetheseasonalcomponentofeachofthe
modeledandobservedM w series, we first removed their decadal

means, that is, the average of the 120 monthly values for 1979-

t988, and then averaged the 10 values for each calendar month.

An interannual component, which is considerably smaller than the

seasonal signature, is formed by averaging the monthly values in

each of the 40 "seasons" during the decade, beginning with

January-March 1979, and subtracting from this series the decadal

mean seasonal cycle. Although this "interannual" component in-

cludes some higher (nonseasonal) frequency variability, we will

see that the bulk of its variance is from timescales longer than a

year Hence the term "interannual" is appropriate for this compo-

nent

In the next section, we compare the decadal mean, seasonal,

and interannual components of the 23 model M w series with the

observed components obtained from the NMC analyses. As noted

above, the accuracy of the NMC analyses is not a significant issue

here; the differences found among the model M w series are typi-

cally much larger than the uncertainty in the observed series.

3. Results

Time series ofM w for each of the 23 AMIP models are shown

in Figure 2 (heavy solid lines) and are contrasted with M w deter-

mined from the operational NMC analysis (light solid lines) and

that inferred from geodetic data (dotted lines). The observed AAM

and LOD track each other with a high degree of fidelity, although
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Figure 2. The axial component of atmospheric angular momentum (M w) determined from the monthly standard

output for 23 AMIP models that extend up to the 50 mbar level (heavy solid lines). The light solid and dotted lines

(repeated in each panel) show MWdetermined from the operational NMC analysis for the AMIP decade and global

angular momentum fluctuations inferred from geodetic data, respectively (a quadratic offset has been removed from

the geodetic LOD determinations to account for core-mantle effects). One equivalent millisecond unit (elnsu) of
axial angular momentum corresponds to 0.67 x I026 kg m 2 s -1. Model abbreviations are listed in Table 1.
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the amplitude of the annual and interannual components of the ob-

served AAM are somewhat underestimated relative to the LOD,

partly because of neglect of the atmosphere above 50 mbar [Rosen

and Salstein, 1985; Dickey et al., 1994]. The overall agreement

between the simulated and observed results is fairly good, but

significant biases are found in some cases, with several models

showing values that are consistently higher or lower than the ob-

served AAM (note that LOD cannot be used to infer the time-av-

eraged value of AAM, because its definition includes an arbitrary

reference level). The dominance of the seasonal cycle is evident in

all data sets, with amplitudes significantly less than the observed

value visible for several of the models, while greater amplitudes

are obtained for others. On interannual timescales, the large signa-

ture of the 1982-1983 ENSO is clearly seen in both the AAM and

LOD time series• This signal is well captured by several of the

models, but not by others• These broad findings are evident in the

following detailed intercomparisons of the decadal mean AAM

and AAM fluctuations on seasonal and interannual timescales as

given by the AMIP models and by operational NMC analyses•

3.1. Decadal Mean

The global atmosphere's superrotation is its most striking dy-

namic, long-term feature• During the AMIP decade 1979-1988,

the observed mean value is 1.51 x 1026 kg m 2 s 4 which, if

transferred to the underlying solid Earth would, if the solid Earth

were perfectly rigid, reduce the length of the day by 2.5 ms (see

equations A7, A9, A10, and A11). Values yielded by each of the

AMIP models are plotted in Figure 3, along with the median and

IQR of the model values. The model median M w is only 3.5%

larger than the observed value with 10 of the 23 model values

within + 5% of the observed. More significant departures from the

observed value are found in other models, five of which give

values differing by more than 15% from the observed. Included in
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Figure 3. Mean value of the relative angular momentum of the

atmosphere between 1000 and 50 mbar during the decade 1979-

1988 for each of 23 models. Right-most element indicates the

median and the upper and lower quartiles of the distributiOn of

model values, with the length of the vertical line connecting the
last two depicting the interquartile range. The dashed line

indicates the value observed for the same decade based on NMC
operational analyses. Model abbreviations are listed in Table 1.

this group of poorer results is that from the NMC; because

versions of the NMC model were at the heart of the four-

dimensional data assimilation system that created the validation

values used here, the NMC model's lack of success in Figures 2

and 3 suggests that observations are indeed capable of modifying

a model's initial guess field in modern data assimilation schemes.

Figures 2 and 3 suggest that biases in GCM simulations of the

zonal wind field are not uniform, and the identification of the

causes of the observed discrepancies may not be straightforward.

The difficulties involved are evident fi'om Figure 4, in which the

decadal mean observed [u] and the errors in [u] are shown for

those models that yield the twe largest and the two smallest values

of M w in Figure 3, respectively. Remarkably, the meridional dis-

tribution of the bias in [u] shows wide variations, even within each

class of model errors in M w. Thus the main source of the large

value for the decadal mean of M w seen in the UCLA model is

excess values of [u] above 200 mbar from 60°N to 60°S, whereas

the en-oneously large NCAR value of M w arises primarily from [u]

errors below 200 mbar. The low vMue of the mean M w seen in the

NMC model results arises from systematically low values of [u]

throughout the tropics, particularly in the upper troposphere and

lower stratosphere, whereas the very low value of the mean M w

from the DNM model has its source in extratropical regions, with

the tropics contributing a positive but smaller bias.

For comparison, Figure 5 gives the [u]-bias field for the GLA

model, whose decadal mean M wlies closest to that observed for

1979-1988. It appears that success in reproducing the global mean

value ofM w need not imply similar success with the decadal mean

[u] field, for the magnitude of the [u] biases evident in Figure 5 is

of the same order as those shown in Figure 4 for the outlier M w

simulations. Evidently, for the GLA model at least, the good

performance for decadal mean M TM arises from the cancellation

among regional biases in [u] of opposite sign, biases which in

many locations are comparable to the observed value of [u] there

(compare Figure 4a). The (area-weighted) mean absolute error In

[u] for the GLA field in Figure 5 is 2.3 ms -1. At 1.9 ms -t (IQR -

2.3 1.7 ins-l), the median value of this statistic is smaller than the

observed mean absolute value of [u] in Figure 4a, 8.5 ms -1, but

not by so much that we can be sanguine about this aspect of the

performance of the models.

Despite the differences shown in Figure 4 for [u] among an

outlier subset of AMIP models, it remains of interest to quantify

the similarity in model biases among the general population of

AMIP models. To this end, we have performed an empirical or-

thogonal function (EOF) analysis of the biases present in the set of

mb w values in the 46 belts for the 23 models. EOF analysis pro-

vides a convenient means to identify those independent patterns

that most efficiently explain the variability in a data set

P(mbor)

200 I"_11

700 _//

850_11

1000i:::t.:111

90S 60

Figure 4a. Meridional cross section of the average value of the zonal mean zonal wind observed during the decade

1979-1988 based on NMC operational analyses. Standard pressure levels marked along the ordinate correspond to
the vertical distribution of the archived analyses. Shaded values are negative (easterlies). The global mean value of
the [u] field shown here is 6.8 ms q.
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Figure 4b. Meridional cross sections of the average value of the zonal mean zonal wind during the decade 1979-

1988 for four selected models ininus the observed value from Figure 4a. (Left) Models with the two largest values

ofM w in Figure 3; (Right) models with the two smallest values of M w in Figure 3. Negative values are shaded.
Model abbreviations are listed in Table 1.

[Preisendorfer, 1988]. Three significant modes of Common vari-

ability in the belt momentum error distribution emerge (Figure 6)

• which together explain more than 87% of the variance in the full

ensemble of mb w biases.

Mode 1, involving errors primarily in northern and southem

mid-to-high latitudes with a tendency for smaller, compensating

errors in the subtropics, is notable in that the weights for 19 of the

models in its principal component are of the same sign.

Recognizing that errors for a particular model are often spread

across all three modes, the co_mnonality of behavior expressed by

mode l's principal component nevertheless suggests the existence

of a shared, underlying difficulty in modeling the climatological,

regional distribution of angular momentum. Mode 2 reveals a pat-

tern in which biases in the tropics and in northern midlatitudes are

in opposition, and mode 3 emphasizes behavior in the southern

extratropics.

3.2. Seasonal Cycle

The seasonal cycle in AAM derives from the asymmetry in the

land-ocean distributions of the northern and southern hemispheres

and the resulting difference in the seasonality of the two hemi-

!,

Ten-year Mean

I

3O

Figure 5. Meridional cross section of the average value of the zonal mean zonal wind during the decade 1979-i 988
for the GLA model minus the observed value from Figure 4a. Negative values are shaded.



HIDEETAL.:ATMOSPHERICANGULARMOMENTUMSIMULATEDBYGCMs

Spatial Modes of Belt Momentum Biases

EOF 1, 42.9%
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EOF 2, 25.5%
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Figure 6. The three leading empirical orthogonal functions (EOFs) of the covariance matrix formed from the 23

model time series of the difference between the decadal mean model value of the relative angular momentum in

each of 46 equal-area belts (rnb w) and the observed value. (Left) The eigenvector is plotted in units of 1024 kg m 2 s q.

(Right) The weight contributed by each model to each of the EOFs is given in nondimensional, normalized units;
the models are shown in the same sequence as in Figure 3. The percent of the variance in all the model's belt mo-
mentum biases explained by each EOF is also shown.
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spheres' subtropical jets [Rosen et al., 1991b]. Because the sea-

sonal cycle represents the largest mode of variability in the AAM

time series, it is important that GCMs be able to rePlicate this sig-

nal well. It is encouraging therefore to see in Figure 7 that the

5O
Mw, Seasonal Component

(_ 0 _ 7// ,s

x

Models'

--- Observed

Figure 7. The median among the 23 model values of the relative

angular momentum of the atmosphere between 1000 and 50 mbar

for each composite calendar month of 1979-1988 (solid line),
along with the upper and lower quartiles of the distribution of

model values for each composite month. The dashed line indicates

the observed composite monthly values, based on NMC opera-
tional analyse s. The decadal mean of the series for each model and

for the observations has been removed prior to generating these

results. IQR denotes interquartile range.

