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Task Objectives
The objectives of the last six months were:

¢ Revise the algorithms for the Fluorescence Line Height (FLH) and Chlorophyll Fluorescence
Efficiency (CFE) products, especially the data quality flags

* Revise the MOCEAN validation plan

e Deploy and recover bio-optical instrumentation at the Hawaii Ocean Time-series (HOT) site as part of
the Joint Global Ocean Flux Study (JGOFS)

* Prepare for field work in the Antarctic Polar Frontal Zone as part of JGOFS

e Submit manuscript on bio-optical time scales as estimated from Lagrangian drifters
¢ Conduct chemostat experiments on fluorescence

* Interface with the Global Imager (GLI) science team

¢ Continue development of advanced data system browser

Work Accomplished

Revisions of CFE and FLH Code

We are responsible for the delivery of two at-launch products for AM-1: Fluorescence line height (FLH)
and chlorophyll fluorescence efficiency (CFE). As noted in our last report, we have decided to keep the
FLH and CFE algorithms integrated as single piece of code. We also considered revising the input
chlorophyll, which is used to determine the degree of binning. Based on studies by Ken Carder and
Dennis Clark, we have decided to retain the chlorophyll derived by Carder which is based on reflectance.
These studies indicate that there is no significant difference between the Carder approach and the water-
leaving radiance approach used by Clark.

We have refined the quality flags for the Version 2 algorithms. These flags are based in part of specific
values of input products, and these have been delivered to the University of Miami for integration.

We have acquired and installed a Silicon Graphics Origin 200 that will host the MOCEAN software as it is
delivered to the EOSDIS Core System Project at Goddard. This will allow us to produce various research
products using the basic MOCEAN processing suite.

We are working with the University of Miami team to develop documentation that will describe how the
MODIS ocean components are linked together. This document will provide more detail than the
individual ATBDs and will describe the data flows and dependencies. Ms. Jasmine Bartlett (who was
hired as part of my GLI work) has analyzed all of the oceans ATBDs and has scheduled a visit to Miami
to begin this documentation process.

MOCEAN Validation Plan

Our role in the MOCEAN validation remains based on characterization of FLH and CFE in several “end-
member” environments, and quantification of the temporal and spatial scales of these products. The first
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part will provide quantitative limits on the variability of the FLH and CFE, and the relationship of this
environmental variability to environmental and physiological factors. That is, although high signal to noise
ratios are required for MODIS to make meaningful measurements of chlorophyll fluorescence in the open
ocean, the most significant challenge is the interpretation of fluorescence-based products in the context
of phytoplankton physiology. Second, we have quantified the time and space scales of variability of
fluorescence in the California Current, and we are preparing for similar studies in the Southern Ocean.
These estimates will be used to develop quality assurance tests as well as to develop rigorous tests for
product validation.

Characterization of variability of FLH and CFE is relying on both field and laboratory studies. The field
work in the California Current System has resulted in a manuscript that has been submitted to Deep-Sea
Research which is included in the appendix of this report (without figures). These results are summarized
below. We are continuing field work at the HOT site, which will be discussed later, and our field program
in the Southern Ocean will begin in October 1997. We have acquired a Tethered Spectral Radiometer
Buoy Il from Satlantic that measures 7 channels of upwelling radiance and 7 channels of downwelling
irradiance. The TSRB Il will be used in the Southern Ocean for validation of the optical measurements
from the bio-optical moorings. Our Fast Repetition Rate (FRR) fluorometer has finally been delivered. It
will be first tested on a cruise this September off the coast of Oregon. It will then be used as part of our
Southern Ocean work as well as in laboratory measurements. The laboratory work is based on
chemostat work that has been discussed in earlier reports. A significant change in our plan has occurred,
though, as we are now actively collaborating with Dr. Dale Kiefer (University of Southern California) who
is one of the pioneers in the study of phytoplankton fluorescence. We have acquired Dr. Kiefer's
specially-built chemostat which incorporates precision optics to stimulate and measure chlorophyil
fluorescence in phytoplankton cultures. This device is being used to study the fluorescence response of
different phytoplankton species to changing levels of nutrients and light.

Measurements of fluorescence have been collected using the Airborne Oceanographic Lidar (AOL)
operated by Frank Hoge. These measurements have been used to calculate FLH, although the band
placement is somewhat different than MODIS. The FLH measurements compare favorably with the
laser-induced fluorescence measurements from the AOL. These data were collected over the Gulf
Stream region where chlorophyll exceed 1.0 mg/m°. We expect to work with Hoge on similar aircraft
measurements as part of the MODIS Oceans team validation campaigns.

Hawaii Ocean Time-series Mooring

As part of the U.S. Joint Global Ocean Flux Study (JGOFS), the Hawaii Ocean Time-series (HOT)
program has been making monthly measurements of biogeochemical and physical processes north of
Oahu at Station Aloha. In January 1997, the HOT group established a permanent mooring at a site just
to the south of Station Aloha, named Hale Aloha. The mooring at Hale Aloha includes a full array of
physical and chemical samplers, and we attached a spectroradiometer at 25m depth. The mooring was
serviced in May 1997 and redeployed. We have also acquired a second system that will be moored at
50m depth in January 1998.

The mooring was designed to provide insight into short time scale processes that cannot be adequately
resolved by monthly ship sampling. Figure 1 shows the temperature record collected by the mooring.
Note the sudden upwelling that begins in early March, as evidenced by the doming of the isotherms. This
event persists for over 40 days. The monthly ship sampling showed a dramatic increase in the amount of
nitrate in the upper ocean, with a nearly two order of magnitude increase. Such an event was initially
thought to be a mesoscale eddy, which were suspected to be an important component in the nutrient
budget in the oligotrophic central gyres. The bio-optical signals are shown in Figures 2 and 3. Note that
chlorophyll nearly triples in response to this event, but that the response does not begin until about 20
days after the physical signal is first detected. The “bloom” in chlorophyll lasts about 20 days. However,
the colored dissolved organic matter (CDOM) content and the apparent quantum yield of fluorescence
signals begin to change at the beginning of the upwelling event. CDOM peaks just before chlorophyll
reaches its peak, while the quantum yield of fluorescence first increases, then decreases, and then
increases again as the event ends. We interpret these patterns as follows. The initial upwelling event



brings up nutrient-rich water that is also higher in CDOM than the surface waters where photolysis of
CDOM occurs. The phytoplankton in these deeper waters are also light-limited, so their initial response is
to increase the quantum yield of fluorescence. Eventually, the system adapts to this new physical
environment, and phytoplankton photosynthesis increases (as evidenced by the decrease in fluorescence
quantum yield). As the bloom begins to exhaust the upwelled nutrients, the quantum yield of
fluorescence again increases.
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Figure 1. Plot of temperature from three depths at the Hale ALOHA mooring north of Oahu.
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Figure 2. Time series of chlorophyll and CDOM from the Hale ALOHA mooring



Figure 3. Time series of chlorophyll and apparent quantum yield of fluorescence. Note that the data
logger failed during the first part of the deployment for the fluorescence channel, and then began to work
properly in mid-February.

In collaboration with Michael Freilich, we have compared these data sets with the two-dimensional wind
velocity fields derived from NSCAT. Ekman pumping, which results from the time-dependent changes in
the divergence field of the wind stress, correlates extremely well with the onset of the upwelling event (as
well as a smaller event in January). These changes in the field in January and early March are also
correlated with two westerly wind bursts that occurred in the western tropical Pacific this year, as part of
the developing ENSO event. The surprising fact is that oceanographers have long assumed that ENSO
responses in the eastern Pacific were driven by “remote” forcing. That is, changes in the wind field in the
western Pacific were propagated eastward through the ocean by Kelvin waves. The time scale for these
waves is on the order of 60 days. However, these results suggest that the “remote” forcing may actually
be “local.” Changes in the western Pacific winds may propagate rapidly eastward through the
atmosphere, changing the local wind fields which in turn drives the ocean response.

