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TWO-DIMENSIONAL HIGH-LIFT AERODYNAMIC

OPTIMIZATION USING NEURAL NETWORKS

ABSTRACT

Roxana M. Greenman

Ames Research Center

Artificial neural networks were successfully used to minimize the amount of data required to

completely define the aerodynamics of a three-element airfoil. The ability of the neural nets to

accurately predict the aerodynamic coefficients (lift, drag, and moment coefficients), for any

high-lift flap deflection, gap, and overlap, was demonstrated for both computational and exper-

imental training data sets. Multiple input, single output networks were trained using the NASA

Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coeffi-

cients. The computational data set was generated using a two-dimensional incompressible

Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. In high-lift aerodynam-

ics, both experimentally and computationally, it is difficult to predict the maximum lift, and at

which angle of attack it occurs. In order to accurately predict the maximum lift in the computa-

tional data set, a maximum lift criteria was needed. The "pressure difference rule," which states

that there exists a certain pressure difference between the peak suction pressure and the pres-

sure at the trailing edge of the element at the maximum lift condition, was applied to all three

elements. In this study it was found that only the pressure difference on the slat element was

needed to predict maximum lift. The neural nets were trained with only three different values of

each of the parameters stated at various angles of attack. The entire computational data set was

thus sparse and yet by using only 55 - 70% of the computed data, the trained neural networks

predicted the aerodynamic coefficients within an acceptable accuracy defined to be the experi-
mental error.

A high-lift optimization study was conducted by using neural nets that are trained with

computational data. Artificial neural networks have been successfully integrated with a gradient

based optimizer to minimize the amount of data required to completely define the design space

of a three-element airfoil. This design process successfully optimized flap deflection, gap, over-

lap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with

the optimizer, minimal additional computer resources are required to perform optimization runs

with different initial conditions and parameters. Neural networks "within the process" reduced

the amount of computational time and resources needed in high-lift rigging optimization.





Chapter 1

Introduction

The design of an aircraft's high-lift system is a crucial part of the design phase of commercial

and military airplanes since this system controls the takeoff and landing performance. The

importance of a well designed high-lift system is seen by increased payloads which also

increase the operational flexibility by extending ranges and by decreasing take-off and landing

distances. Traditionally, high-lift designs have been accomplished by extensive wind tunnel and

flight test programs which are expensive and difficult due to the extremely complex flow inter-

actions. Recently, computational fluid dynamics (CFD) has been incorporated in high-lift

design [1]. For high-lift applications, CFD can also be expensive because the entire design

space is large, grids must be generated around geometrically-complex high-lift devices, and

complex flow phenomena must be resolved. The complexity of the high-lift system of a typical

civil transport airplane is shown in Figure 1.1. In order to achieve optimum rapid designs, new

tools for speedy and efficient analysis of high-lift configurations are required. For these tools to

be effective, they need to be functional in all areas of design including wind tunnel, CFD, and

flight.

Figure 1.1 Typical civil transport with complex high-lift system.



1.1 Background

Artificial neural networks are a collection (or network) of simple computational devices which

are modeled after the architecture of biological nervous systems. The ability of neural networks

to accurately learn and predict nonlinear multiple input and output relationships makes them a

promising technique in modeling nonlinear aerodynamic data. Computational fluid dynamics in

conjunction with neural networks and optimization may help reduce the time and resources

needed to accurately define the optimal aerodynamics of an aircraft including high-lift. Essen-

tially, the neural networks will reduce the amount of data required to define the aerodynamic

characteristics of an aircraft while the optimizer will allow the design space to be easily

searched for extremas. Figure 1.2 shows a visual depiction of the agile artificial intelligence

(AI) enhanced design space capture and smart surfing process that is developed. The design

space data source is represented by black dots. In this study, computational fluid dynamics will

be used to generate the data. The entire design space analyzed is shown in the figure with a car-

pet map. The neural network will be able to capture the design space with the small amount of

data that is generated. Next, the optimizer will be able to locate extremas in the design space by

using the captured design space to calculate the path that must be followed to reach a maxima.

The agile artificial intelligence (A_I) design space capture and surfing process is shown in Figure
1.2.

Recently, neural networks have been applied to a wide range of problems in the aerospace

industry. For example, neural networks have been used in aerodynamic performance optimiza-

tion of rotor blade design [2]. The study demonstrated tha-l;ffor several rotor blade designs, neu-

ral networks were advantageous in reducing the time required for the optimization. Failer and

Schreck [3] successfully used neural networks to predict real-time three-dimensional unsteady

separated flowfields and aerodynamic coefficients of a pitching wing. It has also been demon-

strated that neural networks are capable of predicting measured data with sufficient accuracy to

enable identification of instrumentation system degradation [4]. Steck and Rokhsaz [5] demon-

_Objective _ "_,n
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Figure 1.2 Agile AI-enhanced design space capture and smart surfing.



stratedthat neuralnetworkscanbesuccessfullytrainedto predictaerodynamicforceswith suf-
ficientaccuracyfor designandmodeling.Rai andMadavan[6] demonstratedthefeasibility of
applyingneuralnetworksto aerodynamicdesignof turbomachineryairfoils.

Neural networkshavebeenusedat NASA AmesResearchCenterto minimize theamount
of datarequiredto definetheaerodynamicperformancecharacteristicsof awind tunnelmodel
[7-8]. It wasshownthat whenonly 50%of thedataacquiredfromthewind tunneltestwasused
to trainneuralnets,theresultshadapredictiveaccuracyequalto or betterthantheexperimental
data. The successof the NASA Ames neural network application for wind tunnel data
promptedthis currentstudyto useneuralnetworksto minimize the amountof computational
datarequiredto accuratelytrain neuralnetworksto predicthigh-lift aerodynamicsof a multi-
elementairfoil.

1.2 Agile AI-Enhanced Design Process

This paper describes a process which allows CFD to impact high-lift design. This process

has three phases: 1) generation of the training database using CFD; 2) training of the neural net-

works; and 3) integration of the trained neural networks with an optimizer to capture and surf

(search) the high-lift design space (refer to Figure 1.3). In this study, an incompressible two-

dimensional Navier-Stokes solver is used to compute the flowfield about the three-element air-

foil shown in Figure 1.4. The selected airfoil is a cross-section of the Flap-Edge model [9] that

was tested in the 7- by 10-Foot Wind Tunnel No. 1 at the NASA Ames Research Center. Exten-

sive wind-tunnel investigations [9] have been carried out for the Flap-Edge geometry shown in

Figure 1.4. The model is a three-element unswept wing consisting of a 12%c LB-546 slat,

NACA 632-215 Mod B main element and a 30%c Fowler flap where c is chord and is equal to c

= 30.0 inches for the undeflected (clean, all high-lift components stowed) airfoil section.

@

@ DESIGN
DATA

SPACE
SOURCE

I

Figure 1.3 Illustration of AI-enhanced design process.
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tOt°rface
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Figure 1.4 Flap-Edge Geometry and definition of flap and slat high-lift rigging.

Within the CFD database for this flap optimization problem, there are two different slat

deflection settings, six and twenty-six degrees, and for each, 27 different flap riggings (refer to

Figure 1.4b) are computed for ten different angles of attack. Each s/at has a gap of gaps =

2.0%c and an overlap of ol s = -0.05%c. The slat gap is measured from the slat trailing edge to

the point of the main element whose tangent to the surface is perpendicular to the line of mea-

surement. All gap and overlap values in this paper are expressed in terms of percent chord, %c.

The neural networks are trained by using the flap riggings and angles of attack as the inputs and

the aerodynamic forces as the outputs. The neural networks are defined to be successfully

trained to predict the aerodynamic coefficients when given a set of inputs that are not in the

training set, the outputs are predicted within the experimental error. The experimental error of

the total lift coefficient (CI) is +0.02 for C t < 0.95Ct, o_ and _+0.06 for C l __0.95Ct,,o x. Finally,
the trained neural networks are integrated with the optimizer to allow the design space to be

easily searched for points of interest. It will be shown that this agile, artificial intelligence

enhanced design process minimizes the cost and time required to accurately optimize the high-

lift flap rigging.
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This work is presented in the following chapters. The governing equations are presented in

Chapter 2. A description of the numerical approach is presented in Chapter 3, including grid

generation and boundary conditions. Next, the neural networks are discussed in Chapter 4. The

optimizer and the optimization process are described in Chapter 5. Chapter 6 analyzes the

results of the neural networks' ability to learn and predict the aerodynamic performance char-

acteristics and the results of the AI optimization process. Finally, Chapter 7 summarizes the

results and discussion and also presents recommendations.





Chapter 2

Governing Equations

The governing equations of fluid dynamics are derived from three conservation laws of mass,

momentum, and energy. The Navier-Stokes equations were derived independently by Navier

and Stokes in the mid-nineteenth century. Although they were originally derived to include

only the conservation of momentum, it is now customary to include the conservation of mass

and energy in the complete set of the Navier-Stokes equations. The present discussion begins

with a description of the Navier-Stokes equations. Next, a coordinate transformation of the gov-

erning equations is discussed. The Reynolds-Averaged Navier-Stokes Equations, a special form

of the governing equations, are then presented. Lastly, a one-equation turbulence model that is

used to model the turbulent eddy viscosity is presented.

2.1 The Navier-Stokes Equations

The universal laws of the conservation of mass, momentum, and energy are the basis of the fun-

damental equations of fluid dynamics. These conservation laws are used to compose the three-

dimensional Navier-Stokes equations which are the governing equations for a Newtonian fluid.

A Newtonian fluid is a fluid where the stress is linearly dependent on the rate of strain. The

majority of aerodynamic applications deal with air, other gases, or water which are Newtonian

fluids. The Navier-Stokes equations are a set of five coupled, nonlinear partial differential equa-

tions which are the foundation of the science of viscous flow theory [10]. Upon assuming that

body forces and the addition of external heat are negligible the Navier-Stokes equations can be

written in nondimensional conservation law form as

or oF aG ±(aEv aVve3Q + + + _ + + (2.1)
a-7 -_x -_y a z R e _, a x _ "-_-z J

where Q is the vector of conserved mass, momentum, and energy given by
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The inviscid flux vectors, E, F, and G, are defined as

E .,..

pu

pu2+p

puv

puw

.(e + p)u_
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puv

19v 2 + p

pvw

.(e + p)v

G .,..

[ pw

I puwI

I pv wpw 2 + p

L(e + p)_

(2.3)

where 19is density, u, v, and w are the x, y, and z velocity components, respectively, p is pres-

sure, and e is the total energy per unit volume. In equation (2.1), the Reynolds number, Re, is

defined as

p= a**L
Re - (2.4)

_t

Here, a is the speed of sound, L is a reference length, _t is the coefficient of viscosity, and the

subscript _ denotes freestream values. The Reynolds number indicates the relative importance

of inertial and viscous effects in fluid motion. The viscous flux vectors, Ev, Fv, and Gv, are

defined as

EV

01

"fxxl

= 'I,¢x I

'I zx I

_ xJ

Fay "" Gy _

0

'r,xy

T.yy

"f'zy

__y.

0

T,xz

'r,y z

'r,zz

.fSz_

(2.5)

where
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_X

[3z =

Zxx = )_(ux + vr + Wz) + 2gux

T,yy = _,(U x q" Vy + WZ) "t" 2gvy

T,ZZ = _,(U x + _y + WZ) + 2gwz

z_r = zyx = g(u v + vx)

"Cxz = "Czx = g(u z + w x)

"Cyz "- T,zr "- _l.(v z + Wy)

= ]tkPr-l_xe I + u'Cxx + V'Cxy + W'Cxz

= 7kPr-l_yel + U'Cy x + V'_yy + WT, y z

]tkPr-lOze I + U'_zx + V"Czy + W'Czz

The Prandtl number, Pr, is defined as

(2.6)

Pr = gc--2 (2.7)
k

where cp is the specific heat at constant pressure, and k is the coefficient of thermal conductiv-
ity. The Prandtl number is indicative of the relative ability of the fluid to diffuse momentum and

internal energy by molecular mechanisms.

The internal energy, el, and the pressure, p, are given in terms of the other flow variables as

p __

e v2 w2 )e I = __0.5(u 2+ +
P

(y- 1)[e-0.5p(u 2 + v 2 + w2)]

(2.8)

In order to nondimensionalize the variables appearing in equations (2.1) through (2.8), the fol-

lowing procedure was followed: the spatial coordinates, (x, y, z), are divided by a reference

length, Lref ; the velocity is divided by the freestream speed of sound; the density and viscosity

are divided by their freestream values; time is divided by Lref/a _ ; and the pressure is normal-
ized by 9=a 2 . Stokes hypothesis is applied, which states that for a gas the coefficient of bulk

viscosity, _,, can be related to the coefficient of dynamic viscosity, la, by the following relation-

ship

2
)_ = -=g (2.9)

3--

For turbulent flows, equation (2.1) can be considered to be the Reynolds-averaged Navier-

Stokes equations, where the high frequency fluctuations of the turbulent flowfield are time aver-

aged. For turbulent flows, a turbulence model must be used to specify the coefficients of viscos-

ity and heat conductivity which appear in the viscous terms in equation (2.6). This will be

further discussed in Section 2.3. The derivation of the Navier-Stokes equations presented here

11



isforthe three-dimensionalformulationonly,asthe two-dimensional system isan obvious sub-

setof the three-dimensionalsystem.

2.2 Coordinate Transformation

In order to apply the numerical algorithm and boundary conditions easily, the governing equa-

tions which axe developed in the physical domain or Cartesian coordinates, (x, y, z), must be

transformed tothe computational domain or generalizedcoordinates,(4,_, O, as seen inFigure

2.1 [10].In thisstudy,_, "q,and _ are the coordinatesin the axial,circumferential,and radial

= _(x, y, Z, t)

r I = rl(x,y,z,t )

_ = _(x,y,z,t)

\ l

--.-..11

/ \
Body _ /
Surface

Z

PHYSICAL DOMAIN

\
Body
Surface

COMPUTATIONAL DOMAIN

Figure 2.1 Generalized transformation from the physical to the computational domain.

directions, respectively. The general transformation is of the form

= _(x,y,z,t)

rl = rl(x, y,z,t)

; = _(x, y,z, t)

"C=t

(2.10)

and the inverse of the transformation is
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x = x({, n, t, _)
Y = Y(_,rl, t,x)

z = z({, 11,t, x)
(2.11)

The transformation brings the body surface onto one computational plane (_ = 1). The compu-

tational domain is chosen to have equal spacing (A t = Aq = A t = 1) to simplify the differ-

encing. By using the chain rule of partial differentiation, the partial derivatives in the physical
domain become

where xt = 1 and the metrics

rlz, tz, _t, tit, it) that appear

ferential expressions are

az = _z +n_N+ tat

a _ a t_o a25 - L + n,_ + 'at + a-_

(2.12)

"cx, "c), and xz are equal to zero. The metrics ({x, fix, ix, _), 1"1r ty, {z,
in equations (2.12) are obtained in the following manner. The dif-

d_ = _xdx + _,,dv + _zdz + _tdt

dr ! = rlxdX + rlydy + rizdz + qtdt

d E = _xdx + tydy + _zdz + ttdt

dr, = dt

(2.13)

which can be written in matrix form as

LJdq

d_

-_x _y _Z _i

_. 1] x q), 1] z 1] t

;xt:tzt,
0 0 0 1

dy

dz
(2.14)

Similarly,
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IJdy

dz

d

x_ xrl x¢ xx

= Y_ Yq Y¢ Yx

z_ z_ z¢ z.c
0 0 0 1

IJdrl

a¢
d

Therefore

"_x _y CZ _t

l_x 1Jr qZ Tit

Cx Cy Cz¢,
0 0 0 1

.

x_ xrl x¢ x_

= Y_ Yq Y¢ Y_

z_ zq z¢ z.c
0 0 0 1

Thus, the transformation metrics are

¢x = J(yqz¢ -y¢zn)

_y = -J(xqz¢-xCzq)

¢z = J(xqy¢-x;Yq)

qx = -J(y¢z¢-y;z¢)

qy = J(x_z¢-x¢z¢)

qz = -J(x¢y¢-x¢y¢)

Cx = J(y_zq -y_z¢)

Cr = -J(x_z_ -x_z_)

4z = J(x¢yn -xqy¢)

Ct = -X_x- Y_¢y- Zx¢z

TI t - --X.cT! x - Y_qy - z_rlz

4t -- --Xx4x-- Yz4y- Zx4z

where J is the Jacobian of the transformation, defined as

-1

(2.15)

(2.16)

(2.17)

J ...

This may be simplified to

a(¢, q, 4, ,t) _
_(x, y, z, t)

_X Cy CZ _t

1"1x Tly TI z tit

4x 4y 4z 4,
0 0 0 1

14
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s - _(_' n, _) _
O(x,y, z)

_x _y _z

Tlx fly Tlz
(2.19)

which can be evaluated in the following manner

J _,.

1 1

j-I O(x, y, z)

_({, n, ;)

x_ x n x;

- Y_, Yn Y;

z{ z n z;
-1 (2.20)

= [xg(YnZ _ _ y;zn) - xn(y_z _ - y;z_) + x_(Y{Zrl - YnZ{)] -[

The metrics can be determined by using a finite difference scheme in the computational

domain.

Applying this generalized transformation to the Navier-Stokes equations (2.1), the follow-

ing transformed equations are obtained

+ - + +
(2.21)

where the inviscid flux terms are

_. = j-I

9u

O = :1 pv
i

p_

_eA

9V

9uV + rlxp

pvV + "rlyp

pwV + rlzP

.(e + p)V -rltp.

l_=J -1

G=j-I

pU

9uU + {xP

9vU + _yP

pwU + _zP

.(e + p)U-_t_

pW

puW + _xP

QvW + _yp

9wW + _zP

(e + p)W - _tP-

(2.22)

while the viscous flux terms are given by
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Ev = j-1

Fv = j-1

Gv = j-1

0

_xT, xx + _yT, xy 4" _zT.xz

_xT, yx 4- _yT, yy 4-_ZT.yz

_xT, zx 4" _yT, zy + _ZT.ZZ

_x_x + _y_y + _Z_3Z

0

rlxT, xx + TlyT, xy + "qzT, xz

TIxT.y x + 'rlyT.yy + lqzT.y z

YlxT, zx + lqyT, zy + lqzT, zz

1]x_x + lqy_y + 1]z_z

0

;xT'xx + ;y'_xy + ;zT'xz

_xT, yx + _yT.yy + _z_yz

_xT, zx + _yT, zy + _zT, zz

_x_x + _y_3y + _z_z

(2.23)

In equation (2.22) U, V, and W are the contravariant velocity components defined as

u = _,+ _xU+ _yv+ _zw

V = rl t + rlxU + rlyV + rlzW

w = ;, + L:' + _yv+ Lw

(2.24)

2.3 Turbulence Modeling

In order to predict turbulent flows solving the Navier-Stokes equations, closure assumptions

must be made about the apparent turbulent stress and heat-flux quantities. The Boussinesq

approximation, that the apparent turbulent shearing stresses might be related to the rate of mean

strain through an apparent scalar turbulent or eddy viscosity, is used.

The prediction of high-lift aerodynamics is currently a difficult challenge for CFD and

especially the turbulence modeling. Even in two-dimensions, the flow about a multi-element

airfoil is naturally complex. Even though high-lift devices work by manipulating the inviscid

flow, viscous effects are important in predicting the flow field [11].