AMIP models do tend to reproduce the behavior observed in the

c!imatological monthly mean progression of M w values. It is

worth noting, however, that the models also exhibit a general ten-

dency to underestimate the maximum values observed in

December-February. Indeed, in some models this deficiency is

quite pronounced, leading to seasonal cycles with distinct maxima

around April and November instead of the observed single broad

maximum across December through April.

The degree to which the models share connnon problems in re-

producing the observed shape of the seasonal cycle in M W is re-

vealed by an EOF analysis of the models' composite monthly er-

rors (Figure 8). The tendency of the models to underestimate M w

during northern winter is apparent in both of the first two modes

of this analysi s by the preponderance of positive model weights

multiplying negative anomalies in the modes' time series then.

The first mode in Figure 8 captures errors in the models' estimates

of the annual component of M w, whereas the second mode cap-

tures errors in their semiannua! component. (The semiannual

component ofM w is normally observed to peak in early May, and

its amplitude is about 80% of that of the annual component, which

peaks in early February [Rosen, 1993].) The general shortcoming

of the models in December-February appears to project onto a

proclivity toward underestimating the annual, while overestimat-

ing the semiannual, component of the observed seasonality in M w.

Figur e 9 displays a measure of the amplitude of the seasonal

cycle, namely, the standard deviation (o-s) of the twelve composite

calendar-month means of M TM, for each AMIP model and the Ob-

served series. The median o-s value is only some 2.4% larger than

the observed O-s, with nearly half of the model values lying within

about 15% of the observed. Nevertheless, notable outliers also ex-
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Figure 8. The first two empirical orthogonal functions (EOFs) of the covariance matrix formed from the 23 models'
time series of their composite monthly values ofM w minus the observed value. (LEA) The eigenvector is plotted in
units of l024 kg m2s -[. (Right) The weight contributed by each model to each of the modes is given in
nondimensional, normalized units; the models are shown in the same sequence as in Figure 3. The percent of the
variance in all the models' seasonal errors explained by each mode is also shown.

ist in Figure 9, so that the range in values for o"s exceeds a factor

of 2. There does not appear to be any relationship between errors

in a model's seasonal cycle and in its decadal mean bias, with high

values of o"s being equally likely to be associated with either high

or low values of decadal mean M w in Figure 3 (and similarly for

low values of O-s). On the other hand, according to Table 1, four of

the five models with decadal means that do not lie within 15% of

the observed mean have seasonal variations that do not lie within

15% of the observed value, suggesting that there may be some

Mw, Seasonal Statistics r

"°0.5

iliiillli10-
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Z -a
., o -
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Figure 9. (Bottom) Standard deviation of the 12 composite calen-
dar month means during 1979-1988 of the relative angular mo-

mentum of the atmosphere between 1000 and 50 mbar (M w) for

each of 23 models (abbreviations given in Table 1). To the right

on the same scale are plotted the median and the upper and lower
quartiles of the distribution of model values. The dashed line indi-

cates the value observed for the same decade based on NMC op-

erational analyses. (Top) Correlation coefficient (scale on right)

between each model's series of composite monthly M w values and
the observed series.

linkage between poor model performance on decadal mean and

seasonal timescales. Also shown in Figure 9 is the correlation

coefficient (is) between each model's series of composite monthly

M w values and the observed series. In conjunction with (rs, the rs

statistic helps provide a more complete analysis of the fidelity of a

model's simulation. Not surprisingly, in light of Figure 7, rs is

generally quite large (median = 0.95; IQR = 0.97 - 0.92).

Although the bulk of the observed seasonal variability in mb w

occurs in connection with the subtropical jets of each hemisphere

(Figure 10a), this need not imply that the errors present in Figure

9 originate mostly there. Therefore to isolate regionally the source

of seasonal model errors in M w, we have calculated for each

model: (1) the variance in the difference between the composite

monthly mean values of its belt series mb w and the observed rnb w

values, and (2) the covariance between these seasonal errors in the

model belt values and the seasonal errors in global M w, normal-

ized by the variance in the latter. Because the sum of the covari-

ance in calculation (2) over all 46 belts is equal to the variance in

a model's seasonal errors in global M w, the sum of these 46 values

for a particular model is unity. Hence the covariance provides a

convenient measure for quantifying the contribution made by sea-

sonal errors in various regions to the global error, as was done by

Rosen et al. [1991a] in connection with medium-range forecast
model errors.

Errors in the models' simulations of mb w seasonal cycles are

less spatially focused than is the profile of the observed mb w vari-

ance in Figure 10a. Indeed, a plot of the variances in calculation

(1) as a function of latitude for the 23 models is too noisy to be

useful, so Figure 10b attempts to summarize this result by

presenting a profile of the median in each belt of all the models'

seasonal belt error variances, along with the IQR of these 23

numbers. The large values of the IQR in the figure, especially in

the extratropics, attest to the strikingly wide range of model

behavior. (Note that the median values plotted in Figure 10 are

determined individually for each belt; the profile does not

represent the behavior of a single, "median" model.) The largest

model errors in simulating the observed seasonal cycles in mb TM

tend to flank both sides of the two maxima in Figure 10a,



: : _......_:,i.:i,ii:-i_i ':,_!_.i:_:;-:i_:i;;:_!:i:i/::2!i?:::_/

:!

/:ii
ii _: iii_! J,

i;ii!: _i_
:Z i:

> • i

HIDE ET AL.: ATMOSPHERIC ANGULAR MOMENTUM SIMULATED BY GCMs 16,433

Belt Momentum Variance, Seasonal
Observed

25

c,I

7
r/l

"e

x
5"

0
90S 60 30 0 30 60 90N

Belt Momentum Variance, Seasonal
Models' Error

2

b)
OI

1.5-
I
(t}

"E

"X 0.5

J
| i =

90S 60

I

-\
i = i |

60 90N

0.1

o)

Fractional Covariance with Global

Mw Error, Seasonal

--0.1
90:60 30 0 30 60 90N

Figure 10. (a) The variance observed in the composite calendar month values of the relative angular momentum in

each of 46 equal-area belts (mbw), based on NMC operational analyses for 1979-1988. (b) The median among the 23
model values of the variance in a model's seasonal errors in mb w (i.e., the difference between a model's cmnposite

monthly mean series of mb w and the observed mb w series), along with the upper and lower quartiles of the
distribution of the 23 model values of this error variance for each belt. (c) The median among the 23 model values

of the covariance between the seasonal errors in a model's series of mb w and the seasonal errors in its series of M w,

divided by the variance in the seasonal errors in the model's series of M w. Also plotted are the upper and lower

quartiles of the distribution of the 23 model values of this fractional error covariance for each belt.

suggesting that elTors in positioning the subtropical jets properly

are a factor. On the other hand, the amplitude of the largest

median errors in Figure 10b is considerably smaller than that of

the observed variance peaks in Figure 10a, suggesting that the

models do a credible job in reproducing the seasonal change in the

strength of the subtropical jets.

The fractional covariance between seasonal belt and global

momentum errors plotted in Figure 10c indicates that, on average,

the model errors that contribute most to failures in reproducing the

observed seasonal cycle in M w originate in the equatorrnost pair of

peaks in Figure 10b, near 20°N and 15°S. The large local errors in

northern midlatitudes shown in Figure 10b tend not to be so

important for the globally integrated error. Note again, however,

the very large spread in model behavior outside the tropics de-

picted by the IQR values; for a number of models, errors poleward

of the observed positions of the subtropical jets are indeed a major

reason for problems with simulating the seasonality in M w.

3.3. lnterannual Variations

The AMIP decade encompassed two ENSO events, those of

1982-1983 and 1986-1987. The former is possibly the strongest

such event on record, and the notable positive anomaly in AAM

and LaD associated with it led to a resurgence of interest in low-

frequency variations in the planetary angular momentuln budget.

(For recent results and references, see Ponte et al. [1994] and

Dickey et al. [ 1994].) The signature of the two ENSO events dur-

ing the 1979-1988 AMIP period is apparent in the observed inter-

annual M w anomaly series in Figure 11 as a sharp peak in early

1983 and a broader, less intense maximum from late 1986 through

1987. On average, the AMIP models reproduce the observed in-

terannual anomaly series fairly well, though less successfully than

in the case of the seasonal cycle (Figure 7). It is noteworthy that

the models, as a group, tend to underestimate the amplitude of the

1982-1983 ENSO signal in AAM but overestimate the 1986-1987
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Figure 11. As in Figure 7, but for the interannual component of

the relative angular momentum of the atmosphere between 1000

and 50 mbar (M _) formed by averaging monthly values of M w in

each of 40 seasons during 1979-1988 and subtracting from this

series the decadal mean seasonal cycle.

signal. The models also miss the intensity of the negative anomaly

observed in 1984, although they do capture the rate of decline in

M w during 1983 fairly well. Notably, though, the models miss

even the sign of the anomaly observed during mid-1980 through

mid-1981, which according to the NMC observations results

mainly fi'om positive wind anomalies in the southern hemisphere

tropics (not shown).

Figure 12 gives the interannual standard deviation (GI) for each

model separately, along with the correlation coefficient (rl) be-

tween each model's time series of 40 seasonal anomalies and the

observed. The median value of (_zis quite close to the observed,

and, as in the case of the seasonal cycle, ahnost half of the model

o"I values lie within about 15% of the observed, although in the in-
terannual case there is a notable skewness in the distribution to-

ward low values. No relationship between individual crI and Gs

T
¢A

o

Mw, Interannual Statistics r
1.0

o] lllildillllliiilaii ,
Figure 12. As in Figure 9, but for the interannual component of

the relative angular momentum of the atmosphere between 1000

and 50 mbar (M _) fanned by averaging monthly values ofM w in

each of 40 seasons during 1979-1988 and subtracting from this

series the decadal mean seasonal cycle. Model abbreviations are
listed in Table 1.
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Figure 13. (a) As in Figures 10a and 10b, but for the interannual

component of the relative angular momentum in each of 46 equal-

area belts (rob w) formed by averaging monthly values of mb TM in

each of 40 seasons during 1979-1988 and subtracting from this

series the decadal mean seasonal cycle. (b) As in Figure 10c, but

for the interannual component.

values is evident in the data; the performance of each model on

one timescale seems to be independent of its performance on the

other (see Table 1). A striking difference between overall model

performances on seasonal and interannual timescales is that rl is

notably smaller than r s. The median ofr I is 0.61 with 0.66-0.49 as

the corresponding IQR value. On the basis of calculations of the

autoconelation present in the observed and modeled anomaly se-

ries, we estimate that in each series the number of degrees of free-

dam is about 12, implying that a value of rI greater than about 0.5

is to be regarded as being statistically significant. Sixteen of the

models (nearly 70%) exceed this criterion.