Of note to MODIS, though, is the need for high resolution time series for validation. Occasional ship
cruises can provide data at a level of detail that cannot be obtained any other way. However, their
episodic nature means that critical processes may be missed. Validation will continue to require
moorings, drifters, and ship studies.

Antarctic Polar Frontal Zone Study

As we have discussed in earlier reports, we will deploy 12 bio-optical moorings and 15 bio-optical drifters
in the Antarctic Polar Frontal Zone as part of the JGOFS Antarctic Environment Southern Ocean Process
Study (AESOPS). The bulk of the funding is from the National Science Foundation, but NASA/MODIS
funding has provided some of the instrumentation and drifters.

We have now assembled all of the sensors, and a test deployment was conducted successfully off the
Oregon coast. The cost for each mooring (including spectroradiometer, current meter, conductivity
sensor, and all mooring hardware) is less than $20,000. This is about one order of magnitude less than
traditional moorings. This lightweight, low cost design will allow us to study mesoscale processes at a
spatial resolution that has not previously been achieved in the Southern Ocean.

In our last report, we mentioned the three bio-optical drifters that were deployed in the APFZ in
September 1996. All three drifters have ceased operation, and we have completed initial screening and
quality control of the data. These optical measurements will be provided to the OCTS and POLDER
teams as well as to the SIMBIOS Project at GSFC.



Bio-Optical time Scales

As mentioned earlier, we have submitted a manuscript on the time scales of chlorophyll and fluorescence
in the California Current System. A copy of the manuscript is attached. Briefly, the results show that the
combination of chlorophyll and fluorescence data can be used not only to estimate biomass and
productivity rates, but that the patterns of the temporal decorrelation scales can be used to infer types of
ecological strategies. Specifically, nearshore communities have significantly different time scales for both
biomass and fluorescence. Offshore, these time scales are nearly identical. This suggests that the
nearshore community has photosynthetic properties that are not in balance with their light-harvesting
ability (as revealed by chlorophyll) whereas the community offshore is more nearly in balance. Non-
equilibrium strategies may be especially advantageous in the more episodic regime of the nearshore
region, whereas offshore communities may be closer to equilibrium in a more “even” physical
environment. Therefore MODIS fluorescence data may be useful from an ecological perspective as well.

A second manuscript entitled “Going with the flow - The use of optical drifters to study phytoplankton
dynamics,” is in press in Monitoring Algal Blooms: New techniques for Detecting Large-Scale
Environmental Change (M. Kahru and C.W. Brown, editors).

GLI Activities

In collaboration with the National Space Development Agency of Japan (NASDA), we have hired Ms.
Jasmine Bartlett to coordinate the interactions between the MODIS Oceans team and the GLI Oceans
team. Dr. Janet Campbell represented the MODIS Oceans team at a recent ADEOS Il workshop held in
Japan. We have provided the GLI team with the latest ATBDs, and we are now developing
documentation on the overall structure of the MODIS Oceans algorithm code. We have met with Bob
Evans and mapped out a strategy to produce this document. Ms. Bartlett will spend 2 weeks in Miami
this fall, documenting the data flows and the code dependencies. The final document will be provided to
NASDA and the MODIS Science Data Support Team. We will also deliver the V2 MODIS Oceans
algorithm package to the GLI team after it has been delivered to EOSDIS.

EOSDIS Plans

We continue to develop our web-based system to access, manipulate, and visualize data using both Java
and ActiveX. This activity is funded by both MODIS and Hughes. Technical reports on these activities
were provided to Ed Masuoka of the MODIS SDST.

Rather than describe both activities in detail, we will summarize the Java activity. However, both the
ActiveX and Java development efforts are proceeding in parallel, so the information presented here
applies equally to the ActiveX effort.

We are currently using Java applets to access data stored in our relational data base system as well as
provide analysis and visualization capabilities. These applets operate in a browser-centric environment,
where the architecture is three-tier. The first tier is made up of the applets. The second tier is made up
of the application servers (for computation, etc.), and the third tier is the relational data base. The main
technologies used by the applets are Java Data Base Connectivity (JDBC) and Java Remote Method
Invocation (RMI). The first provides platform-independent access to our Microsoft SQL Server data base
running under NT Server 4.0. The second provides an infrastructure for distributed object
communication.

The present functionality of the system includes:
e Access to ocean drifter data

e Retrieval of coastline data for overlay

e Retrieval of corresponding satellite imagery
s Extraction of data from images

e Image customization (zooming, color maps, etc.)



e Overlay of tracks on images in time and space
+ Comparison of imagery and drifter data
e Animations

We have now extended this approach through the use of a component object model for Java known as
Java Beans. This enables the creation of reusable software components (known as beans) which are
more lightweight than Java applets. These beans can be assembled together using visual application
builders (for example, drawing a line to link two beans together). These beans can run inside Microsoft
containers such as Visual Basic. Our new system design is based on this component model such that:

e The user need not be concerned with data base structure

* Algorithms may be applied as data are retrieved from the data base

e Software components may be able to be linked together

e The component state can be saved for later modification.

We have divided the system into client side and server side components. On the client side:
e Data viewer component which will not expose the structure of the data base

e Drifter analysis component

e Image viewer and analysis components

» 3D data viewing component, such as NOAA hydrographic data.

Server side components include:

e Data base access component which would retrieve data and present it to other requesting
components. It would also support application of algorithms to retrieved data

e Component to encapsulate functionality of MATLAB in Java and interact with other components
requiring the capabilities of MATLAB

e Computation components.

Both client side and server side components have been implemented as Java Beans. The server side
components appear to the client side components as remote objects providing services. Hence the RMI
capabilities are used to link the client and server side components. The client side components are tools
that may be composed together visually, as discussed earlier. The beans may also be programmed
together into an applet that can be used in a Web page. The beans may exchange data through the use
of events. We have also developed a way to save the state of the beans (persistence) so that a user can
retrieve an earlier analysis project and continue it.

Although the capabilities of Java have increased substantially in the last year, many of these capabilities
have been present for many years in Microsoft’s Distributed Component Object Model (DCOM) which is
at the heart of ActiveX. DCOM has a far richer set of classes and application development tools. In
addition, Java capabilities will be incorporated into DCOM so that the two will interoperate.

Anticipated Future Actions

¢ Retrieve and redeploy bio-optical mooring in Hawaii and continue analysis of bio-optical data
¢ Deploy bio-optical moorings and drifters, TSRB II, and FRR in the Antarctic Polar Frontal Zone

e Continue chemostat experiments on the relationship of fluorescence quantum yield to environmental
factors. Establish relationship between fluorescence quantum yield and photosynthetic parameters.

¢ Deliver V2 code and documentation to GLI oceans team and define integration issues.

* Continue to develop and expand browser-based information system for in situ bio-optical data.



Problems and Solutions

The most significant concern now is the apparent inability of EOSDIS to deliver data products at launch.
The present approach to cost-savings is based on scaling back hardware acquisitions, which has been
shown to be a small fraction of the overall EOSDIS budget. Thus the approach mandated by NASA
Headquarters will likely not save money while at the same time causing deep frustration in both the EOS
and general Earth science communities.




Appendix

Manuscript submitted to Deep-Sea Research; figures have not been included with the manuscript.