2.3.1 Spalart-Allmaras Turbulence Model

The Spalart-Allmaras turbulence model [ 12] has been found to be robust enough to run on these

complex problems and within numerical assumptions, it currently appears to be the best choice
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for this high-lift application [11], [13-16]. The Spalart-Allmaras model is a one-equation

model. The Spalart-Allmaras model has a favorable feature that it is "local". The solution at

one point does not depend on the solutions of other points [17]. The Spalart-Allmaras turbu-

lence model has the advantage that it does not need as fine grid spacing near the surface of the

body as the two-equation models do [13].

The Spalart-Allmaras turbulence model solves one transport equation for a non-linear eddy

viscosity variable Z- In the Spalart-Allmaras turbulence model, the eddy viscosity is defined by

v t = vxfvl (2.25)

where

_;3 (2.26)
f vl )_3 + C3vl

The transport equation for _ is given by

D)C _ _[V ((1 + cb2(V)_) 2]D'-7 - %1[ 1 - ft2]_S)_ + • x)V)c) +

Cbl f q()_2+ftlgu2
- V[cwlf w--_ t2J_,_]) V

Here, V is the gradient operator. S and fv2 are defined by

(2.27)

v_
S- S +--_d2f v2

fv2 = 1 )C
1 + )_fvl

(2.28)

where S is the magnitude of the vorticity and d is the distance to the closest wall. The function

fw is given by

- 3 71/6
/l+Cw3|

fw = gkg 6 +"_w3J
(2.29)

where

g = r + Cw2(r 6- r) (2.30)

and
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v_
r- _ (2.31)

SK2d 2

The Spalart-Allmaras turbulence model has a sophisticated transition model which provides

a smooth laminar to turbulent transition at points specified by the user. In equation (2.27), the

transition functions,ftl andft2 are defined as

f °32,_ 2 g2d2])f tl = ctlgtexp_-ctE'-_La +
(2.32)

f t2 = ct3exp(-ct4Z 2) (2.33)

gt = min( O. 1, AU/ o)t_kxt) (2.34)

Here, the term d t is the distance from the field point to the trip point on a wall (which is defined

by the user; the term COt is the wall vorticity at the transition point; AU is the difference

between the velocity at the field point and at the transition point; and Z_C t is the grid spacing

along the wall at the transition location. In this study, the flow is assumed to be fully turbulent

and no transition point is specified. Thus, the transition terms defined in equations (2.32) -

(2.34) are set to zero.

The different constants and functions that appear in equations (2.25) through (2.34) in the

formulation of the Spalart-Allmaras turbulence model are chosen to produce a model which
best simulates the turbulent shear flows. In order to calibrate the turbulence model, empirically

derived relationships and numerical simulations of many different shear flows are used. The

values of these functions and constants are given below.

= 2/3 _ = 0.41

Cbl = 0.1355 ¢b2 = 0.622

¢tl = 1.0 ¢t2 = 2.0

Ct3 = 1.2 ct4 = 0.5

Cwl = Cbl/K2 + (1 +Cb2)/(Y

Cw2 = 0.3 Cw3 = 2.0

Cv! = 7.1

(2.35)

The boundary conditions and initial values for Z must be set before equation (2.27) can be

solved numerically. At a no-slip wall boundary, _ is set to zero. At outflow and wall boundaries

the normal derivatives of Z is set to zero. The ideal value of Z in the freestream is zero. Typi-

cally the initial value of Z at all field points is set to the freestream value. An implicit solution

procedure is used to advance equation (2.27) to the next iteration level. At each iteration, the

updates of the velocity field from the Navier-Stokes solution algorithm and the turbulent vis-

cosity from the turbulence model are computed in an uncoupled manner.

18



Chapter 3

Numerical Methods

In this study the algorithm employed to solve the two-dimensional incompressible Navier-

Stokes equations is the INS2D-UP code reported by Rogers and Kwak [ 18], [19]. The INS2D-

UP code is robust in obtaining steady-state and time-dependent solutions to the Reynolds-aver-

aged incompressible Navier-Stokes equations. All the computations presented in this study are

performed using the steady-state flow option. INS2D-UP uses the approach of artificial com-

pressibility to formulate the equations into a hyperbolic set of partial differential equations. The

convective terms are differenced using an upwind biased flux-difference splitting. INS2D-UP

uses an implicit line-relaxation scheme to solve the system of equations.

A brief description of the method of artificial compressibility will be presented in this sec-

tion. Next, a description of the flux-difference splitting scheme used to compute the convective

terms and the viscous flux terms will be discussed. A derivation of the linear system of equa-

tions that result from the implicit finite difference algorithm will be performed. Then the com-

putational grid generation method will be discussed. Lastly, the boundary conditions that are

applied in this study are presented.

3.1 Artificial Compressibility

The two-dimensional incompressible Navier-Stokes equations are a set of mixed elliptic-para-

bolic partial differential equations (PDEs). In this type of PDE, a disturbance propagates to all

points in the flowfield in a single time step. An iterative solution scheme to solve the equations

at each time step must be used due to the elliptic nature of the equations. INS2D takes the

approach of recasting the incompressible Navier-Stokes equations to a hyperbolic set of PDEs

by using the method of artificial compressibility which was first introduced by Chorin [20].

In the method of artificial compressibility, an artificial compressibility term is added to the

continuity equation. This term vanishes when the steady-state solution is reached, and thus it

continues to satisfy the requirement of the incompressible continuity equation of a divergence-

free velocity field. The modified continuity equation is

Ou Ov
: o (3.1)
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Here, p is the artificial density and x is a pseudo-time for incompressible flow. The modified

continuity equation and the momentum equation is marched in pseudo-time until a steady-state
solution is reached.

The main advantage of adding the artificial compressibility term to the continuity equation

is that now the incompressible Navier-Stokes equations are transposed from an elliptic to a

hyperbolic set of partial differential equations. The equations can be marched in pseudo-time

versus solving them at each iteration. The hyperbolic equations also allow the convective fluxes

to be upwind differenced rather than central differenced. For central difference schemes, artifi-

cial dissipation needs to be explicitly added to the central differenced convective fluxes to damp

out numerical oscillations resulting from the non-linearity of the convective fluxes. The final

solution is affected by the amount of artificial dissipation that is added and thus the correct

amount needs to be prescribed and adjusted for each simulation. An upwind scheme is a natu-

rally dissipative scheme which damps out the numerical oscillations caused by the nonlinear

convective fluxes. Thus by using upwind differencing on the convective terms, many of the

problems associated with central differenced convective terms are avoided. Another advantage

of upwind differenced convective fluxes is that the scheme is nearly diagonally dominant since

it contributes to items on the diagonal of the Jacobian of the residual. The convergence rate of

the algorithm used to solve the system of equations is thus improved.

An artificial equation of state is used to relate the artificial density and the pressure as

shown below

p = 13p (3.2)

where 13is the artificial compressibility factor and is analogous to the square of the speed of

sound in the physical domain. The artificial compressibility factor determines the rate at which

waves propagate. Substituting 15 from Equation (3.2) into Equation (3.1) creates the following

modified continuity equation

Op ov1t,0x+ - 0
(3.3)

Combining Equation (3.3) with the momentum equations leads to the following set of equa-
tions.

b(E - -_0 + + - 0 (3.4)

where the inviscid flux terms are

2o



l
= J-! {xP+UU

L_yp + v u_]

= j-1 rlxp+uV

k'qyp + vVJ

and the viscous flux terms are given by

(3.5)

I ° tF-,v = j-1 _xT, xx + _y_xy

C_xT.yx + _yT.yyl

I °Fv "- 4"j-1 _x_xx Ii v_xv

TlxT.y x + Tly_y

the Jacobian of the transformation, J, in two-dimensions is defined to be

(3.6)

j = 1 _ 1 (3.7)

Note that for incompressible flow the conservation of energy equation is dropped from the

set and only the equations for mass and momentum are considered because the energy equation

does not influence the results for velocity and pressure which are the variables that are of inter-

est when solving an incompressible, viscous fluid.

3.2 Finite Differencing

In the finite difference approach, the continuous problem is discretized so that the dependent

variables are considered to exist only at discrete points. Derivatives are approximated by differ-

ences resulting in an algebraic representation of the partial differential equations. Thus, the

problem involving calculus has now been transformed into an algebraic problem. Most finite-

difference approximations of derivatives are based on Taylor's series expansion. After the par-

tial derivatives in Equation (3.4) are approximated by finite differences, the governing equa-

tions can then be solved numerically. The following sections will discuss the finite difference
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approach that is used in the INS2D-UP code. The approach outlined here follows the develop-

ment by Rogers [21 ].

3.2.1 Metric Terms

Finite differencing is used to approximate the partial derivatives in the coordinate transforma-

tion metrics that are shown in Equation (2.17). In two-dimensions, the metrics terms are simpli-

fied to be

_x = JYrl fix = -JY_

_y =-Jxrl fly = Jx{
(3.8)

In order to ensure freestream preservation on a stationary grid, the metrics must be evaluated

carefully.

The metric terms can be evaluated as defined above if analytic expressions for the inverse of

the transformation (x = x(_, 1"1) and y = y(_, 1"1)) exist. The metric terms are not evaluated

directly using finite difference approximations. Instead, the individual values, x_, xrl, y_, and

yn are evaluated using finite difference approximations. The results are then averaged and sub-
stituted into Equations (3.7) and (3.8) to obtain the metric terms. The partial derivatives are rep-

resented with a central difference approximation with second-order accuracy

(Ox) 1
(X_)i' J -" _ i, j -- "2--'_ (xi + 1, j- Xi- 1, j) (3.9)

The metric terms are evaluated at each grid point and are now averaged with the following pro-

cedure

J
(l_y)i,j = _[(X_)i+ 1,j + (X_)i-1,j ] (3.10)

The other partial derivatives are computed with similar expressions.

3.2.2 Convective Flux Differencing

INS2D-UP uses upwind differencing to follow the propagation of the artificial waves intro-

duced by the artificial compressibility. The upwind scheme provides implicit dissipation which

suppresses any oscillations caused by the nonlinear convective terms. Furthermore, the upwind

differenced flux vector will contribute terms to the diagonal of the Jacobian of the residual

which will make the implicit scheme nearly diagonally dominant and make the numerical code

more robust.

Upwind schemes are one-sided difference operators and are stable only for equations with

single-signed eigenvalues. Whereas, central difference operators lead to schemes that are

simultaneously positive and negative characteristic speeds or eigenvalues. The governing equa-
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tionshaveeigenvaluesof mixedsignsin theflow regimesstudiedandthustheflux vectorsmust
besplit prior to usingtheone-sidedspatialdifferenceoperators[22]. Althoughit is morecostly
to useupwindflux differencingthancentraldifferencing,thereis a significantdecreasein the
total computertimerequirementsbecauseof thespeed-upin convergence.

The schemethatisusedis developedby Roe [23] which is anapproximateRiemannsolver
for thecompressiblegasdynamicsequations.The upwindschemeis derivedfrom one-dimen-
sionaltheoryandis thenappliedseparatelyto eachof thecoordinatedirections.Flux-difference
splitting is usedto structurethedifferencingstencilbasedon thesignof theeigenvaluesof the
convectiveflux Jacobian.

The derivative of the convective flux in the _ direction is approximated by

hi +1/2- El- 1/2
= At (3.11)

where i is the discrete spatial index for the g direction and E:i + 1/2 is a numerical flux given by

El+ 1/2 = _[]_(Qi + 1) + m(Qi) - ¢_i+ i/2] (3.12)

where the dissipation term is denoted by _i+ 1/2" If _i+ 1_'2 = 0 then the differencing repre-

sents a second-order central-difference scheme. A first-order upwind scheme results when

¢_i+ 1/2 = AEi + 1/2- AEi-+ 1/2 (3.13)

where AE +-- is the flux difference across positive and negative traveling waves. The flux differ-

ence is computed by the following equation

-4- "4-

AEf+ 1/2 = A-(Q)AQi+ 1/2 (3.14)

Here, the A operator is

AQi+ 1/2 = Oi+ 1 - Qi (3.15)

The plus Jacobian matrix has only positive eigenvalues whereas, the negative Jacobian matrix

has only negative eigenvalues. They are computed from

-4.-

where A-

A +- = XA--X -1 (3.16)

+

and A - are the matrices of either positive or negative eigenvalues and eigenvec-

tots, respectively. Now that flux vector splitting has been performed, the appropriate one-sided
scheme can be used.
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3.2.3 Viscous Flux Differencing

The viscous flux terms in Equation (3.6) contain partial derivatives that need to be approxi-

mated with finite differencing. A second-order accurate central difference scheme is used in the

INS2D-UP code to approximate the derivatives in the viscous flux terms as shown below

= 1,:- j
_ Ji, j 2A_

SFv_ (Fv)i, j + 1 - (Fv)i, j- 1

"_)i,j -" 2Arl

(3.17)

The turbulent viscosity appearing in the viscous flux vectors must be computed at each grid

point and at each step in pseudo-time using the turbulence model.

3.2.4 Pseudo-time derivatives

A marching scheme in pseudo-time is used until a steady-state solution is obtained. Since accu-

racy is not required in pseudo-time, a first-order implicit Euler differencing scheme can be used

to represent the partial derivatives of (_ with respect to the pseudo-time x. Using an implicit

differencing scheme eliminates the restriction on step size in pseudo-time that the explicit

scheme contains to maintain stability. To begin, Equation (3.4) is rewritten as

"---_ = -R (3.18)

where R is the residual vector and is equal to

R _(1_ - l_v) b(_" - _'v) b(G - Gv)- + + (3.19)

Next the implicit Euler scheme is applied to Equation (3.18)

Qn+l_Qn _ R n+l

JA"c
(3.20)

where n represents the pseudo-time level and

Q : J0 (3.21)

To linearize the right-hand-side of the above equation, a Taylor's series expansion is written

and truncated after the first two terms. The chain rule for partial differentiation is also used

which yields

24



A (aR "= R" - raRvvaQ 
R "÷l = R n + _.o_x j + A_ _--_) _--_--) (3.22)

,"o3R\ n n + 1

Rn+l = Rn+_-Q)(O _Qn) (3.23)

Substituting Equation (3.23) into Equation (3.19) and rearranging yields the following linear

system of equations

I_A_ I t'0R'_n-I n+l _R n+____) j(Q _Qn) ._
(3.24)

INS2D-UP provides many different schemes that can be used to solve the linear system of

equations shown in Equation (3.24). The implicit method that is used in the present study is the

Generalized Minimal Residual (GMRES) method [24]. The convergence of this method is

dependent on the eigenvalue distribution of the matrix being solved. The system of equations

must be preconditioned to speed up convergence. The Incomplete Lower-Upper (ILU) factor-

ization scheme with zero additional fill is used. Rogers [24] found that the GMRES with the

ILU preconditioner outperformed both the point relaxation and line relaxation schemes.

3.3 Computational Grid

The finite-difference approach requires calculations to be made over a collection of discrete

grid points. The arrangement of these discrete points throughout the flow field is called the grid.

The composite grid around the three-element airfoil is generated by using OVERMAGG [25]

which is an automated script system used to perform overset multi-element airfoil grid genera-
tion.

3.3.1 Grid Generation Procedure

The automation process that OVERMAGG uses to generate the volume grids is described here.

OVERMAGG takes as input the surface definition of the individual elements of the airfoil.

Then it creates a surface grid for each individual element by generating and redistributing

points from the given surface definition. It calls the HYPGEN code [26] to generate volume

grids about each element. The finite difference volume grid is generated in the normal direction

of the surface by solving a set of hyperbolic partial differential equations. OVERMAGG also

automatically calls the PEGSUS code [27] to unite the individual volume grids into an overset

grid system which is the final output of OVERMAGG. Details of HYPGEN and PEGSUS
codes can be found in the References cited.

The PEGSUS code is used to implement the Chimera overset grid method. The Chimera

overset grid scheme unites the individual grids into a single multi-zone grid. The overset grid

method requires only that neighboring grids overlap each other. Points from the main, slat, or

flap grids which were generated independently, may fall inside the body boundary of another

element. These points must be removed from the calculation. When this happens, a hole is cut
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to remove the points. This creates boundary points (or fringe points) at the edge of holes in

addition to the existing individual grid outer boundaries. The fringe points are employed in this

study for all grids. Flow variables are updated at hole and outer boundary points by tri-linear

interpolation. The PEGSUS code identifies hole boundaries and determines the interpolation

stencils. Figure 3.1 shows the grid system that is used for numerical prediction of the flow field
about the multi-element airfoil.

3.3.2 Grid Sensitivity Study

A grid resolution study is conducted to determine the grid density required to solve the

physical flow features. The grid sensitivity study is conducted for a slat setting of 5 s = 6.0, gaPs

= 2.0%c, ol s = -0.05%c and a flap setting of 5f = 40.0, gapf = 1.45%c, olf = 1.24%c. Four dif-

ferent grids are used in the computations and the different grid densities are shown in Table

3.1 :. The number of grid points were increased on the bodies, wakes, and coves for each ele-

ment. For the fine grid system, a total of 121,154 grid points are used consisting of a 242 x 81

C-grid around the slat; a 451 x 131 C-grid around the main element; and a 351 x 121 embedded

grid around the flap which is used to help resolve the merging wake in this region. The normal

wall spacing for all grids is 5 x 10 -6 chords.

The computed lift coefficient versus angle of attack for each grid system is shown in Figure

3.2. This figure shows that there is not much difference between the solutions generated on the

different grid systems. However, if the lift coefficient is plotted against the drag coefficient as

shown in Figure 3.3, there are differences in the solutions. Coarse grid computations predict

higher drag coefficients than the other calculations. Medium grid computations under predict

the drag coefficients when compared to the intermediate and the fine grid solutions. The differ-

Figure 3.1 Grid around three-element airfoil (every other point shown for clarity).
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Table3.1: Griddimensionsusedfor grid sensitivitystudy

Grid
Density

Coarse

Medium

Intermediate

Fine

Slat

x y

121 41

161 61

242 81

242 81

Main

x y

401 121

501 141

401 121

451 131

Flap

x y

141 51

311 111

351 121

351 121

Total
Points

60,673

113,153

110,594

121,154

encein thegrid point distributionbetweentheintermediateandfinegrid systemis in the main
element.It appearsfrom Figure3.3 thataddingtheextrapoints in themain elementis benefi-
cial. Similar resultswereobtainedin a grid resolutionstudyconductedto quantify thenumber
of grid pointsnecessaryto obtainaccuratesolutionsfor a multi-elementconfiguration[13].The
finegrid densityis usedin theremainderof thisstudy.

3.4 Boundary Conditions

Implicit boundary conditions are used at all of the boundaries, thus allowing the use of large

time steps. In this numerical simulation, the boundary conditions applied to all solid surfaces

5.5

C 1

4.5

3.5

2.5
0.0 30.0

f z5........A medium

)_¢z o-- -- o intermediate

l x- - - × fine

10.0 2O.0

angle of attack

Figure 3.2 Comparison of lift coefficient for grid sensitivity study.
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Figure 3.3 Comparison of lift coefficient versus drag coefficient for grid sensitivity study.

are no-slip boundary condition. For a viscous no-slip surface, the velocity is specified to be

zero, and the pressure at the boundary is obtained by requiring the pressure gradient normal to

the wall to be zero. The boundary conditions used for inflow and outflow regions in INS2D-UP

are based on the method of characteristics (refer to Reference 21 for a complete description).

