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SPUTTERING OF METALS BY MASS-ANALYZED

N2+ AND N +

By :_IICHE[. BADER, ]IRED C. "_VITTEBORN', and TuoM._s W. SNOUSE

SUMMARY

Low-ener:ly sputtering _'tudies were conducted

with the help of a speciall!/ de._igned ion accelerutor.

A high-/nten,_;ty i;f ion source was developed for ap-

plication to relaticely low-yiehl experiment,s, requir-

_n7 good energy resolution in the 0 to 8 _'e_, energy
range. This sourc,% u_'ed in conjunction with elec-

tro._'tatic acceleration aml .focusing, and magnetic

mass anal!ffi_., ha_ produced beams qf 200 to 500 ua

of N _ or N-__ ions with energ?l-di_per._ion half-widths

of about 20 e_:.

The ._puttering yielrl.s" of fi¢,e metals (Cu, Ni, Fe,

Me, and W) were ine(.4igated ocer the arailable

energy range at normal a_d ._5 ° incidence. The

yields obtained are generally ,_imilar to tho._e re-

ported in. the literature for different bombarding
ions; they increase rapidly with. energy from a

thre._'hold below 25 e_, and reach a plateau around 3

t'er. 1"ield,_ at ._5 ° i_cidence are higher thal_ at

normal incidence, by about 25 percent for Cu, and

b?l 50 to 100 percent for Ni, Fe, N[o, and W. The

_:/fect of 2 N + ions tend._' to be ,_'maller than that o..fan

Nz + ion with the same total _'il_etic energy at low ener-
gie,_, but equal to or greater than the N'_+ _iffect at high-

er energies. Significant yields have bee_ detected at

energies often quoted as threshoM or below lltreshold

(around 25 er).

The data do not correlate into con._i,'tent patterns

through the u._e of the principal bnown parameters

of the ,_puttering proce._s: ion-lattice and lattice-

lattice energy and mome_dum tran.s:fers, heats of

sublimation, and types of crystal structure. It is

concluded that the process cannot be described

adequatel!/ as a succession of binary collisions.

INTRODUCTION

The erosion of metallic surfaces un<ter positive

ion bombardment was first detected (over 100

years ago) in glow discharges, which explains its

eal'ly designalion, "cathode spuilering." Exten-

sive experiment al and lh eorelical invest igat ions of

this process were carried oul, siarling around 1920.
Studies of cathode st)uttering soon tapered off,

however, and were nol vigorously revived unlil

around 1950, when interest was ]iindh'd nnew by
lhe emergence of al)l)li('aiions oulsi<h' the vacuum

tube ieehnology fiehl. The phenomenon then

came to be more generally denoted siml)ly "spui-

lering." The newer questions were raised as a

consequence of ouler almosphere and space re-

search, and they concern the gross, or engineering,
behavior of surfaces subjected 1o atomic-size par-

tide boIl)l)ardmen[ in the space environment,

Indeed, erosion rates in n given environment de-
lermine lhe useful lifelime of cerhdn critical sur-

faces; thin films nlay altogether disappear, or de-

sired optical and rndiative properties may ])e

severely altered. In addition, nn interesting re-
cent develol)ment has been a return of altcnlion

to cathode sputtering ns such, in connection with

studies of ion propulsion devices -again because
of the usefiil lifetime problem.

All l)oml)arding parli('les and target malerials

are of l]worelieal interest, as tit(' i)h3-sical proc-

esses involved in sputtering are not well under-

stood; differences in behavior between the many
possible parti('le:target combinations shouhl yiehl

useful chtes and must, of course, be accounted for

by proposed lheories. An undershmding of
sputlering would also shed light on an important

associated probh,m, |hat of predicting the modes

of reflection of the |repining t)arti(,les or their
aceonmm(htlion coefficients.