Decorrelation Scales of Chlorophyll as Observed from Bio-optical Drifters in the California Current
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ABSTRACT

The California Current System is characterized by intense mesoscale variability, with meandering jets that can
create small regions of strong vertical motion that have velocities on the order of several tens of meters per day. To
study physical and biological scales of variability, twenty-four near-surface drifters were released in this system,
each equipped with a spectroradiometer to measure upwelling radiance. Sensors also measured downwelling
irradiance as well as sea surface temperature (SST). Data were relayed to shore via satellite and processed into
biological quantities, such as chlorophyll. Several drifters were trapped by mesoscale eddies, and the cross-
correlation functions were calculated for both SST and chlorophyll. In general, changes in chlorophyll lagged
changes in SST by one to two days. This was observed for both cyclonic and anticyclonic eddies and supports the
hypothesis that the phytoplankton response to changes in the physical environment (and presumably the
light/nutrient regime) may be governed by a “shift-up response.” Decorrelation time scales were calculated based
on the first zero-crossing of the autocorrelation function, and the biological scales were compared with the physical
scales. Time scales for all variables increased as the drifters moved from nearshore to offshore. Nearshore
(defined as the region within 200 km of the coast) time scales were two days for both sea surface temperature
(SST) and chlorophyll. In the region between 200 and 400 km offshore, the decorrelation scales were six days for
SST and four days for chlorophyll. In the region more than 400 km offshore, the SST decorrelation scale was
seven days and decreased to 2.5 days for chlorophyll. This pattern of decorrelation scales suggests that the
processes regulating the distribution of temperature and chlorophyll are similar in the nearshore region and
significantly different offshore. Similar calculations were made for fluorescence/chlorophyll, and the
corresponding time scale increased steadily from less than one day nearshore to two days offshore. The rapid
adjustments of fluorescence nearshore, relative to changes in pigment concentration, supports the notion that
phytoplankton have adopted different strategies for growth in the nearshore versus the offshore region.

INTRODUCTION

The California Current System (CCS) is a broad eastern boundary current that is characterized by strong mesoscale
variability, especially during the upwelling season in spring and summer. This variability is especially intense off
California where strong equatorward winds and positive curl in the wind stress lead to intense upwelling and a
meandering coastal jet (Brink and Cowles, 1991; Strub et al., 1991; Abbott and Barksdale, 1991; Haidvogel et al.,
1991; Batteen, 1997). Although this variability in the physical environment is manifested in the biological
environment (Hood et al., 1990; 1991; Dugdale et al., 1989; Peldez and McGowan, 1986; Haury et al., 1986; Jones
et al., 1988), there have been relatively few statistical analyses of this biological heterogeneity (Barale and
Wittenburg-Fay, 1986; Michaelsen et al., 1989; Smith et al., 1989). Denman and Abbott (1988; 1994) studied
time series of Coastal Zone Color Scanner (CZCS) and Advanced Very High Resolution Radiometer (AVHRR)
imagery of phytoplankton pigment and sea surface temperature (SST) using cross-spectrum analysis. They showed
that the temporal decorrelation scale was a strong function of spatial scale, and that these scales varied with
location. Energetic regions, such as the upwelling filaments, had decorrelation scales of about three days for
spatial scales of 50-100 km. Less energetic regions between filaments had scales of about a week (Denman and
Abbott, 1994). In general, there was no observed lag between changes in the physical patterns (as indicated by
SST) and changes in the biological patterns (as indicated by phytoplankton pigment), which led Denman and
Abbott (1994) to conclude, based on the temporal and spatial resolution of the CZCS and AVHRR imagery, that
phytoplankton was simply a passive scalar and that biological processes played only a minor role in determining
the frequency and wavenumber spectra.

Although variability on such time and space scales clearly complicates any sampling scheme, the more interesting
questions revolve around both the ecological and biogeochemical impacts of such variability. Beginning with



Hutchinson (1941), the role of environmental variability has been thought to be an important component in
structuring planktonic ecosystems. Harris (1986) provided a comprehensive review of the interaction of
environmental variability and physiological adaptation in aquatic systems. Drawing from both aquatic studies and
general ecological theory, Harris argued that phytoplankton have evolved mechanisms to exploit the spectrum of
environmental change. From an ecological perspective, environmental heterogeneity is thought to decouple the
links in the food chain; for example, sudden blooms of diatoms can escape grazing pressure by zooplankton (e.g.,
Banse, 1996). Platt et al. (1989) suggested that small-scale patchiness in nutrient supply rates could be used to
explain the apparent paradox between low primary productivity and high downward flux of carbon in the
oligotrophic ocean.

Because of the scales associated with planktonic ecosystems, it has been extremely difficult to study these processes
from a quantitative point of view. There have been numerous observations of variability in various components of
the system (e.g., small-scale patchiness in phytoplankton pigment, time series observations of photosynthetic
parameters, zooplankton patchiness), but there are relatively few systematic statistical analyses. One obstacle to
such systematic observations is that our observing tools have their own characteristic time scales that are convolved
with the underlying natural variability. Both Harris (1986) and Platt et al. (1989) note that common measurement
techniques, such as chlorophyll fluorescence or sediment traps, are often applied to processes that have inherently
different time and space scales. The result is that the observed variability is a complex mix of both natural
variability and measurement resolution.

Implicit in these observations is that environmental variability is manifested in the degree to which the
physiological state of the phytoplankton is removed from its equilibrium. That is, if a particular physiological
parameter is slow to adapt to transient changes in the environment, then one would not expect to see a significant
effect. On the other hand, some aspects of physiology may track environmental fluctuations quite closely, resulting
in considerable variability in the signal. Cullen and Lewis (1988) and Lande and Lewis (1989) used these ideas on
the time scale of adaptation to suggest that certain photoadaptive parameters could be measured and used to infer
the degree of vertical mixing. For example, the maximum in the photosynthesis/irradiance relationship (Py,,) is
usually normalized by the chlorophyll concentration to give an assimilation number. As noted by Harris (1986)
and Cullen (1990), P.x may be independent of nutrient supply and is generally constant for populations from the
well-lit regions of the ocean, but the evidence is not conclusive. However, P, has an inherent time scale of
adaptation (usually several days) during which time it is not constant. To further complicate matters, chlorophyll
has its own time scale of adaptation which is different than the P, time scale.

In an environment characterized by a broad spectrum of environmental fluctuations, phytoplankton have developed
an equally broad range of strategies (Harris, 1986). Phytoplankton will attempt to maintain steady-state
conditions, but there is a physiological price to be paid. For example, suppose the amount of available solar
irradiance were to increase rapidly through a change in density stratification which reduced vertical mixing. The
response might be to increase Py, over several days, but the initial (or fast) response might be to increase the
amount of fluorescence per unit chlorophyll since the number of photosynthetic units might not be able to handle
the increased flux of captured photons (Cullen and Lewis, 1988). However, near-surface populations may rely on
non-photochemical quenching such as photoprotective pigments which would protect the photosynthetic machinery
from the effects caused by excess absorption of light. This process would be accompanied by a decline in
fluorescence yield (Demmig-Adams, 1990; Mohanty and Yamamoto, 1995). The wide range of adaptation and
forcing scales will complicate our analysis of environmental variability.

Over the past decade, developments in smaller and less expensive instrumentation have allowed oceanographers to
collect data sets at time and space scales that are difficult to observe from conventional platforms (Dickey, 1991;
Dickey et al., 1991). Time series from a fixed point mooring are a combination of both temporal changes and
spatial changes as new water masses are swept past the mooring. Free-drifting buoys that can be drogued to follow
upper ocean circulation help separate temporal variations in a water mass from those that occur spatially. We can
now begin to explore the time and space scales of variability in a systematic manner, as opposed to occasional
campaigns. In addition, the quasi-Lagrangian approach may produce a more realistic estimate of patch size than
the fixed point, Eulerian approach such as that used by Denman and Abbott (1988; 1994). However, the smaller
scales that can now be observed are especially influenced by the interaction between physical variability and
physiological response. Although Denman and Abbott (1994) asserted that phytoplankton were simply passive
scalars in an intensely turbulent field, the physiological mechanisms that have evolved may allow phytoplankton to
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adapt to these changes in a manner quite different than a passive scalar.

Bio-optical drifters deployed in the California Current were initially used to examine physical and biological
processes within a specific physical feature (Abbott et al., 1990; 1995). The advent of lower cost sensors as well as
the use of satellite data relay now allows the deployment of large numbers of drifters to conduct systematic studies
of the statistical properties of the upper ocean bio-optical field (Abbott and Letelier, 1996; 1997). In this paper,
our analyses followed two paths. First, we analyzed the impact of specific physical features on upper ocean
biology. Second, we calculated large-scale statistics of some of the biological and physical fields. These results are
discussed in the context of our current understanding of phytoplankton physiology and mesoscale variability.

