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Split Space-Marching Finite-Volume Method
for Chemically Reacting Supersonic Flow
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A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split dif-
ferencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-
order-accurate mixed explicit-implicit procedure that solves lhe inviscid adiabatic and nondiffusive equations for
chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and dif-
ferential forms of the equations is examined and the relative merits of each discussed. The method admits initial
Cauchy data situated on any arbitrao' surface and integrates them forward along a general curvilinear coor-
dinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the con-
vective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted
step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this

splitting technique is analyzed, a sufficient stability criterion is established, a representative flo_ computation is
discussed, and some comparisons are made with another method.

Introduction

ONTINUING interest in and the usefulness of more
sophisticated re-entry vehicles than those currently

developed has culminated in the decision to design and con-

struct a reusable space shuttle orbiter. This decision has rekin-

dled the need for computing flows with finite-rate chemical

reactions. The calculation of such flows is extremely useful to

the vehicle designer as a source of information relative to the

prediction of heat-transfer rates, boundary-layer effects, and

aerodynamic loads acting on the aircraft. At moderate super-
sonic velocities and lower altitudes the airflow remains in

chemical equilibrium, and design information can be obtained

from the flow calculations as well as wind-tunnel testing of

appropriately scaled models. At higher velocities and

altitudes, however, significant nonequilibrium effects are ex-

pected to persist over a large area of the vehicle; in addition to

affecting the surface heating rate, the dissociating flow
produces atomic oxygen which might enhance the oxidation

and erosion process at the surface. Complex chemically

reacting flow phenomena cannot be scaled, and since current

test facilities are incapable of carrying out full-scale ex-

periments in this regime the designer can only turn to the com-
puter solution for a realistic description of the flowfield at ac-

tual flight conditions.

For some time numerous procedures _-4 for the calculation

of one- and two-dimensional inviscid nonequiEbrium flow

have been known. Our discussion, however, is restricted to

those techniques that take advantage of the hyperbolic charac-

ter of the steady governing equations to integrate initial

Cauchy data in a coordinate direction along which the local
velocity component is everywhere supersonic. The method of

characteristics has been applied recently to reacting flow in

three-dimensional nozzles 5 as well as around general-shaped
bodies 6; more recently a method for calculating reacting flow

around an arbitrary body using a finite-difference procedure
was introduced by Davy and Reinhardt. 7

Common to all these existing techniques is the requirement
that the initial data lie on a surface symmetrically oriented

with respect to the marching coordinate, and the method of
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Davy and Reinhardt even further stipulates that this initial

surface be a plane normal to the body axis and that it advance

downstream and undistorted. This condition simplifies the

coordinate geometry and difference equations but severely

restricts the choice of acceptable initial data and ignores the

orientation of their cones of influence. For flow of a perfect
gas Rizzi, et al. s have devised a more general procedure that

admits initial conditions situated on any arbitrary surface and

integrates them forward along a general curvilinear coor-

dinate that nearly conforms to the local streamline, rotating

and distorting the initial data surface as it advances. Adopting

that generalized marching method, this paper presents a

method for computing the steady flow of an air mixture of

dissociating and chemically nonequilibrated gases past a

three-dimensional body. The theoretical description of the
flow is idealized to the extent that diffusion, heat conduction,

and viscous effects are considered negligible.

In addition to increasing the number of equations needed to

describe it, the chemical phenomena further complicate the

numerical solution by introducing a second intrinsic rate

process requiring a step size that can be quite different from

that for convection alone. This paper proposes an efficient

way of handling these two inherently different rates by
developing finite-difference operators that split one spatial
dimension from another as well as from the chemical kinetics

term and that solve the governing equations to second-order

accuracy. The convective operators use an explicit scheme,

whereas the chemistry operator is implicit. An analysis of the

accuracy of these split operators is carried out, and the com-

putational efficiency gained by them is discussed.
The initial data surface advancing downstream determines

the mesh network for the next step, which is aligned with both

the bow shock wave and the body surface. This alignment

simplifies imposition of the boundary condition at both the

shock and body, and ensures consistency with the interior

flow at these points.

