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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-ho7

AN INVESTIGATION OF THE INFLUENCE OF BODY SIZE
AND INDENTATION ASYMMETRY ON THE EFFECTIVENESS
OF BODY INDENTATION IN COMBINATION
WITH A CAMBERED WING*

By James C. Patterson, Jr., and
Donald 1. Ioving

SUMMARY

An investigation has been made of a 450 sweptback cambered wing in
combination with an unindented body and a body symmetrically indented
with respect to its axes designed for a Mach number of 1.2. The ratio
of body frontal area to wing planform area wag 0.08 for these wing-body
combinations. 1In order to determine the influence of body size on the
effectiveness of indentation, the test data have been compared with
previously obtained datas for similar configurations having a ratio of
body frontal area to wing planform area of 0.04, Also, in order to
investigate the relative effectiveness of indentation asymmetry, a

also designed for a Mach number of 1.2 has been included in these tests.
The investigation was conducted in the Langley 8-Foot Tunnels Branch at
Mach numbers from 0.80 to 1.43 and a Reynolds number of approximately

1.85 x 106, based on a mean aerodynemic chord length of 5.955 inches.

with smaller ratio of body frontal area to wing planform area. The
0.08-area-ratio configurations also had correspondingly smaller in-
creases in the values of maximum lift-drag ratio than the 0,0Ok-area-ratio
configurations. The consideration of wing camber in the body indenta-
tion design resulted in & 35.5~percent reduction in zero-1lift wave drag,
compared with a 21.5-percent reduction associated with the symmetrical
indentation, but had a negligible effect on the values of maximum 1ift-
drag ratio.

*Title, Unclassified.



INTRODUCTION

A number of investigations of the area rule have revealed that body
indentation produces a favorable reduction in zero-lift wave drag.
Examples of such investigations are found in references 1 and 2. Little
information, however, 1s available on the =ffect of body size on the
effectiveness of body indentation. In order to determine the influence
of body size on indentation effectiveness, an investigation of the aero-
dynamic characteristics of & wing-body combination having a ratio of body
frontal area to wing planform area of 0.0f has been conducted. This
investigation is & continuation of the investigation of reference 2,
where similar configurations were tested with a ratio of body frontal
area to wing planform area of O.Ok.

It has been suggested in reference 3 that an improvement in the
effectiveness of body indentation may be cbtained by considering the
wing cross-sectional area above and below the chord plane separately.
An asymmetrically indented body, therefore, designed to account for the
camber of the wing also has been investigated.

The tests were made in the Langley 8-Foot Tunnels Branch at Mach
numbers from 0.80 to 1.43 and an average Reynolds number of 1.85 x 106.

SYMBOLS

a meen-line designation, fraction of chord from leading edge
over which design load is uniform

Ap body frontal area
b wing span
c wing chord measured parallel to plane of symmetry

(2]}

o b/2
mesn aerodynamic chord, 5. Jf cedy
0

Cp drag coefficient, Drag
aSy
Cp,0 zero-1ift drag coefficient, Zero—éézt drag



ACD,O zero-1ift wave-drag coefficient, (CD,O)M - (CD;O)M=O.8
cr 1ift coefficient, &ift
Sy
aCy, ) ,
—= lift-curve slope, averaged over a lift-coefficient range
)
da from -0.05 to 0.3
Cn pltching-moment coefficient about 25 percent chord of mean
aerodynamic chord, Pitching_moment

aSye
Cry .
S—- static-longitudinal-stability parameter averaged over a
Cy, lift-coefficient range from -0.05 to 0.3
Dpax maximum diameter of basic body
(L/D)pmax maximum lift-drag ratio
M Mach number

L2

q free-stream dynamic pressure, §p
Sy total wing planform area
Vv velocity of undisturbed stream
X body station, distance from nose of body
y coordinate along span
ol angle of attack of body center line
p mass density in undisturbed stresm
e cutting-plane roll angle, deg