METHODS

Standard World Ocean Circulation Experiment (WOCE) surface drifters were modified by METOCEAN Data
Systems to include a Satlantic spectroradiometer (model OCR-100) in the bottom of the surface float (Figure 1).
This sensor measured upwelling radiance at 412, 443, 490, 510, 555, 670, and 683 nm. The surface float also
included pressure and temperature sensors. A Satlantic narrow band irradiance sensor (model ED-100), centered
at 490 nm, was mounted in the top of the surface float. A 40 m long drogue was attached below the surface float
such that the drifter responded primarily to currents at 15 m depth. Data were averaged over 60 minutes and then
transmitted. If a NOAA polar-orbiting satellite was in range, then the message was relayed to shore using Service
Argos. Otherwise the message was updated the next hour and the new message transmitted. On average,
approximately eight messages were received per day. The data set also includes housekeeping information from
the drifter such as battery voltage, number of samples, and average time that the surface float was submerged.

Twenty-four drifters were released over a three-year period in the California Current. Four drifters failed soon
after deployment (presumably due to high seas); the remainder had an average lifetime of six months with the
maximum being nearly ten months. Figure 2 shows all of the drifter tracks collected between 1993 and 1995, and
Table 1 shows the details of deployment location and schedule. Most of the drifters were deployed along a line at
39.5°N between 125° and 128°W. As expected, the general trend was for the drifters to move south and west with
the prevailing summertime currents when most of the drifters were deployed (Paduan and Niiler, 1990; Brink et al.
1991; Swenson et al., 1992).

One of the problems with autonomous systems is quality control of the data which must rely only on the
information contained within the data stream. Examination of the sensor or post-deployment testing is not possible
as with more traditional sensor systems. Once the data were received, several screening tests were applied to
eliminate low quality data points. Occasionally bits were dropped from the satellite data stream, resulting in
unrealistic values in many of the drifter variables such as battery voltage, downwelling irradiance, etc. Screening
for such out-of-bounds points is fairly straightforward. The position of the drifter was also determined by Argos
using the Doppler shift of the transmission signal. Sometimes these positions were either missing or were
obviously in error (sudden, large jumps in position). The Argos files also included the number of messages
received during a given transmission from the drifter. If this number was small, then the probability of erroneous
or corrupted data increased.

We limited our analyses to data that were obtained when the absolute solar angle (elevation) was greater than 20°.
This constrained the study data set to observations collected with a few hours of local solar noon, reducing the
effects of diel variability in properties such as fluorescence.

Bio-fouling is of particular concern, especially in the relatively productive waters of the California Current. In the
past, various anti-fouling paints and mechanical devices have been used to keep optical surfaces free of
contamination. However, many of the paints can significantly affect the optical performance of the sensor and in
some cases actually enhance bio-fouling by providing a rougher surface for attachment (McLean et al., 1996).
Mechanical scrubbers, such as those used by Wirick (1994), require more electrical power than is available in a
small, autonomous drifter. Instead, we developed tests based on the optical measurements that could be used to
indicate when bio-fouling had exceeded an acceptable threshold. The most robust test was based on the ratio of the
radiances at 683 and 555 nm. As the radiance at 555 nm is relatively in sensitive to changes in chlorophyll
concentration and the radiance at 683 nm (which measures sun-stimulated fluorescence) is extremely sensitive to
changes in chlorophyll content, then the ratio should be an excellent indicator of plant growth on the sensor.
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Figure 3 shows a time series from one of the drifters. Note that after 25 July 1994, the value of this ratio increases
sharply and its level of variability increases as well. This was a consistent pattern for all of the drifters, although
the time scale for the onset of bio-fouling varied from two to four months.,

After screening, chlorophyll was calculated using the following equation:

[ 443 -0595
chl =056353*| 4 1)
L 555

where L, is upwelling radiance at a specific wavelength. This form is derived from earlier bio-optical models
(Clark, 1981; Gordon and Morel, 1983), and the coefficients were based on comparisons with chlorophyll samples
collected near an identical drifter that was deployed in Drake Passage in 1994 and with another identical drifter
deployed off the Olympic Peninsula in 1996. Although the optical properties of Southern Ocean phytoplankton
may differ from those in the California Current (Mitchell and Holm-Hansen, 1991), we only need relative
chlorophyll values to calculate temporal statistics. However, these coefficients may change as a result of changes
in species composition that are largely driven by changes in the physical environment (Abbott et al., 1995).

Given the near-surface measurements of upwelling radiance, it is necessary to correct the radiance measurement at
683 nm for solar backscatter. This is in contrast to the usual measurements that are done at depth and where the
solar contribution is small (e.g., Kiefer et al., 1989). The correction was performed based on the absorbance of
pure seawater (Smith and Baker, 1981) and chlorophyll over the top 0.5 m of water since the radiometer is located
0.5 m below the sea surface. We calculated the absorbance at 670 nm and at 683 nm as:

abs,, = (043 + chlor.*0.0182) *0.5 )

abs,, = (045 + chlor.0.0114) *0.5 @)

These absorbances were then used to calculate a backscatter correction following Kirk (1994):

backscatter = e €Y
absg,, *0.5326
This correction was applied as:
fluor = L, (683)—(L,(670)/ backscatter) )

where L, refers to the upwelling radiance measured at a specific wavelength.

SST was measured directly by the sensor package, and no further calculations were necessary. Drifter speed was
calculated from the quality-controlled drifter position information. Distance between successive positions was
based on a great circle calculation and then divided by time between positions to estimate speed.

Once the data files were cleaned and the various derived quantities were calculated, we estimated decorrelation
scales from the drifter data set. We first calculated a “daily average” for the variables of interest: SST, chlorophyll,
fluorescence/chlorophyll, and drifter speed. Some of the data records were too short or too gappy for further
statistical analyses. However, the majority of the drifters were nearly complete with only occasional missing data
points. These gaps were filled using linear interpolation between adjacent days. A linear trend was removed from
each time series, and the autocorrelation function was calculated. The decorrelation scale was estimated as the
point at which this function first became insignificantly different from zero. Figure 5 shows a typical pair of
autocorrelation functions for SST and chlorophyll from one drifter. Cross-correlation functions were calculated in
a similar manner between detrended time series of SST and chlorophyll.
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RESULTS

Of the 20 drifters that survived the initial deployment, the average length of the bio-optical time series was 73 days
before fouling became evident. Some drifters lasted well over 90 days before there was any evidence in the bio-
optical signals that fouling had occurred. For these long time series, it was possible to divide the record into two
parts, each one covering a different season. After checking the quality of the bio-optical measurements, 16 were
selected for further analysis. The other 4 had time gaps greater than several days in the data records that
compromised the quality of any time series analysis.

Pigment Packaging

One of the concerns raised by Carder et al. (1991) was that the amount of chlorophyll “packaging” would
significantly affect light absorption by chlorophyll, thus resulting in serious errors in the radiance ratio model for
chlorophyll. Packaging encompasses several processes that govern how chlorophyll is distributed and bundled
within the phytoplankton cell (Nelson et al., 1993). Carder et al. (1991) showed that rapidly-growing
phytoplankton are often characterized by high levels of packaging, thus causing serious errors in chlorophyll
estimates that are based on static radiance ratio models. Results presented by Carder et al. (submitted) indicate
that phytoplankton in the waters off the California coast are typically characterized by highly packaged pigments.
To investigate this effect, Carder et al. (submitted) suggest plotting the ratio of the remote sensing reflectance
(defined as the ratio of upwelling radiance to downwelling irradiance for a particular wavelength) at 412 nm to
that at 443 nm versus the ratio of the remote sensing reflectance at 443 nm to that at 555nm. This first ratio
encapsulates the relative absorption by colored dissolved organic matter (CDOM) at 412 nm to the absorption by
chlorophyll at 443 nm. A low ratio corresponds to high CDOM:chlorophyll. The second ratio (443 to 555 nm) is
inversely proportional to chlorophyll concentration; that is, we expect this ratio to decrease as chlorophyll
concentration increases. In the case of packaging, the 412:443 ratio will increase because the effective decrease in
reflectance at 443 nm will be larger than the decrease at 412 nm (Carder et al., submitted). Similarly, the ratio of
443:555 will decrease because reflectance at 443 nm will decrease faster than the reflectance at 555 nm.