Calculations similar to those reported in Figure 10 for the

seasonal cycle in rnb _ have also been performed for interannual

variability in mb w, and these are reproduced in Figure 13. The

meridional profile of median model errors in the mb w interannual

component tends to be spatially correlated with the profile of the

observed interannual variance in mb w (Figure 13a). Unlike the

case for the seasonal cycle, local errors in the interannual mb w

component are typically of the same order as the observed signals

across the entire profile. Indeed, interannual errors in mb w are not

much smaller than seasonal errors in mb w despite the disparity in
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the amplitude observed for the two timescales. According to

Figure 13b, errors in mb w within 20 ° of the equator account for

most of the interannual errors in M w. In light of the relatively

small values of IQR also plotted in Figure 13b, this result is rather

robust across the suite of 23 AMIP models.

4. Discussion and Summary of Results

Here we have presented results of a study comparing atmo-

spheric angular momentum (AAM) simulations by a variety of

AMIP models (Table I) with the NMC observed values and those

inferred from geodetic data. Results from 23 AMIP model runs

were considered on three distinct timescales: decadal mean, the

seasonal cycle, and interannual variation. Of the 23 models (Table

1), 4 scored well (being within +15% of that observed) on all three

timescales, 10 on two out of three, 6 on one of the three, and 3

performed poorly on all three timescales. It should be stressed that

the GCM results presented here represent "snapshots" (ca. early

1990s) of model evolution that is ongoing at the participating

centers. For example, a new gravity wave drag parameterization

has recently been developed at UCLA [Kim and Arakawa, 1995],

which shows considerable promise for reducing the westerly bias

present in the UCLA GCM m conjunction with envelope orogra-

phy [Kim, 1996].

The decadal mean values of AAM were generally well simu-

lated, with the model median value (l.58 x 1026 kg in 2 s -l ) being

only 3.5% larger than the observed. Ten of the 23 models pro-

duced values that are within 5% of the observed mean; however, 5

of the 23 models are more than 15% away from the observed

(Table 1). Examination of the decadal mean [u] bias with respect

to observed winds as a function of latitude and height indicates

that contributing errors may be very different in models that show

the same characteristic global anomaly (Figure 4). Furthermore,

good agreement with the observed decadal mean cannot be taken

to infer similar agreement with the observed [u] fields (Figure 5),

as cancellation among regional differences may combine to pro-

duce a low global bias. An EOF analysis performed on angular

momentum values in the 46 belts for the 23 models produced

three dominant modes explaining 87% of the variance. Both mode

1 (involving errors in the northern and southern mid-to-high lati-

tudes with smaller partially canceling errors in the subtropics) and

mode 2 (bias in the tropics with compensating bias in the northern

midlatitudes) are common to the majority of the models, indicat-

ing shared problems in modeling the latitudinal distribution of

mean angular momentum.

The seasonal cycle results from asymmetry of the land-ocean

distribution of the northern and southern hemispheres, and is gen-

erally well simulated in the AMIP models. The median seasonal

standard deviation (as) value is 2.4% larger than observed, with

10 of the models being within 15% of the observed amplitude

(Figure 9 and Table 1). The correlation between observed and

model seasonal cycles is quite high, with a median value of r s =

0.95 (IQR = 0.97-0.92). An EOF analysis provides insight into

colnmon seasonal errors; the first mode shows a tendency for most

models to underestimate the annual cycle, while the second mode

largely reflects overestimates of the semiannual cycle (Figure 8),

both consistent with the models' tendency to underestimate global

AAM during northern hemisphere winter. The observed seasonal

cycle in AAM is dominated by contributions from the subtropical

jets from each hemisphere (Figure 10a), whose strength is gener-

ally well reproduced by the models. The largest regional model er-

rors, whose seasonal variance is about an order of magnitude

smaller than the observed variance (Figure 10b), tend to border on

both sides of the two hemispheric maxima, indicating that errors

in positioning the subtropical jets are an issue. Further, examina-

tion of the fractional covariance between the regional and global

momentum errors (Figure 10c) indicates that most of the seasonal

M w errors originate equatorward of the subtropical jets.

The models' interannual AAM variability is fairly realistic,

with the median value of t71 being quite close to the observed

value and 10 of the model o-1 values lying within 15% of the ob-

served. Although less robust than the seasonal cycle, the correla-

tion between the observed and model interannual series has a sta-

tistically significant median value of 0.61. The two ENSO events

during the AMIP decade are clearly evident; however, accurate

simulation of intensities of the AAM signatures of individual

episodes is generally lacking, as the 1982-1983 event is underes-

timated and the 1986-1987 event is overestimated by the model

consensus (Figure 11). Examination of the latitudinal error covan-

ance structure shows that errors within 20 ° of the equator account

for most of the interannual mismodeling ofM TM (Figure 13b). No

relationship is evident between errors on interannual and seasonal

timescales in a given model (see Table I).

The principal objective of AMIP is to identify deficiencies in

numerical models so that they can be removed. Except near the

equator, the thermal wind relationship based on quasi-geostrophic

b,-lance in the horizontal and hydrostatic balance in the vertical re-

lates the vertical rate of change of horizontal wind to the local

horizontal gradient of potential density, which depends on tem-

perature, pressure, and moisture content. In using this relationship

to obtain a good leading approximation to the wind itself at a gen-

eral point in the atmosphere, there is a horizontal function of inte-

gration which can be evaluated from the surface winds. It follows

that any model that satisfactorily represents both (1) surface winds

and (2) horizontal variations of temperature and moisture content

should score well on the angular momentum assessment carried

out in this paper, and conversely. It is possible, of course, that

models that represent angular momentum fiucmations well might,

owing to compensating errors, be doing so for the wrong reasons.

For example, many of the models participating in the AMIP cam-

paign show cold biases in both the tropics and extratropics

[Fiorino, 1995]; the matching signs of these temperature biases

serve to minimize errors in the meridional temperature gradient,

which in tuna helps many of the models to achieve realistic values

for the decadal mean AAM.

In any event, it is obvious that any modeling groups exploiting

the results presented in this paper should in the first instance ex-

amine those features of the model that determine the pattern of

surface winds and the distribution of temperature and moisture

within the atmosphere. Of particular importance will be parame-

terization schemes for representing oceanic and continental

boundary layers, mechanical interactions of the atmosphere with

orography, including drag due to the excitation of gravity waves,

and the role of moist convection and radiative processes in the at-

mosphere, where the presence of clouds introduces serious com-

plications now being studied intensively in various meteorological
research centers.

These remarks might facilitate the use of atmospheric angular

lnomentum "skill scores" in the important and by no means

straightforward task of identifying deficiencies in parameteriza-

tion schemes used in numerical models, with a view to improving

the schemes. Much careful work will be needed, however, for a

cursory inspection of skill scores reveals no striking correlations

with any of the manifold characteristics (see above paragraphs) of

the various models used by groups participating in AMIP

[Phillips', 1994]. In fact, no discretionary characteristics are shared
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by the four models that are successful on all three tilnescales. The

continuing Atmospheric Model Intercomparison Project will pro-

vide opportunities to pursue the necessary investigations.

Appendix: Atmospheric Excitation of Earth
Rotation Variations

The absolute angular momentum of the atmosphere, a three-

dimensional vector M i = Mi(t) (where t denotes time), can be
written as the sum of two terms

where

M i =- Mi P + M W

MP =- III DE(jkX.jEklmOllXmdT;

(A1)

(A2a)

new _ SSSpe_i,xJ.ka_, (A2b)

the "matter" (or pressure) and the "wind" contributions to Mi,

respectively. Here p(xi,t ) and uk(xi,t) denote the mass density

and wind velocity, respectively, at a general point, x i, i = 1, 2, 3

within the atmosphere, and dv is a volume element of the

atmosphere, over the whole of which the volume integral is taken.

The usual sumlnation convention is used for repeated suffixes, and

_qk is the alternating tensor with values 0 or + 1. The frame of

reference used has its origin at the center of mass of the whole

Earth (solid inner core, liquid outer core, "solid Earth,"

hydrosphere, atmosphere) and is aligned with the principal axes of

inertia of the "solid Earth" (mantle, crust, and cryosphere). With

respect to an inertial frame, the rotation of the solid Earth has

angular velocity o_i(t ), i = l, 2, 3.

All components of M i vary with time as a consequence of

dynamical interactions between the atmosphere and the

underlying planet, which produce measurable fluctuations in toi. It

is customary to write

09i(t ) =- (¢Ol(t),o)2(t),o)3(t)) =- .Q(ml(t),m2(t),l +m3(t)), (A3)

where -(2 = 7.292115 x 10 -5 rad s -1 is the mean angular speed of
sidereal rotation of the solid Earth in recent times. Over timescales

that are short compared with those of geological processes, the

magnitudes of the dimensionless quantities m l(t), m2(t ) and m 3(t)

are all very much less than unity, so that for the purpose of

determining M i from meteorological data using (A2), it is

sufficient to set m i = 0, so that o)i = (0, 0, £2).