MODELS AND APPARATUS

Geometric characteristics of the wing-body combinations used in
this investigation are shown in figure 1. A photograph of one of the
models in the Langley 8-foot transonic pressure tunnel is shown as
figure 2. The stainless-steel cambered wing of the present investigation
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has a planform area equal to one-half the wing planform area of refer-
ence 2. The models of reference 2 had a ratlo of body frontal area to
wing planform area AB/Sw of 0.04; whereas for the present investiga-

tion, that ratio is 0.08. With this exception, the wings are the same
and have an aspect ratio of 4, a taper ratio of 0.15, and 45° sweepback
of the quarter-chord line. At the wing roct, an NACA 64A206, a = O air-
foil section (measured streamwise) is used. An NACA 64A203, a = 0.8
(modified) airfoil section is used from the midsemispan of the wing to
the tip. Straight-line elements were used in fairing the wing sections
from the root to midsemispan. The present wing is mounted in a midwing
position on a sting-supported body for all test configurations and is
located longitudinally on the body such that the leading edge of the
mean serodynamic chord is at the same body station (17.895 inches) as
that of reference 2. The airfoil ordinates at several stations along
the wing semispan are given in table I.

Three bodies have been tested in combination with the cambered
wing of this investigation. The first of these bodies, which 1s iden-
tical to the Sears-Haack body of reference 2, is unindented and 1is
referred to as the basic body. A second body is designed for a Mach
number of 1.2 by using the axially symmetrical indentation procedure
of reference 1 and is referred to as the symmetrically indented body.
A body axially symmetrically indented in the same manner is referred
to as the M = 1.2 body in reference 2. This M = 1.2 body and the
symmetrically indented body were obtained by indenting a modified body
which has a diameter slightly larger than —he basic body, as indicated
in reference 2. A third body designed for a Mach number of 1.2 is in-
dented to compensate for the camber of the wing. This body also was
obtained by indenting the modified body and is referred to as the
asymmetrically indented body. The upper hulf of the body is designed
on the basis of the wing cross-sectional a-eas above the chord plane,
while the indentation for the lower half o' the body accounts for the
areas below the chord plane in the manner iuggested in reference 3.
The volume of each of the indented bodies ‘s about 95 percent of the
volume of the basic body. Representative ixial distribution of cross-
sectional area for the configurations is shown in figures 3 and L4 for
roll angles of 0°, 45°, and 90° at Mach nwibers of 1.0, 1.2, and 1.k.
Ordinates for all contours of the basic boly, the modified body, the
symmetrically indented body, and the asymm:trically indented body are
given in table II.

TESTS

Fach wing-body combination was tested at Mach numbers ranging from
0.80 to 1.43 at a tunnel stagnation pressure of 1 atmosphere. The



angle-of -attack range extended from -2° to 16°. All wing-body combina-
tions were tested with transition fixed along the span of the wing at
10 percent of the local chord on both the upper and lower surfaces of
the wing and around the nose of the model at 10 percent of the body
length, as shown in figure 2. The transition strips are 0.10 inch wide
and were formed by sprinkling No. 120 carborundum grains on a plastic
adhesive. The basic and symmetrically indented body configurations
were also tested with transition natural. For this investigation the
average Reynolds number, based on the wing mean aerodynamic chord, was

approximately 1.85 x 105,
MEASUREMENTS AND ACCURACY

Measurements of 1ift, drag, and pitching moment were obtained by
the use of an internally mounted, sting-supported, strain-gage balance.
The coefficients of these forces and moments are estimated to be accu-
rate within the following limits: Cyp, t0.01; CD,or +0.0005; and Cp,

£0.004. These limits include the effect of possible errors in the
measurements of the angle of attack and effects of wall reflections at
& Mach number of 1.13. The force and moment results also have been
adjusted to the condition of stream static pressure on the base of the
body. The angle of attack was measured, with an accuracy of tO.lOO, by
a fixed~pendulum strain-gage unit mounted in the nose of the model.

