@ https://ntrs.nasa.gov/search.jsp?R=19980218872 2020-06-15T23:04:28+00:00Z

TESTING AN ALGAE-BASED
AIR-REGENERATION SYSTEM (NAGW--4897)
TECHNICAL SUMMARY

Introduction

The primary objective of this project was to evaluate the potential of an air-regeneration
system based on the growth of unicellular algae, especially subaerial algae, on the external
surface of hollow ceramic tubes. It was thought that subaerial algae, because they are exposed to
a variety of environmental stresses in their natural environment, would provide a stable base for a
bioregenerative system and reduce some of the stringency in the requirements of the electrical
and mechanical support systems. The ceramic tubes would both mimic the algae's normal habitat
(the surfaces of wood and porous rocks) and provide a means of containing the growth medium
in microgravity. Because this is a novel system, most of our efforts were directed toward
determining the major parameters governing the growth of the algae on the ceramic tubes using a
simple test-bed developed during the first year of the project.

Summary of materials and methods.

Organisms. Six strains of unicellular algae were chosen for evaluation in the system:
Chlorella vulgaris Beijerinck (UTEX 259), Chlorella fusca var. vacuolata Shihara et Krauss
(UTEX 251), Chlorococcum scabellum Deason et Bold (UTEX 1233), Neospongiococcum
punctatum (Arce & Bold) Deason (UTEX 786), Stichococcus sp. (VSU 105), and a
cyanobacterium tentatively identified as a member of the genus Gloeocapsa (VSU 104); the last
two were isolated from subaerial environments near Valdosta--these strains were chosen for their
availability and ease of use in the system. Stock cultures were maintained in unialgal, not axenic,
condition on agar slants.

Growth conditions. The algae were first suspended in liquid medium and then painted
onto the upper surface of ceramic tubes with a nominal pore size of 0.3t0 0.5 um. A minimal
salts medium (BBM) was circulated through the tubes for about 30 minutes a day. Unless noted
otherwise, the tubes were incubated in groups of 4 in polypropylene boxes (550 ml) under
continuous light with a photosynthetic photon flux of 35 or 50 pmol m?2s™.

Growth rate and CO; uptake. Growth of the algae was monitored visually and through
periodic measurements of the rate of photosynthetic CO, uptake. For the latter measurements,
the test unit was attached to a polycarbonate air reservoir with a volume of 6800 ml and an
infrared gas analyzer (LI-6252, LI-COR, Inc.) operating in absolute mode. Ambient air, with a
CO; concentration between 400 and 550 pmoles/mole, was circulated through the reservoir, test
unit, and analyzer by means of a separate flow control unit (LI-670, LI-COR, Inc.) for 5 minutes .
to purge the system. After the system had equilibrated, the loop was closed. The CO; content of
the air was recorded at one minute intervals for fifteen minutes. The rate of change of CO, in the
system was then determined from these readings using a least-squares fit of the data. At the end
of a trial, the algae were rinsed from the tubes using distilled water and a brush. Aliquots of the
harvest were counted with a hemocytometer or filtered for dry weight, protein, and chlorophyll
determinations. Protein was extracted with hot sodium hydroxide, chlorophyll with DMSO.

Light relations. Four trials, involving Chlorella vulgaris, Neospongiococcum punctatum,
Stichococcus strain 105, and Gloeocapsa strain 104, were conducted to determine the
relationship between light and CO, uptake in this system. The test units containing the algae
were periodically attached to the CO, analyzer. The irradiance was varied by changing the



distance between the light source and the test unit. The resultant irradiance was measured using
a quantum sensor (LI-190SZ, LI-COR, Inc.) located in a similar box at the same distance from
the light. The box was purged with ambient air, then sealed and CO, uptake monitored for 15
minutes as before. The system was purged with air between measurements to bring the CO,
concentration back to ambient levels.

CO; relations. Two trials, involving Chlorella vulgaris and Gloeocapsa strain 104, were
conducted to get indication of how increased CO, concentrations would effect the efficiency of
the system. For these trials, eight ceramic tubes were incubated in large (6800 ml) polycarbonate
boxes. These were periodically connected to the CO, analyzer. The box-analyzer system was
then purged with air with a CO; concentration of about 3000 ppm . After the CO, concentration
reached an equilibrium the loop was closed and the change in CO; concentration monitored
overnight.