When these two reflectance ratios are plotted, one would expect there to be a positive slope in the relationship.
That is, as chlorophyll decreases, the ratio of 443:555 will increase and the amount of CDOM relative to
chlorophyll will also decrease, thus increasing the ratio of 412:443. However, the package effect will significantly
alter this relationship as will changes in vertical transport since CDOM generally accumulates at depth and is
photo-oxidized in near-surface waters (Siegel and Michaels, 1996). In fact, the slope of the relationship may be
reversed. At high chlorophyll concentrations, the absorption by chlorophyll may increase significantly faster than
absorption by CDOM even though the ratio of CDOM to chlorophyll may not change. This will lead to an
apparent increase in the 412:443 ratio as the 443:555 ratio decreases.

The bio-optical drifters did not measure remote sensing reflectance, but ratios of the upwelling radiances will
provide similar information, as long as we restrict the optical data to periods around local solar noon. Figure 4
shows the ratio of 412 nm to 443 nm radiance plotted against the ratio of 443 nm to 555 nm radiance. These
values are within the range expected for upwelling systems (Carder et al., submitted), but note that the slope is
decidedly negative. We plotted these numbers as a function of SST as well as a function of the distance from the
coast to determine if there were large-scale spatial changes in these optical characteristics. There was no
significant difference in these relationships from that depicted in Figure 4. Thus we conclude that the
phytoplankton were indeed highly packaged, as noted by Carder et al. (1991). However, this should not affect the
statistical analyses as there were no consistent large-scale spatial shifts in packaging.

Eddy Observations

One of the observations noted by Denman and Abbott (1994) was the lack of a lag time between changes in
chlorophyll and changes in SST. In one subregion, they observed that there was a two-day lag consistent with
other observations in upwelling systems where freshly upwelled water does not immediately result in increased
chlorophyll values. Instead, phytoplankton require a few days to “shift-up” their nutrient utilization capabilities to
take advantage of these higher nutrients (Maclsaac et al., 1985; Jones et al., 1988; Dugdale et al., 1997). However,
Denman and Abbott (1994) only found such a lag in a location adjacent to an upwelling center that presumably
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had strong horizontal advection as well. In general, they did not observe such a lag in the satellite time series of
SST and phytoplankton pigments.

In contrast, many of the drifter deployments revealed that changes in SST led changes in chlorophyll by roughly 1-
2 days, especially those that sampled ocean eddies. Figure 6 shows the track and cross-correlation function for
drifter 22622 that made nearly two complete circuits around a large anticyclonic eddy. Changes in SST led
changes in chlorophyll by one day (negative lag between the two series). Drifter 20139 made two circuits around a
smaller, cyclonic eddy. Data from this drifter is presented in Figure 7. Note that in this case, the negative
correlation (at near zero lag) is much larger in the anticyclonic eddy (Fig. 6) than in the cyclonic eddy (Fig. 7).
For all of the eddies sampled by drifters, the negative correlation at this one to two day negative lag was generally
larger in anticyclonic versus cyclonic eddies. The cyclonic eddy shown in Figure 7 has positive lobes at -7 and +2
day lags and negative lobes at -15 and +9 day lags. The lag time scale of the positive correlation (five days)
corresponds to one-half of the travel time around the eddy (cold water, high chlorophyll on one side of the eddy
and warm water, low chlorophyll on the other). The anticyclonic eddy (Fig. 6) has larger positive lobes at -10 and
+5 days which implies a travel time of about 15 days (versus 10 days for the cyclonic eddy). The presence of a lag
of 1-2 days was also consistently observed in both cyclonic and anticyclonic eddies, with changes in SST leading
changes in chlorophyll.

Of the 20 drifters that transmitted their position over a period of two weeks or longer, 11 made at least one
complete transit around an eddy. Figure 8 shows the tracks for one of the drifters (in addition to the two shown in
Figures 6 and 7) which traced out eddy patterns in the northern part of the study region. Huyer et al. (this volume)
reviewed high resolution surveys that were conducted at the time of the drifter deployments in 1993. They noted
the presence of a warm core, anticyclonic eddy at the location of the eddy in Figure 6 one year earlier in August
1993. The drifter track in Figure 8 also traversed a large anticyclonic eddy in this northern region. Although the
eddy in Figure 6 is not the same as the one sampled by the ship survey, many of the characteristics are similar.
Huyer et al. (this volume) suggested that the 1993 eddy formed nearshore in early spring and then moved offshore
at a rate of about 1-5 km/day. The tangential velocity of this eddy was about 25 cm/s, and the eddy diameter was
about 150 km in August 1993. The August 1994 eddy in Figure 6 had a diameter of about 110 km (assuming that
the drifter was following the outer edge of the eddy). The tangential velocity was about 25 cm/s, and the westward
propagation speed was a little over 1 km/day.

Huyer et al. (this volume) also suggest that a pair of eddies (one anticyclonic and one cyclonic), observed near 38°
N between 126° and 127° W, were moving westward as a pair. Evidence of this pair can be seen in the track
shown in Figure 8. In this case, these drifters were deployed in summer 1993 so it is likely that these are the same
eddies as those observed by Huyer et al. Interestingly, one of the drifters traversed both eddies, first going around
the anticyclone and then going around the cyclone to the west.

The stronger negative correlation between chlorophyll and SST at near-zero lag in the anticyclone (Fig. 6) should
be expected in such a warm core eddy. Although Huyer et al. noted that this northern anticyclone was more
heterogeneous than the southern anticyclone in 1993, the relatively well-behaved cross-correlation function in
Figure 6 suggests that this anticyclone may have been more homogeneous in August. In contrast, the cross-
correlation function for the cyclone (Fig. 7) has more small-scale structure. The weaker negative correlation at
near-zero lag between SST and chlorophyll is also expected for this cold core eddy. Although freshly upwelled
water should be both colder and more chlorophyll-rich than older upwelled waters, this relationship is not constant.
Intense upwelling may bring up water that is both cold and chlorophyll-poor, if it comes from sufficient depth.
Similarly, solar heating will both warm the upwelled waters and stimulate phytoplankton production. Abbott and
Zion (1985) examined a sequence of AVHRR and CZCS images during an upwelling event in this same region.
As the upwelling developed, the inverse relationship between SST and chlorophyll strengthened in the warmer,
offshore waters whereas it became more complex in the cooler, nearshore waters.

Although the ship survey took place in 1993 and the drifter deployments covered both 1993 and 1994, the general
patterns of eddies were similar. Based on drifter tracks, the northern anticyclone near 39° N, 126° W was nearly
identical in location and physical characteristics in both years. More complex eddy patterns were apparent to the
south, although recurrent eddies also are a common feature. The apparent exchange between an
anticyclone/cyclone eddy pair (Fig. 8) suggests that this might be a mechanism to move material offshore in the
surface waters.
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Occasionally, two drifters would follow the same path, although one would be following the other several days
later. Such opportunities allowed us to compare sensor performance. Drifter 22622, which sampled the
anticyclonic eddy, was followed somewhat later in time by drifter 20140. The drifters were deployed at 39°33’N,
124°55°W (drifter 20140) and 39°25°, 126°27°W (drifter 22622). Although these drifters were released
approximately 130 km apart, they followed the same circulation path over a period of 50 days with an average
separation time of 18 hours and average distance of 62 km between drifters (Fig. 9 top).

The temperature records produced by the instrument packages appear to be sampling different water masses over
the first 30 days (Fig. 9 middle). After day 245, the temperature records are similar in magnitude and trend,
suggesting that both drifters are sampling the same water mass. During this period, the distance between both
drifters was reduced to an average of 18 km (Fig. 9 top). Furthermore, estimates of chlorophyll concentration are
also similar during this period (Fig.9, bottom). In this particular case, these results suggest that the principal
physical and biological processes controlling phytoplankton biomass over temporal scales of days appear to be
acting over large spatial scales (1-100 km). Similar scales were noted by Huyer et al. (this volume).