Continuum Model

The description of high-temperature airflow past a vehicle

involves the calculation not only of the bulk-flow properties

of every fluid element, but also the chemical phenomena that

the individual gas species comprising the mixture are sub-

jected to within the element. The chemical kinetics of air in
the temperature range considered here, mainly entails five

species-O:, N:, N, O, and NO-entering in the three
dissociation reactions and the two bimolecular exchange reac-

tions written in Table I. In these reactions M is the third-body

collision partner that can be any of the five species in the mix-
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Table 1 Chemical reactions

l Chemical equation

1 02 +M:20+M
2 N 2 +M--2N+M
3 NO+M_N+O+M

4 0 2 +N--NO +O
5 N 2 +O-.NO + N

turf. The equations of motion for reacting flow must ef-

fectively combine the microscopic formulation of chemical

kinetics with the macroscopic equations of gas dynamics
governing the bulk-flow properties. The appropriate descrip-
tion for inviscid and nondiffusive flow of a mixture of react-

ing gases in chemical nonequilibrium is the system of con-

tinuum equations that incorporate these two diverse aspects

into an overall macroscopic formulation. They are presented
here without further discussion. Readers interested in their

development and justification are referred to the textbook by

Vincenti and Krueger. 2

The continuity equation for the mixture of density p is

div pv=O (la)

and the momentum equation takes the form

div (pvv+p f) =0 (lb)

where p signifies the macroscopic pressure, v the bulk
velocity, and/-is the identity tensor. The energy equation with

enthalpy h may be written

div[pv(h+ Vzv 2) ] =0 (Ic)

and can be integrated at once to obtain h + ½v2= constant

along a streamline. For flow with no spatial variation in the
freestream, the only case treated here, the constant is the same
for all streamlines and this relation becomes

h+ Vzv 2 =hi (ld)

and ht equals the total enthalpy in the freestream and is a

global constant. The macroscopic chemical kinetics equation

for each of the five species is

divpct, v = oh, (p, T, c l ..... c5 ) (If)

where T denotes the bulk temperature of the mixture, ce

represents the mass fraction pr/p, and o_. stands for the

chemical source function of species e, i.e., the mass rate of

production of species tper unit volume by chemical reactions.

Clearly, by definition, the condition

5

E c_.=I
e= 1

must hold. Vincenti and Krueger 2 develop a suitable ex-

pression for _. from principles of chemical kinetics, and the

required constants and coefficients that we use are those given
by Refs. 7 and 9. The system is completed by an equation of

state in two forms, one relating enthalpy h = (p, p, c:) and the
other temperature T= T(p, k, q.) to density, pressure, and

species concentration, the particular forms of which are con-

sidered next.

In the undisturbed flow, air is considered to be a mixture of

23.3°7o oxygen and 76.7°70 nitrogen by mass, and in the cases

dealt with here its temperature behind the bow shock varies

typically between 2000 and 5000 K, seldom exceeding 6000 K.

The mixture of pure air is assumed to remain trans-

lationally and rotationally fully equilibrated while the
vibrational excitation of nitric oxide and molecular oxygen

DATA MARCHED
xi:xi(zl'z2'z3) TO SURFACE n+l

BOW SHOCK

Fig. 1 Generalized coordinates and flowfield di_relizalion for
space-marching finite-volume method.

and nitrogen is approximated by the "half-excited" model of
Lighthill. I0 Rather than introducing nonequilibrium

vibrational excitation, the vibrational mode is assumed to be

excited to the extent that its energy is always half of the fully

excited equilibrium value attained at high temperatures. The

validity of the Lighthill model for the present application is

given in Ref. 6.
The five component species are thermally perfect gases in

thermal equilibrium. With the above assumptions the state

equation may be written explicitly as

5

h- 2/ P +_._c,.h °- (2a)
y-1 p r=_

where h° represents the net heat per unit mass evolved during

the formation of species ['and
5

T=p/o(R E (G,/ffE_,) (2b)
_= 1

where the ratio of specific heats 3' is

4 (Co: + c,v z + C:vo ) + 5/2 (Co + cN ) (2c)
Y= 2(Co e +c:_. 2 +c,_,.o) +3/2(co +cN)

and 9rt, is the molecular weight of species f and _ is the

universal gas constant. At this point note that the fluid and

thermodynamic state of the gaseous system is determined

completely from the calculation of p, c_., v, and p satisfying

the system of Eqs. (1) and (2) under specific boundary and
initial conditions for a given problem.