‘Summary of results

Basic patterns of growth. Visible growth first appears on the tubes within 7 days of
inoculation. The region covered by algae gradually expands until the entire upper surface, and, in
some instances, part of the lower surface, of the tube is covered with a dense growth. The time
required to reach complete coverage--between 30 and 60 days--appears to depend on the growth
form of the alga--Chlorella vulgaris, a species that lacks sheaths and does not form packets,
covered the surface in a shorter time than Gloeocapsa strain 104, possibly as the result of a more
even coverage at the time of inoculation. Using a denser inoculum should reduce the time to
complete coverage. Changes in the rate of CO, uptake during this period generally reflect the
visible changes taking place on the tube. It is also possible to detect nutrient limitation from
plateaux in uptake-time curves. The actual rate of CO, uptake 60 days after inoculation was
about 90 pmoles? min™ for Chlorella vulgaris and Stichococcus strain 105 at an irradiance of
66 pmol m?s™ (PPF), slightly less for Neospongiococcum punctatum and Gloeocapsa strain
105.

In three instances, the test units were maintained for extended periods. In these cases,
although visible changes were minimal, the rate of CO, uptake increased for another 100 days,
reaching a peak between 150 and 180 days after inoculation. The peak rate was about 180
pmoles m? min™' at an irradiance of 66 pmoles m™ s (PPF). Apparently, during this stage of
development, the mass of algae is increasing in thickness until an equilibrium is reached in which
the cells closest to the tubes are dying or becoming dormant because of CO, and/or light
limitation while new cells are added to the outer layers. Tubes can be maintained in this state
indefinitely, as long as the medium is refreshed periodically and contamination from the air is
minimized; in our trials fungal contamination caused a decline in net CO; uptake after 180 days.

The amount of biomass recovered from the tubes at the end of trial varied greatly and not
necessarily in keeping with the length of the trial. For example, in four trials involving Chlorella
vulgaris, the following dry weights were obtained: 58 gm m™ after 73 days, 134 gm m after 97
days, 40 gm m™ after 185 days, and 116 gm m™ after 373 days. The cause of this variation is
completely understood. It is interesting to note, however, that four of the five highest values of
recoverable dry weight were some of the later trials, after we had begun to circulate air through
the boxes actively in response to indications of CO, limitation. The amount of protein recovered
was generally low, roughly 5 to 10% of dry weight. This can be attributed to either an
incomplete extraction or to the poor state of health of the organisms at the time of harvest or to a
combination of the two. '



CO; uptake as a function of incident light. In general, the light/CO,-uptake curves appear
to follow Michaelis-Menten kinetics, with the photosynthetic photon flux used to incubate the
organisms somewhat below the light saturation point. There were some differences in the shape
of the curves for the different strains, however. We were unable to achieve saturating photon
fluxes for the two UTEX strains, while the two subaerial strains developed in my lab were
saturated at fluxes below 150 pumoles m? s’ (PPF); the half-saturation constant in these two
case was below 50 pmoles m™?s™. This low saturation point could have a significant impact on
the design of a light-delivery system for use in a spacecraft. The highest rate of CO, uptake
recorded in this series was 200 pmoles m min”, at an irradiance of 225 pmoles m?s! (PPF),
for Chlorella vulgaris, about 325 days after inoculation.

CO: uptake as a function of CO; concentration. Both strains tested appeared to follow
the same Michaelis-Menten kinetics: CO; saturation occurs between 1000 and 1500 ppm, and
the half saturation constant is between 200 and 250 ppm. These results are in keeping with the
fact that these algae use a typical C; mechanism to fix carbon dioxide. They also indicate that
while some improvement in the efficiency of the system can be expected with increased
concentrations of CO,, the amount of improvement is limited.