The nonzero meteorological contributions to mi(t ) are, of

course, important in the study of fluctuations in the Earth's

rotation. IfL i (i = 1, 2, 3) is the net torque acting on the Earth's

atmosphere then

L i = dM i / dt = _4 i + eqkCOjMk, (A4)

where dM i /dt and h)/i are the time rates of change of M i in an

inertial frame and in the rotating frame, respectively. When oi =

(0, 0, £2), we have

LI = I_II -ff2M2, L2=1_I2-ff2M3, L3= l(/13 . (A5)

It is well known that L i cannot be determined as accurately as M i

from surface drag and pressure force determinations, owing to

limited measurements, parameterization difficulties, and the high

degree of cancellation involved. But efforts at doing so are now

being undertaken with the aid of output from modern data

assimilation systems and the numerical models at their core

[White, 1991, 1993; Salstein and Rosen, 1994]. Through the

action of L i, angular lnolnentum is exchanged back and forth

between the atmosphere and the underlying planet, the surface of

which is subjected by the atmosphere to an applied torque equal to

_i. Most of the angular momentum exchanged, which in

magnitude can be a considerable fraction of that of M w, goes into

the massive solid Earth, whose molnent of inertia is some 106

times that of the atmosphere. This process produces (1) tiny but

measurable changes in the length of the day

A(t) = A 0/(1 +m3(t) ), A 0 -_ 27r / £2, (A6a)

as well as (2) movements of the poles of the instantaneous axis of

rotation of the solid Earth relative to its axis of figure, as specified

by the quantity

m(t) =--m I(t) + i m 2 (t) (A6b)

(where i ---_/-1; see (A3)). Indeed, the strongest torques acting on

the solid Earth are generated by atmospheric motions, which

produce easily detectable changes in A of up to about 1 ms in

magnitude (corresponding to change in [m3] of about 10 -8) and

displacements of the pole of rotation of several meters

(corresponding to changes in Im I of about 10-6).

The torque -Liproduced by atmospheric motions on the

underlying planet is due to (1) tangential stresses in the turbulent

boundary layers over the continents and oceans, and (2) normal

stresses acting on orography and the Earth's equatorial bulge.

Owing to the rigidity (albeit slightly imperfect) of the solid Earth,

all three components of the "continental" part of-L i

are transmitted to the solid Earth directly and fully. The oceanic

part of-L i gives rise to a dynamical response in the oceans which

requires further investigation, but the case when the whole of the

applied torque is assumed to be passed on by the oceans to the

solid Earth virtually instantaneously can be taken as realistic for

most practical purposes, particularly when dealing with the axial

component of-L i and the changes in A that it produces [Ponte,

1990]. Thus the oceans act as an intermediary in the angular

momentum exchange process, by transmitting the applied stresses

in the atmospheric boundary layer over the oceans to the

continental margins and ocean bottom. It is a convenient

circumstance that, owing to the slowness and scales of ocean

currents in comparison with atmospheric winds, in the budget of

angular momentum between the solid Earth and its overlying fluid

layers, the hydrosphere (in spite of its much greater moment of

inertia than that of the atmosphere, by a factor of about 300)

produces effects which can be neglected to a first approximation.

In the theory of the interactions between the atmosphere and

underlying planet that give rise to fluctuations in M i , the analysis

is facilitated by using in place of M i the dimensionless AAM

functions Zi, i = 1, 2, 3 [see Barnes et aL, 1983]. They can be
defined as follows:

tr/2 tr/2

Xi _-._'P+x w = I_((b,t)d_= S[_P((b,t)+_w(_,t)] d_b, (A7)
-tr/2 -tr/2

where

2tr

P P
(_1 ,_2 )-= -1"098R4 IpsC°S2 _bsinq_(cos&,sin/_)d;t, (A8a)

g(C-A) 0
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(_{v,_v) _ -1.5913R3
g( C- A )f2

p., 2_ (A8b)

I I c°s_b {usin¢(cos_,sin_)-v(sin_,-cos_)} dAdp,

o o

p,. 27r (P N{_:P Zw] _ l" 0'753R4 2_r 0.998_ 3 [ f uc°s2
_3 ,b3 ]--\' _ I PsC°S3_dZ' gCm,. Q

d_tp ).
d

o o o

(A9)

In these expressions, (¢, &) denote latitude and longitude, respec-

tively, ps(_b, &, t) is the surface pressure, and u (_, &, p, t) and v (_p,

_, p, t) are the eastward and northward components, respectively,

of the wind velocity at pressure level p. We

take/_ = 6.3674x 106m for the mean radius of the solid Earth, ,(2

= 7.292115 x 10 -5 rad s -l for its mean rotation rate, g = 9.810 m s-

2 for the mean acceleration due to gravity, C = 8.0376 x 1037 kg

m 2 for the polar moment of inertia of the whole Earth, (C-A) =

2.610 x 1035 kg m 2 where A is the corresponding equatorial

moment of inertia, and C m = 7.1236 x 1037 kg m 2 is the polar

moment of inertia of the Earth's mantle and crust. The coefficients

1.098, 1.5913, 0.753, and 0.998 incorporate the so-called Love

number corrections, which allow for concomitant

meteorologically-induced tiny but dynamically significant

changes in the inertia tensor of the slightly deformable solid Earth,

using the most up-to-date geophysical data [see Eubanks, 1993].

The dimensionless pseudovector Zi is related to the AAM vector

M i, with the equatorial components (Zt, Z2) and (Ml, M2) scaled

differently from the axial components Z3 and M 3. Routine

determinations ofzi have been made for several years at several

meteorological centers (using older values of the "Love number"

corrections, namely, 1.00, 1.43, 0.70 and 1.00, respectively, in

place of 1.098, 1.5913, 0.753, and 0.998, C m in place of C, andA m

in place of A in A8).

Any change in M 3 is accompanied by an equal and opposite

change in the axial component of the angular momentum of the

solid Earth (since the fluctuations in the azimuthal motion of the

underlying liquid core of moment of inertia -0.1C are effectively

decoupled from those of the solid Earth on the short timescales

with which we are concerned here). In terms of the dimensionless

quantities m s and Z3 this can be expressed as

with solution

rh3 + 23 = 0 (A 10)

m3(t) + 2"3 (t) = m3(to) + 2"3 (to), (A11)

where m3(to)and 2"3(t0)are constants of integration equal to m 3

and 2"3 at some initial instant t = to, respectively. The dominant

contribution to fluctuations in 2"3 comes from the "wind" term

zW,which depends on the distribution in the meridional plane of

the average with respect to longitude _ of the eastward (westerly)

wind speed. If one considers only the wind contribution, (A7) for

the axial component simplifies to

w 0.998(2zr) _3 "

2"3 = gCmff2 [u] cos2 0dOdp, (A12)
0 -n'/2

in which case M3, the axial atmospheric angular momentum,

reduces to

p.,. 7r/2

M3v=2_g-lR3 f I [u] c°s20d(_dP' (i13)

0 -_/2
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Regional sources of mountain torque variability and high-flequency fluctuations in atmospheric

angular momentum

Haig Iskenderian and David A. Salstein

Atmospheric and Environmental Research, Inc.

840 Memorial Drive

Cambridge, MA 02139

ABSTRACT

The sources of high-frequency (< 14 day) fluctuations in global atmospheric angular

momentum (AAM) are investigated using several years of surface torque and AAM data. The

midlatitude mountain torque associated with the Rockies, Himalayas, and Andes is found to be

responsible for much of the high-frequency fluctuations in AAM, whereas the mountain torque in

the Tropics and polar regions as well as the friction torque play a much lesser role on these time

scales. A maximum in the high-frequency mountain torque variance occurs during the cool season

of each hemisphere, though the Northern Hemisphere maximum substantially exceeds that of the

Southern. This relationship indicates the seasonal role played by each hemisphere in the high-

frequency fluctuations of global AAM.

A case study reveals that surface pressure changes near the Rockies and Himalayas

produced by mobile synoptic-scale systems as they traversed these mountains contributed to a large

fluctuation in mountain torque and a notable high-frequency change in global AAM in mid-March

1996. This event was also marked by a rapid fluctuation in length of day (l.o.d.), independently

verifying the direct transfer of angular momentum from the atmosphere to solid Earth below. A

composite study of the surface pressure patterns present during episodes of high-frequency
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fluctuations in AAM reveals considerable meridional elongation of the surface pressure systems

along the mountain ranges, thus establishing an extensive cross-mountain surface pressure gradient

and producing a large torque. The considerable along-mountain extent of these surface pressure

systems may help to explain the ability of individual synoptic-scale systems to affect the global

AAM. Furthermore, midlatitude synoptic-scale systems tend to be most frequent in the cool

season of each hemisphere, consistent with the contemporary maximum in hemispheric high-

frequency mountain torque variance.
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1. Introduction

Because of its conservative properties, atmospheric angular momentum (AAM) is often

used to study the variations of the general circulation on time scales of days to years. Starr (1948)

noted that the exchange of angular momentum across the atmosphere's lower interface is achieved

by two independent mechanisms: friction torque and mountain torque. The friction torque is a

result of the tangential stress placed upon the Earth's surface by the horizontal wind. The

mountain torque arises from differences in surface pressure across the eastern and western faces of
topographic features. -

Several earlier studies of the mountain torque considered its contributions to variations in

AAM from the time-averaged or zonally-averaged perspective. White (1949) computed the

mountain torque in 5 ° latitude bands in the Northern Hemisphere for a single month and noted that,

averaged over the one-month period, the mountain torque was of the same order of magnitude as

the friction torque, and therefore the mountain torque could not be neglected in the angular

momentum budget of the Earth-atmosphere system. White further found that the Northern

Hemisphere mountain torque during this month was dominated by surface pressure differences

across the Rockies and Himalayas. Newton (1971) studied the mountain torque in both

hemispheres and noted that on the seasonal time scale the mountain torque, while weaker than the

friction torque, played a significant role in the angular momentum budget.

On synoptic to sub-monthly time scales, the mountain torque is typically much larger than

its monthly or seasonal average. Wei and Schaack (1984) demonstrated, using First GARP Global

Experiment (FGGE) data from 1979, that such differences can be nearly one order of magnitude.