The outflow boundary uses extrapolated velocity and constant static pressure. The inflow

boundary condition is prescribed with uniform velocity and constant total pressure. Wake-cut

boundaries are required since a C-grid topology is used. Wake points are updated by a first

order averaging of the points on either side of the wake cut. As mentioned, PEGSUS is used to

obtain boundary conditions at grid boundaries that overlap neighboring grids.

28



Chapter 4

Neural Nets

Although there has been research in developing and applying neural networks in the last fifty

years, it is only recently that neural networks have been getting popular for engineering appli-

cations. Significant research in neural networks is being conducted in neurobiology, biology,

cognitive science, computer science, optics, physics, statistics, and engineering including aero-

space engineering.

A discussion of biological neurons is presented in the next section. Next, the artificial neu-

rons are defined and compared to the biological neurons and the artificial neural networks are

discussed. A brief history of neural nets is then outlined followed by two current applications of

neural networks. In addition, neural network operations are presented. The algorithm that is

used in this present study to train the neural nets will be derived including a development of the

nonlinear least square optimization of the problem. Lastly, the architecture of the neural net-

works used in this current study is described.

4.1 Analogy to the Human Brain

Humans and computers are good at completing different tasks. A human can recognize objects,

colors, and details, whereas the most powerful computer can not compete with the human per-

formance at this task. Likewise, there are computers that can perform calculations in one sec-

ond that would take a human 406 years to perform [28]. Computers and humans excel at

different tasks because their nervous systems are different. A computer is usually composed of

one processor that executes commands in the order written by a programmer. The nervous sys-
tem of a human being contains over 100 billion (1011) neurons and 1014 synapses in the human

nervous system [29]. The human brain performs simple computations without the help of a pro-

grammer. The human brain neuron's switch time is about a few milliseconds which is about a

millionfold times slower than current computer elements, however, it has a thousandfold

greater connectivity than today's supercomputers [30].

Neural networks are designed to simulate the human nervous system. They are a collection

or network of simple computational devices which are modeled after the architecture of the bio-

logical nervous systems. In order to understand the artificial neural nets, the biological nervous

system will be briefly described.
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Thebuilding block of thenervoussystemandespeciallythebrain is theneuron.A neuron
is amicroprocessingunit.Eachneuronreceivesandcombinessignalsfrom manyotherneurons
throughstructurescalleddendrites.The dendritewill activatethe firing of the neuronif the
combinedsignal is strongenough.Theneuronthenproducesanoutput signalandthepathof
the signalis along theaxon which is a componentof the cell. This simpletype of transferis
basedonchemicalreactionsbut thereareelectricalsideeffectsthat aremeasurable[31].

The brain containsover 100billion neuronsdenselyinterconnected.The neuronsandthe
interconnectionsynapsesarethekeyelementsfor neuralinformationprocessing[32].Theaxon
which is theoutputpathof a neuronsplitsupandconnectsto thedendriteswhich arethe input
pathsof otherneuronsthroughajunction referredto asa synapse.Someneuronscommunicate
with only a few otherlocal neuronsandon thecontraryotherneuronscommunicatewith thou-
sandsof otherneuronswhich mayor maynot becloseby.Figure4.1 showsthebasicstructure
of biological neurons.Moreprecisely,theneurongeneratestheactionpotentialandpropagates
this downthe branchesof axons,whereaxonalinsulatorsrestoreand amplify the signalas it
propagatesuntil it arrivesat a synapse.The transmissionacrossthis junction is chemicaland
theamountof signalthat is transferreddependson theamountof neurotransmittersreleasedby
theaxonandreceivedby thedendrites.This strengthreferredby thesynapticefficiencyis what
is modifiedwhenthebrainlearns.Thesynapseandtheprocessingof informationin theneuron
producethebasicmemorymechanismof thebrain.

4.2 Artificial Neural Nets

4.2.1 Basic Structure of Artificial Neurons and Neural Networks

Artificial neural networks simulate human functions such as learning from experience, general-

izing from previous to new data, and abstracting essential characteristics from inputs containing

irrelevant data [33]. In an artificial neural network, the unit analogous to the biological neuron

Synapse

_ _. __drite_ _ __i,,_..,_ -

Figure 4.1 Structure of biological neurons [29] (reproduced with permission of Prentice-

Hall, Inc., Upper Saddle River, NJ 07458).
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is known asa processingelementwhich maybe referredto asa PE.A singleprocessingele-
menthasmanyinputpathswhicharecomparableto thedendritesin thebiological neuron.The
processingelementcombinesthe valuesof the input pathsby somemethod.Summationsare
usuallyusedto combinetheinput valuesof theprocessingelement.Oncethe input valuesare
combined,thereis an internalactivity level for thePE.Thecombinedinput is furthermodified
by atransferfunction.Onetypeof transferfunctionis a thresholdfunction where information
only passesalongif the combinedactivity level reachesa specifiedor givenvalue.A second
typeof transferfunction is acontinuousfunctionof thecombinedinput [34]. The outputvalue
of the transferfunction is generallypasseddirectly to the outputpathsof the processingele-
merit.

The input pathsof theprocessingelementscanbeconnectedto outputpathsof otherpro-
cessingelementsthroughconnectionweights.The valuesof the connectionsweightscorre-
spondto the strengthof the neuralconnections.Eachconnectionhasa correspondingweight,
thusthesignalson theinput pathsto aprocessingelementaremodifiedby the weightsbefore
they arecombinedor summed.Therefore,the summationfunction is a weightedsummation.
Figure4.2showsasimpleartificial neuronmodelwherex i and w i are the inputs and connection

weights, respectively. In this figure, the analogous biological terms are shown in parentheses.

In the past, neural network research primarily concentrated on simple neural networks with

just one layer of output units which where either linear or nonlinear. In the early development
of neural networks, researchers understood that these simple neural networks could not accu-

rately predict the complexity of real-world problems. Many researchers such as Widrow and

Lehr [35] proposed using more complex neural network architectures in order to overcome the

deficiencies of the single-layered neural network. Neural networks became popular after the

introduction of multi-layered neural networks [36]. In a multi-layered neural network, there are

one or more hidden layers in-between the input layer and output layer. A hidden unit may be

weights

xl ___ (dendrites)

w-2 , .....
o.t

(synapse)
inputs

Figure 4.2 Simple artificial neuron model or processing element. The analogous biological

neuron terms are shown in parentheses.
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connectedto an input, output, and/or another hidden unit in a different hidden layer [37]. A

fully connected multi-layered neural network with two input neurons, two hidden layers with

three neurons in each layer and one output neuron is illustrated in Figure 4.3. In a layered neu-

ral network, neurons in every layer are associated with neurons in the previous layer only. Thus,

the signal flows from one set of neurons to another set of neurons.

4.2.2 History of Neural Nets

Neural networks can be traced back to neurobiology in the 1800's. For many decades, scientists

were interested to find out how the human nervous system and other types of nervous systems

function. Researchers were trying to answer how nerves are stimulated, how much current is

needed to stimulate nerve cells, and how nerve cells communicate. Not until the mid-twentieth

century could scientists hypothesize or answer these questions and many others. Psychologists

were also interested in understanding how humans and animals perform certain tasks, such as

learning, forgetting, and recognizing. Many psycho-physical experiments helped scientists

understand how individual or group of neurons work [30].

A brief outline of the history of neural networks is given here for completeness; further

details can be found in the references cited. Rashevsky [38] initiated studies of neurodynamics

in 1938. He used differential equations to represent activation and propagation in a neural net-

work. McCulloch and Pitts using binary threshold functions invented the first artificial model of

x1

v

I i

I I

I I

I I

I I
I

Yl
v

X2

v

input layer

I

I I

I I

I I

I I
I I

hidden layers output layer

Figure 4.3 A neural network with two hidden layers.
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the biological neurons in 1943 [39]. In 1949, Hebb published his very influential book, The

Organization of Behavior [40], and introduced his famous learning rule which repeated activa-

tion of one neuron by another and across a particular synapse. In 1954, Gabor invented the

"learning filter" that used gradient descent to obtain the optimal weights that will minimize the

mean squared error between the predicted value and the observed value [41]. In 1958, Rosenb-

latt [42] invented the "perceptron" introducing a learning method for the McCulloch and Pitts

[39] neuron model.

Widrow and Hoff [43] in 1960 introduced the Adaline, Adaptive Linear Neuron, which is a

simple network trained by a gradient descent rule to minimize the mean squared error. The

Adaline and a two-layer neuron called the Madeline, Multiple Adaline, were used for a wide

range of applications including speech recognition, character recognition, weather prediction,

and adaptive control. Widrow used the adaptive linear element algorithm to create adaptive fil-

ters. These filters eliminated echoes and noise on telephone lines. This was the first time that

neural computing systems were used to solve a major real-world problem.

Rosenblatt in 1961 proposed the "backpropagation" scheme [44] for training multilayer

networks. His attempt was unsuccessful because he used non-differentiable node functions.

Marvin Minsky and Seymour Papert from MIT's Research Laboratory of Electronics, began

their research on an in depth critique of the perceptron. Misky's and Papert's book, Perceptron

[45], on the limitations of the simple perceptrons was published in 1969. The work contained a

detailed mathematical analysis of an abstract version of Rosenblatt's perceptron. They stated

that multi-layer neural networks have the same limitations as single-layer neural networks. This

resulted in a drastic reduction in funding and support for neural networks research.

The next two decades led to new research in neural networks where several different types

of studies were completed. One of the major accomplishments in this era was the combination

of many neurons into neural networks. Also, learning rules applicable to large neural networks

which were mostly based on gradient descent were developed. The major contributors were

Dryfus in 1962 [46], Bryson and Ho in 1969 [47], Anderson between 1972 and 1977 [48]-[49],

Werbos in 1974 [50], Grossberg in 1977 [51], McClelland and Rumelhart in 1986 [52], and

Kohonen [53].

Since gradient descent is often not successful in obtaining a desired solution, random, prob-

abilistic, or stochastic methods such as Boltzmann machines were developed by Ackley, Hin-

ton, and Seynowski in 1985 [54]; Kirkpatrick, Gelatt, and Vecchi on 1983 [55]; and many

others. Hybrid systems which are a combination of neural networks and non-connectionist

components were developed in 1986 by Gallant [56] and again many others contributed to this
research.

4.2.3 Current Applications of Neural Networks

Currently, there are many governmental, industrial, and academic research groups performing

work in neural networks development and applications. The research is being conducted in a

wide range of disciplines. For instance there is current work in neurosciences, cognitive psy-

chology, physics, computer science, mathematics, and engineering. In this section two exam-

ples of current applications of neural networks pertinent to aeronautical and aerospace research
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arediscussed.Severalotherexamples[2-8] werepreviouslydiscussedin Chapter1.

First, asimplerobot is "taught"thephysicalcharacteristicsof thehumanbrainwith the aid
of neuralnetworks[57]. Thetestbedconsistsof modifiedsurgicalhardwarewith arobotic mul-
tisensorprobe,a computer,andneuralnet software.The probeis equippedwith tiny sensors
includingapressuresensor.Theprobeentersthebraincarefullyandgentlylocatestheedgesof
tumorswhile preventingdamageto critical arteries.Brain tumorstypically haveadifferentden-
sity thannormalbrain tissues.Dr. RobertMah andhis colleaguesin their early researchsuc-
cessfullyusedtofu which is afoodmadefrom soybeansandwith a consistencyverysimilar to
brain tissue,to model thebrainandto teachtheneuralnetswhata normalbraintissueis. Next,

they used a special gel and noodles to simulate brain tissue and blood vessels during their

research. In the future, this research will aid surgeons and astronauts to perform surgery in

space.

Second, scientists at NASA Ames Research Center and Boeing/McDonnell Douglas Air-

craft Corporation are developing neural net software [58] that will allow airplanes that suffer

major equipment failures or explosions to be flown and land safely. In a catastrophic problem

such as damaged wings, fuselage holes, and sensor failures, the aircraft will handle differently

and sometimes the controls will not function properly or at all. Neural net software will allow

the aircraft's computer to "relearn" to fly the damaged aircraft correctly in less than one second.

Aircraft sensors send velocity, direction, and force data to the computer program. Then the pat-

tern of what is actually occurring is compared with a pattern showing how the aircraft should

fly. When there is a mismatch in the patterns, the neural net software, which contains aeronauti-

cal stability and control equations, determines the correct pattern that the aircraft should fly

under the new conditions and adjusts the how the aircraft should fly.

4.3 Neural Network Operations

In neural networks, there are two main phases in the operation: learning and recall. In most

neural networks, these two phases are distinct.

Learning is the first phase and is the process of adapting or modifying the connection

weights in response to stimuli from the input layer or optionally the output layer. A stimulus

presented at the output layer corresponds to a desired response to a given input. This desired

response must be provided by a knowledgeable teacher [31 ]. This is known as supervised learn-

ing. Unsupervised learning is when there is no desired output shown.

Whether supervised or non-supervised learning is used, an essential characteristic of any

network is its learning rule. The learning rule determines how weights adapt in response to a

learning example. To learn, a network may require many examples to be shown once or many

thousands of times. The parameters that govern a learning rule may change over time as the net-

work learns. The long-term control of the learning parameters is referred to as the learning

schedule.

The second phase in the network operation is recall. Recall refers to how the network pro-

cesses a stimulus presented at its input layer and creates a response at the output layer. Often
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recall is anintegralpartof thelearningphase.For example,whena desiredresponseof the net-
workmustbecomparedto theactualoutputof thenetworkto createanerrorsignal.

4.4 Levenberg-Marquardt Algorithm

There are many types of algorithms that can be used to train neural nets. An effective algorithm

is the Levenberg-Marquardt algorithm. Levenberg [59] and Marquardt [60] independently

developed an elegant algorithm for the numerical solution of finding a local minimum of the

non-linear least squares problem. The Levenberg-Marquardt algorithm evolves from a steepest

descent algorithm to a quasi-Newton algorithm as optimization proceeds. In the method of

steepest descent, the search direction from a point is along the negative gradient direction at the

point [61]. In a quasi-Newton method (also referred to as a variable metric method), the Hes-

sian matrix which is the matrix of second partial derivatives and which may be difficult to eval-

uate, is replaced by a symmetric positive definite matrix which is updated in each iteration

without the need for matrix inversion [61]. The Levenberg-Marquardt algorithm has been suc-

cessfully used to train artificial neural networks [8], [62] - [63]. The Levenberg-Marquardt

algorithm is used in this present study to train the artificial neural nets. In order to understand

the algorithm, the nonlinear least squares optimization problem will be briefly discussed below,

followed by a derivation of the Levenberg-Marquardt algorithm.

4.4.1 Nonlinear Least Squares Optimization Problem

In a neural network, each neuron or processing element produces its output by computing the

inner product of its input signal and weight vectors and by passing the result through a nonlin-
ear function.

In training neural networks, the error criteria that is mostly used is the minimization of the

sum of squares of the error function. The error function for a network with M outputs and K

pairs of input and desired output presented to the network is

K M
1 2

EK = 722 _, [d(m)-y(m)]r (4.1)
r= Ira= 1

where the d and y denote the desired and actual outputs of the network, and the subscript r

shows their dependence on the rth input presentation.

In a feed-forward network, the input pattern is presented and propagates forward through

the network. Each processing element computes its output value using the prespecified set of

input weights. For the case of a network consisting of L layers and the/th layer contains N l pro-

cessing elements, the Lth layer is the output layer and the zeroth layer is the input layer. Then

each PE computes its output according to the following equations for I = 1 ..... L and i = 1,..

.N/
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I}xi= g +0 (4.2)

l

Here, x I denotes the output of the ith PE belonging to the Ith layer and Wni is the weight of the
connection between the nth PE of the (I - 1) 1.ayer and the ith PE of the lth layer. The function g

is a nonlinear function, usually sigmoidal, oti is the threshold of the ith PE of the/th layer. It

controls the processing element's output when there are no signals to its input. In the following

discussion, the thresholds will be treated as weights that connect an input to the PE and the

threshold will always be on, thus its value will be one [62].

w I , will be defined to contain all input weights to the ith PE of the/th layerNext, a vector,

and the threshold.

Ew 1l l t (4.3)
Wi = ..li .WNt_I i 0

Likewise, create a vector, x l, which contains the outputs of all PE in the lth layer and an addi-

tional element set equal to one.

Ix 1]l l t (4.4)
X = 1 ""XN I

Now, equation (4.2) can be rewritten as follows

xlg{ wl,T x,,t (4.5)

Next, define a vector, w, consisting of all the weights w I in the network. At a global or local

minimum of equation (4.1), the condition that the derivatives of this function with respect to w

be zero must be satisfied. Forming these derivatives, the following system of nonlinear equa-

tions for I = 1..... L and i = 1..... N t

K M

:I=ZZ
r=lm=l

F 8y(m)-
[d(m) - y(m) ]rTI -

[ L awl
- 0 (4.6)

F

where the dimension of vector fl is (NI. I +1). Now form a global vector F, consisting of all

vectors ft i" An iterative technique can be used to solve the system of nonlinear equations

shown above in equation (4.6). For example, the Levenberg-Marquardt algorithm is an iterative

technique that has been shown to successfully solve nonlinear equations [8], [62] - [63].
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4.4.2 Derivation of the Levenberg-Marquardt Algorithm

In the nonlinear least squares problem, the objective function that is being minimized is in the

form of a sum of m squared terms

m

T
f(x) = Z[ri (x)]2 = r r (4.7)

i=1

where r = r(x). In solving this problem, the complicated step of finding the non-positive Hes-

sian matrices that is required in Newton's method is avoided in the Levenberg-Marquardt algo-
rithm.

A quadratic model of the objective function, f, can be obtained from a truncated Taylor

Series expansion off(x) about (xk), which can be written as

1. TG(k) _
f(x _ + 5) = q(k)(8) = f(k) + g(k)r_ + _O (4.8)

q(k)(8) is the resulting quadratic approximation for iteration k. The superscript T denotes the

transpose. Here, 5 is the correction to x (k) defined as

and g(x) is the gradient vector

= x-x (k) (4.9)

g(x) = Vf(x) (4.10)

where V is the first derivative operator (O/_xi) and G(x) is the Hessian matrix (second deriva-

tive matrix)

G(x) = vEf(x) (4.11)

Next, assume that some neighborhood f_(k) of x (k) is defined where q(k)(8) agrees with

f(x k + 8). Then it would be appropriate to choose

where the correction 8(k)

x(k+ l) = X(k) + 8(k)

minimizes q(k)(_) for all x (k) +

(4.12)

in f2 (k) . This type of method is

referred to as a restricted step method since the step is restricted by the region of validity of the

Taylor Series. if2(k) can not be defined in a general manner. Thus, it is convenient to consider

the case
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(4.13)

and to find the solution 8 Ck) of the resulting subproblem

minimize q(k)(8) subject to 11811-< h (k) (4.14)

which can be solved for certain types of norms [64].

When the restricted step method of equation (4.14) is defined in terms of the L e norm, the

method is characterized by solving a system

(G(_) + vl)8(_) = _g(k), v > 0 (4.15)

in order to determine the correction 8 (k) . Here, I is the Identity matrix and v is a scalar. Leven-

berg in 1944 and Marquardt in 1963 independently developed an algorithm to solve the nonlin-

ear least squares problem by approximating G (k) by

G(x) -- 2AA r (4.16)

where

A(x) = [Vrl,Vr 2.... ,Vrm] (4.17)

is the n x m Jacobian matrix. The columns of A are the first derivative vectorsVri of the com-

ponents of r (Aij = _)rj/3x i ).