Conclusions

At this point we have concluded our basic tests of the system. As expected, the system is
fairly robust and can be kept operational over long periods with minimal care. However, two
major drawbacks of the system can be identified. F irst, the time taken to reach peak rates of
uptake is too long. The length of time is somewhat compensated for by the fact that the system
can be maintained in an operational mode for over 300 days, but is still unacceptable. This
problem can be addressed in future work in three ways. First, the initial inoculum can be
increased. We used a small amount of a liquid suspension in order to standardize our procedures
and allow for comparisons to be made between separate trials. In an operational system, a larger
inoculum directly from a solid medium, possibly another tube, would be more likely. Second,
the photon flux could be increased to more closely coincide with the light saturation point
through the use of a better lighting system. Third, the CO; concentration in the chamber could
be increased to 1500 ppm, higher than the saturation point, but lower than is commonly found in
spacecraft. The second drawback is that the rate of CO; uptake is too low for a compact system.
At the maximal rates recorded, between 75 and 100 square meters of tubes would be required to
meet the needs of each member of the crew. Given a good light distribution system, it should be
possible to pack this area of tubes into three to five cubic meters of volume, but this is still large
when compared with existing physico-chemical systems. Again, increased lighting, increased
CO; concentrations and, possibly, better choice of organisms may reduce the volume. It should
also be remembered that the major advantage of bioregenerative systems is that they can perform
many functions at once: carbon dioxide removal, oxygen production, waste water treatment,
nutrient recycling, and possibly even food production.

James A. Nienow
Valdosta State University
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ABSTRACT

The potential of air-regeneration system based on the growth of microalgae on the surface
of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended
periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been
made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786),
Stichococcus sp., and Gloeocapsa sp. have also been made. Under standard test conditions
(photosynthetic photon flux ~ 66 pmol m™ s, initial CO, concentration ~450 pmol mol ™),
" mature tubes remove up to 0.2 p.molés of CO; per tube per minute. The rate of removal
increases with photon flux up to at least 225 pmol m? s™ (PPF); peak rates of 0.35 pmoles of
CO per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to

between 120 and 210 pmoles of CO, removed per square meter of projected area per minute.

KEY WORDS: air-regeneration, microporous tubes, microalgae, Chlorella

CONTENT SENTENCE: Preliminary results from an air-regeneration system based on the

growth of unicellular algae on ceramic tubes are presented.



INTRODUCTION

Current life-support systems on American space shuttles and on the Russian space station
Mir are based on the consumption of expendable supplies. While such systems are adequate for
missions in the vicinity of Earth, plans for long-term manned missions outside of Earth's orbit
require the development of regenerative life-support systems that would allow significant
recycling of the spacecraft's air and water supplies (4). A number of chemical, physical, and
biological systems are currently being developed to meet this requirement. The system under
consideration here is an air regeneration system based on the growth of subaerial algae on the
surface of microporous ceramic tubes.

The subaerial algae are a phylogenetically diverse group of microorganisms defined by
their presence on exposed surfaces above the soil line (5). This group seems to bé particular
well-suited to for space-based bioregenerative life-support systems. First, they do not need to be
submerged in a liquid medium, but can be grown on porous surfaces. This should reduce the
amount of liquid medium required, eliminated problems associated with maintaining a well-
mixed culture, and allows for a simple mechanical harvest at the end of the useful life of a
culture. In addition, because they are subjected to a variety of environmental conditions in their
natural habitat, they are tolerant of inconsistencies in their culture conditions. All true subaerial
forms can withstand prolonged periods without water, periods of reduced light, and wide
fluctuations in temperature. These features should result in a stable system, able to survive short-

term failures in mechanical or electrical support systems with little ill-effect.



The ceramic tube system is an adaptation of a system designed to support the growth of
vascular plants in a weightless environment (1). However, while the ceramic tubes provide a
direct analog of the algae's natural habitat and the algae grow readily on them, little was known
previously concerning the parameters of growth. Therefore, the primary objective of the work
presented here was to establish some of these parameters, with particular emphasis on CO,
uptake as a function of the age of the culture. We also examined CO; uptake as a function of

incident light with a view toward developing a more compact air-regeneration system.