Differential and Integral Formulation

For the method to admit initial Cauchy data situated on an

arbitrary surface and march them in roughly the streamline

direction, generalized coordinates must be used. The nonor-

thogonal curvilinear system with contravariant coordinates
x _ and covariant base vectors g, (i=1,2,3) is introduced
where x I and x: lie in the initial data surface and x 3 is in the

approximate direction of the streamlines_ (Fig. 1). A

reciprocal set of directions is associated with this system and

is called contravariant field vectors g"m grad x" (m = 1,2,3)

defined as the gradients of the curvilinear coordinates and

related to the base vectors by g"-g, =tS_"(Kronecker delta).

Between these coordinates and a rectangular Cartesian system

z,, with unit base vectors a,, exists the functional relationship

x_=x_(zl,ze,z3) i=1,2,3 (3)

_:To minimize confusion, exponents are not used on vectors, coor-
dinates, or vector components; superscripts denote only the con:
travarienl direction of the vectors and their components.

u :
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The governing Eqs. (I) div 3=div (Fg_ + Hg 2 + Ug3) =fl

written in divergence form with respect to this curvilinear

system is

O(g'/_H) O(gV_F)
0(g '/"U) + + =f-gfl (4)

ax 3 ax 2 ax

where

_" --X3

X 2

U=

H(U) =

pceu J

pu 3

pu _ w t + P (Ox3 /Ozt )

pu3 w2 + p( Ox3 /Oz2 )

pu 3 w 3 + P ( Ox3 /Oz3 )

- pC_,bl2

pU 2

pU2 W t + p( Oxe /OZt )

pLI2 W2 + p( tgX2 /OZ2 )

_ Ou2w3 +p(Ox2/OZ3)

60_, [

ol

_(u)= 0l

0

20_j

F(U) =

Fig. 2 Formation of typical
volume cell by the surfaces x j
= constant.

can be determined numerically at each mesh cell quickly by

simple algebraic expressions: therein lies its advantage.

Although some computational fluid dynamicists have used

integral forms in solving flow problems, we are aware of no

pcf/,/I

pu t

Out wl +p(Oxl/OZ2 )

pU/W2 + p(Oxl /OZ2 )

Ou t w3 + p (Oxl /OZ_)

and gV, is the Jacobian O(zt, z2, z3,)/O(x _, x 2, x,) and the

flow velocity is
3 3

U= E uig,= E Wmam §

i=l m=l

A more physical interpretation of the contravarient coor-

dinates and covariant directions can be achieved by using

Gauss' theorem to cast Eq. (4) into integral or, as we call it,
finite-volume form

fs,, 3"'OdS= IsjfUdS+ Xs2XHds

where Sm=Sg 'n is one of the six surfaces (with normal

gin) of the hexahedron formed by the coordinate surfaces

x m = constant as illustrated in Fig. 2. Equations (4) and (5) are

mathematically equivalent, but each has its particular ad-

vantage. The numerical analysis of a method's accuracy and
stability is easier to execute with the partial differential form

(4), whereas the actual computations are more conveniently

carried out in the form (5); the latter is true because use of

Eqs. (4) requires specifying the coordinate transformation (3)

and calculating either analytically or numerically the Jacobian
g'_ and the term Oxt/Oz,,, at each cell, which for practical

body shapes may be time consuming and awkward. These two
quantities, however, have a geometrical interpretation that

becomes obvious in the finite-volume form. For example,

Oxt/Oz,n =gi.a,, is simply the direction cosine between con-

one else who has shown the equivalence of the integral and

curvilinear tensor differential forms, probably because of the

classical bias for orthogonal coordinates. However, we em-

phasize that these two formulations are identical, as of course

they must be since they have the same governing equations;

consequently, the accuracy and stability criteria of a chosen
difference scheme when applied to one are exactly the same

criteria when applied to the other. The only difference be-

tween the two forms is the way in which the coordinate
transformation terms are evaluated. The differential form is

very useful for establishing the physical and numerical

domains of dependence which determine the condition for
numerical stability. It is also vital to the analysis of the ac-

curacy of a given numerical procedure, but it is more con-

venient to carry out the actual computations using the

geometrical interpretation of the finite-volume form.