The solution of (4.15) using the L 2 norms can be expressed

1 t_TG(k)_ g(k)T 8minimize 8" q(k)(8) = __ + (4.18)

subject to 878 < h (k)2 (4.19)

and it is assumed that h (k) > 0. It can be proven that the correction _iCk> is a global solution of

(4.18) if and only if there exists v > 0 such that (4.15) holds. Thus,

v(h (k)2- 8(k)rs(k)) = 0 (4.20)

and G (k) + vI is positive semi-definite. Moreover, if G (k) + vl is positive definite then 8 (k) is

the unique solution of (4.18).

Therefore, the Levenberg-Marquardt algorithm finds a value v > 0 such that G Ck_+ vl is
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positive definite and solves (4.15) to determine _(k). This leads to the following algorithm [64]

for the kth iteration:

(i)given x (k) and v (k) , calculate g(k) and G(k);

(ii)

(iii)

(iv)

(4.21)

factorize G (k) + VI : if not positive definite, reset v (k) = 4v (k) and repeat;

solve (4.15) to give _(k);

evaluate f(x (k) + _i(k)) and hence r (k) ;

(v) if r (k) < 0.25 set v (k + 1)

ifr (k) > 0.75 set v (k+ 1)

otherwise set v (k+ 1)

(vi) if r (k) < 0 set x (k+ 1)

= 4v (k)

= V(k)/2

__ V (k) ;

= x (k) else x (k + 1) = x(k) + _(k)

Initially, v (1) > 0 is chosen arbitrarily. It should be noted that the parameters in step (v) are

arbitrary. In the present study, the values that are shown in the above algorithm are used in

training the neural networks.

4.5 Architecture of Neural Networks

The architecture of the neural networks in this study is a two-layer network with tangent hyper-

bolic activation functions in hidden layer units, and a linear transfer function in the output unit

[7]. It is found that a two-layer neural network is easier and faster to train than a single-layer

network [63]. Individual 4-input, 1-output networks are used to model each of the desired aero-

dynamic coefficients. A NASA Ames variation of the Levenberg-Marquardt training scheme is

used because it provides better accuracy than all schemes tested including the back-propagation

training method [63]. The single output networks for each of the aerodynamic coefficients yield

more precise modeling than multiple-output networks [4] and [8]. The neural network contains

15 nodes in the hidden layer and Figure 4.4 shows a sketch of the architecture.

The four independent input variables are flap deflection (By), gap, overlap, and angle of

attack (o0 as illustrated in Figure 4.4. The outputs are lift, drag and moment coefficients (C l,

Cd, and Cm) and the lift-to-drag ratio, L/D. Thus, four different neural networks are used to

train and predict each of the outputs.
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Chapter 5

Optimization

Optimization can be defined as the science of determining the best solutions to certain mathe-

matically defined problems, which are often models of physical reality. Recently, there has

been significant increase of interest in the use of formal optimization techniques to improve

aeronautical and aerospace vehicles. In order for these optimum designs to be useful, it is nec-

essary to couple advanced and often complex analysis techniques inside the optimization pro-

cedure. In this study, computational fluid dynamics and neural networks are used in conjunction

with a gradient-based optimizer to improve the high-lift aerodynamics of an airfoil.

A brief description of the different types of optimization methods that are available will be

discussed in this chapter. The optimizer which is used in this study will then be presented

including a brief description of the algorithm. Lastly, the optimization with neural networks

procedure that is applied will be explained.

5.1 Optimization Methods

In the past, there have been many approaches in developing aerodynamic numerical optimiza-

tion to improve aircraft performance [65]-[66]. Most of these methods involve coupling some

type of optimizer with an aerodynamic analysis code. The aerodynamic analysis code can be a

computational fluid dynamics flow solver, wind tunnel data analysis tool, or a numerical tool.

Most of these approaches can be categorized into two types: direct and indirect numerical opti-

mization methods [67].

In the direct approach, an aerodynamic analysis code is coupled with a numerical optimizer

in order to minimize (or maximize) a given aerodynamic objective function. The direct method

minimizes a given aerodynamic objective function by iterating directly on the geometry. Often

this is accomplished by means of gradient evaluations [68]-[69]. The geometry of the body that

is being optimized can be represented by a general function or by parameters that define the

body. The desired shape of the body is found by iterating directly on the geometry until a local

minimum in the objective function is reached. Two fast methods for performing the gradient

evaluations are finite differencing and analytical sensitivity methods. Examples of the analyti-

cal methods include the one-shot method [70] and the adjoint method (also called the control

theory method) [71]-[72]. The one-shot method uses a multigrid technique to solve for the
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unknownssimultaneously,while restrictingoptimizationonadesignvariableto only gridsthat
producenon-smoothperturbations.On the otherhand,theadjoint methodsolvesthe adjoint
equationof the Navier-Stokesequationsin orderto obtainthesensitivity direction.Sincethe
analyticmethodstypically employmodificationsto the governingequationsin the CFD code,
theyrequirerecodingof theflow solvers,objectivefunctions,andboundaryconditions.

Thesecondclassof optimizationmethodis the indirector inverseapproach.Theindirector
inversedesignmethodcalculatesthe geometryfrom theprescribedaerodynamicdistribution,
usuallythepressuredistribution.Forinstance,thetargetpressuredistributionis optimizedand
thecorrespondinggeometrycanbedeterminedby theinversemethods.Thisprocessis repeated
until the resultinggeometrysatisfiesspecificgeometryconstraintsand meetsrequiredperfor-
mance.The quality of the optimizedshapedependson how well the distribution is defined.
This canleadto problemsin translatingthedesigngoalsintoproperlydefineddistributions[73]
containingthe required aerodynamiccharacteristics.In addition,the inversedesignmethod
doesnoteasilyhandlegeometricconstraints.

Thedirectapproachto optimizationis usedin this study.Theflap high-lift settingswill be
modifieduntil theobjectivefunctionwhich is to maximizethelift coefficientis optimum.The
neuralnetworksarecoupledwith anoptimizerthatusesthefinitedifferencemethodfor thegra-
dient evaluation.An advantageof using the neural networksversus the traditional direct
approachis that oncethe neuralnetworksaretrained,no furthergrid generationandflow solu-
tions are required.In contrast,eachtime the designvariablesare modified in the traditional
directmethods,a new geometryis requiredto beconfiguredandtheaerodynamiccoefficients
(requiredin theobjectivefunctionsandconstraints)to becalculatedby whatevernumericaltool
is used.Further,the designvariables,objectivefunction, constraints,and/orinitial valuescan
easilybe changedresulting in manyoptimizationproblemsthat can be solvedwith no addi-
tional geometryand grid generation,flow solutioncalculations,or large increasein computer
time.

5.2 NPSOL Optimizer

The optimizer that is used in this study is NPSOL [74]. NPSOL is chosen as the optimizer

for the following technical reasons: 1) flexibility, especially allowing constraints to be easily

coded and applied; 2) ability to handle both linear and non-linear constraints; 3) ability to solve

non-linear optimization problem; 4) validated and used by industry; 5) supported by Stanford

Department of Operations Research; and 6) simplicity in solving non-linear optimization prob-

lem. Further, it was chosen because of past experience [75]. NPSOL is a collection of Fortran

subroutines designed to solve the nonlinear programming (NP) problem stated as:

minimize F(x )

Lxlsubject to 1 < Ax < u (5.1)

(x

where F(x) is the objective nonlinear function, x is a vector of length n that contains the design
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variables,c(x) contains the nonlinear constraint functions, and A is the linear constraint matrix.

The variables, I and u are the upper and lower bound vectors that must be specified for each

design variable and constraint. The functions F(x) and c(x) are assumed to be smooth which

means that they are at least twice-continuously differentiable. The term "programming" is syn-

onymous with "optimization" and was originally used to mean optimization in the sense of

optimal planning.

In order to locate the minimum of F(x), the optimizer uses a sequential quadratic program-

ming (SQP) algorithm [74]. The search direction at each iteration is the solution of a quadratic

programming problem. Each quadratic programming subproblem is solved by a quasi-Newton

algorithm. The optimizer continues this process until it finds a local minimum of F(x). The def-

inition of F(x), A, c(x), and their bounds need to be specified as inputs. The initial values of the

design variables should also be supplied.

The gradient of the objective function is the vector g(x) defined to be

gj(x) - 3f(x)/_xj (5.2)

The gradient of each constraint Ci(X ) forms the ith row of the Jacobian matrix A(x)

Aij - _ci(x)/_x j (5.3)

An important consideration is the difference intervals. It should be noted that NPSOL has an

option to calculate the difference interval used in the finite difference approximation of the gra-

dient. However, in this study a common difference interval of 0.002 for all design variables is

specified as an input.

5.2.1 Optimization Algorithm

The method of NPSOL is a sequential quadratic programming (SQP) method. NPSOL involves

both major and minor iterations. The major iterations generate a sequence of iterates { x k } that

converge to x*, a first-order Kuhn-Tucker point of NP.

A point x is a first-oder Kuhn-Tucker point [64] for NP if the following conditions are true

[64]

(i) x is feasible;

(ii) there exist vectors _j and 2t (the Lagrange multiplier vectors for the bound and

general constraints) such that;

g ...

where _j = 0 ifthej-th variable is free

cTJk + _ (5.4)
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(iii) The Lagrange multiplier corresponding to an inequality constraint that is active

at its lower bound must be non-negative, and non-positive for an inequality constraint that is

active at its upper bound.

At the major iteration, the new iterate, £', is defined as

£" = x + otp (5.5)

where x is the current iterate, the non-negative scalar ot is the step length, and p is the search

direction. The search direction p is the solution of a quadratic programming (QP) subproblem

of the form

minimize

subject to

r 1 T

g p+=2 p Hp

"tl< ALP <__t

ANPJ

(5.6)

Here, the matrix H is a positive-definite quasi-Newton approximation to the Hessian of the

Lagrangian function; and lastly, A N is the Jacobian matrix of c evaluated at x.

The lower bound vector, l, in NP is partitioned into three sections, lB, 1L, and lN, correspond-

ing to the bound, linear, and nonlinear constraints. The vector 1 in Equation (5.6) is similarly

partitioned as

1B = 1B- x

lL = IL- x (5.7)

lN "" lN- X

The vector u and _ are defined in a similar fashion.

In the quadratic programming subproblem, certain matrices are relevant in the major itera-

tions. A "working set" of m w constraints is identified at each iteration and is updated iteratively

until it converges to the optimal QP active set. An important feature of the working-set con-

straints is that their gradients are linearly independent. This implies that m w < n. The con-

straints in the working set can be a simple-bound, linear, or nonlinear. If C denotes the m w x n

matrix of gradients of constraints, then

CQ = [0, T] (5.8)
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whereT is a nonsingular m w x m w reverse triangular matrix

tij = 0 if i > j (5.9)

and the nonsingular n x n matrix Q is the product of orthogonal transformations [76]. This

comes from the TQ factorization of C. Next, the upper-triangular Cholesky factor R of the
transformed Hessian matrix is

RTR = HQ = QTffIQ (5.1o)

where H is the approximate Hessian with reordered rows and columns if the columns of Q are

partitioned so that

Q = zY (5.11)

The nz, defined as n z = n - m columns of Z form a basis for the null space of C. The matrix Z is
used to compute the reduced gradient ZZg at the current iterate.

After p has been computed, the major iteration proceeds by determining a step length, o_,

that produces sufficient decrease in an augmented Lagrangian merit function. Finally, the

approximation to the transformed Hessian matrix HQ is updated using a modified BFGS (Broy-

den, Fletcher, Goldfarb, and Shanno) [64] quasi-Newton update to incorporate new curvature
information obtained in the move from x to ._.

To summarize, NPSOL first determines a point that satisfies both the bounds and con-

straints. Then, for each iteration a quadratic programming subproblem is solved. This is fol-

lowed by a line search with an augmented Lagrangian merit function. Lastly, there is a quasi-

Newton update of the approximate Hessian of the Lagrangian function. The last three proce-

dures are discussed in greater detailed in the sections below. The following description follows

the procedure from Gill et al. (for greater details refer to [74]).

5.2.2 Solution of the Quadratic-Programming Subproblem

The method used to determine the search direction p is a two-phase quadratic programming

method. The first phase is finding an initial feasible point by minimizing the sum of infeasibili-

ties and the second phase is minimizing the quadratic objective function within the feasible

region. A point is said to be feasible if it satisfies all the constraints in Equation (5.6) and the set

of all such points is referred to as the feasible region.

In general, a quadratic problem must be solved in an iterative method. Ifp denotes the cur-

rent estimate of the solution of Equation (5.6) then/7 which is the new iterate is defined as

/7 = p+6d (5.12)

where _ is a nonnegative step length and d is the search direction.
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For each iteration, a working set is defined by constraints that are satisfied exactly. The vec-

tor d is constructed so that the constraints remain unaltered for all moves along d. The matrix C

is defined to be the matrix of gradients of constraints in the working set. The constrains will

remain unaltered if

Cd = 0 (5.13)

which is equal to

d = Zd z (5.14)

for some vector d z. Here Z is the matrix associated with the TQ factorization of C. Ifp is infea-

sible then d z is zero except for a component 7 in the jth position, where j and y are chosen to

minimize the sum of infeasibilities along d. On the other hand, ifp is feasible then d z must sat-

isfy

RrzRzdz = -Zrq (5.15)

where R z is the Cholesky factor of zTHz. The gradient of the quadratic objective function is q

which is defined to be

q = g + Hp (5.16)

With Equation (5.16), p + d is the minimizer of the quadratic objective function subject to

treating the constraints in the working set as equalities.

5.2.3 The Merit Function

After computing the search direction as described above, each major iteration proceeds by

determining a step length ct in Equation (5.5) that produces a sufficient decrease in the aug-

mented Lagrangian merit function

1EQi(Ci(X ) _ Si)2L(X, k, S) = F(x) --E_,i(Ci(X)--Si) +
i i

(5.17)

where s is the change in x

s = :_-x (5.18)

Here, x, k, and s vary during the line search. Only the nonlinear constraints are in the summa-

tion terms in Equation (5.17). The vector k is an estimate of the Lagrangian multipliers for the

nonlinear constraints of the nonlinear programming problem. The solution of the QP subprob-

lem, Equation (5.6), provides a vector triple that serves as a direction of search for three sets of

variables.
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5.2.4 Quasi-Newton Update

In Equation (5.6), the matrix H is a quasi-Newton approximation to the Hessian of the

Lagrangian function and is positive-definite. A new Hessian approximation, H, is defined as a

rank-two modification of H at the end of a major iteration. In NPSOL, the BFGS quasi-Newton

update is used

1 r
H = H-- rl HssrH +___f_yy (5.19)

s Hs y s

Here, s is again the change in the new iterate from the old iterate as is defined in Equation

(5.18) NPSOL requires the Hessian, H, to be a positive definite matrix. If H is positive definite,

then N will be positive definite if and only if y_s is positive [77]. In Equation (5.19),y would

be set to YL which is the change in the gradient of the Lagrangian function

--T T
YL = g-ANgN-g+ANgN (5.20)

where gU denotes the quadratic programming multipliers associated with the nonlinear con-
T

straints. NPSOL then makes an attempt to perform the update with a vectory if yL s is not suf-

ficiently positive in the form

m N

Y = YL + Z 03i(ai(x)ci(x)--ai(x)ci(x)) (5.21)
i=1

where COi _>0. If no vector can be found that satisfies all the constraints and requirements then a

scaled YL is used to perform the update.

Instead of modifying H itself, the Cholesky factor of the transformed Hessian, HQ Equation

(4) is updated, where Q is the matrix from Equation (5.6) associated with active set of the QP

subproblem. The update in Equation (5.19) is equal to the following update to HQ

HQ - HQ 1 T 1 r
sTHQ sQQHQSQSQHQ + yQsQ_YQYQ

(5.22)

where yQ = QTy and SQ = Qrs.

5.3 Optimization Procedure

The optimization problem in this study is to optimize the high-lift riggings to maximize the lift

coefficient. The design variables are flap deflection angle, gap, and overlap and the angle of

attack. The objective function which is defined to be the value or function that is being driven to

the optimal minimum or maximum is the lift coefficient in this study. The optimizer needs to

determine the gradient search direction in order to find the minimum objective function. In this
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study, the optimizer is integrated with the trained neural networks so that it can calculate the

gradient search direction. In some instances, a constraint is applied to the optimization prob-

lem.

The optimization procedure that is used in this study is shown in Figure 5.1. There are three

different phases in the optimization procedure: generate the training set, train the neural net-

works, and optimize. The first two phases need only to be performed once in this process.

The first phase is to generate the training set. In order to train the neural networks to accu-

rately predict the aerodynamic coefficients for a set of inputs, a training data set needs to be cre-

ated. As discussed in Chapter 4, the training data needs to have different sets of inputs and

outputs so that the neural network can learn to predict outputs for a given set of inputs which

are not in the training set. The neural networks need to be able to predict within the design

space that the optimizer will be searching. Thus, the training set must contain information

throughout the design space including the bounds of the design space. An important step is to

determine the sufficient number of input/output sets and which sets are required to successfully

train the neural networks. The approach that is used to train the neural networks in this study is

discussed thoroughly in Chapter 6. For each set of inputs which are the flap deflection, gap, and

overlap, a grid is generated as discussed in Section 3.3. For each grid, an angle-of-attack polar

is calculated by using INS2D (refer to Chapter 3) to calculate the flow solution. Now, a training

data set can be created that includes the various high-lift riggings as the inputs and the aerody-

namic coefficients as the outputs. This data set is then used in phase 2 to train the neural net-

works to accurately predict the aerodynamic coefficients for any set of inputs that is the design

space.

The trained neural networks are now used in phase three which is an iterative phase. In this

study, only one neural network is actually used because only the lift coefficient is used as the

objective function. However, the other aerodynamic coefficients can be easily used as part of

the objective function or constraints. The optimization phase begins with the optimizer generat-

ing a baseline objective function from the initial values of the design variables. This is accom-

plished by inputting the initial values of the design variables into the neural network which then

will predict the output, that is the lift coefficient, for those sets of design variables. One of the

most important advantages of the optimization process is that once the neural networks have

been trained, then new designs can be rapidly obtained. Whereas, the traditional optimization

process would require function evaluations (CFD simulations) for every new design consid-

ered. The next step that the optimizer performs is to perturb each of the design variables to cal-

culate the direction of the gradient using the previously obtained values from the neural net.

Figure 5.2 illustrates the details of the optimization process in phase 3. Using the neural net-

work, the optimizer continues to modify the design variables and search for the correct gradient

direction until a set of design variables is found with a local minimum objective function which
meets all the constraints.
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Figure 5.1 The three phases of the neural network optimization procedure.
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Chapter 6

Results and Discussion

As discussed earlier, the overall goal of this research is to develop a method that will allow

computational fluid dynamics to impact design. Neural networks are used to create an agile

artificial intelligence-enhanced design space capturing method. The neural networks reduce the

amount of data that is required to accurately define the aerodynamics of a geometry. The neural

networks are trained with both experimental and computational data for the Flap-Edge airfoil in

this study. The neural networks which are trained with the computational data set are then inte-

grated with an optimizer to help search the entire design space for certain points of interest,

such as extremes or confined subsets of the design space by constraining the search.