MATERIALS AND METHODS

Design of the test system. For the purposes of this study a simple test unit was developed.
The unit consisted of four ceramic tubes, each 14.5 cm long with an outside diameter of 1.6 cm
and a nominal porosity of 0.4 pm, inserted in a polypropylene box with a volume of about 550
ml. The completed test unit was sterilized by autoclaving. The tubes were then connected to a
reservoir containing 0.5 liters of liquid medium (Bold's Basal Medium, a minimal salts medium
common in phycological studies). In a typical trial, a suspension of algae, containing 5 to 10
million cells ml”', was painted onto the upper surface of the tubes using sterile cotton swabs.
Approximately 0.2 to 0.3 ml of suspension were added to each tube, giving newly inoculated
surfaces a faint greenish tinge. It should be noted that the tubes had be dry prior to inoculation;
the algae did not adhere to wet tubes. After inoculation the liquid medium was pumped through
tﬁe tubes for 30 minutes. The tubes are incubated under fluorescent lights with a photosynthetic
photon flux of 35 to 50 pmoles m? s™. The medium was circulated through the tubes for 30

minutes each day. Reservoirs were replaced at roughly 30 day intervals. Individual trials took



from 60 to 365 days.

Organisms. Four organisms were chosen for preliminary evaluation: the chlorophytes
Chlorella vulgaris Beijerinck (UTEX 259), Neospongiococcum punctatum (Arce & Bold)
Deason (UTEX 786), and Stichococcus sp. (VSU 105), and a cyanobacterium tentatively
identified as a member of the genus Gloeocapsa (VSU 104). Chlorella vulgaris is a common

unicellular green alga with a long history in research. And while this particular strain was

isolated from freshwater (6), conspecifics are often encountered in terrestrial and subaerial

habitats (2). N. punctatum, also known as Deasonia punctata (Arce & Bold) Ettl & Komarek
(2), 1s a soil alga selected for its ease of use in the system. The strains of Stichococcus and
Gloeocapsa used are true subaerial forms isolated from a brick wall in southeastern Georgia.
Stock cultures are maintained on agar slants in a unialgal, but not axenic, condition.

CO; uptake. To measure photosynthetic CO, uptake, the test unit was attached to a
polycarbonate air reservoir with a volume of 6800 ml and an infrared gas analyzer (L1-6252, LI-
COR, Inc.) operating in absolute mode. Ambient air, with a CO; concentration between 400 and
550 pmoles/mole, was circulated through the reservoir, culture box, and analyzer by means of a
separate flow control unit (LI-6;/0, LI-COR, Inc.) for 5 minutes to purge the system. After the
system had equilibrated, the loop was closed. The CO, content of the air was recorded at one
minute intervals for fifteen minutes. The rate of change of CO; in the system was then
determined from these readings using a least-squares fit of the data.

[rradiance was varied by changing the distance between the light source and the unit.
The resultant irradiance was measured using a quantum sensor (LI-190SZ, LI-COR, Inc.) located

in a similar box at the same distance. The system was purged with air between measurements to



bring the CO, concentration back to ambient levels.

RESULTS

Patterns of growth. Visible growth first appeared on the tubes within 7 days of
inoculation. The region covered by algae gradually expanded until the entire upper surface, and,
in some instances, part of the lower surface, of the tube was covered with a dense growth. The
_ time required to reach complete coverage appeérs to depend on the growth form of the alga.
Chlorella vulgaris, a species that lacks sheaths and does not form packets, covered the surface in
a shorter time than Gloeocapsa strain 104, possibly as the result of a more even coverage at the
time of inoculation.

Development of the algae on the tubes is reflected the time course of CO, uptake (Figure
1). All four strains tested showed a rapid increase in CO, uptake over the first 60 days as
coverage expands. Note, however, that plateaux in the development can be discerned in
Neospongiococcum punctatum, Chlorella vulgaris (trial 3), and Stichococcus strain 105. These
were apparently related to nutrient depletion and/or contamination of the medium in the
reservoir; replacement of the reservoir with fresh medium led to an additional increase in CO,
uptake until the next plateau. Equilibrium had not been achieved in any test unit at the end of 60
days. The actual rate of CO; uptake 60 days after inoculation was about 0.6 pmoles per minute
per unit for Chlorella vulgaris and Stichococcus strain 105 at an irradiance of 66 pmol m?s™ -
(PPF), slightly less for Neospongiococcum punctatum and Gloeocapsa strain 104,