The particles and associated bombarding ener-

gies of immediate engineering interest are the ions

used in propulsion devices, at key energies; the
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particles of the earth's and other planets' atmos-

pheres, impinging on vehicle structures with

energies of a few ev (corresponding to their
velocity relative to the vehMe); and interplane-

tary or interstellar particles with energies ranging

up to billions of electron-volts. The higher
energy panicles do not, however, contribute to

sputtering; as theil" kinet ic ener#es become l dgher,

the t)ombarding particles penetrate deeper into

the target material and their effect shifts from

sputtering to radiation damage. The number of

target atoms ejected per incident partMe, known

as the sputtering ratio or yield, rises h'om very
h)w values at electron-volt energies, reaches a

plateau at a few key, then diminishes again as
effects of bombardment become internal to the

target. The energies at the turning points det)eml
on the bombarding particle size, as this determines

penetlating ability (compare, e.g., A +, He +, and
D + data in ref. l). Practically, then, the energy

range of interest for sputtering by all particles is
from '_ few ev up to about 200 key.

All the early experimental studies were per-

formed in glow discharges of noble gases. The

large bombarding current densities so ol)tainable

are a significant advantage in producing measur-
able effects in reasonqble lengths of lime. In

addition, the ion bombardment rate can usually

be made large compared to the boml)ardment rate
of residual gases, so tltat the target surfaces can

be considered relatively clean. The background

pressures, however, are of the ordec of 10 -s mm

IIg or more, in which region there exist prol)lems

of (a) scattering of the incident ions (noncontrol

of angle of incidence), (b) charge exchange and
neutral boml)ardment (loss of knos_qedge of total

bombarding rate), and (e) back-scatter of sput-
tered atoms to the target. Further disadwmtages

of glow discharges are: secondary electron emis-
sion from the target is difficult to suppress, so
that an additional uncertainty in bombarding

rate is introduced; mass analysis of the incident

t)eam is not possible, so that the method is effec-

tively limited to bomt)arding ions of monalomie

elements; anti the bombarding energy is difficult
to control and measure. Some of these limita-

tions can be at least partially circumvented, and

particularly ingenious techniques have been de-
vised in the last decade by Wehner, who has used

principally mercury ions (see ref. 2, in which

Wehner gives a comprehensive review of sput-

tering studies to 1955).
More recent experimental work has shown a

trend toward ion-beam techniques, using accel-

erators and mass separators in which the beam

energy, composition, and angle of incidence can

easily be controlled, secondary electrons can bc

suppressed, and high vacua can bc maintained.
Large beam in tensit ies wit h good energy resolution

are, however, hard to obtain at low energies, so

that work has generally been done from a few key

up (refs. 1, 3, 4, 5, and 6). At lower energies, some

data have heen ol)tained by using detection tech-

niques dependent on unusual target inaicrial

properties (such as surface ionization or radio-

activity) and hence these techniques are of limited

appli(.ability (refs. 3, 5, and 7). Finally, con-
siderat)lc additional anti increasingly refined work

has been performed by Wehner and his co-

workers (refs. 8 through 14) in glow discharges,

yiehling data at low energies for noble gas and
mercury ions beret)aiding many metallic surfaces

and the semiconductor germanium.
Two basic concepts were early set forth in

buihling theories of sputtering (see Wehner's
review artMe, ref. 2): momentum exchange be-
tween the incident and the lattice particles, and

local dissipation of the incident energy leading

to surface evaporation. Later theories have

essentially refined the basic ideas by introducing

the statistics of many collision processes and the
lattice constants of the target materials. Key-

well tier. 15) and, with additional attention to
individual collision details, IIarrison (refs. 16 and

17) have introduced parameters and used mathe-
mati('al fornmlations which are analogous to those

of the theory of neutron diffusion and cooling in

solids. Itenschke (rcf. 18) and Langberg (ref. 19)

proposed a series of binary collisions in which
energy dissipated in the lattice is taken into
account. Henschke uses the elementary coneep!

of a "coeffMent of restitution," while Langberg

uses a more sophisticated model for the inter-
actions and allows rebounding lattice atoms as

well as the incident partMe to contribute to the

sputtering. Presently availal)le data are not

suftMently detailed and accm'ate to differentiate
between competing theories. It is generally

expected, however, that energy and diffusion con-

cepts will be more valid at high energies, while
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momel_tunl and binary collision concepts may
explain low energy sputtering.