The results of this study are presented in the following subsections. The first subsection

examines the ability of the neural networks to learn and predict aerodynamic data on an experi-

mental data set. The next subsection discusses the training results for the computational data

sets, such as the learning curve of the neural networks and the need for a maximum lift criteria.

Next, a discussion on minimizing the amount of data needed for training is presented. The last

subsection explains the optimization results including the optimal high-lift riggings and the

savings on resources when using neural networks versus the traditional method in the optimiza-

tion process.

6.1 Experimental Training Set

The Flap-Edge airfoil [9] which was tested in the 7- by 10-Foot Wind Tunnel No. 1 at NASA
Ames Research Center will be used to show the validity of the neural networks. Experimental

data from the wind tunnel experiment will be used to train the neural networks and to test its

accuracy. There is limited wind tunnel data available for the three-element baseline Flap-Edge

wing. The data that is available is used to train the neural networks to predict the aerodynamics

of the Flap-Edge geometry. The training data consists of five different configurations with eight

different angles of attack for each configurations. There are a total of 40 input-output pairs used

in the training data set. Four individual neural networks are trained with five-inputs and a single

output. The inputs are slat deflection, angle of attack, flap deflection, gap, and overlap. The

individual outputs are the lift coefficient for the slat, main, and flap ( C1,,° ,, Cl,,°i , and Cis_o' ) and

the total lift coefficient for the wing ( CI,,,o, = CI.,,,, + Cl,,,,,_, + Ctr,,,, ).
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Figure 6.1 Neural network prediction of experimental data for 5 s = 6.0 ° , gaps = 2.0%c, ol s

= -0.05%C, _f ---- 39.5 °, gapf= 2.7%c, olf= 1.5%c.

The neural networks are trained with the wind-tunnel experimental data for the full-slat

configuration. Then the accuracy of the neural networks is tested by predicting the lift coeffi-

cients for a configuration that is not included in the training set. The lift coefficients for each

element and the total lift coefficient versus angle of attack for k s = 6.0 ° , gap s = 2.0%c, ol s = -

0.05%C, _f = 39.5 ° , gapf = 2.7%c, olf = 1.5%c are shown in Figure 6.1. The open symbols

represent the experimental data (exp) and the black-filled symbols represent the neural network

prediction (nn). The neural networks show good agreement for the main and flap elements,
however, there are some noticeable differences in both slope and magnitude in the slat lift coef-

ficient. Since the total lift coefficient is the summation of the individual lift coefficients, as

expected the total lift coefficient prediction has noticeable differences as well. This results from

the fact that the errors are also summed and amplify in the prediction of the total lift coefficient.

The prediction error in Ct,,° ' is most likely caused by the sparse training data since there were
only five different configu_:ations used to train the neural networks.

6.2 Computational Training Set

All of the computations presented in this study are obtained using the INS2D-UP code in the

steady-state mode with the Spalart-Allmaras turbulence model. The flow was treated as fully

turbulent for all elements in the computations. The maximum residual in the solution is reduced
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s = 6.0 deg.

_f = 25.0 deg. _f - 29.0 deg. _if = 38.5 deg.

s = 26.0 deg.

_if = 53.0 deg.

Figure 6.2

_f = 49.0 deg. _f = 38.5 deg.

Computational cases used to train the neural networks.

by 7 orders of magnitude and the maximum divergence in the converged solution is on the

order of 10 -4 or less. A typical solution for the multi-element airfoil at small angles of attack

converged in 200 iterations for a total of 268 seconds (10.6 microseconds/iteration/point) on a

CRAY C90 computer. The solutions near maximum lift converged in 800 iterations for a total

of 1072 seconds. As the angle of attack increases and approaches the angle where maximum lift

occurs, the flow around the airfoil tends to separate from the top surface and create a large wake

of separated flow behind the airfoil. Inside this separated region, the flow is recirculating. The

flowfield near maximum lift is more complex and thus more time is required for convergence.

The neural networks are trained with computational data consisting of 54 geometric config-

urations. There are two slat deflection settings (_5s = 6.0 ° and _is = 26.0 ° ) and each has 27

different flap riggings as shown in Figure 6.2. The computational data is divided into two train-

ing sets, one for each slat deflection setting. By only having two slat settings, the data would be

represented linearly if the slat setting is used as a training input; this is invalid since the aerody-

namic relationship is known to be non-linear. The large numbers in the shaded boxes in Figure

6.2 represent the case number for that particular flap rigging. Cases 1 through 27 are used to

train the neural networks for _5s = 6.0 ° and likewise, cases 28 through 54 are used to train the

_5s = 26.0 ° data. Both slat deflections have three flap gap settings of gapf = 1.5, 2.1, and
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2.7%c and three flap overlap settings of olf = 0.4, 1.0, and 1.5%c. The flap deflection angles for

the six-degree-deflected slat are _f -- 25.0 ° , 29.0 ° , and 38.5 ° The twenty-six-degree-

deflected slat has flap deflections of _f = 38.5 °, 49.0 ° , and 53.0 ° . Although these flap

deflections are higher than what is normally used in flight, they are acceptable for demonstrat-

ing the capability of the coupled optimization method. In one optimization study, the additional

deflection flaps, _f = 49.0 ° and 53.0 ° , are added to the training data for k s = 6.0 ° (refer to
Section 6.4). The same set of gap and overlap matrix is used. Thus, there are 45 configurations

in the training set for this particular optimization run. The range of angle of attack varies from

0.0 ° < oc < 22.0 ° in this study.

6.2.1 Learning Curve

The training data is presented to the neural network for it to learn the relationship between the

input and output variables. It is important to know how many times (iterations) to present the
data to the neural network. To determine the correct number of iterations that will be used to

train the neural networks in this study, the training set for the six-degree-deflected slat is used to

train the neural networks with various iterations. The correct number of iterations required to

train neural networks is dependent on the inputs and outputs. Thus, a user must determine the

required number of iterations for each study performed. The root-mean-square (rms) error of

the predicted output and the actual computational value for each aerodynamic coefficient is cal-

culated and is shown in Figure 6.3 for a high-lift setting that was not included in the training

set. The case that is used to test the accuracy of the prediction has a flap setting of _f = 29.0 ° ,

gapf = 2.1%c, and o(f = 1.0%c. Figure 6.3 shows the rms errors for G, Ca, and Cm on the left
vertical axis and for/_/D on the right vertical axis. All four aerodynamic coefficients show the

same trend. There is an improvement in the rms error up to a certain iteration number and then

there is no further improvement as the iterations to train the neural network increase. For Cd,

the rms error continues to drop until 300 iterations and then there is no further improvement in

the error. The rms error for Cm drops until about 250 iterations and once again there is no fur-

ther improvement. The rms error for the lift-to-drag ratio continues to drop until about 450 iter-

ations. In the case for C1, the rms error drops until about 300 iterations with no additional

improvement.

The rms error for the six-degree-deflected slat cases (cases 1 - 27) are calculated to further

aid in determining the correct iteration number to use to train the neural networks to predict the

aerodynamic coefficients accurately. The average of the rms errors for all twenty-seven cases

for each of the different values of the iterations used for training is shown in Figure 6.4. For Ca

and Cm, as the iterations increase there is a decrease in rms error until 400 and 300 iterations,

respectively. Then the rms errors increase as the iterations increase. For C t, the rms error is low-

est at 250 iterations and then continues to slowly increase as the iterations increase. At 550 iter-

ations, there is a big increase in the rms error. The L/D rms error decreases until 450 iterations

and then like the other aerodynamic coefficients, the error also increases as the iterations rise.

The neural networks that model the aerodynamic coefficients are overtrained at the higher

iterations. This phenomenon has been observed by others [30] where excessive training on the

training data sometimes decreases the performance of the networks. The neural networks are

starting to memorize the points and go through the points instead of learning the patterns and

interpolating. When the data is seen too much by the neural networks, it may lead to spurious

54



0.050 , , , , , 8.0

0.040

0.030
0

_N
©

E
L.

0.020

0.010

/\
/ \

/ \
/ k

/ \
/ \

\

\

\

\

\

C I

............ C d

Cm

UD

\
\

--M

7.0

6.0

5.0_-
0

4.0_

3.0 _

2.0

1.0

"'.. \

0.000 , "_.........., ........i...........,...........1.......................r...........,...........E...........,............ 0.0
0 1O0 200 300 400 500 600

iterations

Figure 6.3 Learning curve of the neural networks used to predict the aerodynamics for

high-lift setting of 8 s = 6.0 ° , gap s = 2.0%c, ol s = -0.05%c, _f = 29.0 ° , gapf= 2.1%c, olf

= 1.0%c. This case is not included in the training set.

decision boundaries or cause overfitting of the model and poor interpolation. For these reasons

and since these neural networks are going to be used to optimize flap riggings for maximum

lift, 250 iterations are used to train the neural networks in this study because C 1showed the best

accuracy at this iteration level.

6.2.2 Maximum Lift Criteria

The fiowfield about a multi-element airfoil that is designed for high-lift is very complex and is

not easily computed by any method that is reported in the literature [ 11 ], [78]. Some of the dif-

ficult features to capture are trailing viscous wakes whose strength and location vary with angle

of attack, merging wakes and boundary layers, different transition phenomena on each of the

airfoils elements, boundary-layer separation, and reversed flows in the main element wake. In

addition, the airfoil performance varies with Reynolds and Mach number [79], [80]. Lastly, the

determination of maximum lift is one of the most important results of any high-lift wing design

study. No current fully computational method is able to resolve all these features and accurately

predict maximum lift. Thus, an empirically based maximum lift criteria has been implemented.
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Figure 6.5 shows a plot for the computed angle-of-attack polar curve for a high-lift setting

of k s -- 6.0 °, gaps -- 2.00_oC, ol s -- -0.05%C, _f = 38.5 °, gapf = 2.7%c, olf = 0.4%c. It is

shown that the computational curve never bends over (C l continues to increase with ix) and thus

does not accurately predict the maximum lift. Previous studies [78] have also shown that state-

of-the-art two-dimensional theory can not accurately predict maximum lift. Valarezo and Chin

[78] reported a hybrid method that couples cost-effective computational fluid dynamics tech-

nology with empirically-observed phenomenon in order to predict maximum lift (C t ) for

complex multi-element wing geometries. Their semi-empirical C l criteria for mt_[[i-ele-

ment airfoils or wings, designated the pressure difference rule, is applied to the computational

training data set. The pressure difference rule (PDR) states that for a given Reynolds and Mach

number combination, there exists a certain difference between the peak suction pressure and

the trailing edge pressure at the maximum lift condition

ACp,il I = Cp,,o,- Cp,, (6.1)

For the flow conditions of this study, the pressure difference value is -13.0. The rule is applied

to each element of the airfoil. The slat is the element that has pressure differences greater than

the acceptable value, thus this is the critical element in determining the maximum lift for this
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Figure 6.4 Average rms error for cases 1 - 27 for the six-degree slat deflection training set.
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configuration.

By applyingthepressuredifferencerule to the trainingdataset,thesetis thenreducedto
includeonly thedatapointsthatareator belowthemaximumlift. In orderto accuratelyrepre-
sentthe aerodynamicdata,the datapoints that hada largerangleof attackthanwheremaxi-
mum lift is predictedarenotused.As Figure6.5 illustratesfor onerigging, themaximumlift
occursnearanangleof attackof o_= 12.0° for this design space, thus only the data up to and

including o_ = 12.0 ° is used in the training set for this high-lift rigging. Although this particu-

lar configuration was not tested in the wind-tunnel, the angle where maximum lift is predicted

is near where the expected experimental value would be by observations of similar configura-
tions.

In order to see if the neural networks would predict the non-linear aerodynamic data better

once the pressure difference rule is applied, the neural networks are trained with the entire data

set for the six-degree-deflected slat and then also with the processed data set that includes only

data up to and containing maximum lift. The comparison of the rms error for each training set

is shown in Figure 6.6 for cases one through twenty-seven. For all four outputs, C t, Ca, C m, and

L/D, the rms error is much lower when the pressure difference rule is applied. As expected, the

C I
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Figure 6.5 Computational
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versus angle of attack for k s = 6.0 ° , gaPs =

38.5 ° , gapf = 2.7%c, olf = 0.4%c.
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training data is now more accurately representative of the actual aerodynamic data and the neu-

ral network is able to predict the aerodynamics more accurately. The lift coefficient versus

angle of attack is shown in Figure 6.7 for case 9 which has a high-lift setting of k s = 6.0",

gaPs = 2.0%c, ol s = -0.05%c, _Sf - 38.5 ° , gapf = 2.7%c, olf = 0.4%c. When the pressure dif-
ference rule is not applied to the training data, the neural network prediction is less accurate,

particularly at the higher angles of attack, as shown in Figure 6.7a. Here, the black filled circles

represent the actual INS2D computational data and the open circles represent the neural net-

works prediction. Even at o_ = 8.0 and 10.0 degrees, the neural net prediction differs slightly

from the computational or actual value. For this case, the rms error for the lift coefficient is

bounded by (0.0070 < C l rms error < 0.1149). When the pressure difference rule is applied,

however, the neural network's prediction are more accurate and is bounded by (0.0019 < Cl rms

error < 0.0152). The rms error is decreased by -87% when the pressure difference rule is

applied. The neural network does an excellent job at predicting the lift coefficient for all the

angles of attack that are within predicted maximum lift as shown in Figure 6.7b.

In summary, the computational data in the region beyond the predicted maximum lift seems

to be non-physical and is very different for each flap rigging which hinders the ability of the

neural networks to learn and to predict the aerodynamics. For the remainder of the study, the

neural networks are trained with 250 iterations and with the data set only consisting of data up

to and including maximum lift location which is predicted by the pressure difference rule.

6.3 Minimizing Training Data Samples

Even though the computational data base that is used for training is sparse, a study is conducted

to see how much further the training set can be reduced and still allow the neural networks to

predict within the acceptable error. By reducing the training data set further, the required com-

putational resources can be decreased [7].

The six-degree-deflected slat data is used for the majority of the reduction of data study.

Several subsets of the computational data are created to train the neural networks and to test the

accuracy of the prediction. Each configuration that is generated has its flowfield computed at

several angles of attack but not necessarily at the same angles. The number of angles of attack

also varies for each configuration. In general, once the grid is generated, it does not acquire

extra effort to compute solutions at different angles of attack. The neural networks, are there-

fore trained using data sets which contain various numbers of configurations which include

their individual angle of attack polar. Nine different subsets are created by removing entire con-

figurations from the training set as shown in Figure 6.8. Here, the boxes that are shaded repre-

sent the cases that are in the training sets, whereas the numbers in the white boxes and in

parentheses are the cases that are omitted from the training sets. The training sets are first cre-

ated by randomly omitting cases from the entire data set. The results from these sets are then

examined which leads to more carefully chosen training sets.

The neural networks are trained with each individual training data set with the flap deflec-

tion, gap, and overlap, and angle of attack as the inputs. The outputs for the neural networks are

the lift, drag, and moment coefficients and the lift-to-drag ratio. Four identical neural networks

are used to model the aerodynamics of the multi-element airfoil. Each network is trained with
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the training set whereas the cases in the white boxes and parentheses are omitted).
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four inputs and one output. From the previous conclusions, the neural networks are trained with

250 iterations and the pressure difference rule is applied to each training set. Then to test the

accuracy of the neural networks ability to predict data, the rms error of the predicted value and

the actual computed INS2D value for C1, Cd, and Cm are calculated for all 27 cases even if they

were not included in the training set. This will show the accuracy of each training method to

predict cases that and are not included in the training set. The L/D rms error is not shown in

these plots within the next subsection for clarity since the values are on a different scale. How-

_f = 25.0 deg. 5f = 29.0 deg.
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Figure 6.8 (continued) Training data subsets 5 s = 6 ° (shaded boxes represent cases that are

included in the training set whereas the cases in the white boxes and parentheses are omitted).
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ever,thesametrendsareseenfor/_/D asC l, Cd, and Cm.

6.3.1 Subsets of Training Data for Six-Degree-Deflected Slat

Method 1 designates the training set which includes all the configurations in the training

set. As expected, this has the lowest rms error for all the training methods tested since all the

configurations tested are included in the training set. The rms errors for Cl, Ca, and Cm are

shown in Figure 6.9. Method 1 represents the training data in a nonlinear fashion for all four

inputs (_5_ gap._ oly, and o0. Method 1 predicts Ca and Cm with almost no error for all 27 cases.

C t is predicted within the acceptable error. Case 27 which has a flap setting of _f - 38.5 ° ,

gapf = 2.7%c, and olf = 1.5%c has the highest prediction error. Case 27 is the boundary of the

design space and this may lead to the problem since there is no data for the neural networks to

learn on the outer boundary that has values greater than it.

The next method that is used to train the neural networks is Method 2 which has a nonlinear

representation of the flap deflection and angle of attack. The other two inputs, flap gap and

overlap, are represented in a linear manner. This method contains 56% of the configurations in

the entire training set. The rms errors (Figure 6.10) are low for the cases that are in the training

set and high for the cases that are not included in the training. The C l rms error is greater that

what is acceptable for six of the cases. This method was expected to do poorly since it repre-

sents the aerodynamic data as linear when it is known to be non-linear.

Another subset tested to train the neural networks is a checkerboard method. Method 3 con-

tains only interior points of the checkerboard as shown in Figure 6.12. This method contains

44% of the total configurations. This method predicts poorly for cases that are not in the train-

ing set as shown in Figure 6.11. The prediction level for C l and Cm are not within the acceptable

range. Examining the cases that are in Method 3 shows that this is a bad representation of the

data since their is no configuration with the following gap and overlap combinations: gapf =

1.5%c with olf = 0.4 and 1.5%c; gapf = 2.1%c with olf = 1.0%c; and gapf = 2.7%c with olf =
0.4 and 1.5%c. Thus, the data is represented in a linear fashion which is incorrect.

Method 4 is another checkerboard subset which contains only the cases excluded from

Method 3 in the training set as is illustrated in Figure 6.8. Here, the corners and middle cases

are kept and the interior cases are omitted. Method 4 contains 56% of the entire training set.

The neural networks when trained with Method 4 predict poorly the cases which are omitted

from the training set as was seen previously. Figure 6.12 shows the C l and C m prediction error

are higher than what was set to be acceptable for the omitted cases. Like, Method 3, there is no

representation of the configurations with some particular combinations: gapf = 1.5%c with olf

= 1.0; gapf= 2.1%c with oIf= 0.4 and 1.5%c; and gapf= 2.7%c with o(f= 1.0%c.

The next training set tested, Method 5, is a combination of Methods 3 and 4 as shown in

Figure 6.8. For _f - 25 ° and _f - 38.5 ° , the corner and middle high-lift riggings are used in

the training set. In contrast, the interior ones are kept in the training set for _f - 29.0 ° . Thus,

there is representation in the training set for every high-lift rigging combination even though

they are for various flap deflections. The rms errors (Figure 6.13) show that the prediction for

Cl, Cd, and C m are very good for the cases that are in the training set. Even though there are a
few cases which were not included in the training where the C l rms error is high, the prediction
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for several of the cases is quite good. The Ca prediction for most of the cases (included or not in

the training set) is good. The moment coefficient prediction is accurate for most of the configu-

rations in the training set. Also, the C m prediction is good for more than half of the cases omit-

ted in the training set.