In three instances the test units were maintained for extended periods: Chlorella vulgaris,

trials 1 and 2, and Gloeocapsa strain 104, trial 1. CO, uptake peaked between 150 and 180 days



after inoculation; the peak rate was about 1.2 umoles of CO; removed per unit per minute at an
irradiance of 66 pmoles m?s™' (PPF). At this point, the tubes were completely covered with a
dense growth, so that shading of the cells closest to the tube became a limiting factor. Shortly
thereafter, visible fungal contamination was noted in some of the test units; the decline in the rate
CO; uptake seen after 180 days can be attributed at least in part the fungal contamination. Two
of the units, Chlorella vulgaris (trial 1), and Gloeocapsa, were terminated. The third unit was
continued. This unit apparently reached an equilibrium between the two organisms that resulted
in a rate of CO; uptake about 50% of the peak rate. This equilibrium continued for over 100
days.

CO; uptake as a function of incident light. Curves of CO, uptake as a function of
incident light for selected periods can be found in Figure 2. In all cases the algae are growing
below their light saturation point, but the onset of light saturation in the two isolates from
Georgia appears to take place at a lower irradiance than is the case for the two UTEX cultures.
The highest rate of CO, uptake, 1.4 pmoles of CO, per minute per unit, was recorded for
Chlorella vulgaris trial 2 at an irradiance of 225 pmoles m™ s (PPF); this value was recorded

about 325 days after inoculation, well after the decline noted in the previous section.

DISCUSSION
The system as described above has at least two major drawbacks that must be addressed
before it can be considered as a reasonable choice for an air regeneration system. First, the time
taken to reach peak rates of uptake is too long. This is partially the result of the small inoculum

used in the early trials. We have since changed our methods so that a denser inoculum of algae is



transferred directly from the agar slants to the ceramic tubes. Second, the rate of uptake is too
low for a compact system. If we use the projected area of the ceramic tubes as a basis, noting
that the inoculated region was only 10.5 cm in length, the 0.6 pmoles of CO, removed by the
algae per minute is equivalent to a rate of uptake of about 90 pmol m min™'. Because humans
produce about 16 mmoles of CO, per minute, 180 m? of tubes would be required for each
member of the crew. The situation is somewhat improved if we use the peak rate of uptake--in
| which case the area of tubes required is reduced to 90 m? --but still unacceptable. We are’
currently working on ways to reduce this number. First, we have begun experimenting with
higher concentrations of CO; in the air space. The 400-550 pmol mol™ used here, while
convenient for preliminary experiments, is below the CO, saturation point of most algae (3) and
far below the concentrations found in spacecraft (4). Second, we have begun experimenting with
LEDs and fiber optic light sources. These should allow us to achieve saturating photon fluxes,
thereby increasing the rate of CO; uptake significantly. The small volume of these light sources
should also allow us to design a compact integrated system of lights and algal tubes. Once these
improvements are completely implemented a more reasonable estimate of the size of the final

air-regeneration unit can be made.
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FIGURE LEGENDS

Figure 1. CO; uptake per unit as a function of days after inoculation. The light regime was fixed
between 60 and 66 umol m™ s (PPF) for all measurements except Neospongiococcum
punctatum; these measurements were taken with a flux of 50 pmol m™s™ (PPF). The Chlorella
vulgaris plot is a composite of three separate trials, labeled series 1, series 2, and

series 3.