Numerical Procedure

Finite-difference approximations to the governing
equations are used to advance the solution in the x _ direction
from specified initial data. Split difference operators are con-
structed in this section to solve the finite-volume formulation

in Eq. (5) for computational cells like the one depicted in Fig.
2.

Difference Operators
The essential concept of the splitting technique is to "split"

the governing equation into a series of simpler component
equations, so that when solved sequentially in intermediate
fractional steps they approximate the original equation to

travarient direction i and Cartesian direction m and may be some order of accuracy. For nonreacting flow, MacCormack

calculated from simple vector relations without having to per- and Paullay, _2 MacCormack and Warming, _3 and Rizzi, et

form any partial differentiation. Similarly, the areas and al.,8 among many others, have shown how this concept leads
volume which appear in Eq. (5), and are evaluated by dif-

ferential expressions such as ds t =g,/2 dx: dx J and d vol=
g_'_ dx I dx 2 dx 3, may also be calculated from geometrical

principles.¶ The integral or finite-volume form in effect

replaces explicit use of these functions with the products of
vector quantities that have a definite physical significance and

§Note that expressing the vector 3=Fgt+Hg2+Ug _ involving
products of mixed velocity components u' and wm of both bases
gi and a,,, leaves Eq. (4) in strong conservation form. See 8 and I 1
for further discussion of this point.

¶The area of each quadrilateral face of the hexahedron is one half
of the vector cross product of the two diagonals on that face. The
hexahedron itself is composed of five tetrahedra whose volumes are
computed by a simple algebraic formula.

to splitting one spatial dimension from another_ Rizzi and
Bailey _4 have extended the concept to the tirhe-dependent

equations of chemically reacting flow, and, in addition, have
split the chemical production term from the spatial ones

which are themselves dimensionally split. We apply this idea

to the steady governing Eq. (5) and break them into three dif-

ference operators

1
",q+K -- /r n tl

Uj.k S,,+ t (-U_.kS -F].xS,+t-F_._.-iS_)

I
-- - n+_ n

uj_,[._ 2s.+ ' (-u';,,s" +u_,_ s +t

- F}',?; / S, + t - _(,3. Sx ) (6a)
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1

0;:2 = _ ( - U;;'S" -I-U,:%+, -H;_+,:,S,) (6b)

1
Ujtt+__ Itln+_nj_f'?'n+_c.,n+l Llrn+h C' _d'n+IkC, '_

,k 2an+ I (--vj, k o TtJj, k O IJtl)+l,kOj+l--,zj, k oj)

1
_ (U,7+t S,,+vols.k[l_l ,,+× -lon+_U._q_-I S,+1 j.k ½vol_.,Q,.o ] ,,j.k )

(6c)

where X=2_ = 2..5are the fractional step numbers, and the af-

fixal notation now no longer refers to the contravarient and

covariant directions but rather to the geometrical location in

the difference mesh. The subscripts j and k denote the discrete
location of the cell j,k aIong the axes x 2 and x/, while

Sj (Ax -_) and Sk (Ax -' ) are the areas of its sides facing these
directions. The superscripts denote the position

n

to which the solution has been advanced during each cycle of
the operators, and S" is the area facing x _. The mean values

U_'.k of the flow variables in the cell at step n are defined by

ISSU_'* = S-_ s" U ds (7)

and F_.k = F( UjI/, ) and H_., = H( U_l.k) is the usual condensed
notation. The matrix Qjk of the fifth order is composed of

elements [(1/pu3S"+l)iOtoj/Oc_)] while I is the identity

matrix, and lastly volj., (Axe)) is the volume of the

hexahedron enclosed by the surfaces S1, Sj + I, S,, S, + 1,S", and
S" + / This set of equations can be written more conveniently

in operator notation. Let Lj (A.xJ) denote the operation per-

formed by the set of Eqs. (6a) in advancing the solution from

U_k to U._'2-'(i.e., U}_.'=LI(Ax))U_",) and let L 2 (Ax 3)
and L,(Ax "_) be similarly defined by Eqs. (6b) and (6c).