The next method that was tested is the reverse of Method 5 as shown in Figure 6.8. Method

6 contains only 48% of the total configurations. This method did a poor job of training the neu-
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Figure 6.9 Summary of rms error from neural network prediction of aerodynamic coefficients
for Method 1. Shaded boxes indicate which flap configurations are contained in the training

data set.
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ral nets to predict Cl for the cases that are omitted from the training set as shown in Figure 6.14.

Surprisingly, the C d and Cm prediction is good for 26 out of the 27 cases. Case 9 has high Cd

and Cm rms errors and is one of the boundary points of the design space. The neural net, for the

most part, predicts the lift coefficient accurately for the high-lift settings that are in the training
set.
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coefficients for Method 2. Shaded boxes indicate which flap configurations are contained in

the training data set.

66



SinceMethod5 hasbeenfoundto bethebestsubsetto useto train theneuralnetworksto
predicttheaerodynamicsaccurately,thefollowing subsetsarecreatedby addingconfigurations
backto Method 5.Method7 wascreatedby addedonemoreconfigurationto beincludedin the
trainingset.Case14wasaddedbackinto thetrainingdatasetandnowMethod7 contains56%
of theentiredata.TheneuralnetworkspredictC l, Ca, and Cm accurately for all the cases in the

training set as is illustrated in Figure 6.15. Now, for the cases which are not included in the
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trainingset,Method7 doesafairly goodjob trainingtheneuralnetworkto predictC l and Cm.

There are a few cases that predict poorly but there also are more cases that do very well. Also,

Cd is predicted very accurately for all 27 configurations.

To further improve the accuracy of the prediction while still reducing the number of config-

urations relative to the full training set, careful selections of the configurations contained in the
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coefficients for Method 4. Shaded boxes indicate which flap configurations are contained in
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trainingsetarecreated.An exampleof asubsetthatisverysuccessfulin training theneuralnet-
worksto predicttheaerodynamicsof theFlap-Edgegeometryis Method 8. Method8 contains
70%of thedataof thefull trainingset.As is apparentbytheerrorbarsin Figure6.16,theerror
is low for mostcasesandiswell within theacceptableerrorevenfor thecasesthatarenot in the
trainingset.The CI rms errors are exceptionally high for cases 6, 9, and 22. Cases 9 and 22 are

not in the training set, however, case 6 is included. Both the drag and moment coefficient pre-
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Figure 6.13 Summary of rms error from neural network prediction of aerodynamic

coefficients for Method 5. Shaded boxes indicate which flap configurations are contained in
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dictions are very good and the errors are low. Overall, the prediction is good for this method

and if the designer can tolerate a small percent of high error in a few cases in exchange for the

computer resources that are being saved, about 30%, this method is well worth it.

The last subset that is tested is Method 9. Method 9 is similar to Method 8 except one more

configuration (case 7) is added back to the training set. Method 9 has a total of 74% of the total
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configurationsin thetrainingset.Thermserrors,shownin Figure6.17,arelow andwithin the
acceptablerangefor mostof theconfigurations.Only threecases(9, 16,and22)havea C t rms

error above the acceptable error and only case 9 is exceptionally high. These three cases are not

included in the training set. The drag prediction is good for all cases. On the other hand, the

moment prediction is high for the same three cases as the lift prediction. Once again, by allow-

ing this small error to be acceptable, valuable resources will be saved (26%) by training the
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Figure 6.15 Summary of rms error from neural network prediction of aerodynamic

coefficients for Method 7. Shaded boxes indicate which flap configurations are contained in

the training data set.
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neural networks with Method 9 to predict the aerodynamic coefficients.

6.3.2 Mean and Standard Deviation

The mean and standard deviation of each method's rms errors of the lift, drag, and moment

coefficients are calculated to evaluate the accuracy of the predictions obtained using the various
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Figure 6.16 Summary of rms error from neural network prediction of aerodynamic

coefficients for Method 8. Shaded boxes indicate which flap configurations are contained in

the training data set.
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training sets. The mean rms errors for Methods 1-9 for the six-degree-deflected slat is shown in

Figure 6.18. Likewise, the standard deviation of the rms error for the six-degree-deflected slat is

shown in Figure 6.19. Both figures show, as one would anticipate, Method 1 has the lowest

mean and standard deviation. This is also clearly seen in Figure 6.9 that showed Method 1 to

have almost no errors in predicting the aerodynamic coefficients. This is expected since all

cases are included in the training set. The highest rms errors are obtained by Method 4 which
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i
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Figure 6.17 Summary of rms error from neural network prediction of aerodynamic

coefficients for Method 9. Shaded boxes indicate which flap configurations are contained in

the training data set.
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Mean rms errors for subsets of the training data for six-degree slat deflection.

contains 55% of the data. This method is generated by choosing the comers and the center of

each deflection matrix as shown in Figure 6.8. Examining this method closely shows that there

is not enough representation of the different combinations of high-lift configurations to train the

neural networks to learn and to predict the aerodynamics of the Flap-Edge geometry. This led

to the more carefully chosen methods of 5, 7, 8, and 9.

Method 5 (Figure 6.13) is the most accurate method of training if only approximately 50%

of the data is available. Method 5 consists of 52% of the total configurations but more impor-

tantly, it contains a good variety of the different flap deflections, gaps, and overlaps and combi-

nations of these to accurately represent the aerodynamics of the multi-element airfoil. Method 7

is also accurate and contains only 56% of the total configurations. If more computer resources

are available, then Methods 8 and 9 can be used to train the neural networks. These methods
have the lowest mean and standard deviations of the rms errors besides Method 1. Methods 8

and 9 contain 70% and 74% of the entire training set, respectively, and their mean rms errors

are below the acceptable error. Again, these methods have a good representation of the high-lift

riggings within the design space. Thus, with only 70% of the sparse training data set, the neural

networks can be trained to accurately predict the aerodynamic performance of a multi-element

airfoil.
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Figure 6.19 Standard deviation of the rms errors for subsets of the training data for six-

degree slat deflection.

The same procedure that is used for the slat with six-degree-deflected slat is used for the

twenty-six-degree-deflected slat. The methods of training or subsets of the data have the same

patterns as shown in Figure 6.8, however, cases twenty-eight through fifty-four are used instead

(refer to Figure 6.2) and are shown in Figure 6.20. After training the neural networks with the

nine different methods and predicting the aerodynamic coefficients, the means and standard

deviations of the rms errors for each individual method of training are calculated. The mean

rms errors, show the same trends as in the previous slat deflection. Method 1 has the lowest C t

rrns error, however, Methods 8 and 9 have about the same error as Method 1 for C I. Methods 8

and 9 have the lowest Carms errors. Again, if only approximately 50% of the configurations

are used to train the neural networks, then Methods 5 and 7 should be used. The standard devi-

ation of the rms errors for the twenty-six-degree-deflected slat is shown in Figure 6.22. The

same trends are seen as was previously described. By comparing the values of the rms errors for

the two different slat deflections airfoils, it is shown that the six-degree-deflected slat has lower

means and standard deviation of the rms errors. The high-lift physics of the multi-element air-

foils with these two different slat deflections are discussed and compared in the next subsection.
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Figure 6.20 Training data subsets for _5s = 26 ° (shaded boxes represent cases that are

included in the training set whereas the cases in the white boxes and parentheses are omitted).
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6.3.3 High-Lift Physics

In order to understand the physics of this complex flow, the pressure distributions are plot-

ted and compared for standard cases with slat deflection of 6 and 26 degrees. The high-lift set-

ting for the first case is 5 s = 6.0 ° , gaps = 2.0%c, ol s = -0.05%c, _f = 38.5 ° , gapf= 2.1%c,

olf = 1.0%c at ct = 10.0 ° and the second high-lift setting is _5s = 26.0 ° , gap s = 2.0%c, ol s =

-0.05%c, 5f = 53.0 ° , gapf = 2.I%c, olf = 1.0%c at o_ = 10.0 ° . Figure 6.23a shows the slat,
main, and flap elements for both configurations. As a reminder, the main element is the same

_f - 53.0 deg. _f = 49.0 deg.
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Figure 6.20 (continued) Training data subsets _5s = 26 o (shaded boxes represent cases that are

included in the training set whereas the cases in the white boxes and parentheses are omitted).
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for both configurations. For the six-degree-deflected slat case, the flap element as well as the

slat element are deflected less than in the other configuration. The pressure distribution is dif-

ferent for both cases for all elements. First, the six-degree-deflected slat configuration has the

flow attached for all three elements as seen in Figure 6.23b. The suction pressure on the slat is

larger than in the higher slat deflection case. On the contrary, the suction pressure is lower on

the main element than the k s = 26.0 ° configuration. There are interesting features on the flap

element. The sharp spike at the trailing edge (also seen in the slat elements) occurs from the

sharp point at the trailing edge of the flap geometry. The numerical grid comes to a sharp corner

at the trailing edge, the flow must accelerate at this point causing the pressure to drop. The mul-

tiple spikes that are located at the leading-edge of the flap element are associated with the orig-

inal definition of the geometry. The flap at this region is faceted due to the high curvature. The

pressure spikes are representative of what the flow is actually doing. The flow is turning around

at these facets and accelerating. Second, the _is = 26.0 ° airfoil shows that the flow is separated

for the slat and flap elements. This is common for the configurations with the higher slat deflec-

tion. The flowfields for the configurations with _5s = 26.0 ° are severely separated and thus the

numerical data that is used to train the neural networks is not predicted as accurately because

the aerodynamics vary so dramatically for the different configurations. The data for the six-

degree-deflected slat is better behaved and thus less noisy. The twenty-six-degree-deflected slat
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Figure 6.22 Standard deviation of the rms errors for subsets of the training data for twenty-

six-degree slat deflection.

configurations have extremely high flap deflection angles which are well beyond the normal

flight envelope. The flow is severely separated at the higher deflected flaps. Consequently, the

neural networks do a better job of leaming and predicting the flowfield of the more benign six-

degree-deflected slat airfoil.

6.3.4 Example of Neural Network Prediction

The neural network's ability to predict the aerodynamics of a high-lift rigging that is not

included in the training set is tested by training the neural network with Method 8 which con-

tains 70% of the full training set and comparing the predicted values (denoted by an open

square in Figure 6.24) with the INS2D calculated values (denoted by a filled diamond Figure

6.24). The neural networks were used to predict the aerodynamics of the airfoil with a flap

high-lift setting of _f -- 27.0 ° , gapf= 2.4%c, olf= 1.1%c which is not used to train the neural
networks as shown in Figure 6.24. The lift coefficient versus angle of attack is shown in Figure

6.24a and the neural network does accurately (to within 1.5% of C t) predict C t for all angles of

attack tested. In this case, the pressure difference rule predicted ct = 10.0 ° to be the location

of maximum lift. Thus, the neural network was only tested from o_ = 0.0 ° to ct = 10.0 ° . The

79



1.UU , ,

0.50

0.00

-0.50

-1.00
-0.5

I I

0.0 0.5

x/c

a) High-lift settings

i

5, = 6.0

............ 5 =26.0

i

1.0 1.5

Cp

-18.0

-16.0 -

-14.0 -

-12.0 -

-10.0 -

-8.0 -

-6.0 -

-4.0 -

-2.0 -

0.0 -

2.0 -

4.0
-0.3

-- 5,=6.0

----- (5,=26.0

, I , I , I , I , T , I , I ,

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

x/c

b) Pressure distribution

1.3
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Figure 6.24 Comparison of aerodynamic characteristics for _f = 27.0 ° , gapf = 2.4%c, olf =

1.1%c which is not in the training set.

81



fm

0.00

-0.10

-0.20

-0.30

-0.60

-0.70

-0.80
0.0

INS2D
NN

I _ I I , I I i

2.0 4.0 6.0 8.0 10.0 12.0

angle of attack

c) Pitching moment versus angle of attack

L/D

160.0 ...... ' '

140.0

120.0

100.0

80.0

60.0

INS2D
NN

9- - o CI,JCd_

/Q" \
/ \

I "_)
/

40.0 ' ' ' ' ' ' ' ' ' '
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Cl

d) Lift-to-Drag ratio
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neural network did not predict the drag coefficient exactly right as is seen in Figure 6.24b, how-

ever, the neural network did predict the same trend as the calculated INS2D values. The neural

network under-predicted drag for all angles of attack except _ = 2.0 ° where it predicted the

same value as the numerical value. The pitching moment prediction has the same trends as the

numerical data as illustrated in Figure 6.24c. The neural network slightly over-predicted the

numerical data at all angles of attack. The lift-to-drag ratio prediction does not show the same

trends as the INS2D calculated values since it does not predict the dip in L/D that is seen at C t

= 2.75. There is good agreement between the neural network prediction and the numerical data

for C t = 2.16 and for 3.03 < C t < 3.56. Some of the error might by caused by the fact that the

neural networks are trained with 250 iterations, but the learning curves in Figure 6.3 and Figure

6.4 show that the neural network to predict L/D accurately should be trained with at least 400

iterations. (L/D)nn is also calculated from Ct_/Cd_ n and is also shown in Figure 6.24d (denoted

with an open circle) to test if the neural network to predict L/D is necessary. These predicted

values are inaccurate. This occurs because the drag coefficient was predicted inaccurately and

the errors are amplified in calculating CzoJCd_ ° . Overall, however, the neural networks accu-

rately predict the aerodynamics of a high-lift rigging that is not included in the training set that

contains only 70% of the data.

6.4 Optimizing Using Neural Nets

In order for computational fluid dynamics to be able to impact the aircraft design, the design

space needs to be easily searched for subsets of the design space specified by constraints, for

maximums or minimums, and/or for a specific set of design variables. By integrating an opti-

mizer to the enhanced design space capturing procedure that is developed with the neural net-

works, computational fluid dynamics data can now be readily accessible to the designers. The

optimization process that is used is discussed in detail in Section 5.3 and will be referred to as

optimization using neural networks.

The high-lift flap aerodynamics are optimized for the Flap-Edge airfoil by maximizing the

lift coefficient. The design variables in this study are chosen to be the flap deflection, gap, over-

lap, and angle of attack. The optimization is performed with and without constraining any of

the aerodynamic coefficients. The bounds on the design space are chosen to be the same as the

design space that are used to train the neural networks with the exception that the angle of
attack is bounded to ct = 10.0 ° (for the optimization cases performed without constraints)

since this is near the range where maximum lift is predicted to occur by the pressure difference

rule for most of the configurations. The bounds for the design variables are shown in Table 6.1

for the six-degree-deflected slat data. To start the optimization, the original values of the design

variables are arbitrarily chosen.

6.4.1 Optimization with Method 5 as Training Set

The optimization using the neural networks procedure is used to optimize the flap rigging

for the six-degree-deflected slat. The different methods of training the neural networks that are

discussed in Section 6.3 are used for the optimization. The optimal configurations, as well as

the prediction accuracy, are different for each training method. The first method that is used to

train the neural networks which are integrated with the optimizer is Method 5. As it has been
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noted,Method 5 containsonly 52% of theentireconfigurations.The results for five different

optimization runs are shown in Table 6.2. Each of these runs has different initial or starting val-

ues (orig) of the design variables (DV). Gradient-based optimizers do not guarantee that the

maximum which is found is the global maximum of the design space; it only guarantees an

improvement. Thus, different starting values of the design variables are used to search the

entire design space. The first optimization run, 5-A, has the initial design variables set to the

lower bounds. Whereas, the second run, 5-B, has the initial values set to the upper bounds of

the design space. In the third run, 5-C, the initial conditions are set to the average value of the

lower and upper bounds. The last two runs have arbitrary initial values to test different regions

of the design space. With this AI optimization process, the design space can be easily searched

with several optimization runs because each run only requires several seconds of CPU time. A

total of 34.7 CPU seconds are used to optimize these five runs. In this case, however, all 5 opti-

mization runs led to the same optimal configuration (mod). The optimal flap setting chosen by

the optimizer is 5f = 38.5 ° , gapf = 1.69%c, oly = 0.97%c, and o_ = 10.0 ° . The flap deflec-

tion and angle of attack are at the upper bounds, whereas, the other two design variables are

free variables (the variable lies between the upper and lower bound).

The accuracy of the neural networks' prediction is tested for both the initial and modified

configurations by generating the appropriate grid and computing the INS2D solution. Then the

predicted and computed C l are compared and the percent difference (A%) is shown in Table 6.2.

Run 5-A has zero error in predicting the original Ct. Runs 5-B and 5-C have errors of -0.28%

and 0.31%, respectively. However, Runs 5-D and 5-E have prediction errors greater than the

acceptable error. The maximum lift for the optimized configuration predicted by the neural net-

work is C l = 4.27, however, the actual lift coefficient predicted by INS2D is C t = 4.11. The

neural network overpredicted Cl by 3.82%. For these reasons, the neural networks should prob-

ably be trained with a data set that contains more information on the aerodynamics of this air-

foil. Also, the pressure difference of the modified configuration, Cp = -15.7, is much
.... diyf . . .

higher than the value of C, = -13.0 which is used to predict maximum hft. Thls will have
t" diff

an negative impact on the accuracy of prediction of the neural networks. The aerodynamacs of

this configuration is post-stall (or post maximum lift) and the neural networks are trained with

data only containing information on the aerodynamics up to maximum lift. Since the bound on

angle of attack is chosen to be an average value of where maximum lift occurs, it may influence

the region where the optimizer is forced to look for the maximum. This will be discussed in

greater detail in this chapter. Also, a procedure that is developed and tested to correct this is dis-

Table 6.1 Design Space for ks = 6.0 degrees

Design
Variables

Lower

Bound

25.0

Upper
Bound

38.5

gapf 1.5 2.7

overlapf 0.4 1.5

0 10
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cussed.

To get a better understanding of the flow physics, the pressure distribution of the modified

and original configurations for optimization Run 5-B are examined. Figure 6.25a shows the

Table 6.2 Optimization Results for 5 s = 6 degrees with Method 5 as the Training Set

C! C l A% Cl Cl A% A%diff CPU

Run DV orig mod orig orig orig mod mod mod rood (sec)
NN INS2D NN INS2D INS2D

5-A _f 25.0 38.5 2.04 2.04 0.0 4.27 4.11 3.82 -15.7 6.03

gapf 1.5 1.69

olf 0.4 0.97

Ct 0.0 10.0

5-B 5f 38.5 38.5 3.55 3.56 -0.28 4.27 4.11 3.82 -15.7 4.41

gapf 2.7 1.69

olf 1.5 0.97

o_ 10.0 10.0

5-C 5f 32.0 38.5 3.21 3.20 0.31 4.27 4.11 3.82 -15.7 9.32

gapf 2.1 1.69

olf 0.95 0.97

t_ 5.0 10.0

5-D 5f 30.0 38.5 3.06 2.96 3.30 4.27 4.11 3.82 -15.7 5.82

gapf 1.9 1.69

olf 0.75 0.97

t_ 4.0 10.0

5-E 5f 27.0 38.5 2.53 2.47 2.40 4.27 4.11 3.82 -15.7 9.13

gapf 2.1 1.69

olf 0.5 0.97

o_ 2.0 10.0
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modified and original flap positions in relation to the main element trailing edge. The flap

deflections are the same, but the gap and overlap are smaller for the modified flap setting. Fig-

ure 6.25b shows the pressure distribution of the slat, main, and flap elements in a solid line for

the modified configuration and a dashed line for the original configuration. The basic shape of

the Cp curves are similar for slat and main elements for both configurations. The flow is
attached for both the slat and main elements. The suction pressure on the modified slat and

main elements are clearly larger than the original configuration resulting in greater lift. How-

ever, there are greater differences between the original and modified flap elements. The spike at

the trailing-edge and the multiple spikes at the leading-edge are representing the actual flow

physics as was discussed earlier (refer to Figure Figure 6.23b). When designing the high-lift

system, the goal is to achieve maximum lift without causing separation. The highest lift will not

occur with flow separation on the elements. Figure 6.25 shows the original flap element to be

separated, thus the airfoil is not capable of holding maximum loads. The modified flap, how-

ever, is attached and allows more lift to be carried by all elements.