RESULTS AND DISCUSSION

The basic data in the form of the variation of angle of attack,
drag coefficient, and pitching-moment coefficient with 1ift coefficient
are shown in figure 5 for the basic, symmetrically indented, and asym-
metrically indented configurations with transition fixed and in fig-
ure 6 for the basic and symmetrically indented configurations with tran-
sition natural. Figures 7 to 13 are analysis figures and are based on
transition-fixed data. In the analysis figures, the drag coefficients
for the basic body configuration have been adjusted for volume in the
manner described in reference 2.

Drag Characteristics

An increase in body size resulted in an increase in the values of
the zero-lift wave-drag coefficient for the basic and symmetrically
indented body configurations, as would be expected (fig. 7). The
reduction of the zero-lift wave-drag coefficient associated with the



use of the symmetrically indented body configuration for the large ratio
of body frontal area to wing area gf = 0.08, at Mach numbers in the

region of 1.2, was significantly less than that obtained by the M = 1.2
A
configuration (E% = O.Cm) of reference 2. This trend is in agreement

with calculations of wave-drag coefficients based on the method of refer-
ence 4, It should be noted that because the same size basic body was
tested with both the larger wing of reference 2 and the smaller wing of
this investigation, the body wave-drag contribution is twice as large
when based on the smaller wing area.

The effectiveness of asymmetrical indentation on zero-11ft wave-
drag coefficient is compared with that of symmetrical indentation in
figure 8. The values of zero-1ift wave-drsg coefficient associated
with the symmetrically indented body of the present investigation were
approximately 0.0019 lower than those for the basic body configuration
in the indentation design Mach number range. The asymmetrically in-
dented body reduced the zero-1ift wave-drag coefficient ACD,o by an

additional amount of 0.0013. The zero-lift wave drag of the basic
configuration was therefore reduced 35.5 percent for the asymmetrical
indentation compared with 21.5 percent for the symmetrical indentation.

The increase in zero-1lift wave drag associated with the increase
in body size is reflected as a decrease in the value of maximum 1ift-
drag ratio. This difference in the values of the maximum lift-drag
ratio shown in figure 9 also is associated with the additional wetted

A
area of the Eﬁ = 0.08 configurations in comparison with that for the

A
—B _ 0.04 configurations.
Sy

The maximum 1lift-drag ratios of the ccnfigurations with the symmet-
rically indented body and the asymmetrically indented body were approx-

imately the same throughout the Mach number range (fig. 10). The lack
of evidence in these (L/D) values of the advantageous, though small,

additional reduction in zero-1ift wave drag associated with the asymmet-
rically indented body can be attributed to an increase in the drag due
to 1lift that was obtained from this particular asymmetrical indentation.

Lift and Pitching-Moment Cheracteristics

The effects of body size and body indentation on the lift-curve
slope, the pitching-moment characteristics, and the center-of-pressure



location throughout the Mach number range were not critical. (See
figs. 11, 12, and 13, respectively.)

CONCLUSIONS

The results of this investigation to determine the influence of
body size on the effectiveness of indentation and also to determine the
effect of asymmetrically indenting a body to account for wing camber
have indicated the following conclusions:

1. Smaller reductions occurred in the zero-lift wave drag associated
with body indentation for the configurations with larger ratio of body
frontal area to wing planform area than for the configurations with
smaller ratio; analogously, smaller increases in the values of maximum
lift-drag ratio were realized for the larger area-ratio configurations
than for the smaller area-ratio configurations.

2. Asymmetrical indentation reduced the zero-lift wave drag of the
basic configuration 35.5 percent whereas symmetrical indentation
reduced the zero-1ift wave drag 21.5 percent. The values of maximum
lift-drag ratio, however, remsined approximately the same for both the
symmetrically and asymmetrically indented body configurations.