The theoreti(,al interest, together with tim

immediate space research application, prompted

the investigation, at lhe Ames Research Center,

of the possibility of extending ion accelerator

techniques to low energies. A suitable ion source

and accelerator system were developed and con-

strutted for Ames by the Stanford Research

Institute under the direction or Drs. C. J. Cook,

J. R. Petcrson, and O. Iteinz. The apparatus,

as modified at. Ames for improved performance, is

presently yielding 100 to 500 ,a of analyzed

positive ion t)eam on a 1 cm 2 target area wit.h

good energy resolution down to about 250 ev.
The construction, performance, and probable

limitations of the Ames low-energy ion accelerator

will be discussed in the next section of this report.

We shall then present the sputtering yield curves

obtained to date with separa!ed N2 + and N +

beams and discuss their probable significance and
implications.

APPARATUS AND PROCEDURE

THE 8-KV ACCELERATOR

A general view of the 8-kv ion accelerator used

for the studies herein reported is shox_m in figure

1, and schematic diagrams are given it, figures 2

and 3. The ions are extracted from an rf source,

electrostatieally focused into a 90 ° magnetic

analyzer, then electrostatically refocused into the

target chamber.

The main distinguishing feature of lhc apparatus
is the ion extraction meehanisnl. The ions are

formed by inductively coupling a 25 Meps electric

fidd to a low-pressure (10 -a mm IIg) gas which is

contained in a Pyrex jug (approxima_dy 2-inch

diameter by 5-inch height). Tim jug is mounted

on an insulated platform, normally maintained at

FIGURE 1. General view of 8 kv ion accelerator.
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a (It potential of 3600 v (set fig. 2). The extrac-

tion al)erlllre is a 0.375-inch hoh' in the t)hflform,

glass-shMded so that only a small metallic rim is

exposed to the ph_sma. ]<>ns are lhen emitted

fi'om the concave plasma sheath ai the first

aperture under the influence of the potentM drop

to tile _'ounded second aperture located about

0.25 inch below the _st (fig. 2; see also ref. 20).

AN axial magnetic field is used between the two

apertures to vary tile ion (h, nsiiy at the sheath

and immediately t)(,Iovr.
The l)lasma itself is thus at a u]liform dc

potential. This is in contrast to the more con-

venlional operalion of rf sources, in wlii('h a,

probe placed at tl,e top of the jug to collect
residual (,le('trons sut)jeets the plasma to a tic
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drop, so that the ions are created at different

i)oteniial levels. Aperlurc exlraclion results in
a lotM energy dispersion as low as 10 ev and

ranging 111) lo 100 ev, depending primarily on rf

power level. The total beam energy was found

to be unexpe('ledly high, ranging from 100 to 300

ev above the extraction drop. The high t)I_lsma

potential can probni)ly be accounted for t) 3" the

rf acceleration of a small numl)er of plasma tier-

Irons to high ener_es (ref. 20). No correlation

was round l)etween excess energy and energy

(lispersion, and a sat|sat'tory exphmntion foE" tit('

observed dispersions teas not been found. The
beam (']mraclerisli('s ,'ire, however, reprodu('it)lc

for given sets of values of jug pressure, ,'f power,

exlra<'lion voltage, and cxlra('tion magnet current.