6.4.2 Optimization with Method 8 as Training Set

Next, Method 8 which contains 70% of the entire training set is used to train the neural net-

works that are integrated with the NPSOL optimizer to see if the accuracy can be improved. As

is discussed above, this training method has low prediction errors and would save 30% of com-

puter resources when compared with Method 1. The optimization results are shown in Table 6.3

for five different optimization runs. The five optimization runs are started with the same initial

design variables as the previous optimization runs. As shown in Table 6.3, there are two differ-

ent values of maximum lift that are found in these five runs. Runs 8-A and 8-E found the maxi-

mum lift coefficient to be C t = 3.77 for the flap rigging of _f -- 30.7 ° , gapf= 2.7%c, and oIf
= 0.74%c at tx = 10.0 ° . This lift coefficient is only an improvement from the original and not

the global maximum. The best improvement of the lift coefficient has a modified value of is

C l = 4.18 and the corresponding modified design variables are _f = 38.5 ° , gapf = 1.74%c,

and o(f = 0.4%c at tx = 10.0 ° . In this case, the flap deflection and angle of attack are at the
upper bound and overlap is at the lower bound. The modified gap is a free variable. The flap set-

ting is shown in Figure 6.26a for the case with the highest improvement and is compared to the

original flap setting. The flap deflection is the same as the original but the gap and overlap are

smaller. The pressure coefficients on the surface of the airfoils are plotted in Figure 6.26b for

the modified and original configurations for optimization Run 8-B. Similar features and trends

are shown here as was discussed in the previous results. The pressure distribution again has

larger suction pressure for the modified elements than the original. There are only slight

changes on the pressure distribution of the bottom surface. More importantly, the modified flap

flow is attached whereas the flow on the original flap is separated. This results in the modified

airfoil being able to carry more loads and produce more lift.

The accuracy of the neural network to predict the Cl of the original configurations did

improve for Method 8 as shown in Table 6.3. The error in the prediction for the original geom-

etry is good and is within the acceptable error. As is seen, the error is as low as 0.10% and the

highest error is only 1.53%. The neural-net-predicted-modified Ct has a slightly higher error but

is also within the acceptable range (2% and lower). Here, the highest is 1.95% and the lowest is

0.76%. This is very good considering that only 70% of the training data is used to train the neu-

ral networks to predict the aerodynamics of the multi-element airfoil and that the CPU time is
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only a few seconds (also shown in Table 6.3). Once the neural networks are trained, this optimi-

zation procedure can be performed with about 5 seconds of CPU time on a SGI workstation

with R4000 processor. To optimize all five cases, less than 25 seconds of CPU time is required.

6.4.3 Optimization with Method 9 as Training Set

Table 6.3 Optimization Results for 6s = 6 degrees with Method 8 as the Training Set

A%
Cl Ct A% Ct Ct A% d/ff CPU

Run DV orig mod orig orig orig mod mod mod mod (sec)
NN INS2D NN INS2D

INS2D

8-A _f 25.0 30.7 2.03 2.03 -0.29 3.77 3.74 0.76 -13.08 4.81

gapf 1.50 2.70

olf 0.40 0.74

a 0.0 10.0

8-B 5f 38.5 38.5 3.52 3.56 -1.15 4.18 4.10 1.95 -13.42 3.91

gapf 2.70 1.74

olf 1.50 0.40

a 10.0 10.0

8-C _f 32.0 38.5 3.15 3.20 -1.53 4.18 4.10 1.95 -13.42 4.87

gapf 2.10 1.74

olf 0.95 0.40

0_ 5.0 10.0

8-D 5f 30.0 38.5 2.96 2.96 0.10 4.18 4.10 1.95 -13.42 6.67

gapf 1.90 1.74

olf 0.75 0.40

a 4.0 10.0

8-E 5f 27.0 30.7 2.5 2.47 1.17 3.77 3.74 0.80 -13.08 4.54

gapf 2.10 2.70

olf 0.50 0.74

a 2.0 10.0
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Method 9 was also found to be a good method in training the neural networks. Thus, the

optimization procedure is next performed with Method 9 to train the neural networks. The same

initial design variable values are used as in the previous study as shown in Table 6.4. Again,

two different local maximums are found that have improved lift coefficients. The smallest local

Table 6.4 Optimization Results for 5 s = 6 degrees with Method 9 as the Training Set

C1 Cl A% Cl Ct A% diff CPU
Run DV orig mod orig orig orig rood rood mod rood (sec)

NN INS2D NN INS2D INS2D

i

9-A _f 25.0 38.5 2.04 2.04 0.0 4.13 4.03 -2.56 -14.8 6.9

gap f 1.5 2.01

oly 0.4 0.558

c_ 0.0 10.0

9-B _if 38.5 38.5 3.54 3.56 -0.56 4.11 4.00 -2.72 -14.5 3.3

gapf 2.7 2.04

olf 1.5 1.5

10.0 10.0

9-C 5f 32.0 38.5 3.19 3.20 -0.31 4.11 4.00 -2.72 -14.5 6.9

gapf 2.1 2.04

olf 0.95 1.5

o_ 5.0 10.0

9-D _Sf 30.0 38.5 3.02 2.96 2.03 4.11 4.00 -2.72 -14.5 5.5

gapf 1.9 2.04

olf 0.75 1.5

4.0 10.0

9-E _if 27.0 38.5 2.51 2.47 1.62 4.11 4.00 -2.72 -14.5 6.0

gapf 2.1 2.04

olf 0.5 1.5

2.0 10.0
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maximum is found using the initial values of the design variables of Runs 9-B through 9-E. The

modified high-lift rigging is _f = 38.5 ° , gapf= 2.04%c, olf= 1.5%c, and o_ = 10.0 ° (Figure

6.27a) and has C l = 4.11. The largest improvement in C l for this particular study is just

slightly higher at C t = 4.13. The modified values of the design variables for this case are

_f = 38.5 ° , gapf-" 2.01%c, olf= 0.56%c, and o_ = 10.0 ° (Figure 6.27a). The flap deflection
for both instances is optimal at the upper bound. The modified gaps are free variables and close

to each other, whereas the overlaps are quite different. The smallest local maximum has the

overlap at the upper bound whereas the larger local maximum has it as a free variable. Both

configurations have the angle of attack to be optimal at the upper bound. The pressure distribu-

tions are plotted in Figure 6.27b. The original configuration was initially at o_ = 0.0 ° (plotted

in a dotted line) but in order to compare the pressure distributions the original configuration

result is also plotted at ct = 10.0 ° (in a dashed line). The pressure distribution for the original

airfoil at _ = 0.0 ° has small suction pressures on the slat and main elements. The modified

airfoil has larger suction pressure peaks than the original configuration which accounts for the

additional lift that is created. The original configuration has separated flow on the flap element,

whereas the modified flap has attached flow. Thus, the modified airfoil is capable of withstand-

ing more loads and thus has higher lift.

The errors in the accuracy of the prediction are higher for Method 9 than Method 8

eventhough Method 9 contains 74% of the entire data whereas Method 8 contains 70%. The

initial configurations again have lower errors than the modified configurations. In Run 9-A

there is zero error and only one case has an error greater than 2%. All of the modified configu-

rations have prediction errors greater than 2%. The pressure difference rule is applied to these

cases. Examining the outcome, it is shown that the pressure difference exceeds the allowable

value of Cp _:J =-13.0. All the pressure differences are equal to or greater than

Cp,_, = -14._. This is also seen in Figure 6.27b where the pressure difference for the slat is
quit_:high. Thus, the angle of attack upper bound is set too high and a= 10.0 ° for these partic-

ular configurations is beyond maximum lift as defined in this current study. Thus, the neural

networks are not properly trained to predict the aerodynamics in this range. This did not occur

in the previous optimization case that uses Method 8 to train the neural networks. The configu-

rations that are found to be optimal using Method 8 have pressure differences just slightly

greater than Cp,,,::= -13.0.

6.4.4 Optimization of Twenty-Six Degree Deflected Slat

The optimization procedure using neural networks is also applied to the twenty-six-degree-

deflected slat training data. The flap deflection and angle of attack bounds are different since

the range of the flap deflection angles are higher as shown in Table 6.5. In some optimization

runs, the upper bound on the angle of attack is increased to 20 degrees because the pressure dif-
ference at ct = 10.0 ° is much lower than C = -13.0 (this was determined during the opti-

mization process). The results for this data sP_t:Yareshown in Table 6.6. Runs 1-26A and 1-26B

use Method 1 to train the neural networks and the bounds on angle of attack are ten and twenty

degrees, respectively. Likewise, Runs 9-26A and 9-26B are trained with Method 9 and again

the bounds on the angle of attack are ten and twenty degrees, respectively. All optimization

runs are started with the design variables set to the average of the bounds.
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1-26B;

First, when the angle of attack upper bound is equal to ten degrees, the configurations that

are chosen are different for each training method as shown in Table 6.6. The pressure difference

for these cases are small around C, = -3.5. For this slat deflection, t_ = 10.0 ° is not near
I_di]f --,.v_ asmaximum lift but is still in the linear ra_s,, shown in Figure 6.28. Thus, the lift coefficients

are 14% lower than the cases where the bound on the angle of attack is increased.

Second, the bound on the angle of attack is increased to tx = 20.0 ° and both optimization

Table 6.5 Bounds of Design Variables for _5s = 26.0 degrees

Design
variables

Lower

Bound

overlapf

Upper
Bound

5f 38.5 53.0

gapf 1.5 2.7

0.4 1.5

0 10 or 20
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runs 1-26B and 9-26B found the same configuration to be optimal, 8y = 38.5 ° , gapf = 1.5%c,

oly= 1.4%c, and ot = 18 ° . Each run predicts a different value of C l o . The C1 calculated by
INS2D is 4.73 but optimization Run 1-26B predicted C t = 4.70 whic_{'has an error of -0.63%.

On the other hand, Run 9-26B predicted the modified lift coefficient to be C t = 4.77 which is

overpredicted by 0.85%. The modified angle of attack is o_ = 18.0 ° which is a free variable.

This is the first case where angle of attack is not optimal at the upper bound. The pressure dif-

ference for this configuration is C. = -13.2. This means that the optimizer did predict a
• . . dill

configuraraon near maxlmum hft. "lt_e computed lift coefficient is plotted against the angle of

attack in Figure 6.28. The lift curve appears to be bending over at the higher angles of attack.

Table 6.6 Optimization Results for 5 s = 26 degrees

Cl Cl A% Cl Cl A% diff CPU

Run DV orig mod orig orig orig rood rood mod rnod (sec)
NN INS2D NN INS2D

INS2D

1- _if 32.0 38.5 2.59 2.50 3.6 4.04 4.04 0.05 -3.52 4.9
26A

gapf 2.10 1.50

olf 0.95 0.40

o_ 5.0 10.0

1- _Sf 32.0 38.5 2.59 2.50 3.6 4.70 4.73 -0.63 -13.2 6.0
26B

gapf 2.10 2.10

olf 0.95 0.40

ot 5.0 18.0

9- 5f 32.0 38.5 2.65 2.50 6.0 4.03 4.01 0.50 -3.47 6.3
26A

gapf 2.10 1.62

olf 0.95 1.50

o_ 5.0 10.0

9- 5f 32.0 38.5 2.65 2.50 6.0 4.77 4.73 0.85 -13.2 3.9
26B

gapf 2.10 2.10

olf 0.95 1.40

ot 5.0 18.0
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The optimizer chose the flap deflection to be optimal at _f = 38.5 ° for both the six-degree

and twenty-six degree slat deflection airfoil. For the smaller slat deflection, _f = 38.5 ° was
the upper bound and for the larger slat deflection it is the lower bound. This shows that the

higher flap settings are not optimal since at some point increasing the flap deflection will

degrade performance. Run 1-26A predicts the maximum lift to occur at a flap setting of

_f "- 38.5 ° , gap.f = 1.5%c, olf = 0.4%c, and ot = 10 ° . The gap is the same as in Runs 1-26B

and 9-26B and the overlap is lower and is optimal at the lower bound. On the other hand, Run

9-26A has the following optimal setting, _f = 38.5 ° , gapf = 1.62%c, olf = 1.5%c, and
ct = 10.0 ° . The gap and overlap are slightly higher for this optimization run.

The prediction errors are high for the lift coefficients of the original configurations but are

excellent for the lift coefficients of the modified configurations. The prediction errors of the

modified configurations range from 0.0 - 0.85%. The neural network did accurately predict the

modified lift coefficients. The CPU time required to optimize all four cases was only 21.17 sec-
onds.

The original and modified flap settings are shown in Figure 6.29a for optimization Run 1-

26B. The modified flap has a larger deflection angle, a smaller overlap, and has the same gap as

the original setting. The pressure distribution for Run 1-26B is shown in Figure 6.29b. The

pressure distribution shows that the modified flap has attached flow and the original flap has

separated flow. Again, the modified configuration has larger suction pressure on all elements

which also contributes to the greater lift. Comparing Figure 6.29 with Figure 6.27, shows the

differences in the Cp curve for the different slats. In the higher-deflected slat, the slat is working

well and inducing high Cp on the main element which results in higher lift.

6.4.5 Optimization With Large Design Space

The next optimization study that is conducted is to train the neural networks with a larger

design space for the six-degree deflected slat. The design space was increased to include deflec-

tion angles between _f -- 25.0 ° and _f = 53.0 ° . The gap and overlap bounds remained the
same as shown in Table 6.7. The neural networks are trained with 45 different configurations

including combinations of the following: 5f = 25.0,29.0, 38.5, 49.0, and 53.0 degrees; gapf

= 1.5, 2.1, and 2.7%c; olf = 0.4, 1.0, and 1.5%c. The pressure difference rule is applied to the
data set and the neural networks are trained with 250 iterations as before. Since the higher flap

Table 6.7 Design Variable Bounds for 5 s

Design
variables

gapf

overlapf

Lower

Bound

25.0

1.5

0.4

0

= 6.0 with 5 values of flap deflection

Upper
Bound

53.0

2.7

1.5

10
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deflections are greater than the common flight envelope, the optimizer is tested in choosing the

optimal position. The optimization results for this study are shown in Table 6.8. The same five

initial conditions are used as in the previous studies. The optimization produced three different

optimal flap configurations which were found to have maximum C l. The smallest local maxi-

Table 6.8 Optimization Results for _5s = 6 degrees with large design space and Method 1 as

the Training Set

Cl Ct A% Ct Ct A% ACpdiff CPU

Run DV orig rood orig orig orig rood rood mod mod (sec)
NN INS2D NN INS2D INS2D

1 5f 25.0 38.5 2.04 2.04 0.00 3.76 3.74 0.53 -13.1 8.38
-5A

gapf 1.50 2.52

olf 0.40 0.60

0.0 10.0

1 5f 38.5 53.0 3.13 3.13 0.0 3.34 3.33 0.30 -11.7 4.82
-5B

gapf 2.70 1.5

olf 1.50 1.21

o_ 10.0 10.0

1 5f 32.0 36.2 3.29 3.20 2.81 4.14 4.01 3.24 -14.9 9.5
-5C

gapf 2.10 1.92

olf 0.95 0.89

o_ 5.0 10.0

1 5f 30.0 36.2 3.06 2.96 3.34 4.14 4.01 3.24 -14.9 6.8
-5D

gapf 1.90 1.92

olf 0.75 0.89

ot 4.0 10.0

1 5f 27.0 36.2 2.51 2.47 1.62 4.14 4.01 3.24 -14.9 7.58
-5E

gapf 2.10 1.92

olf 0.50 0.89

o_ 2.0 10.0
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mum has the following setting _f -" 53.0°,gapf= 1.5%c, oIf= 1.21%c, and o_ = 10.0 ° with
C l = 3.33. This is clearly not the best improvement and is surprising that the optimizer found

this to be the maximum since _f -- 53.0 ° has highly separated flow on the flap. The next larg-

est local maximum chosen is gf = 38.5 ° , gapf= 2.52%c, olf= 0.60%c, and ct = 10.0 ° giv-

ing C l = 3.74. Three runs chose the optimal position to be _f -- 36.2 ° , gapf= 1.92%c, olf=
0.89%c, and tx = 10.0 ° (Figure 6.30a) with C l = 4.013. This maximum has three design vari-

ables as free variables and as expected the angle of attack is at the upper bound. The pressure

difference is C, = -14.9 which is slightly greater than the value used to predict maximum
P diff

lift. For this reason, the neural network prediction error is high and is above 3%. The CPU time

that is used to optimize these five runs is 37.04 seconds. The pressure distribution is shown in

Figure 6.30b. The original configuration is shown for 0_ = 5" and _ = 10 ° . The original con-

figuration at the higher angle of attack has a pressure distribution that is similar to the modified

configuration. The modified configuration does have slightly higher suction pressure peak than

the original configuration, thus it has greater lift. In this case, the flow on both the original and

modified flaps have separated flow.

6.4.6 Constrained Optimization

In order to test whether the accuracy would get better if the modified configurations were

restricted within the empirically predicted pre-stall range, the upper bound on the angle of

attack design variable is removed. Instead a constraint is placed on the value of the pressure dif-

ference, Cp > -13.0. An additional neural network is trained with flap deflection, gap, over-
iff .......

lap, and angI_ of attack to predict the pressure difference. In this case, the entlre training data is

used to predict C, , whereas the neural networks that predict the aerodynamic coefficients are
l" d ifZ

trained with data only including pre-stall, data that is predicted by the pressure difference rule.

The design variables of the optimization runs remain the same as does the objective function.

The results of the case that found the best improvement by the optimizer is shown in Table 6.9

for Run 9-C-ACp. The modified design variables are _if = 37.5 ° , gapf = 2.08%c, olf =

0.40%c, and ct = 9.0 ° . As expected, the modified angle of attack is lower than in the previous

case that specified the upper bound to be ct = 10.0 ° . The neural network predicted the pres-

sure difference value to be exactly what is calculated with the INS2D solution. The neural net-

work predicted the modified lift coefficient to be over 2% of the actual INS2D value.

To further reduce the prediction error in the modified, lift coefficient, the INS2D data from

this optimal case is added to the training data. The neural networks are then re-trained with this

additional information in hope that it will improve the accuracy. Again, the neural network that

predicts the lift coefficient is trained with the data set that includes the data points that are at or

below the maximum lift. The neural network that predicts the pressure difference is trained

with the entire training set. The optimization runs are again constrained and the best improve-

ment is shown in Table 6.9 denoted by Run 9-C-opt. The values of the modified design vari-

ables are different for the flap deflection, gap, and angle of attack and are the same for the

overlap as in the previous case. The modified lift coefficient predicted by the neural network

happens to be the same as in the previous optimization run, however, the INS2D value of the

modified coefficient is different and the error is reduced to only 0.51%. Thus, by constraining

the design space that the optimizer is allowed to search and by adding one data point near max-

imum lift to the training data, the prediction error is reduced and all constraints are met. The

predicted and actual pressure difference are close and differ by only 0.4. It should be noted that
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the CPU time required to run a constraint optimization run is increased, however, it is still less

than 28 seconds as shown in Table 6.9.