Swinbank (1985) noted that there was a close connection between these high-frequency

fluctuations in mountain torque and the changes in AAM during the FGGE period, which led him

to suggest that on time scales of about a week, the mountain torque dominated the angular
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H_ momentum exchange. On the basis of such studies, Rosen (1993) concluded that the friction

torque typically dominates the changes in AAM on time scales of months, whereas on time scales

shorter than several weeks the mountain torque is the dominant mechanism.
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Some case studies have isolated particular instances in which momentum exchange was

affected by mountain torque on sub-monthly time scales. Rosen et al. (1984) noted a rapid

increase in global AAM during January 1983, a period that coincided with the height of the 1982-

83 El Nifio-Souttrern Oscillation (ENSO) episode, and speculated that the changes in AAM were

due to the mountain torque. Wolf and Smith (1987) followed by studying AAM changes during

that strong ENSO event, suggesting that the mountain torque was produced by an eastward surface

pressure gradient across the Rockies established by a mid-continent high pressure center to the east

of the Rockies and a sequence of eastern Pacific cyclones to the west of the mountains. Salstein

and Rosen (1994) investigated a six-day period in July and August 1992 during which there was a

rapid oscillation in global AAM. They found that the mountain torque in the Southern Hemisphere

was largely responsible for the rapid fluctuation in AAM , in association with a change in the zonal

pressure gradient across the Andes due to a strong winter anticyclone that traversed the mountains.

Recently, Czarnetzki (1997) identified mountain torque fluctuations with several cyclones in the lee
of the Rockies.

These earlier case studies indicate that on synoptic time scales, surface pressure systems in

the vicinity of major mountain ranges may alter the global AAM through the mountain torque.

These studies also suggest that specific geographic locations such as the Rockies, Himalayas, and

the Andes may be particularly influential as regions of AAM transfer. By using a longer time

series of surface torque and AAM data than previously available, we will attempt to generalize

these results by determining the regional sources of the mountain torque that typically lead to high-

frequency AAM fluctuations. Then the features in the general circulation that are responsible for

these fluctuations will be identified. Thus it is hoped that this study will help advance a more
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complete picture of the angular momentum balance of the Earth-atmosphere system on high
frequencies.

i'•i! iiii,,• 2. Definitions and data sources

The global atmospheric angular momentum about the Earth's axis can be expressed as

(1)

where:

a 3

mr=g f f f ucos2OdOd p
(2)

is the entire atmosphere's angular momentum associated with its motion relative to the rotating

• . . .

solid Earth, a is the Earth's radius, g acceleration due to gravity, u zonal wind, and the integral

is performed over all latitudes, q}, longitudes, 2,, and pressures, p.

The angular momentum associated with the rotation of the atmosphere's mass is:

a4_2 I" 1" 3

Mn- 7 jjp, cos (ad_d2,

(3)

where X_ is the mean rotation rate of the Earth, and p, the surface pressure (Rosen 1993).

The conservation of angular momentum states that changes in AAM are related to the

surface torque by the relationship:
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(4)

where the mountain torque ( T ) and friction torque ( T I ) are defined through the following

relationships (White 1991):

Tm=-a2 f f p, OH
_ cos q_dqbdZ

(5)

3 2

(6)

Here, "r is surface stress and H indicates the height of the sloping topography.

The sense of the mountain torque is such that lower surface pressure on the western side of

a north-south oriented mountain range relative to the eastern side (i.e., an eastward surface

pressure gradient across the mountains) results in a positive torque on the atmosphere. Therefore,

lower pressure on the western slopes relative to the eastern slopes of a mountain range tends to

increase AAM through the mountain torque. In the case of the friction torque, an easterly surface

wind will be indicated by v > 0 and a positive friction torque tending to increase AAM.

The torque and AAM data in this study were prepared by White (1991) using the National

Centers for Environmental Prediction (NCEP) operational analysis system (Kanamitsu 1989). The

calculations were based upon the initialized analysis on sigma levels, where the highest sigma level

is at about 20 hPa. Calculations of mountain torque in (5) rely upon the product of analysis values

of surface pressure and the zonal gradient of surface topography whereas friction torque in (6)

relies on model-based surface stresses. This study used global integrals of torque and AAM, both

of which were produced four times daily (00, 06, 12, and 18 UTC) for the period of February

1992 to November 1996. Torque data on a 1° x 1° grid used to compute the global integrals were

6
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also available four times daily but were limited to the period April 1993-November 1996. To focus

on regional patterns, we also used 1° x 1o gridded surface pressure data, available for the period

April 1994-November 1996. The gridded fields and global integrals were daily averaged for this

study and centered upon 09 UTC, the mean time of the four synoptic hours for a given calendar

date. Because the mountain torque is an instantaneous value and the friction torque is a six-hour

average, slightly different averaging techniques were used for the two torques to maintain the 09
UTC central time.

In section 3c, we identify a case of a pronounced high-frequency fluctuation in global

AAM. To relate this fluctuation in global AAM to synoptic-scale surface and upper-air features,

sea level pressure and 700 hPa geopotential height fields produced by the NCEP operational

analysis system for the period of March 1996 were obtained from the National Center for

Atmospheric Research (NCAR). These were available twice daily on a 2.5 ° x 2.5 ° grid. The

length of day (1.o.d.) time series used was the Jet Propulsion Laboratory's (JPL) Kalman-filtered

time series (after Gross 1996), which combines Earth rotation estimates from several space- .

geodetic techniques. These l.o.d, data are available once-daily at 00 UTC from September 1978 to
February 1997.

•

Sources of high-frequency mountain torque variance

The overall quality of the NCEP data set can be judged in part by its ability to relate the sum

of the globally-integrated surface torques to the AAM tendency, or equivalently, to satisfy (4).

Figure 1 shows daily values of this balance for a l-year subset of the global torque and AAM

tendency time series, both of which are in reasonably good agreement on all time scales considered

here. A low-frequency oscillation is apparent in both the torque and AAM tendency, with minima

in January and July. Such a prolonged minimum in January is somewhat unusual, with the

negative torque leading to a profound decrease in AAM around that time (not shown).
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Superimposed upon the low-frequency signal are sub-monthly fluctuations in AAM tendency, and

these are also well captured by the sum of the two torques, In fact, for the entire time period

(February 1992 to November 1996) the correlation between the Series is 0.86, indicating that this

balance is well represented in the NCEP data set. The lack of complete agreement arises because

mountain torque is calculated from the surface pressure and topography fields, whereas friction

torque is calculated from physical parameterizations of the forecast model (Salstein and Rosen

1994). To place the rapid fluctuations in perspective, such surface torques typically produce an

angular momentum change equivalent to about 10% of the mean value of Mr, as deduced from

Fig. 2 of Rosen and Salstein (1983).

ij: H •
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To assess the relative importance of mountain and friction torques to the high-frequency

changes in AAM, a power spectrum of the terms in the global AAM budget (Eq. 4) was computed.

To do so we calculated the power spectral density of the angular momentum tendency and torque

terms at a bandwidth of 0.0036 day-1 during the interval February 1992 to November 1996. It is

clear from the resulting spectrum in Fig. 2 that although the level in the power in the mountain and

friction torques are generally comparable on time scales longer than about a 15 days, mountain

torque substantially dominates friction torque on shorter time scales. At these highest frequencies,

the power in the mountain torque is nearly equivalent to that in the global angular momentum

tendency, a fact that is also evident from examination of a series in the time domain, such as Fig, 1

of Salstein et al. (1996). Furthermore, this strong dominance of the mountain torque isconsistent

with the results of Madden and Speth (1995), who found that on time scales of 5-20 days, it is

more closely related to changes in AAM than is the friction torque. Thus, for purposes of studying

rapid fluctuations in AAM shorter than two weeks, we will focus upon the characteristics of

mountain torque alone and we can safely neglect further consideration of the friction torque.

The presence of known major spectral peaks in Fig. 2, though at lower frequencies than is

our present focus, gives us additional confidence in the general utility of the NCEP torque series



used here. For example, there are spectral peaks in the current series in both mountain and friction

torque at about 360, 180, and 33 days These peaks have been previously identified in AAM by

Eubanks et al. (1985) and others. The peaks near 360 and 180 days are a result of the strong

annual and semiannual oscillation of AAM, respectively (Rosen and Salstein 1985) and that at 33

days is likely related to the mechanism identified by Madden and Julian (1971). Although it is a

tropical oscillation often identified with fluctuations across the Pacific Ocean, this Madden-Julian

oscillation is also associated with changes in AAM (Anderson and Rosen 1983; Weickmann et al.

1997).

a. Zonally-integrated mountain torque variance

As a first step towards isolating the regions responsible for the high-frequency fluctuations

in global AAM, we determine which latitude bands contain the most mountain torque variance at

frequencies shorter than two weeks. To do so, we integrated the gridded mountain torque fields

around a belt of constant latitude using the relationship:

(T) = _ a2_.cos qS_ps OH dX
180 o (7)

which yields the zonally-integrated mountain torque per degree latitude. Then the temporal

variance of (T,,) was computed in 14-day moving windows centered on every day in the period

April 1993 to April 1996. This calculation effectively provided a time series of high-frequency

mountain torque variance in each latitude band without the need to digitally filter the series first.

(The variance was also computed using data that was first high-pass filtered, and the results were

quantitatively similar, giving us confidence in the ability of the 14-day moving window to remove

lower frequency oscillations). The calendar dates for the three-year period were then averaged to

yield a time average of the zonally-integrated mountain torque variance in each latitude band. The

mean annual cycle at different latitudes is shown in a Hovm611er diagram in Fig. 3. The high-
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frequency variance displays maxima in the midlatitudes of the Northern and Southern Hemispheres

along 40°N and 25°S respectively. Further, each hemisphere has a relative maximum in its cool

season, with the maximum in the Northern exceeding that of the Southern Hemisphere. The polar

regions contain significantly less variance, although they do have peaks during their respective cool

seasons near such high features as the Antarctic and the lands bordering the Arctic Ocean. The

high-frequency variance in the Tropics is negligible.