Figure 2. CO, uptake per unit as a function of incident light. Each grap‘h is a composite of
measurements taken over a period of three days late in the individual trial. Chlorella vulgaris
measurements were taken between days 325 and 337, Gloeocapsa sp. between days 197 and
204, Neospongiococcum punctatum between days 43 and 50, and Stichococcus sp. between days

47 and 53. Individual series of measurements for each species are indicated.
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ABSTRACT

I am developing a air-regeneration system for possible use in spacecraft based on the growth
of unicellular subaerial algae on the external surface of hollow ceramic tubes. In its current state
of development, a small inoculum of algae is painted onto the surface of ceramic tubes with a
nominal pore size of 0.4 um. The tubes are then incubated under continuous light
(photosynthetic photon flux 50 to 60 umol m? s™'). Nutrients are provided by circulating a
minimal salts medium (BBM) through the tubes for about 30 minutes a day. Under these
conditions, visible growth appears about a week after inoculation; complete coverage of the
upper surface of the tubes occurs two to three weeks later.

Because this is a novel system, many of the basic parameters governing the growth and
photosynthetic capacity of the algae are unknown. Of particular interest at this stage is the
relationship between CO, concentration and the rate of CO, uptake. Two strains were used in
this study: Chlorella vulgaris (UTEX 259), a eukaryotic chlorophyte, and cf. Gloeocapsa (VSU
104), a prokaryotic cyanobacterium. Inoculated tubes were incubated in groups of eight (total
inoculated area ~130 cm?) in polycarbonate boxes (volume ~6900 ml). At roughly weekly
intervals the incubation chambers were flooded with air with a CO, concentration of 2960 ppm.
The boxes were then sealed. Changes in CO, concentration were monitored overnight using an
infrared gas analyzer.

The measured response of photosynthetic CO, uptake to changes in CO, concentration can
be approximated by a Michaelis-Menton curve of the form

v P=P_ /(1 +K/C).
P ..x» the maximum rate of CO, uptake, increased from 0.0 to 1.5 umol m?2s™ for Chlorella and
from 0.0 to 1.1 for cf. Gloeocapsa over the first three to four weeks. The value of P, for
Chlorella then began to fluctuate, possibly in response to changes in the nutrient content of the
medium. K, the half-saturation constant for CO,, was relatively stable for each strain,
approximately 200 parts per million for Chlorella, 250 for cf. Gloeocapsa.

Assuming a CO, concentration of 4000 ppm and an average human production of 300
micromoles of CO, per second, at least 200 square meters of inoculated surface would be needed

to sustain each member of the crew. We are currently trying to reduce that number.



INTRODUCTION

NASA is currently developing plans for long-duration manned space-flights to Mars and
elsewhere in the Solar System, with manned Mars flights tentatively scheduled for sometime
early in the next century. Basic to these plans is the development of reliable low-cost, low-
energy air and water regeneration systems that not only meet the normal life-support functions
but are also capable of recycling most of the spacecraft's resources (Eckart, 1996; NASA
Aerospace Medicine Advisory Committee, 1992). Bioregenerative systems seem to offer the
best hope of meeting this requirement. Systems based on the activity of photosynthetic
organisms, such as the system under development in my laboratory, have the added advantage of
contributing to a partial closure of the carbon loop.
Basic design of the system

The system is based on the growth of subaerial and terrestrial algae on the surface of porous
ceramic tubes. The subaerial algae seem especially well-suited for inclusion in advanced life-
support systems. They do not need to be submerged in a liquid medium, but can be grown on
moist surfaces, thereby reducing the amount of liquid medium required and potential problems
with gas exchange and harvest. In addition, they are remarkably tolerant of inconsistencies in
their culture conditions and are able to withstand extended periods without water, short periods
of reduced light, and wide fluctuations in temperature; this feature could be important in space,
where the life-support system could depend on the ability of the photosynthetic component to
survive temporary failures in one or more of the mechanical or electrical support systems. The
ceramic tubes mimic the algae's natural substratum. In addition, because the nutrient solutions
are circulated through the centers of the tubes and only reach the surface by capillary action, the
tubes provide a means of controlling the liquid nutrient solutions in microgravity (Dreschel &
Sager, 1989).
Objectives of the present study

Previous work demonstrated the basic feasibility of the design. With periodic replacement
of the nutrient solution we were able to maintain an active layer of algae for up to one year
(Nienow, in press). However, the overall rate of CO, uptake was low. We are now trying to

optimize the system. Of particular interest was the potential to increase the rate of uptake by



increasing the photosynthetic photon flux and the concentration of CO, in the air space.
Preliminary results concerning the light response have been published elsewhere (Nienow, in
press); here we concentrate on the CO, response curve.