Decorrelation Scales

The temporal decorrelation scale averaged over the 16 drifters was longest for SST at 6.3 days. The decorrelation
scale for chlorophyll was 3.7 days, 2.3 days for fluorescence/chlorophyll, and 3.3 days for drifter speed. These
results are within the range for the same region off northern California as reported by Denman and Abbott (1994)
where the time scales were between one and seven days, depending on length scale. Note that the SST time scale
was significantly larger than the chlorophyll time scale, which is not consistent with the results of Denman and
Abbott (1994) who found no significant differences in the statistics of these two fields. However, the drifter speed
decorrelation scale was quite similar to the chlorophyll time scale. This suggests that SST may not be an especially
good indicator of the overall statistics of the physical circulation in this region. The similarity between the
chlorophyll and speed scales is consistent with the interpretation of Denman and Abbott (1994). Our estimates of
the near surface current time scales is similar to that estimated in a more comprehensive analysis of drifter tracks
by Davis (1985). Although the drifter speed time scale is much smaller than the SST time scale, this is not
surprising. Drifter speed can change as a result of many physical processes, such as inertial motions, that have
relatively short time scales. SST is a non-conservative tracer, and small-scale fluctuations may be smoothed out by
large-scale processes such as air/sea fluxes. In addition, SST responds to large-scale forcing such as coastal
upwelling which may impose longer time scales.

Although these overall scales are useful, examination of the raw data records suggested that the nature of the
variability changed as the drifters moved offshore. We recalculated the decorrelation scales as a function of the
average distance offshore. We divided the distance offshore into three categories: <200 km (nearshore), >200 km
but less than 400 km (transition), and > 400km (offshore). These domains are similar to those described by
Simpson et al. (1986) based on an analysis of CZCS and AVHRR imagery. Simpson et al. (1986) noted that the
“transition zone” was dominated by mesoscale eddies that tended to recur at specific locations. Figure 5 shows the
decorrelation scale for SST, chlorophyll, fluorescence/chlorophyll, and drifter speed as a function of these three
domains. Five drifter tracks were included in the nearshore zone, nine in the transition zone, and ten in the
offshore zone. Note that these add up to more than the 16 drifters that delivered useful data. This is a result of
subdividing some of the drifter tracks into two seasonal subsets. There is a general trend for the time scales to
increase as one moves offshore. Both the SST and fluorescence/chlorophyll time scales increase offshore, from 2
days to 7.5 days for SST and from 0.25 to 2 days for fluorescence/chlorophyll (Fig. 10). However, the pattern is
more complex than a simple cross-shore gradient. The decorrelation scale for drifter speed is nearly constant
across the entire domain (around 4 days), with perhaps a small increase in the offshore region. The time scale for
chlorophyll increases from 2 days to four days from the nearshore to the transition region and then decreases to 2
days in the offshore region.

The comparisons between the biological quantities (chlorophyll and fluorescence/chlorophyll) and the physical
quantities (SST and drifter speed) are more complex. In the nearshore domain, the time scales for both SST and
chlorophyll are nearly identical. The time scale for fluorescence/chlorophyll is much smaller (several of the
autocorrelation functions were not significantly different than zero beyond zero lag). The time scale associated
with drifter speed was nearly twice as large as for SST and chlorophyll, and it was also considerably more variable
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(note the size of the standard deviation). In the transition region, the scales of SST and chlorophyll began to
diverge as the increase in the decorrelation scale for SST was larger than the increase in the chlorophyl
decorrelation scale. Interestingly, the decorrelation scale for drifter speed was essentially the same as for the
inshore region, although its variance was much smaller. In the offshore domain, the SST scale was significantly
longer than the chlorophyll scale (7 days versus 2.5 days). In contrast, the time scales for drifter speed and
fluorescence/chlorophyll were nearly the same as the chlorophyll scale. Note that the variability in the drifter
speed scale is much smaller than in the other two regions (Figure 10).

As noted before, some of the drifters provided useful data over more than one season (Table 1). We calculated

decorrelation scales for these different seasons, but there was no consistent seasonal pattern. In part, this was the
result of deploying nearly all of the drifters in summer so that spring and winter were poorly sampled. However,
we expect that a more thorough program of deployments may reveal a consistent seasonal pattern in these scales.

DISCUSSION

Temporal and spatial variability in planktonic ecosystems has been a focus of oceanographic research for several
decades, with continuing debate over the relative importance of physical and biological processes. For example,
Bennett and Denman (1985) argued that the only mechanism that could cause biological patterns to deviate from
the spatial patterns of mesoscale physical processes would be spatial heterogeneity in growth rates. Without this
persistent source of variance, the spatial statistics of phytoplankton would be overwhelmed by mesoscale turbulence
and one could not distinguish the two. Support for this view came from a variety of sources, including Denman
and Abbott (1994) who showed that the temporal and spatial statistics of SST and chlorophyll were
indistinguishable over time scales of 1 day to 1 month and space scales 25 km to 100 km. Thus much of the debate
over spatial and temporal heterogeneity and its impacts on sampling and ecological processes has focused on the
perceived dominance of physical forcing. For example, the Joint Global Ocean Flux Study (JGOFS) time series at
Bermuda and Hawaii are thought to be aliased by unresolved mesoscale variability (e.g., Dickey et al., 1993). This
problem was pursued in a numerical model of the Bermuda ecosystem by Lawson et al. (1995; 1996) who showed
that the present JGOFS sampling might not be adequate to resolve ecologically important processes that were
associated with this physical forcing.

Ecological processes such as predation and competition are often thought to be relatively unimportant in regions
such as the California Current where physical disruption of the environment is thought to occur too frequently to
allow such processes to develop (McGowan, 1974). However, more “stable”” environments such as the central
North Pacific are thought to be more strongly influenced by such biological processes (Venrick, 1982; McGowan
and Walker 1985). On long time scales (years to decades), even stable environments can shift as a result of large-
scale changes in forcing and ocean circulation (e.g., Karl et al., 1995).

The debate over physical or biological control depends strongly on our assessment of whether the planktonic
ecosystem is in equilibrium or not (Harris, 1986). That is, we implicitly assume that stable systems are in
equilibrium and therefore ecological processes such as competition can govern ecosystem structure. Systems that
are in a non-equilibrium state are assumed to be regulated by the physical environment. At this point, the debate
shifts to the role of physiological processes and how organisms “perceive” environmental heterogeneity. As argued
by Harris (1986), phytoplankton have evolved to exploit various scales of variability, resulting in a system where
“equilibrium” and “non-equilibrium” are ambiguous terms. That is, the physiological responses of phytoplankton
(e.g., nutrient uptake, light utilization) can respond to changes in the environment at different scales (Cullen and
Lewis, 1988; Lande and Lewis, 1989). Whether the phytoplankton are in equilibrium or not depends on the
overall time scales of the physiological response and the characteristic scales of the environmental fluctuations.
For example, phytoplankton respond to changes in irradiance as a result of high frequency surface gravity waves
(which cause focusing and de-focusing of sunlight) and the low frequency internal waves (which raise and lower
entire phytoplankton layers). In the first case, we expect there to be a negligible effect on overall productivity as
the phytoplankton will effectively average over these fluctuations whereas the internal wave case may have a
significant impact (Denman and Powell, 1984).