The latitude bands that contain the largest variance at high frequencies contain several major

mountain ranges, and we wish to assess the relative contribution of the continental regions

containing these individual ranges to the total torque variance in the latitude band. For simplicity

we divided the latitude bands into two regions (A and B), so that, for example, the contribution

from the two regions to the total variance in that band is given by the relationship:

cov(A,A + B)+ cov(B,A + B)= var(A + B).
(8)

To define the boundaries of the regions, we selected two regions in each midlatitude band that

broadly contained the major mountain ranges of the midlatitudes (Fig. 4a). The northern and

southern boundaries of the regions were chosen to contain the main areas of variance shown in

Fig. 3. The eastern and western boundaries were chosen to separate the major mountain ranges

such as the Rockies, Himalayas, Andes, and the mountains of southern Africa. For convenience,

we have included Australia and Africa within the same Southern Hemisphere region. Furthermore,

it was desirable that the eastern and western boundaries lie at sea level to yield a more accurate

computation of the area-averaged mountain torque (Wei and Schaack 1984).

Next, the gridded mountain torque was summed within the areas of each of the four

regions of the two midlatitude bands. Then the three terms in (8) were computed in 14-day

moving windows for the two latitude bands (20°N to 60°N and 10°S to 40°S). The contributions

10



from thefour broadcontinentalregionsto thetotalmountaintorquevarianceineachbandare

illustratedin Fig. 4b. EurasiaandNorthAmericacontributeaboutequallyto thetotalvariancein

theNorthernHemispheremidlatitudeband. At timesanindividualregiondominatesthetotal in the

band;astrikingexampleof thisbehavioroccurredoverEurasiain February1996.In theSouthern

Hemisphere,theAndesareprimarily responsiblefor thehigh-frequencyfluctuationsin that
h "

emasphere s mountain torque, with less contribution from Africa. The variance in the Southern

Hemisphere is generally of less magnitude than in the Northern, as previously noted in Fig. 3, and

the largest such variance occurs in each hemisphere's cool season.

Fig. 4b also shows that the period of January to March 1996 exhibited considerable

variance in Northern Hemisphere mountain torque. The fluctuations during this period

significantly exceeded the two earlier Northern Hemisphere cool seasons. In particular, there was

a significant event of a large mountain torque fluctuation in each of the three calendar months. The

time series of the mountain torque in the two NoRhern Hemisphere midlatitude regions for the

period 1 January 1996 to 31 March 1996 (Fig. 5) reveals the details of the three notable events. In

early January 1996, both regions experienced a significant increase and then decrease in mountain

torque. Second, during mid-February, the mountain torque across Eurasia decreased greatly, then

increased sharply, but was partly offset by a weaker fluctuation in the opposite sense in the North

America region. Third, in mid-March, both regions experienced a decrease and then a sharp

increase in mountain torque at about the same time.

The combined effect of the North America and Eurasia mountain torque in the mid.latitudes

demonstrates the important contributions of these regions to the global AAM tendency during early

1996 (Fig. 6a). Throughout this period, the AAM tendency was well represented by the sum of

the mountain torque in the two regions of the Northern Hemisphere midlatitudes, with this regional

mountain torque correlating with global AAM tendency at r=0.74, and therefore explaining more

than half (55%) of the variance in the global AAM tendency during this period. Mountain torque in

11
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these regions do not fully explain the global AAM tendency because the friction torque and

mountain torque produced elsewhere of course need to be considered. Throughout the period, the

global friction torque was significantly weaker than the mountain torque even during the mid-

March case when a lower amplitude fluctuation of the friction torque occurred (not shown), similar

in phase to the Northern Hemisphere midlatitude mountain torque, but with amplitude of about

one-third. The mountain torque from the other regions was also less than the mountain torque in

the Northern Hemisphere midlatitude region by about a factor of three.

Although global high-frequency AAM fluctuations may be affected by the mountain torques

in a single midlatitude region (Fig. 5), such as the 8-16 February Eurasian episode, when the sense

of the torque over Eurasia and North America is similar, such as during 3-10 January and 8-20

March 1996, the impact upon the global AAM tendency is dramatic. For the entire time series,

however, the mountain torque in these two regions is poorly correlated, suggesting that the

spectacular events of large fluctuations in AAM tendency brought about by coincident events are

not the rule.

Since the angular momentum of the Earth-atmosphere system is conserved on the time

scales considered here, but for minor interactions with the ocean (Ponte 1990), AAM fluctuations

are often associated with small but measurable changes in the rotation rate of the solid Earth

reckoned as changes in the 1.o.d. (Rosen and Salstein 1983), as follows:

Al.o.d.= k ,, AAAM*
(9)

where AAM* = M r + 0.TM n (Barnes et al. 1983) incorporates a small adjustment on the M n

contribution to account for the response of the non-rigid solid Earth to changes in the mass of the

overlying atmosphere. Here, k = 1.68 x [0 19 , ,A l.o.d, is in units of seconds, AAM" is in

12
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kg m 2 s-l, and the changes are relative to a reference state appropriate for each quantity.

Alternatively, we can relate daily changes of AAM* to daily changes in l.o.d, through

dAAM* = k-I dl.o.d.
dt dt

(I0)

which states that an increase in AAM leads to an increase in l.o.d., and a decrease in AAM results

in a shorter day.

We wish to investigate the extent to which the high-frequency fluctuations in AAM

tendency shown here are reflected in 1,o.d. tendency, given the limits of, data set inaccuracy.

Relationship (I0) is generally valid for early 1996 (Fig. 6b), and is particularly good during the

early Januaryand mid-March events. Given the strong relationship between the global AAM

tendency and the Northern Hemisphere mountain torque shown in Fig, 6a, this result suggests that

this torque was largely responsible for the rapid fluctuations in 1.o.d. as a result of the exchange of

angular momentum between the atmosphere and solid Earth. TNs connection between the

mountain torque and 1.o.d. is especially good during events of large high frequency mountain

torque variance.

b.

A case study of a strong mountain torque fluctuation

The rapid fluctuations in the Northern Hemisphere midlatimde mountain torque shown in

Fig. 6a are, by definition of the mountain torque (Eq. 5), a result of changes in surface pressure on

the eastern and western sides of the sloping topography. A case study is presented to establish the

relevant synoptics which produce the high-frequency fluctuations mountain torque and global

AAM tendency in the dramatic event of mid-March 1996. We have chosen the 700 hPa

geopotential fields as representative of the flow aloft and relate the synoptic-scale upper air features

<:i_i
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to the surface pressure changes in the vicinity of the mountains. Findings from the early January

and mid-Februmy cases were broadly consistent with those presented for the March case.

For the oscillation during mid-March 1996, Fig. 6a shows that relative maxima in Northern

Hemisphere mountain torque occur on 8 March and 20 March, and a relative minimum occurs on

15 March. Figure 7 displays the 700 l'ff'a geopotential height field at these three times. On 12

UTC 8 March (Fig. 7a), there is a high pressure ridge along the Rockies with a low pressure

trough over the eastern Pacific. Over the Himalayas, a ridge along 100°E extends northward from

a center at 30°N to 70°N into Siberia. A trough extends southward along 60°E from a center near

70°N. On 12 UTC 15 March (Fig. 7b), the ridge previously positioned over the Rockies has now

been replaced by a trough that extends southwestward from the central United States to over

extreme northwestern Mexico, and a second trough is located over British Columbia. A ridge is

now present over the eastern Pacific. The ridge previously positioned over the Himalayas at 100°E

has now been replaced by a trough that extends from 60°N into eastern China, and a ridge centered

at 60°N, 50OE extends southward to 40°N, a region previously occupied by a trough. Thus the

midlatitude upper air pattern around the two mountain ranges has reversed during the seven-day

period. Inspection of the 700 b_Pa charts during intermediate times (not shown) reveals that these

troughs and ridges can be traced back to the west several days prior, and hence they represent

mobile synoptic-scale disturbances in the westerlies. On 12 UTC 20 March (Fig. 7c), a ridge is

once again positioned over the Rockies, and a trough is now over the eastern Pacific, laiZgely

repeating the synoptic-scale pattern of 12 days earlier (Fig. 7a). Over Eurasia, both the trough

over eastern China and the ridge to the west of the Himalayas have weakened considerably during
the five-day period.

Figure 8 shows the reflections of the upper air troughs and ridges in the sea level pressure

field, a measure of synoptic activity near the surface. On 8 March (Fig. 8a), there is a strong high

pressure system to the east of the Rockies that extends from about 60°N to 20°N, located slightly

14
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downstream of the upper ridge in Fig. 7a. Low pressure is situated to the west of the Rockies over

the eastern Pacific beneath the trough aloft. Over Eurasia, there is high pressure over northern

China that extends from 70°N to 20°N into the East China Sea and positioned just downstream of

the upper ridge, and a low pressure trough to the west of the Himalayas along 60°E extends from

80°N to 40°N, and is located beneath the upper trough. These sea level pressure systems show

considerable meridional elongation, particularly the high pressure on the eastern sides of the

Rockies and Himalayas.

On 15 March (Fig. 8b), the sea level pressure patterns across the Rockies and Himalayas

have reversed from the prior time (Fig. 8a). Over North America, there is a low pressure center

over the Rockies at 55°N, 110°W, and a low pressure trough extends into eastern Mexico• High

pressure is located over the eastern Pacific. Both the high and low pressure systems are positioned
.

slightly downstream of their associated upper level ridge and trough, respectively. Low pressure

is positioned over eastern China near 35°N, 105OE, with a strong high pressure system to the West

centered near 60°N, 50OE, positioned beneath an upper trough and ridge, respectively. On 20

March (Fig. 8c), a high pressure system once again extends along the eastern slopes of the Rockies

all the way equatorward into Central America, which, combined with the low pressure over the

eastern Pacific, yields a sea level pressure pattern across the Rockies similar to 8 March (Fig. 8a).

Over Eurasia, the pressures directly to the west of the Himalayas have risen slightly as the high

previously positioned at 60°N has moved south, while those to the east have risen subst_tially as

the low previously situated over eastern China has tracked away from the region.