Analogous to the familiar MacCormack predictor-corrector

scheme, the first two operators L_ and L 2 are the two-step ex-
plicit and dimensionally split method that MacCormack and

Warming _3 proposed and Rizzi, et al. s used for nonreacting

flow. The last one, L,., is an implicit modified Euler scheme

that Lomax and Bailey'5 have analyzed and found to be

second-order accurate. Note that this last operator accounts

for chemistry only, while the first two treat only convection
and no chemistry. The splitting procedure, therefore, neatly

segregates these two rather different phenomena.

StabiliD Analysis

Without any approximation, Eqs. (1) may be expressed in

nondivergence form as

Oe Oe &
Ox s +C2 _x., +CI _xl =A(e)

(8)

wherUe-=_s=ihe column matrix with elements e=(c,,p,

w, w2,w3,p). Stability conditions can be determined in the

usual manner _6 from an analysis of the eigenvalues of Ct and

C2. From Lt the condition on the step size 6/( =Ax 2) in the
x 3 direction is

(g H/gSS) '_ ) [v t v3 _ C2COSO '&+_l(q2_c2sin2o),,_/(v3u3-c 2 )]

(9)

where

,
p O,Cl

is the square of the local frozen speed of sound, v'= v.g_/
(gii) ,..__.ui(gii) ,/2 is the component of v along the g_ direc-
tion, and

g= (vlv I +v_v s-2vivscos o) v2

is the component of

and cos o= g I .g3 /(g
v lying in the plane defined by g/and g3
ii g 33) ,/2and

3

gii = E (Oxi/OZm) (3xi/OZm)

ro= l

A similar relation determining 6: also exists for the L 2

operator. The chemical rate operator L, is implicit and a

theoretical analysis using a linearized production term for

A t_ assures that it is unconditionally stable and hence may

be controlled by either of the two explicit step sizes. The
sequence of operators

Uf,_ -_ =L,. (b)L2 (6)L_ (_) U_, (10)

representing Eqs. (6) is stable if the necessary condition

_5< min(61,62) (I1)

is satisfied.

Accuracy Analysis

The sequence in Eqs. (6) is known to be accurate only to the
first order of 6 because of the noncommutativity of the
operators. A symmetric sequence, however,

ujn+ 2 = L _L 2L, L,.L2L _U_, (12),k

can be constructed by reversing the cycle of operators on each
successive step, and in the next paragraph we will show that
second-order accuracy is regained by so doing.

Consider Eq. (8) where _ now is the solution vector

discretized over a computational mesh or net of individual

points. The partial derivative terms C2(O/_x 2) and Cl (0/
Ox z) are represented by the matrices A and B and will later be

approximated by the particular difference scheme that is

chosen. So far, however, the full nonlinearity of Eq. (8)
remains intact, but at this time A must be locally linearized by

A= We+O(6 2) where Wis the Jacobian matrix W= [0A/Oe].

Equation (8) may therefore be written as

[ o 0 ]0e -CI -C2 +W e=[A+B+W]_ (13)
_x_ - aT o7

and further, if CI, C2, and W are constant overx _, the second
derivative in x _ then becomes

0(0)Ox 3 O_ se =[A+B+W] 2e

With the aid of this last assumption the accuracy of sequence

in Eq. (12) will now be analyzed on Eq. (13), although with
more labor it can also be proven that the symmetric sequence

in Eq. (12) maintains the same accuracy as a second-order

nonsplit method for the fully nonlinear problem as well. The

explicit nonsplit MacCormack scheme when applied twice to

T_
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F

Eq. (13) yields the matrix equation

e"+I=[I+26(A+B+W)+ _ (A ?+B 2+w 2

+BA+AW +WA+BW+WB)]en+0(63)

+AB

(14)

and is accurate to second order because it matches the Taylor

series expansion of e through order 6 2. In a similar way the

sequence (10) has the mat rix representati on

(, (,+ w)(,+,.+-- _-A

or

en+I=[I+f(A+BwW+6---2 (A2 +B'_ +W? +2BA+2WB)]e n

+0(6 3 ) (15)

and because of the noncommutativity of the matrices the

terms multiplying 6 2 do not equal those in Eq. (14). Hence,

the sequence is accurate only to the first order. Reversing the

cycle for the next step, however, yields

e"+2=[I+b(W+B+A)+6_ (W ? +B 2 +A ? +2BW+2AW

+2AB)][I+6(A+B+W)+6---2 (A? +B? +W2 +2BA

+ 2WB]e"+ 0((5 3)

(2b) 2= I+26(A+B+W)+----7-- (A2+Be+We+AB

+ BA + AW + WA + BW + WB)] e" +0(63 ) (16)

which is identical to the unsplit expression in Eq. (14) and

"therefore the sequence (12) of mixed explicit and implicit

operators in Eq. (6) is accurate to second order in space.