Our results show that physical processes have a strong influence on the time/space distribution of phytoplankton
(as indicated by chlorophyll concentration). The prevalence of both warm core and cold core eddies clearly affect
chlorophyll distributions, as revealed in the cross-correlation functions between SST and chlorophyll (Figures 6
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and 7). Even though there is an element of randomness in the eddy field, our results support earlier studies that
showed that such eddies in the California Current are often predictable (Simpson et al., 1986; Haury et al., 1986;
Peldez and McGowan, 1986; Lagerloef, 1992; Hickey, 1979). The anticyclone in the northern portion of the study
area (around 39° N, 126° - 127° W) had very similar properties in both 1993 and 1994. Paired eddies such as
those observed in the southern portion (Huyer et., this volume, Simpson et al., 1986) are a common occurrence.
Thus while individual features may be uncommon, there is a fairly high level of predictability concerning the
statistics of these eddies. This may be sufficient to support the evolution of more than one strategy to exploit these
physical environments that may have distinct spectra of environmental fluctuations.

The presence of large, negative correlations between SST and chlorophyil in warm core eddies compared with the
weaker (and noisier) cross-correlations in cold core eddies suggests that the usual SST/chlorophyll relationship is
more stable in these warm core eddies. Small increases (decreases) in SST are correlated with small decreases
(increases) in chlorophyll content. The cold core cyclones are characterized by a less stable relationship between
SST and chlorophyll. Processes such as upwelling of deep waters with low chlorophyll content or rapid heating of
surface waters may break this simple linear model. In the former case, phytoplankton are apparently tracking
physical fluctuations so we would suspect that they may be close to equilibrium. In the cold core eddies, the scale
of environmental variability is too short so consequently phytoplankton cannot track every fluctuation. The
population may then be farther away from equilibrium in such a physical environment.

The decorrelation statistics from the drifters can also be interpreted in this context. In the overall statistics of the
drifter data set, the SST time scale was greater than either the drifter speed or the chlorophyll time scales (roughly
6 days versus 3 days). If physical processes completely controlled biological distributions, we might expect the
time scales to be similar for both SST and chlorophyll. Although the SST time scale is much larger (over the
whole study domain), this result is consistent with the view that at some time scales, biological and physical
processes are in synchrony while at other scales the two are disconnected. In this case, the difference in
decorrelation scales could be interpreted to mean that at large time scales, processes other than physics are
controlling the temporal distribution of chlorophyll. Earlier research using variance spectra (Denman and Platt,
1976; Powell et al. 1974; Denman et al., 1977) suggested that biology should control abundances at these large
scales while at some smaller critical length (or time) scale, physics became the controlling factor. Evidence for
this interpretation can be seen in the results from individual eddies. At near-zero lag, there is a strong
relationship, but this becomes more complex (and less consistent) at longer time separations (Figures 6 and 7).
However, the shift at larger time scales could simply be a shift in the physical processes that control SST at these
scales rather than a shift from physical to biological control in chlorophyll. Although SST is controlled by physics,
it is not a conservative tracer, just as chlorophyll is not a conservative tracer.

The cross-shore patterns of decorrelation time scales (Fig. 10) provide more insight into these processes. In the
nearshore domain (within 200 km of the coast), SST and chlorophyll have identical decorrelation scales. In
contrast, the drifter speed scale is significantly larger, and the fluorescence/chlorophyll scale is significantly
smaller. This suggests that in this nearshore region, the processes that control the temporal statistics of SST and
chlorophyll are the same and that they are quite variable. A three-day decorrelation scale is about the scale of
synoptic forcing of upwelling events. The longer drifter speed time scale suggests that horizontal speeds of the
upper ocean may be driven by larger scale processes and these speeds do not respond as rapidly as SST. Current
meter records, such as those from the Coastal Ocean Dynamics Experiment (Winant et al., 1987), have time scales
of days to weeks. The short fluorescence/chlorophyll time scale (recall that many of these records showed little
significant autocorrelation even at scales of one day) implies that the phytoplankton light harvesting (as
represented by chlorophyll content) and light utilization (as represented by fluorescence) are not in balance. That
is, fluorescence per unit chlorophyll is changing extremely rapidly so that although phytoplankton are harvesting
light, they are not able to utilize this light in photosynthesis and must re-emit some of it as fluorescence (Kiefer
and Reynolds, 1992).

In the transition region (between 200 and 400 km offshore), all of the time scales increased, except for drifter
speed. In this region (which was dominated by eddies), the SST and chlorophyll scales began to diverge (though
not significantly). The fluorescence/chlorophyll time scale became more similar to the chlorophyll scale,
suggesting that the processes of harvesting and utilization were becoming more in balance. The longer time scales
of both SST and chlorophyll are likely the result of eddy processes. As noted earlier, these eddy scales were in the
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range of 5 to 15 days. These scales are longer than the average statistics shown in Figure 10 because drifters in the
transition zone were not always following eddies, and some of the eddies were smaller than those shown in Figures
6 and 7. The key point is that the time scales in the transition zone are longer than those nearshore, and that this
difference is probably the result of prevalence of eddies in this region (Simpson et al., 1986).

The offshore region (> 400 km offshore) is significantly different from the two regions closer to shore (Fig. 10).
The SST time scale is much longer than the others, which are nearly identical with each other. As discussed
earlier, we could interpret this difference in SST and chlorophyll to be the result of biological control at large
scales and physical control at small scales. An alternative explanation is that the physical processes that govern
SST variability offshore no longer govern the variability of chlorophyll. The fluorescence/chlorophyll time scale
may help us to differentiate between these two explanations. The nearly identical time scales between this and
chlorophyll imply that light harvesting and light utilization are in balance. As the amount of chlorophyll (which to
first order controls light capture) changes, the amount of fluorescence (which represents a loss of energy that might
otherwise be available for photosynthesis) changes as well. Since the drifter speed scale is nearly the same as both
the chlorophyll and the fluorescence/chlorophyll scales, this suggests that there is a change in the physical
processes that control phytoplankton growth and abundance in the offshore region, and that these processes occur
on time scales that allow phytoplankton to adapt. In the nearshore region (and to some extent in the transition
region), the environment varies more rapidly, leading to a lack of coherence between light capture and use. This
environmental variability controls both SST and chlorophyll in the nearshore region.

In this examination of cross-shore differences, it is worth recalling our analysis of phytoplankton chlorophyll
packaging. Large spatial scale changes in the effective light absorption by chlorophyll might lead to similar
patterns of decorrelation scale. Given the large shifts in phytoplankton community composition from nearshore
(dominated by diatoms) to offshore (dominated by small green flagellates) as noted by Hood et al. (1991), we might
expect the package effect to change as well. However, we could find no evidence of a change in the degree of
packaging either as a function of distance offshore or as a function of SST. The entire study region showed the
same level of packaging.

The shift in time scales and earlier observations on shifts in species composition and growth rate (e.g., Hood et al.,
1991) supports the idea that nearshore and offshore environments not only have different physical environments
with different scales of variability, but that the phytoplankton communities are characterized by different ecological
strategies. Rather than a simple distinction between physical or biological control, it appears that the physical
environment sets the basic time and space scales. However, the physiological scales of the phytoplankton (e.g.,
nutrient uptake, light harvesting and utilization, etc.) as well as the scales of the grazers and other components of
the ecosystem determine how this variability is perceived. Organisms that can respond rapidly to small-scale
changes in light or nutrients may well be close to equilibrium in a highly variable environment. Therefore the
interaction between physical scales and physiological scales will determine in part whether the phytoplankton are
in equilibrium or not. Moreover, as noted by Harris (1986), the degree of equilibrium may vary according to
species, but on the broad scales observed by the drifters, we can resolve only two communities. The nearshore
community is not in equilibrium with the physical environment that is largely driven by processes related to
upwelling. This community is dominated by chain-forming diatoms (Chavez et al., 1991; Hood et al., 1991) which
typically are at an advantage in variable environments (Margalef, 1978). The offshore community is closer to an
equilibrium state, and earlier field studies have shown it to be dominated by smaller species, primarily flagellates
and prokaryotic forms.

These ideas of equilibrium versus non-equilibrium have been explored in oceanography for many years (e.g.,
Margalef, 1978; Harris, 1986). Communities that are close to equilibrium tend to be closely coupled to grazing
and dominated by recycling processes (e.g., Banse, 1996). On the other hand, non-equilibrium communities are
generally characterized by episodic blooms that can outstrip grazing pressure. Such differences clearly can affect
biogeochemical processes such as downward carbon flux. Platt et al. (1989) argued that the apparently high flux in
the central gyres was the result of unresolved bloom events that escaped grazer control, leading to high rates of
downward carbon flux. Apart from these episodic events, the ecosystem was in balance with tight coupling
between phytoplankton growth, grazing, and recycling.