Langley Research Center,
National Aeronautics and Space Administration,
langley Field, Va., September 19, 1960.
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TABLE II

BODY ORDINATES

Forebody Afterbody
Radius, in., for -
Body Body
station, Ra?i?s’ station, | ooy | Moatsied | YEREtTically ?ﬁiﬁﬁiiﬁiizéiy
in. in. indented
body body body
Upper Lower
0 o] 12.5 1.430 1.430 1.430 1.430 | 1.430
5 .165 13.0 1.452 1.454 1454 1.452 [ 1.452
1.0 .282 13.5 1.476 L.477 1.477 1476 | 1.476
1.5 .378 14.0 1.493 1.499 1.499 1.499 | 1.499
2.0 460 4.5 1.512 1.520 1.519 1.519 |1.519
2.5 .540 15.0 1.526 1.540 1.530 1.526 | 1.53L
3.0 612 15.5 1.540 1.558 1.93% 1.522 | 1.544
3.5 .680 16.0 1.552 1.575 1.530 1.513 | 1.550
4.0 LTh3 16.5 1.565 1.590 1.520 1.484 | 1.593
4.5 .806 17.0 1.575 1.60k4 1.507 1.455 | 1.553
5.0 862 17.5 1.585 1.61% 1.49% 1.427 | 1.553
5.5 L917 18.0 1.590 1.626 1.480 1.397 | 1.593
6.0 .969 18.5 1.598 1.634 1.471 1.373 | 1.552
6.5 1,015 19.0 1.602 1.6k2 1.466 1.369 | 1.553
7.0 1.062 19.5 1.606 1.646 1.467 1.370 | 1.554
7.5 1.106 20.0 1.606 1.648 1.473 1.380 | 1.597
8.0 1.150 20.5 1.604 1.647 1.485 1.403 | 1.560
8.5 1.187 21.0 1.602 1.643 1.499 1.k28 | 1.566
9.0 1.202 21.5 1.600 1.637 1.513 1.452 | 1.972
9.5 1.257 22.0 1.593 1.629 1.526 1.47% [ 1.575
10.0 1.290 22.5 1.587 1.619 1.531 1.487 | 1.575
10.5 1.320 23.0 1.578 1.608 1.532 1.492 |1.572
11.0 1.350 23.5 1.570 1.596 1.530 1.4 | 1.564
11.5 1.376 2k .0 1.560 1.581 1.527 1.495 | 1.95%
12.0 1.404 24 .5 1.547 1.565 1.519 1.493 | 1.545
25.0 1.532 1.547 1.511 1.488 | 1.933
25.5 1.517 1.529 1.500 1.479 |[1.518
26.0 1.501 1.508 1.485 1.468 | 1.500
26.5 1.480 1.486 1.468 1.458 | 1.482
27.0 1.460 1.465 1447 1.435 | 1.459
27.5 1.438 1.439 1.424 1.415 | 1.436
28.0 1414 1.41k4 1.402 1.393 | 1.411
28.5 1.387 1.387 1.376 1.371 | 1.387
29.0 1.360 1.36C 1.351 1.347 | 1.359
29.5 1.330 1.33C 1.323% 1.322 |1.330
30.0 1.300 1.30C 1.29% 1.293 | 1.300
30.5 1.267 1.267 1.26h 1.26% |1.267
31.0 1.231 1.231 1.229 1.229 | 1.231
31.5 1.195 1.19% 1.19% 1.195 [1.195
32,0 1.158 1.15¢ 1.158 1.158 |1.158
32.5 1.118 1.11¢ 1.118 1.118 {1.118
33.0 1.076 1.07¢f 1.076 1.076 |1.076
33,5 1.031 1.031 1.031 1.031 | 1.031
34.0 .984 .98k .984 .98L .98%
34.5 .932 .93¢ 932 <932 .932
35.0 .878 .876 .878 .878 .878
35.3 L8435 .8k%5 L8435 Bu3s L .8u35
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Wing- body combination

Basic
NAOr—TT"T"""T" ------- Symmetrically indented
——-— Asymmetrically indented
"\
08 i S
A T e
aCL ///Z ] SN |
P TR

0¢ \\3"'\

06 —T—=

Interpolated > l
L1
04 8 9 1.0 Il 1.2 .3 1.4 1.5

Mach number,M

Figure 11.- Average lift-curve-slope characteristics of the L45° sweptback

wing in combination with the basic and indented bodies. Cp, = -0.05
to 0.3.
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Figure 12.- Stability characteristics of tae 4L,5° sweptback wing in com-
bination with the basic and indented bodies. (i, = -0.05 to 0.3.
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