Multiple Chemical Steps

Splitting the difference scheme does not degrade its order of
accuracy, instead some advantages do accrue. Not only does it
simplif_ the programming but MacCormack and Warming 13

have pointed out that splitting the spatial dimensions in-
creases the computational efficiency by allowing larger in-
tegration steps. The greatest advantage, however, is gained

from separating the fluid dynamical phenomena from those
of chemical kinetics because each of these has intrinsically dif-
ferent rates which they proceed. The convection process, for
example, is slowly varying in space so that a relatively coarse
step 6 can accurately resolve its variation in x _, whereas in

comparison, the chemistry is much more rapidly changing and
cannot be determined accurately through use of the same

coarse step (5even though the calculation is stable for any _5.
To increase the resolution in this case we use a self-

controlling increment routine that takes several fractional
steps of _i,. for each coarse one of 6 and that, following Lomax
and Bailey, _5 checks at each step whether the last integration
has produced a change in c, for the next partial step, and
diminishes it if it has, so that in effect it always tries to ad-
vance with a step size that yields a 10°70 change in the solution.

From our experience in the cases presented here, the chemistry
resolution typically requires five intermediate steps for each

one for the transport process, thus severely increasing the
computational time. Some workers 6'7 have coped with this

burden by solving the chemical rate equation [first row of Eq.

(4)] separately from the others. In their approach they ad-

Fig. 3 Depiction o[ the variable-step procedure for L c. Several of the

smaller chemical steps _5,. match one single larger convective step b.

vance the gas dynamic equations at the usual CFL condition

and then, with mixed explicit and implicit differences, return
to integrate the rate equation using a variable step size similar

tO ours.

While this intuitive procedure seems to give satisfactory

results, it is difficult to determine its order of accuracy and

stability criteria. Segregating the fluid and chemical

phenomena by using the split operators in Eqs. (6) in the

sequence

E

U_ 2 =LI(15)L2(6)H Lc(6c)L2(6)L/(6)U_k (17)
(--1

employing various chemical steps 6,. so that

E

E6,=26
e=l

is a more theoretically sound way of dealing with their dif-
ferent rates. First it is more efficient because it allows all of

the fluid to be convected by operators in Eqs. (6a) and (6b) in

one single, large increment 6, and then remain idle during the

time the chemical operator L, advances repeatedly at the

smaller rate 6,. in order to "catch up" to the flow at 6 (see Fig.
3). While in effect this is similar to what other methods do _'7
it is not identical because those methods advance the chemical

rate equation which contains some convection terms that are

differenced explicitly. Our L, contains no convection terms

and hence eliminates the need for computing these differences
as well as applying their boundary conditions at all in-

termediate points. Furthermore, in contrast to the chemical

rate equation, the split operator L, can be differenced easily

with one implicit scheme that is unconditionally stable. Split-

ting avoids the possible danger of restricted stablity that
Lomax and Barley is warn us can arise with use of mixed dif-

ference expressions.

Computational Mesh Construction

In order for the sequence just described to advance the
solution, the method must first construct the coordinate mesh
network over which to integrate the equations. The coordinate
system (x 1, x ?, x3), which may be nonorthogonal and
unequispaced, is formed by three families of intersecting sur-

faces (Fig. 4). The first one constructed is an arbitrarily
oriented surface x-7= constant at the n + ] step, constrained

only by the CFL condition on 6, and it intersects a second

family x 2 = constant that at each extremity coincides with the

shock** and the body surface and varies in some prescribed
manner in between. The last family, x I =constant, is com-

posed of simple planes and intersects the second at a number
of given angular increments of _. This new marching surface

* *How to determine the location of the shock wave at the new step
is explained in the next section.
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MARCHING SURFACE

INTERSECTINGPLANE xI= CONSTANT

Fig. 4 Definilion of general roordinales x/, x 2, x "_ by the in-
lerseclion of three surfaces.