The changes in surface pressure in the vicinity of the mountains, which is directly

responsible for the mountain torque fluctuations, are shown in Fig. 9. For the period of

decreasing Northern Hemisphere mountain torque (and global AAM tendency) between 12 UTC 8

March and 12 UTC 15 March previously shown in Fig. 6a, Fig. 9a illustrates that there are

substantial surface pressure rises on the western sides of the mountains and falls on the eastern

15



sides. This successionincreasesthewestwardsurfacepressuregradientacrossbothmountain

ranges,anddecreasesthemountaintorquein bothmidlatituderegions(Fig. 5) which helps to

produce a significant decrease in global AAM tendency (Fig. 6a). During the increase in mountain

torque between 15 March to 20 March, there are surface pressure rises on the eastern side of the

Rockies and falls on the western side (Fig. 9b). Over Eurasia, the surface pressure rises more on

the eastern side of the Himalayas relative to the western side. This sequence of surface pressure

changes increases the eastward pressure gradient across the both mountain ranges, increases the

local mountain torque (Fig. 5), and helps increase the global AAM tendency (Fig. 6a). Thus the

spectacular oscillation of global AAM tendency of mid-March 1996 appears to be responding to the

mountain torque in the Northern Hemisphere produced by the substantial simultaneous local

surface pressure changes in the vicinity of both the Rockies and Himalayas associated with

synoptic-scale features of the general circulation.

C.

Composite pressure patterns that produce large AAM changes

The case study illustrated the strong relationship between surface pressure gradients

produced by mobile synoptic-scale systems, the mountain torque they produce, and the high-

frequency fluctuations in global AAM. We now wish to determine if the pressure patterns

responsible for the rapid changes in mountain torque and AAM shown in that strong case were

characteristic of those associated with other high-frequency changes in AAM. We also_vish to

determine the pressure patterns associated with mountain torque fluctuations in other regions of the
globe.

To focus on high-frequency fluctuations in AAM, the time series of global AAM tendency

was now first high pass filtered using a Lanczos filter (Duchon 1979) containing 43 weights and a

half-power point of 14 days. The response function of this reasonably sharp filter is shown in

Fig. 10. We next prepared composites of surface pressure based upon phases of the high-pass
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filtered AAM tendency. The first sample was defined by days when the global high-pass AAM

tendency (A,;tM) was greater than or equal to + 1.5 standard deviations (,3") from the mean, and

the second by days when AAM < -1.5o-. We then created a composite of surface pressure for

these days, called here times when AAM was strongly increasing and strongly decreasing, and the

difference in the composite pressure fields of the two samples provides a good indication of the

surface pressure patterns present during opposite phases of high-frequency fluctuations in AAM

tendency. Given the seasonality of high-frequency mountain torque variance (Figs. 3, 4),

composites were formed separately for all months, f_r the Northern Hemisphere cool season

(November to April), and for the Southern Hemisphere cool season (May to October). The

composites span the period of April 1994-November 1996.

Figure 11 a shows the difference in composite surface pressure between days when AAM is

strongly increasing and AAM is strongly decreasing. There are 65 and 72 days in these increasing

AAM and decreasing AAM composites, respectively. The surface pressure patterns during the

opposite extremes of the AAM tendency have a considerable cross-mountain component near the.

Rockies, Himalayas, and Andes which indicates the importance of these mountain ranges to high-

frequency fluctuations in global _ through the mountain torque. Lesser surface pressure

gradients exist across Greenland, the Alps, and southern Africa. The net effect of these surface

pressure patterns is to create an eastward directed pressure gradient across the mountains which,

through Eq. 5, is consistent with the production of a positive mountain torque and positive AAM
tendency. :-

The composite difference in surface pressure for strongly increasing AAM and strongly

decreasing AAM days for the Northern Hemisphere cool season is shown in Fig. 11 b. There are

32 and 35 days in these composites, respectively. The patterns have stronger centers in the

Northern Hemisphere than in the Southern Hemisphere. Most pronounced are the eastward

surface pressure gradients across the Rockies and Himalayas, although there is also an eastward
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pressure gradient across Greenland and an indication of an eastward pressure gradient across the

Alps. The high pressure to the east of the Rockies is centered in the midwestern United States, and

extends the large distance from southern Canada to Central America. The low pressure to the west

of the Rockies is centered off the coast of British Columbia, and it extends poleward to Alaska and

equatorward to northern Mexico. In the Eurasia region, there is relatively high pressure over

eastern China and low pressure to the west of the Himalayas. The high pressure extends well

•poleward into the northeastern portion of the Asian continent. Such a pressure pattern resembles

that responsible for the rapid increase in mountain torque and AAM tendency during the case study

of mid-March 1996 discussed above (Fig. 9b). In the Southern Hemisphere, relatively high

pressure exists on the eastern side of the Andes and across southern Africa.

A similar composite is shown for the Southern Hemisphere cool season (May to October)

in Fig. 1 lc. There are 33 and 37 days in the strongly increasing AAM and strongly decreasing

AAM composites, respectively. The pressure differences across the Northern Hemisphere

mountains are greatly diminished while the pressure differences across the Southern Hemisphere.

mountains are better defined, in agreement with our previous results regarding the seasonal nature

of the contributions from the two hemispheres to the high-frequency mountain torque variance.

The most notable pattern is situated across the Andes with relatively high pressure centered over

Argentina, extending poleward and equatorward along the eastern slopes of the Andes, similar to

the configuration of the anticyclone discussed in a case study of a rapid fluctuation in _ by

Salstein and Rosen (1994). Low pressure is situated on the western side of the Andes, creating a

significant eastward pressure gradient across the mountains. As in Fig. 11 b, there is high pressure

to the east of southern Africa and low pressure to the west.

Two other features in the composites are worth mentioning. First, the composite pressure

systems have significant meridional elongation along the eastern slopes of all three major mountain

ranges, particularly during the cool seasons. This meridional elongation in the lee of the mountains

18
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was previously noted in the case study (Fig. 8) and creates a zonal pressure gradient across the

topography of considerable north-south extent. The result is a significant local contribution to the

global mountain torque. Additionally, the equatorward extension of the surface pressure features

may be important because for a given topography, a larger mountain torque is produced from a

fixed pressure gradient at a lower compared to a higher latitude due to the influence of the distance

to the Earth's axis of rotation upon the torque (Eq. 5). Thus, these synoptic-scale meridionally

elongated pressure systems appear to have a significant impact upon the changes in global AAMon

time scales of less than two weeks.
F

Second, the locations of the centers of surface pressure differences in Fig. 11 are relatively

invariant with respect to season. The/'e is some poleward movement of the surface pressure

centers from the cool season to the warm season, but for the most part the cool season patterns are

simply amplifications of those during the warm season. This relationship indicates that the regions

responsible for the high-frequency fluctuations in AAM tendency are nearly invariant, being tied to

the Earth's topography, and that only their relative importance changes with season. This result .

also suggests that by knowing the surface pressure in localized regions, one can obtain

considerable information about high-fi'equency changes in the regional mountain torque and global
AAM.

The localized nature of the results in Fig. 11 suggest that a meaningful index of regional

mountain torque and high-frequency changes in global AAM can be derived from only a small

subset of surface pressure data. For example, two stations were chosen, Wichita, Kansas (ICT,

37-7°N, 97.4°W) and Portland, Oregon (PDX, 45.6°N, 122.6oW) that lie near the centers of the

surface pressure differences in Fig. 1 la that straddle the Rockies. The sea level pressure

observations from synoptic hours (00, 06, 12, and 18 UTC) were daily-averaged to be centered at

09 UTC in the same manner as the torque data. The difference in daily-averaged pressure between

the two stations is plotted along with the mountain torque in the North America region for the

19



periodof Janum-yto March 1996(Fig. 12a).The two timeseriescorrelateverywell (r=0.81),

indicatingthatthepressuredifferencebetweenthesetwopointsisa verygoodindicatorof the

senseof themounraintorqueacrosstheentireNorth Americaregion.

Thesealevelpressuredifferencebetweenthesetwo stationsisnow plottedwith theglobal

AAM tendencyin Fig 12b.Changesinsealevelpressuredifferencebetweenthesetwostations

coincidefairly well with theglobalAAM tendency(r=0.67),andthusaconsiderableamountof

informationregardingtheglobalAAM tendencyduringthis three-monthperiodcanbegathered

simply byknowing thesealevelpressuredifferencebetweenthesetwoNorth Americanstations.

Futurework will focusupontestingtherobustnessOf thisrelationshipbetweenlocalpressure

differencesandglobalAAM for a longertimeseriesandfor otherregionsof theglobe,suchasin
thevicinity of theHimalayasandAndes.

4. Discussion

This studyhasshownthathigh-frequencyfluctuationsin globalAAM resultprimarily from

themountaintorquein themidlatitudesof bothhemispheresdueto changesin surfacepressure

acrossthemajormountainranges(Rockies,Himalayas,andAndes)accompanyingsynoptic-scale

systems.A casestudywaspresentedtoprovideanexampleof therelevantsynopticsassociated

with arapidmodulationof localmountaintorqueandglobalAAM. Ourresultshavealsoindicated

thateachhemispherehasamaximumin high-frequencymountaintorquevariancein itscool
season.

It is likely, then,thattheseasonaldependenceof high-frequency mountain torque variance

is directly related to the frequency of occurrence of rnidlatitude synoptic-scale cyclones and

anticyclones near the Rockies, Himalayas, and Andes. In support of this conjecture, synoptic

climatology studies indicate that in the Northern Hemisphere, there is a cool season maximum in
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the frequency of midlatitude cyclones and anticyclones in the vicinity of the Rockies and Himalayas

(Petterssen 1956; Whittaker and Horn 1984; Zishka and Smith 1980). In the Southern

Hemisphere, Sinclair (1994; 1996) found a cool season maximum of both anticyclone and cyclone

frequency in the region of South Africa. To the east of the Andes, there is a maximum of

anticyclones frequency in cool season, while cyclones in the vicinity of the Andes are prevalent

year-round (Jones and Simmonds 1994; Sinclair 1996; Taljaard 1967). The decrease in cyclone

and anticyclone activity from the cool to the warm season is a result of a weakening of the

tropospheric meridional_ temperature gradient and a poleward shift of the upper level storm track.