To get a better understanding of the flow physics, the pressure distribution of the modified

and original configurations for optimization Run 9-C-opt are examined. Figure 6.31 a shows the

modified and original flap positions in relation to the main element trailing edge. Figure 6.31b

shows the pressure distribution of the slat, main, and flap elements in a solid line for the modi-

fied configuration. The original configuration was initially at ¢x = 5.0 ° (plotted in a dotted

line) but in order to compare the pressure distributions, the original configuration is also plotted

at o_ = 8.3 ° (in a dashed line). The basic shape of the Cp curves are similar for all elements for

both configurations. The flow is attached for all elements. The suction pressure on the modified

elements are clearly larger than the original configuration resulting in greater lift. Again, there

are interesting features on the original and modified flap elements that are discussed in a previ-

ous case.

6.4.7 Summary of Optimization Runs

In summary, the neural network does accurately predict the lift coefficient for training

Table 6.9 Constrained Optimization Results for Method 9 as the Training Set

a% /,%
Cl Cl A% Cl Cl A% diff diff CPU

Run DV orig mod orig orig orig rnod rnod mod rood rnod (sec)
NN INS2D NN INS2D

NN INS2D

9- _f 32.0 37.5
C-

ACp gapf 2.10 2.08

olf 0.95 0.40

o¢ 5.0 9.0

9- _f 32.0 38.5
C-

opt gapf 2.10 1.5

olf 0.95 0.4

o_ 5.0 8.30

3.19 3.20 -0.31 3.94 3.86 2.07 -13.0 -13.0 27.3

3.18 3.20 -0.63 3.94 3.92 0.51 -13.0 -13.4 26.1
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Figure 6.31 Optimization results for Run 9-C-opt (flap settings denoted in Table 6.9).
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Methods 8 and 9, however, Method 5 has high prediction errors. The optimizer and neural net-

works are successfully integrated to predict maximum lift within the specified design space.

Only Method 5 predicted the same maximum for the five different starting locations of the

5 s = 6.0" design space. All other design methods predicted different maximum lift coeffi-

cients. This procedure does not guarantee a global maximum, but instead an improvement from

the original objective function. Thus, it is important to search the design space in several loca-

tions to search for the best improvement as is illustrated. Using the empirical constraint

together with an iterative optimization process which re-inserted the optimized configuration

into the training data set and repeated the optimization reduced the prediction error. Method 5

predicted the largest maximum lift coefficient of C1_N 2D = 4.11 for 8 s = 6.0 ° , _iy = 38.5 ° ,
S °

gapf = 1.69%c, olf = 0.97%c, and ot = 10.0 ° . The maximum hft coefficient for the twenty-six

degree slat is Clmsw = 4.73 for 5f = 38.5 ° , gapf= 2.1%c, olf= 0.4%c, and ot = 18.0 ° .

6.5 Benefits of New Process

The aerodynamic design space of a multi-element airfoil is very complex and may have many

local maximums and minimums. When a gradient-based optimizer is used to search the design

space, many starting points need to be examined in order to find the best improvement. The

advantage of using neural networks in the optimization process versus the traditional optimiza-

tion process (Figure 6.32) is the turn around time and the CPU time that is saved for many opti-

mization runs. In the traditional optimization process, every time that the design variables are

perturbed, the gradient needs to be calculated to determine the search direction. In order to cal-

culate the gradient, a grid needs to be generated and the aerodynamic coefficients must be cal-

culated by solving the flowfield with INS2D. Eventhough, the traditional optimization method

will have a shorter turn around time and CPU time used for one or two optimization runs, there

is no guarantee that one or two optimization runs will find the best improvement. On the con-

trary, the neural networks will have an overall turn around time and CPU time for many optimi-

zation runs and there is no major increase in overall or CPU time for additional runs. Once the

neural networks are trained, only 5-10 seconds are required for each additional optimization

run. The CPU time that is used in this optimization study for the different training methods

used is shown in Figure 6.33. Also plotted in this figure are the calculated CPU time that would

of been used if the traditional optimization process is used. The CPU time for the traditional

method is estimated by using the same number of gradient calls that is used in the neural net-

work optimization procedure. Then for each iteration it is estimated that the CPU time will con-

sist of 4.3 seconds to generate a grid and 600 seconds for each flow solution on a CRAY C90. It

is estimated that 600 seconds will be required to converge the solution because more time is

required to converge a solution near maximum lift. If more than three optimization runs are

executed, then the neural network optimization procedure should be used. The neural network

optimization procedure curves are nearly fiat. Thus, the major contributor to the CPU time in

the neural network optimization is training the neural networks to learn and to predict the aero-

dynamics of the airfoil. Many more optimization runs can be executed with this procedure

without requiring large additional amount of CPU time. On the other hand, the traditional opti-

mization procedure will continue to increase at a fairly linear rate as shown.

Another advantage of using the neural network optimization procedure is reduction of cost.

There are many factors contributing to the total cost of a research job including the cost of the
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engineering support or personnel, computer resources, and wall clock turn around time. One of

the largest contributors to turn around time is waiting for a computer job to be completed espe-

cially if the job executes within a batch queue. The CFD cases in this current study are executed

on a CRAY C90 or J90 computer and then the neural networks and optimizer are executed on a

workstation. At the Numerical Aerospace Simulation Facility (NAS) at NASA Ames Research

Center, there are three CRAY supercomputers that are available which are referred to as Eagle,

von Neumann, and Newton. The average turn around time for an eight-hour batch job for a one

month period for these three machines is shown in Figure 6.34. The average turn around time

for these three computers, 23.45 hours, is used for all calculations in this study.

To calculate the cost that is related to the two types of optimization procedures considered,

it is assumed that an experienced engineer is executing both optimization processes. This engi-

neer is familiar with the different components to each process such as grid generation, flow

simulation, neural networks, and optimization. The set-up time is assumed to be equal for both

processes. The engineer is a full time equivalent of $200,000 per year and there are 2080 work-

ing hours in a year. Thus, there is a charge of $96.15 per hour for an engineer. Another expense

which must be considered is computer resources. For this comparison, assume the cost of a

_iInitial Airfoil Geometry_'_

nitial Design Variables S

Grid Generation

] r °wS°l e I S2D

Calculate Objective Function

Figure 6.32 Traditional optimization process [75].
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computing hour is $39.00 and an average turn around time for an eight-hour-queue-job is 23.45

hours.

First, the cost of the neural network optimization procedure is calculated. As a reminder,

Methods 1, 5, 8, and 9 contain 27, 14, 19, and 20 configurations, respectively. A grid is gener-

ated for each configuration included in the training method and solutions are calculated for 10

different angles of attack for each configuration. The grid generation requires 4.3 CPU seconds

per grid and 269 CPU seconds per flow solution (the convergence time is low since these solu-

tions are below maximum lift). The CPU time required to train each method and used to opti-

mize all five optimization runs (see Table 6.10) must also be added to the total wail clock time

and the charged CPU time. The two additional constrained optimization runs for Method 9 are

shown separate from the baseline optimization runs to illustrate the additional cost that is

required. The total cost of the neural network optimization procedure is shown Table 6.10. The

major element in the cost is the time and computer resources required to set-up the training

matrix data. Consequently, it is very important to determine the level of prediction accuracy

that is required and to choose the proper method to train the neural networks. By choosing

Method 8 which has excellent prediction accuracy instead of Method 1, 30% of the total cost is
reduced.

200 I l I I I I r
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0 1 2 3 4 5 6 7 8
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Figure 6.33 Comparison of CPU time required for traditional and neural network

optimization procedures.
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Figure 6.34 Average turn around time for an eight hour batch queue on CRAY computers for

31 days at NASA Ames Research Center.

Table 6.10 Neural Network Optimization Procedure Cost

Training Optimization Total Cost
Method Configurations CPU time CPU time

(seconds) (seconds) (dollars)

1 27 281 263 6466.50

5 14 207 93.5 3353.50

8 19 229 197.3 4551.66

9 20 232 176.6 4790.16

9-Constrain - 409.29 10.93

(2 runs)
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Table 6.11 Traditional Optimization Procedure Cost

CPU
Method

Hours

1 94.31

5 93.13

8 62.65

9 110.31

9-Constrain

(2 runs)

70.57

Number of

8 hour jobs

11.79

Wall Clock

(hours)

276.45

Total Cost

(dollars)

30,261.21

7.83 272.96 29,876.98

11.64 183.61 20,097.70

13.79 328.30 35,391.83

206.828.82 22,638.84

Second, the cost of the traditional optimization procedure is calculated with the same

assumptions. The wall clock time and the CPU hours charged are calculated based on the num-

ber of iterations (or gradient calls) that are made by the optimizer for each optimization run. For

each method that is used in the neural network optimization procedure, the traditional optimiza-

tion cost is calculated for the same five optimization starting runs. The total turn around (wall

clock) time that the engineer waits for the job to be finished is multiplied by $96.15 and is

added to the total CPU hours that are charged. The traditional optimization procedure is per-

formed on the CRAY computer in the batch queue. This is one of the reasons that the cost is

higher than the neural network optimization procedure as shown in Table 6.11. In the tradi-

tional optimization procedure, the cost to execute the two additional constrained optimization

runs is very high. In contrast, the additional cost in the neural network optimization procedure

is insignificant when compared to the cost to train the neural networks.

The total costs are compared in Figure 6.35 for the two optimization procedures. For five

optimization runs for each training method and the two additional constrained optimization

runs, the neural network optimization procedure does cost less. Again, if only one or two opti-

mization runs are performed, then the traditional optimization procedure would cost less, how-

ever, for multiple runs, the neural network optimization procedure uses less resources. Also,

constrained optimization is very costly because of the high number of gradient calls that are

required to find the minimum objective function that satisfies all the constraints. Method 5 had

the lowest cost for the neural network optimization procedure whereas Method 8 had the least

cost for the traditional optimization procedure. The biggest advantage now is that many more

optimization runs can be performed with the neural network optimization procedure while only

adding seconds to the CPU time and turn around time as demonstrated by the addition of the

constrained optimization. Thus, the cost would slightly increase but this is insignificant when

compared to the traditional method. On the contrary, if additional optimization runs are per-
formed with the traditional optimization procedure then both the CPU time and turn around

time required would increase which would then drive the cost up in a linear fashion.
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Clearly, the neural network optimization procedure should be used for design because sev-

eral designs with different constraints or design space can be considered without driving the

cost and turn around time up. Also, once a design is chosen, the design space can be altered and

the optimization procedure can now be performed again.
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Chapter 7

Conclusions

A numerical investigation of the ability of artificial neural networks to predict the high-lift

aerodynamics of a multi-element airfoil has been performed. An AI enhanced design process

was developed which integrates neural network and optimizer technologies together with a

computational database. This process is modular, allowing insertion of emerging neural net-

work, optimization, and CFD techniques within its framework. This design process was tested

for a typical high-lift design problem to optimize flap rigging for maximum lift. The ability of

the neural networks to accurately predict the aerodynamic coefficients, lift, drag, and moment

coefficients for any high-lift flap deflection, gap, and overlap, was demonstrated for both com-

putational and experimental training data sets. Different methods of training the neural net-

works have been investigated to reduce the amount of data that is required to teach the neural

networks to predict the aerodynamics precisely.

7.1 Summary

Multiple input, single output networks were trained using the NASA Ames variation of the

Levenberg-Marquardt algorithm. The neural networks were first trained with wind tunnel

experimental data of the three-element airfoil to test the validity of the neural networks. The

networks did accurately predict the lift coefficients of the individual main and flap elements.

However, there was noticeable error in predicting the slat lift coefficient. The prediction error in

Ct, is most likely caused by the sparse training data since there were only five different con-
. lat ........ efiguraUons used to tram the neural networks. This resulted m high error m predicting th total

lift coefficient since the total lift of the airfoil is the sum of the lift from the individual elements.

This results from the fact that the errors are also summed and amplify in the prediction of the

total lift coefficient.

Computational data is next used to train the neural networks to test if computational data
can be used to train the neural networks. The neural networks were used to create a computa-

tional data base which may be used to impact design. Solutions were obtained by solving the

two-dimensional Reynolds-averaged incompressible Navier-Stokes equations using the

INS2D-UP code. The flowfield was assumed to be fully turbulent and the Spalart-Allmaras tur-

bulence model was used. Two data sets were generated for two different slat deflections each

consisting of configurations with different flap deflection, gap, and overlap. The data set con-
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sisted of twenty-seven configurations. Subsets of this data set were generated to reduce the

amount of data that is required to train the neural networks to accurately predict the aerody-

namics.

The computational data set had to be pre-processed to reduce the prediction error at or

beyond maximum lift. In high-lift aerodynamics, both experimentally and computationally, it is

difficult to predict the maximum lift, and at which angle of attack it occurs. In order to predict

maximum lift and the angle of attack where it occurs, a maximum lift criteria was needed. The

pressure difference rule, which states that there exists a certain pressure difference between the

peak suction pressure and the pressure at the trailing edge of the element at the maximum lift

condition, was applied to all three elements. For this configuration, it was found that only the

pressure difference on the slat element was needed to predict maximum lift. By applying the

pressure difference rule, the prediction errors of the neural networks were reduced.

The amount of data that is required to train the neural networks was reduced to allow com-

putational fluid dynamics to impact the design phase. Different subsets of the training methods

were created by removing entire configurations from the six-degree-deflected slat training set.

The mean and standard deviations of the root-mean-square prediction errors were calculated to

compare the different methods of training. Even though the entire computational data set was

sparse, it was reduced to only 70% of the entire data. It was found that the trained neural net-

works predicted the aerodynamic coefficients within an acceptable accuracy defined to be the

experimental error. The aerodynamic data had to be represented in a nonlinear fashion so that

the neural networks could learn and predict accurately. By carefully choosing the training sub-

set, the computational data set was even further reduced to contain only 52% of the configura-

tions. These trained neural networks also predicted the aerodynamic coefficients within the

acceptable error. Thus, the computational data required to accurately represent the flowfield of

a multi-element airfoil was reduced to allow computational fluid dynamics to be a usable tool

for design.

This same procedure was followed in the twenty-six-degree-deflected slat computational

data. This data set had higher deflected flaps which were actually out of the normal flight enve-

lope. The same trends were found except that the prediction error was much higher in this train-

ing set than the previous one. This was caused by the fact that the flowfield was severely

separated with the higher deflected flaps. Thus, the training data representing the flow field was

noisy which leads to prediction errors.

The computational design space needs to be easily searched for areas of interest such as

maximums or optimal points. An optimization study to search the design space was conducted

by using neural networks that were trained with computational data. Artificial neural networks

have been successfully integrated with a gradient based optimizer to minimize the amount of

data required to completely define the design space of a three-element airfoil. The accuracy of

the neural networks' prediction was tested for both the initial and modified configurations by

generating the grid and computing the INS2D-UP solution.

The high-lift flap aerodynamics were optimized for a three-element airfoil by maximizing

the lift coefficient. The design variables were flap deflection, gap, and overlap. The bounds of

the design space had to be the same as the bounds that were used to train the neural networks
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sincethe neuralnetworksaregoodinterpolatorsandbadextrapolators.Multiple optimization
runswereconductedin orderto find thebestimprovement.

Thedifferent trainingsubsetswere usedin theoptimizationwith neuralnetworksprocess.
The predictionerrorswere below the acceptablevaluewhenonly 70% of the computational
datasetwasusedto train the neuralnetworks.Thehighestmaximumlift was found with the
following high-lift flapsettingfor ks = 6.0°: _f -- 38.5 ° , gapf= 1.69%c, olf= 0.97%c, and

o_ = 10.0 ° which produced a Ct_ = 4.11. The optimal flap setting for the twenty-six
de_ee slat is 5- = 38 5°, gap._ = _S_%c, ol, = 0 4%c, and _ = 18.0 ° with C l = 4.73.

_" 3" " J " J " . m 2D
The pressure distribution of the original and modified configurauons were compare_. The mod-

ified configurations had larger suction pressures which contributed to the additional lift that was

generated. Several, modified flaps had attached flow whereas the original flaps had separated

flow. This resulted in the modified airfoil producing more lift.

Initial studies showed that although optimization could be conducted using a sparse train-

ing dataset, unconstrained optimization of the high-lift system produced unacceptably high

errors. Due to the complexity of the high-lift flow physics near the maximum lift condition, an

empirically based constraint, which identifies configurations at the maximum lift condition

within the computational database, was required in order to achieve accurate neural net predic-

tions for this design problem. Using the empirical constraint together with an iterative optimi-

zation procedure which re-inserted the optimized configuration into the training database and

repeated the optimization produced an optimal configuration with only 0.5% error.

A cost analysis was conducted by comparing the optimization with neural networks proce-

dure to the traditional optimization procedure. It was found that the optimization with neural

networks procedure resulted in a reduction of turnaround time, CPU time, and cost if more than

two optimization runs were conducted. After the neural networks were trained and integrated

with the optimizer, many optimization runs were executed with only using an average of 6.5

CPU seconds per run and 30 turnaround seconds per run.

Overall, the neural networks were trained successfully to predict the high-lift aerodynamics

of a multi-element airfoil. The neural networks were also able to predict the aerodynamics suc-

cessfully when only 52-70% of the entire computational data set was used to train. The neural

networks were integrated with an optimizer thus allowing a quick way to search the design

space for points of interest. Optimization with neural networks reduced the turnaround time,

CPU time, and cost of multiple optimization runs. Therefore, neural networks are an excellent

tool to allow computational fluid dynamics to impact the design space.

7.2 Recommendations

Based on the results of this investigation, several recommendations can be made. Different

types of neural networks should be studied to see if the prediction error can be further reduced.

Adaptive neural networks which learn as they predict should be examined. These networks may

lead to faster training time, smaller training data sets, and may generalize better for new test

samples. Also, they may produce better fidelity with the same amount of training data used as

in the current neural networks. If the training time is reduced and the training set can be further
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reduced than it was in this study, then this will further reduce the cost of the optimization proce-
dure.

Second, when optimizing a multi-element airfoil or wing for maximum lift, the constrained

optimization process that is described in Section 6.4.6 should be performed. The pressure dif-

ference rule should be applied to define the maximum lift and the angle of attack where it

occurs. The design space is then constrained to include only the angles of attack at maximum

lift and lower. By constraining the design space that the optimizer is allowed to search and by

adding one data point near maximum lift to the training data, the prediction error is reduced and
all constraints are met.

Next, a hybrid training data set consisting of experimental and computational data needs to

be pursued. This would require correction factors and correlating factors to be generated to cor-

rectly join the data sets together. The design space would be enlarged and would be better

defined. Thus, the neural networks can be trained with the more detailed training data set. Fur-

ther, computational fluid dynamics for predicting high-lift flowfields needs to be improved,

including turbulence modeling. This will reduce some of the requirements of correction and

correlating factors.

Another recommendation would be to integrate an artificial intelligence tool such as genetic

algorithms to help direct the optimizer to find the global maximum in fewer optimization runs.

Lastly, the optimization with neural networks procedure should be executed for a three-dimen-

sional body. The optimization with neural networks procedure should even further reduce the

cost in a three-dimensional optimization problem than the traditional procedure since three-

dimensional computations require more resources. The ability of the neural networks that were

trained with computational data to predict three-dimensional aerodynamic data needs to be

investigated.
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