INTERMEDIATE MARCHING
SURFACES

%; -- -
INITIAL DATA SURFACE

FINAL

SURFACE_

-- _?i?.:-

Fig. 5 llluslralion of position, orientation, and _erlcx angle of
conical dala surfaces for successive steps.

at n + I can be completely general, and for the cases presented
here we have chosen it to be circular conical because this

requires at every step only one parameter for each of the three

aspects of general motion. Translation of the cone is ac-

counted for by the location x of its apex along the body axis,

rotation by the angle d/between its axis and the body's, and,

lastly, dilatation by its vertex angle 0, as illustrated in Fig.ft.
The second series of surfaces, of which the first and last are

the body and shock, partition each cone into a number of con-

tiguous annular segments. Each of these is then intersected by

a plane rotated about the cone axis in specified angular in-

crements. The resulting intersections delineate the coordinate

._.e and are straight lines or rays and complete the definition of

the coordinates x I, x 2, x -_. As the solution proceeds down-

stream, x advances while 0 increases monotonically toward

90* and _b approaches zero so that at the final step the surface

x _ =constant degenerates into a plane normal to the body
axis.

Shock Location and Boundary Conditions

The intersections of the coordinates x I and x e lying in the

marching surface x -_=constant map out a mesh network of
small quadrilateral cells in such a way that the innermost row

lies on the body and the outermost row is aligned with the
shock. This method, termed mesh aligning, has the following

features. For each cell at the outer edge of the mesh, the

pressure p_ just downstream of the bow wave specifies the in-

clination _=g2 of the shock_thr _ ough the steady shock
relations. The surface whose local slope matches this at each

cell is constructed, and it becomes the outer edge of the mesh

for the next step. Although the pressure p_ at the shock is

unknown it can be calculated (see Fig. 6) from the interior

PLANE FOR_

SHOCK SEGMENT_ __

CHARACTERISTIC _DATA AT n + I

C ENTROID _ ?_,_"
OF A

...... _DATA SURFACE AT n

Fig. 6 Determination of lhe bow shock surface using a characteristic

relalion.

values P, by solving for the two unknowns, p_ and ff_,

simultaneously and one local characteristic equation valid in

the plane defined by the freestream v= and _. The solution at

each cell is carried out rapidly by an iterative procedure.
Thus at the outermost row of cells g2 becomes identical to

the outward normal _, and to _b at the body surface. This
situation simplifies imposition of the conditions at the outer

and inner edges of the overall mesh, referred to as entrance

(shock wave) and streamline (body) boundaries. Along the en-

trance boundary the flow variables are held fixed at their
supersonic freestream values. Without modification, the dif-

ference operators (6) then conserve mass and momentum

across the discontinuity. This is precisely the condition used to

derive the Rankine-Hugoniot relations, however, so that in ef-

fect, application of the difference operators across the shock

reduces numerically to the analytic jump conditions. Across

cell faces that lie on the body, no transport is allowed. The
only nonzero variable actually needed at that point in the

calculations is the pressure Pt,, which is related to the flow
properties in adjacent interior cells by a characteristic relation
in a manner similar to that at the shock wave.

Results

Computed results for reacting airflow about a general body

traveling at 6.54 km/sec, Mach number M= = 21.7, and 41 °

angle of attack are presented. The ambient freestream

pressure is p= = 106 dynes/era, the temperature is 7"= --236 K,
and the body is a smooth three-dimensional configiJration

described by a series of third-degree polynomials in plan and

profile views and ellipses in cross section. Between the body

and shock the mesh holds nine cells and around the body in
the meridional direction there are seventeen.

The trace of the bow shock in the plane of symmetry, along
with cross-sectional views at three axial locations, are

displayed in Fig. 7, and clearly illustrate the large asymmetry

of the flow at this high angle of attack. At cross section B-B

the wing of the spacecraft is beginning to protrude out from

the fuselage and grows steadily larger downstream. Figure 8

presents the radial distribution of atomic oxygen Co and nitric

oxide CNO in both the windward and leeward parts of the sym-

metry plane at the three designated axial stations. The high
temperature near the windward portion of the shock wave

sharply enhances the concentration co of atomic oxygen

which then quickly levels off nearer to the body. On the lee

side, however, the shock temperature is much lower and the

main rise in Co occurs halfway between the shock and body,

presumably due to convective transport from the windward

region. For all axial positions, though, the same maximum
v_ue is reached at the vehlcle surface suggesting that the flow

is probably frozen there. The concentration CNO of nitric
oxide also increases dramatically to a maximum directly

behind the windward portion of the bow wave and then falls

!