Thus the seasonal changes in high-frequency mountain torque variance found here are consistent

with the alteration in synoptic-scale activity from the cool to the warm season of both hemispheres.

• ,i ¸ ,

The case study and composite study also show considerable meridional elongation of the

surface pressure patterns that are associated with strong high-frequency fluctuations in AAM, and

this elongation is particularly evident on the lee side of the mountain ranges. For high pressure

systems, the meridional elongation is characteristic of synoptic-scale events called'
cold surges

which are associated with marked equatorward penetration of cold air. Cold surges are observed

most often during the cool season in the lee of the Rockies (DiMego et al. 1976; Henry 1979),

Himalayas (Murakami and Nakamura 1983), and Andes (Hamilton and Tarifa 1978). The

equatorward progression of the cold surges is believed to be a result of the interaction between the

synoptic-scale flow and the sloping topography (Colle and Mass 1995). In the case of law

pressure, westerly airflow over topography often leads to meridionally--elongated surface troughs

in the lee of the topographic barrier (Hess and Wagner 1948; Newton 1956). Thus the

meridionally-elongated structure of the pressure systems observed in this study is consistent with

those synoptic-scale features observed in the vicinity of the mountains. These synoptic-scale

features may, by virtue of their meridionally extensive cross_mountain pressure gradient, result in

considerable high-frequency fluctuations of mountain torque and therefore AAM tendency.
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It is also suggested in this study that the large fluctuations in global AAM tendency during

early 1996 were reflected in the measurements of changes in the length of day, and that the

mountain torque is the primary mechanism by which angular momentum is exchanged between the

atmosphere and solid Earth on these short time scales. Previous studies (Rosen et al. 1984;

Salstein and Rosen 1994; Wolf and Smith 1987) also identify this relationship between AAM and

l.o.d, for isolated cases of high-frequency fluctuations in AAM. When viewed over a longer time

series, however, high-frequency fluctuations in l.o.d, are poorly related to fluctuations in AAM

(Rosen et al. 1990), and the lack of agreement is attributed to declining signal-to-measurement

noise ratios of both data types (Dickey et al. 1992). It is also possible that the poor relationship is

produced by the inclusion of many smaller, poorly measured events while large-amplitude

episodes of AAM fluctuations are indeed detectable.

5
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To test this hypothesis, we return to the time series of high-pass filtered AAM tendency and

we calculate a number of correlation coefficients between daily changes in l.o.d and AAM, based

on the strength of the daily AAM changes. For the entire time series, such a correlation is 0.39. If

we select only those days when IAjAWI> 1.5o- the correlation increases to 0.59, and for days when

I I
A JAg > 2.00-, the correlation grows further to 0.71. These results indicate that for the cases of

sufficiently strong high-frequency fluctuations in AAM, the exchange in angular momentum

between the solid Earth and atmosphere through the mountain torque is reasonable well-captured

by the current analysis systems and 1.o.d. observing networks.

5. Conclusions

This study sought to identify the relative role of the mountain vs. friction torque to the

high-frequency (< 14 day) fluctuations in global AAM tendency, isolate the regions responsible for

these fluctuations, and suggest a mechanism in the global circulation responsible for the high-

frequency fluctuations. We find that the mountain torque is much more important than the friction
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torque in the global balance of atmospheric angular momentum on high frequencies. On time

scales greater than about three weeks, however, the friction torque begins to play a more

significant role. The midlatitudes of both hemispheres are primarily responsible for the high-

frequency fluctuations in mountain torque and global AAM.

/

7:_i _ /

To identify the mechanism responsible for the high-frequency fluctuations, first a case

study was performed during an extraordinary fluctuation in mountain torque and AAM tendency in

mid-March 1996. _The Case study revealed that the mountain torque fluctuations were a result of

changes in the surface pressure gradient across a wide north-south extent of both the Rockies and

Himalayas, brought about by migratory synoptic-scale weather systems as they traversed these

mountain ranges. The resulting regional mountain torque then impacted the global AAM on

synoptic time scales, and caused a coincident fluctuation in 1.o.d. This result is consistent with

those of previous case studies involving high-frequency fluctuations in AAM.

A composite study using a time series of global AAM tendencies and gridded surface

pressure showed that the surface pressure gradients in the vicinity of the Rockies, Himalayas, and

Andes, and to a lesser extent southern Africa, were routinely associated with significant high-

frequency fluctuations in AAM tendency. The pressure differences across the Rockies and

Himalayas of the Northern Hemisphere play a major role in the high-frequency fluctuations in

AAM tendency during the Northern Hemisphere cool season (November to April), whei'eas the

Andes in the Southern Hemisphere were most impo_nt in the Southern Hemisphere cool season

(May to October). Further, the composites suggest that as in the case study, the surface pressure

systems responsible for the most notable high-frequency fluctuations in global AAM tendency

exhibit considerable meridional elongation, particularly on the eastern sides of the topography,

which is characteristic of synoptic-scale systems in the lee of mountains. This meridional

elongation results in a zonal pressure gradient across the mountains spanning many latitudes, and

helps to produce significant local mountain torque fluctuations and hence global AAM fluctuations
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on synoptic time scales. These relatively large amplitude mountain torque fluctuations were able to

produce changes in l.o.d, consistent with an exchange of momentum between the solid Earth and

atmosphere through the mountain torque.

Lastly, it was suggested that the sea level pressure differences at a limited set of stations

can yield considerable information about the mountain torque over a broad continental region and,

to a lesser extent, the global AAM tendency. Future work will attempt to more precisely isolate the

regions responsible for high-frequency mountain torque variations through the development of a

mountain torque index based upon sea level pressure differences from station data. The

development of such an index based upon the historical record of sea level pressures may allow for

the study of mountain torque and AAM fluctuations over a longer period than is possible from an

analysis system alone. Further, in light of the connection between synoptic-scale pressure changes

at the surface and disturbances aloft, the dependence of mountain torque variance upon rnidlatitude

flow regimes and upper-level storm track position will be investigated.
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Figure captions:

Figure I. Daily time series of the global AAM tendency (dotted) and the sum of the global friction

and mountain torque (solid) for the period 1 November 1995 to 1 November 1996. Units are X

1019 kg m 2 s -2.

Figure 2. Log-log power spectrum with period of global angular momentum tendency (solid),

global mountain torque (dotted), and global friction torque (dash-dot) based upon data for the

period February 1992 to November 1996. Units are (X 1018 kg m 2 s-2)2oday. The periodogram

is smoothed using a 5-point moving average in frequency.

Figure 3. Three year mean variance of zonally-integrated mountain torque in 14-day moving

windows shown as a function of latitude and time. Units are (X 1018 kg m 2 s-2)2 per degree

latitude. Contours are drawn every 0.2, and values > 0.6 are shaded.

Figure 4. a) Boxes defining four midlatitude domains used in the study to compute the regional

mountain torque. The Eurasia box and North America boxes are bounded by latitudes 20°N and

60°N, and separated by longitudes 20°W andl80 o. The Africa and South America boxes are

bounded by latitudes 10°S and 40°S, and separated by longitudes 0 ° and 180 °. Shading-indicates

elevation > 1000 m from the Rand 1° x I ° topography grid. b) Contribution to the total variance in

a latitude band by the two continental regions in that band, as well as total band variance. Units are

(X 1019 kg m 2 s-2)2.

Figure 5. Daily time series of the mountain torque in the Eurasia region (solid) and North America

. region (dotted) for the period 1 January 1996 to 31 March 1996. Units are X 1019 kg m 2 s-2.

The bars beneath the time series highlight the three episodes mentioned in the text.
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Figure 6. a) Daily time series of the sum of the mountain torque in the North America and Eurasia

regions (solid) and the global atmospheric angular momentum tendency (dotted) for the period 1

January 1996 to 31 March 1996. b) Daily time series of global atmospheric angular momentum

tendency from NCEP analysis (dash-dot) and inferred from measurements of l.o.d. (solid). Units
are X 1019 kg m 2 s-2.

Figure 7. Geopotential height of the 700 hPa level at 12 UTC for a) 8 March, b) 15 March, and c)

20 March 1996. Contours are every 6 dam. Highs and lows discussed in the text are indicated by
the letters 'H' and 'L'.

Figure 8. Sea level pressure at 12 UTC for a) 8 March, b) 15 March, and c) 20 March 1996.

Contours are every 6 hPa. Highs and lows discussed in the text are indicated by the letters 'H' and
tLf °

Figure 9. a) Difference in surface pressure between 12 UTC 15 Marchand 12 UTC 8 March 1996

(every 4 hPa contoured, zero line omitted). Positive contours are solid and negative dashed, b)

Same as a) except between 12 UTC 20 March and 12 UTC 15 March. Shading indicates surface

elevation > 1000 m.

Figure 10. Response function of the high pass filter used in the study, plotted linearly in

frequency but marked in period. The filter contains 43 weights, and a half-power point of 14
days.

Figure 11. The difference in surface pressure (contoured every 1 hPa) for days when the global

high pass AAM tendency is > +1.5 standard deviations and days when the global high pass AAM

tendency _< -1.5 standard deviations from the mean for a) all months, b) November to April and c)
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May to October. Shading indicated regions of statistical significance at the 95% confidence level as

estimated by a Student's-t test. Positive values are solid and negative values are dashed.

Figure 12. Daily time series of the difference in sea level pressure (solid, units hPa) between

Wichita, Kansas (ICT, 37.7°N, 97.4ow) and Portland, Oregon (PDX, 45.6°N, 122.6ow) plotted

with a) mountain torque over North America (dotted, units X 1018 kg m 2 s-2) and b) global

atmospheric angular momentum tendency (dotted, units X 1018 kg m 2 s-2) for the period I

January to 31 March 1996. Note that the curves are plotted with two different scales.
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