In our previous experiments, we used ambient concentrations of CO,, roughly 400 to 500
parts per million. These concentrations are lower than would be encountered in a spacecraft
(NASA Advanced Life Support Program, 1996). It was also assumed that they were below the
CO, saturation point of the algae, but I am unaware of any studies in which the CO, response of

algae was measured in a subaerial setting.

MATERIALS AND METHODS
Organisms
Two strains of unicellular algae were used for this set of tests:
UTEX 259--Chlorella vulgaris (Figure 1a), a unicellular chlorophyte; although this strain
was originally isolated from freshwater, conspecifics are common in subaerial environments.
VSU 104--cf. Gloeocapsa sp. (Figure 1b), a unicellular cyanobacterium; this strain was
isolated from a brick wall in S. E. Georgia.
These strains were chosen for their availability, ease of use, and ability to grow well on Bold's
Basal Medium (BBM). Stock cultures are maintained on BBM solidified with 1.5% agar in
unialgal condition.
Inoculation of the ceramic tubes and incubation conditions
A small sample of algae was first suspended in liquid BBM and then painted onto the upper
surface of the ceramic tubes. The tubes used in these trials have a diameter of 1.6 cm, a length of
13 cm, 10.5 cm of which is available for inoculation, and a nominal pore size between 0.3 and
0.5 um. The tubes were incubated in groups of eight in sealed polycarbonate boxes under
continuous fluorescent lighting (50 to 60 pmol m? s™' (PPF)) (Figure 2). Liquid BBM was
pumped through each set tubes for 30 minutes each day to allow for nutrient and moisture
exchange. Ambient air was circulated through the boxes continuously. Individual trials lasted 2

(Gloeocapsa) or 3 (Chlorella) months.



Determination of the rate of CO, uptake

At one to two week intervals, the box containing the inoculated tubes was flooded with air
enriched in carbon dioxide (CO, concentration 2960 ppm). After equilibration, the box was
sealed and the internal air circulated through an infrared gas analyzer (LI-COR, model L1-6252)
operating in absolute mode. The concentration of CO, in the air was recorded at one minute
intervals, usually overnight. An initial series of measurements was made within 24 hours of
inoculation to determine the time constant for leakage from the box (McDermitt ef al., 1989). In
‘later series, the average rate of decrease in the concentration of CO, was determined for 10-
minute intervals centered on selected CO, conc;entrations below 2000 pmol mol™'.

These rates, corrected for leakage, were approximated by a Michaelis-Menton equation of
the form

P= P,/ (1+K/C)

where P___ is the maximum rate of CO, uptake as a function of CO, concentration, K is the half-

max

saturation constant for CO,, and C is the concentration of CO, in the system.



RESULTS

Figure 3. Changes in the concentration of CO, in the chamber as a function of time.
Examples are given of uncorrected output from individual trials involving Chlorella vulgaris and
cf. Gloeocapsa. In each instance the decline in the CO, concentration within the chamber is
linear until the absolute concentration falls below 1000 pmol mol"'. This indicates that the
photosynthetic uptake of CO, is saturated by CO, at an early stage. The CO, compensation point
for both algae is between 25 and 50 pmol mol™. The trials illustrated were run at 72 days after
inoculation for Chlorella and 65 days for cf. Gloeocapsa; the output from other trials is similar.

Figure 4. CO, response curves. Examples are given of CO, response curves for Chlorella
and cf. Gloeocapsa. These curves indicate the degree of fit between the corrected rates of CO,
uptake and the Michaelis-Menton approximation. Most of the deviation from the predicted
curves (solid lines) can be attributed to mixing problems in the chamber. Michaelis-Menton
parameters for each example are:

Chlorella at 29 days, K =225 pmol mol*, P,,,, = 90 umol (CO,) m? min™';

Chlorella at 59 days, K = 225 pmol mol™, P,,, = 72 pmol (CO,) m? min™;

cf. Gloeocapsa at 32 days, K = 375 pmol mol”, P,,, = 95 umol (CO,) m? min™';

cf. Gloeocapsa at 65 days, K = 225 pmol mol”, P,,,, = 66 pmol (CO,) m™ min™.