A=
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Fig. 7 Bow shock shape for reacting flow past a three-dimensional
body traveling at ",velocity r_ =6.54 kin/see, Mach number M_-
= 21.7, temperature T_ = 236 K, pressure p_ = 106 dynes/era z, and

angle of attack = 41°.

rapidly to a minimum at the spacecraft. On the lee side CNo is
small at the shock, and the maximum is achieved roughly mid-

way to the vehicle. The overall nature of the species

distribution is typified in Fig. 9 by the circumferential

variation of Co and CNO along the shock and body in the plane

Z,_: = 16.6 m. Since the bow shock is hottest on the windward
side, the production of both O and NO is also largest there.

Approaching leeward the shock becomes progressively
weaker, and the concentrations of both O and NO fall

precipitously. The same trend, however, does not occur at the
body. Although CNO attains a maximum at about 70* where

the wing protrudes, Co remains curiously constant at a
maximum value around the entire vehicle even though its

production at the lee region of the shock is very low. This in-
dicates that local chemical production plays no role here.

Rather, the convection process predominates; that is, atomic

oxygen is produced at the windward part of the bow shock

and is swept around to the lee side of the body. The vehicle is

in an environment of greatly dissociated oxygen.

For exactly the same flow as in Fig. 7, except that now c_=

30", two temperature plots in the windward symmetry plane

are presented in Fig. 10 and compared with the results from a
method of characteristics computation by Rakich et al. 9 that

are denoted by solid dots. The first part of Fig. 10 presents the

axial variation along the body surface and the second at the

radial distribution between body and shock at zax= 15.7 m.

Both indicate that temperature is a rather slowly changing

property, usually in the range between 4000 K and 6000 K,

although interestingly there is a sharp rise of about 1000 K
near the body. Rakich et ai. found a similar effect and at-

tributed it to an "entropy layer" around the body.
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7. a) Radial distribution of O; b) Radial di_lribution of NO.

Concluding Remarks

The method presented demonstrates that nonorthogonal

curvilinear coordinates can be useful for computing practical

fluid problems and in fact are the underlying basis of the in-

tegral or finite-volume form of the governing equations.

Unlike other marching methods, the finite-volume approach
offers a wider choice of surfaces upon which the initial con-

ditions may lie, and it allows the solution to advance in an ar-

bitrary direction while at the same time it simplifies ap-

plication of the body boundary conditions. Furthermore, this

procedure lends itself to a new scheme of aligning the mesh
with the bow shock, which is simple to implement, accurate,

and consistent with the interior flow. Using the fractional step
routine does not lower a difference scheme's order of ac-

curacy, but rather several benefits are gained. Split difference

operators prove to be very appropriate for handling the di-
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Fig. 9 Circum-
ferential distribution

of O and NO at the

hod) and shock

wave in the plane

Zax =!6.6 m for the
fl0w in Fig. 7.
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Fig. 10 Temperature plots in the windward symmetry plane for flow
identical to that in Fig. 7 except that now _ =30°; a) Axial variation

ahmg the bod) surface; b) Radial variation between body and shock.

verse nature of the chemical kinetics and gas-dynamics

phenomena. In particular, they provide a natural way of

mixing explicit and implicit difference schemes that may use

differing step sizes, and at the same time ease the com-

putational burden. Results from this method are in accord

with those from a characteristics procedure. Furthermore, a

check on the conservation of total oxygen and nitrogen atoms,

expressions independent of the calculations, reveals an overall

error of only about l °70. The computation for the case presen-

ted terminates at about 20 m because the shock wave

generated by the leading edge of the wing collides with the

bow wave and appears to produce a small pocket of subsonic

flow at that point. The space-marching finite-volume method,

of course, is restricted to supersonic flow and another

procedure would be required to compute this phenomenon.
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