Our results suggest that even in an eastern boundary current environment characterized by highly packaged
pigments, there are strong differences in ecological strategies along a cross-shore gradient. However, note that this
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interpretation cannot be based solely on measurements of SST and chlorophyll, as were used in the analysis by
Denman and Abbott (1994). Although SST and chlorophyll time scales diverge as one moves offshore, one cannot
unambiguously assign this divergence to a shift from physical to biological control. Moreover, the SST and drifter
speed time scales also diverge. Thus we can only say that the nature of the physical variability has shifted as one
moves offshore, and that SST may not necessarily be a particularly accurate indicator of the physical environment
offshore. However, consideration of the time scales of fluorescence/chlorophyll suggests that the biclogical
community and the nature of its response to environmental changes as one moves offshore. Thus the results of
Denman and Abbott (1994) who argued that phytoplankton behaved merely as a passive scalar in this region are
apparently not applicable to the entire domain. We suspect that in the nearshore domain that indeed
phytoplankton (as represented by chlorophyll) and SST are closely linked and respond to similar physical forcing.
However, in the transition and the offshore domains (which were not especially well-sampled by the satellite
imagery used by Denman and Abbott because of increased cloudiness), SST is controlled by different physical
processes than chlorophyll, and the phytoplankton community shifts from one characterized by non-equilibrium
processes to one that is characterized by equilibrium processes.

Chlorophyll fluorescence varies on a wide range of time scales and is sensitive to changes in nutrient stress and
species composition (Falkowski and Kolber, 1995). Although this change in the quantum yield of fluorescence
greatly complicates the use of fluorescence to estimate phytoplankton biomass, this variability may be used to
bridge the gap between the small scales associated with physiological adaptations and the longer scales associated
with ecosystem function (Falkowski and Kolber, 1995). In regions of strong vertical motion (such as in areas of
active upwelling in the nearshore region), we expect that fluorescence per unit chlorophyll will change rapidly.
Our results have implications for primary productivity models that are based on remote sensing observations.
Behrenfeld and Falkowski (1997) demonstrate that the performance of productivity models depends strongly on
optimal assimilation efficiency (a measure of photoadaptation). If fluorescence quantum yield is an indicator of
photoadaptation (Falkowski and Kolber, 1995), then our results suggest that there may be different strategies of
photoadaptation as phytoplankton communities shift from non-equilibrium to equilibrium. In other words,
phytoplankton may always be “tracking” an optimal photosynthetic efficiency, but the closeness of this tracking
may vary significantly. Our results support the conclusion of Behrenfeld and Falkowski (1997) that more effort
must be placed on understanding the linkages between phytoplankton physiology and environmental variability.

These results have applications to other studies. Optimal interpolation and various data assimilation techniques
require estimates of temporal and spatial decorrelation scales (e.g., Denman and Freeland, 1985; Mariano and
Brown, 1992; Bennett, 1992). These results also show that various measurement techniques have different
effective resolution scales. For example, because fluorescence per unit chlorophyll changes very rapidly in the
nearshore region, its use as an indicator of chlorophyll content would be limited to small scales as well. Platt et al.
(1989) discussed the similar impacts of measurement scales in the oligotrophic ocean.

Although bio-optical drifters present their own set of challenges in terms of data processing and analysis, they can
provide a more systematic approach for the study of time scales of biological processes in the upper ocean. In the
California Current, they reveal that physical forcing may be the ultimate cause that drives variability in the
phytoplankton community, but the ecological strategies adopted by the community can significantly modify its
impact. Moreover, we cannot neglect the physiological processes in the various species that are at the heart of the
community response. Thus future of studies of environmental variability must continue to elucidate both bulk
measures of phytoplankton (such as chlorophyll) as well as more species-specific measures.
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Drifter ID Launch Date Launch Position Last Transmission Date Comments

20133 5/5/93 39.5°N, 125.5°W 8/8/93

20134 . 7/8/93 37.7°N, 126.1°W 7/9/93 Failed after 1 day
20135 6/8/93 39.5°N, 125°W 9/11/93

20136 6/8/93 39.5°N, 126.5°W 9/8/93

20137 8/17/93 39°N, 124.2°W 9/26/93

20138 6/8/93 39.5°N, 128°W 9/11/93

20139 7/8/93 37.8°N, 126.2°W 10/21/93

20140 8/1/94 39.5°N, 125°W 2/17/95

20141 7/8/93 37.5°N, 126.1°W 7/9/93 Failed after 1 day
20142 7/8/93 37.9°N, 126.1°W 10/25/93

20143 7/8/93 37.4°N, 126°W 9/10/93

20144 8/1/94 39.5°N, 125.5°W 3/20/95

20145 8/17/93 39°, 124.5°W 12/8/93

20146 2/23/94 39.5°, 125°W 6/14/94

20147 2/23/94 39.5°N, 125.5°W 6/21/94

20148 7/8/93 38°N, 126°W 10/20/93

20149 9/18/93 37.7°N, 124.7°W 3/9/94

20150 9/18/93 37.6°N, 124.6°W never transmitted

20151 9/18/93 37.6°N, 124.7°W 9/24/93 Failed after 6 days
20152 5/16/94 39.5°N, 125°W 2/28/95

20153 5/16/94 39.5°N, 125.5°W 1/14/95

20154 5/16/94 39.5°N, 126°W 2/12/95

20155 8/1/94 39.5°N, 126°W 6/16/95

22622 8/1/94 39.5°N, 126.5°W 1/9/95

Table 1. Drifter deployment information for the 24 bio-optical drifters released in the California Current. Note

_that only 20 returned usable data.
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Figures

Figure 1. Schematic of the bio-optical drifters that were deployed in the California Current. From Abbott and
Letelier (1997).

Figure 2. Tracks of all 20 drifters that transmitted their positions for at least two weeks. All of the drifters were
deployed in 1993-1994, although some continued to work into 1995. From Abbott and Letelier (1996).

Figure 3. Time series of the ratio of upwelling radiance at 683 nm to upwelling radiance at 555 nm from a typical
bio-optical drifter record. Note the increase in the value of this ratio as well as the increase in variability in early
August. This was taken as evidence of the onset of bio-fouling.

Figure 4. Plot of the ratio of upwelling radiance at 443 nm to 555 nm (which is inversely proportional to
chlorophyll concentration) versus the ratio of upwelling radiance at 412 nm to 443 nm (which is inversely
proportional to the ratio of CDOM to chlorophyll). Data are from all of the drifters.

Figure 5. An example of the temporal autocorrelation function of SST and chlorophyll. From Abbott and Letelier
(1996).

Figure 6. (Top) Track of drifter 22622 that traveled around an anticyclonic eddy. (Bottom) Cross-correlation
function of SST and chlorophyll. Negative lags correspond to changes in SST leading changes in chlorophyll.
Adapted from Abbott and Letelier (1996).

Figure 7. Same as Fig. 6 except that data are from drifter 20139 that traveled around a cyclonic eddy. Adapted
from Abbott and Letelier (1996).

Figure 8. Track of drifter 20135. This drifter traveled around an anticyclone in the north, and then traveled
around a cyclone/anticyclone pair in the south.

Figure 9. (Top) Distance between drifters 20140 and 22622. Both drifters eventually sampled the same eddy
beginning around day 240. (Middle) SST time series from both drifters. (Bottom) Same except time series is for
chlorophyll. Adapted from Abbott and Letelier (1996).

Figure 10. Average decorrelation scales for SST, chlorophyll, fluorescence/chlorophyll, and drifter speed. Data
are plotted as a function of the average distance offshore of the drifter tracks. The error bars represent 1 standard
deviation. Adapted from Abbott and Letelier (1996).
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