The low value of K for cf. Gloeocapsa at 65 days is apparently atypical for this strain.

Figure 5. Trends in P,, (and K) over time. The figures illustrate the overall trend in P, as
the culture ages. In both instances P,,, increases as the organisms grow to cover the surface of
the tube, reaching a maximum of about 100 umol m? min"' (1.5 umol m?s'). Under ideal
conditions, we would expect the rate of CO, uptake to stabilize once the tubes are completely
covered, as continued growth at the surface leads to shading of layers next to the tube. Instead, a
marked decline can be noted in both systems. This was brought about in each case by a failure of
the nutrient delivery system,; at one point cf. Gloeocapsa was completely desiccated. While
unintentional, this demonstrates the ability of the system to recover from such mishaps. This
ability is one the advantages it has over other bioregenerative life support systems. Later
fluctuations in the value of P_,, are attributed to nutrient limitations. Contamination by

heterotrophic microorganisms may also play a part.



Values of the half-saturation constant, K, for Chlorella, not illustrated, rose from 150 pmol
mol™ to 225 umol mol"' over the first month, as the culture established itself. Thereafter, K
remained relatively stable between 200 and 225 pumol mol”. Increases came at 45, 65, and 95
days. The first two of these correspond to sharp declines in P, and may be related. The increase
at 95 days may be related to increased contamination.

The values of K for cf. Gloeocapsa behaved similarly. However, in this case K began at
about 225 pmol mol™' and rose to over 300 pmol mol™. It declined during the period of recovery

after complete desiccation.

DISCUSSION

The overall features of the CO, response curves are in keeping with a photosynthetic system
based on C; metabolism (see Eckart, 1996). Differences in the actual values of the Michaelis-
Menton parameters can probably be attributed to differences in growth form. For example, cf.
Gloeocapsa forms sheaths while Chlorella does not. The sheath may impede the diffusion of
CO, to the cell and, thereby, raise the value of K.

Of more concern to the project at hand are the implications for the design of an air
regeneration system. At the peak values of P,,,, recorded, 90 to 100 pmol m? min™', and
assuming an average human output of 18 millimoles per minute (NASA Aerospace Medicine
Advisory Committee, 1992), 180 to 200 square meters of tubes would be required for each
member of the crew. However, in this set of experiments, the photon flux was fixed at 60 umol
m?s". My previous measurements (Nienow, in press) indicate that light response curves for
Chlorella and cf. Gloeocapsa in this system can also be approximated by Michaelis-Menton
curves, this time with a half-saturation constant of 100 umol m? s' (PPF) for Chlorella and 40
umol m? s! (PPF) for cf. Gloeocapsa. If we could achieve saturating photon fluxes as well as
saturating CO, concentrations, the total area of tubes required would be reduced by a factor of 2.7
for Chlorella and 1.7 for cf. Gloeocapsa. This would still leave the minimal area at 66 square

meters. I am currently investigating changes in the nutrient regime as a way to increase

efficiency.
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Figure 1. Micrographs of the test strains.
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Figure 2. The test chamber. a. Overview of the chamber indicatin

nutrient lines and air lines. b. Close

up of a set of tubes inoculated with UTEX 259--

Chlorella vulgaris, twelve days after inoculation.



Figure 3.
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Figure 4
CO, response curve
UTEX 259--Chlorella vulgaris, 29 days after inoculation

100 ————--~ - : — : 1
80
70
60
50
40
30

20

Rate of CO, uptake (pumol m? min™)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CO; concentration (umol mol™)

CO; response curve
UTEX 259--Chlorella vulgaris, 59 days after inoculation
70

(=)
(=]

W
o

P
(=]

)
(=]

20

Rate of CO, uptake (pmol m™ min™")

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CO, concentration (umol mol™")



Figure 4 (continued).

CO; response curve
VSU 104--cf. Gloeocapsa, 32 days after inoculation
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Figure 5.

Pnax as a function of the age of the culture
UTEX 259--Chlorella vulgaris
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