The extn, cted })cam passes through ml electro-

static lens s3"s{em whose configuration, possibly

sol fully optimized, was determined experimen-

tally. Ionic species are then separated by a 90 °

magnelic nnal3"zer which is h)llowed by a second

electrostatic lens system (fig. 2) and by the [nrgel

asseml)ly (figs. 2, a, and 4). Sepru'alte variable
-t-5 kv supl)lies and micro-ammeters individually

control mtd monitor the lens and suppressor

elcctrodes. It is lhus possible to make sure that

a negligil)|e amoun I of beam st,'ikes lhe elect redes,

especially lhose inlnl(,dit|tc].'_- ahead of the larget,

and that proper secondary eleclron suppression

is obtained at the t_trgct. The suppressor con-

stru('lion made use of a wire-grid configuralion

(fig. 4) in order to nIinimize liE(, possibility of

reflection of sputie,'e(l atoms b'lc],: rE) liE(, target.

Hence, spultering of electrode material onlo the

larget m_d secondary emission from the suppressor

lo the tin'get can, in general, be held to n negligible

level.

Beam energy varitttion is obtained by changing

the extraction and targe( voltages. The cos'eel|on

rot' the excess energy of the source is obl_fincd

foE' any given sot (if operating parameters (source

pressure, elc.) |)y making reiarding potential

measurements at the lnrgel.. A lyl)ical plot

.....

FIGURE 4.--Photograph showing, from left to righ|: (I) lasl focusing sl:tges of eh,ctrosla(ic h,ns; (2) wire grid secondary

electron suppressor; and (3) target (mounted at 45 ° to the beam axis).
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of target current as a function of target voltage
relative to extract, ion voltage is shown in figure 5.

Tile energy dispersion in the beam can be

kept below 40 ev (total width at half maximum,
see fig. 5) and is nearly s,,mmwtrical. Since the

yield curves are essentially linear over such a

small range, no correction need be made to the

yiehl values on account of dispersion. This is

not true at 1)cam energies below about 250 ev,

however, and one must either (a) introduce

eleclrostatic beam analysis at a sacrifice in beam

currents, or (b) determine accurately tile energy
(lish'il)ution in the bean-t and correct mathe-

matically for the fact. that. the measured yMd at

a given vohage setting is an integrated value.

Data for copper and nickel were obtained by this

last technique down to 20 ev a{ normal incidence.
Because of extraction characteristics and space

charge blow-up of the beam, it was found prefer-
able to keep tile extraction aperture between 1

and 4 kv (typically 3.6 kv). The relatively large

retaMing fields needed near the target for ob-

taining low-energy bombardment then tend 1o

introduce an angular spread of the b('am, par-

ticularly wheu the target phme is not. normal to
the beam. For bombarding energies down to 250

ev it was found possible to control the beam angle

of incidence to within :t:5 ° by careful focusing.

Since the suppressor is typically 100 v negative

with respect to the target, larger angular un-

certainties are present at beam energies under
250 ev.

The source pressure is typically 1 ),(10 -3 mm

Hg. Differential pumping at (he source and

pumping behind the target (figs. 2 and 3) keeps

240f

200_

_, 40
1--

0
I

-40__ L •

L --- ___ers[on
i
I

-200 -160-120-O0 -40 0 40 80 120 160 200

Torgel polentiol relolive to the exfroction operture, volts

I?I(;VRE _.- Target currenl as a function of the target,

potenti'd relative to the extraction aperlure.

the operating pressure below 1X10 -'_ mm IIg

at tile target, (beam current =500 _za). Three
4-inch oil-diffusion pumps with individual copper

baffles and liquid nitrogen h'aps are used. Spec-
troscopic examimltions of the targets failed to

reveal the presence or surface contaminations,

in particular hydrocarl)ons.
Under conditions controlled as described above,

the accelerator presently delivers 200 to 500 #a

of N2 + to a 1 cm = spot on the target at energies

of 250 cv to 8 key with a total energy dispersion

of I0 to 40 ev. Corresponding N + currents range

from 50 to 200 t,a. PreliIninary data indicate that

no significant changes in performance are to be

expected for operation with other ions. A minor

excel)lion is that the jug pressure must t)c kept

higher for ligh ter gases (_ 5 X 10 -a mm IIg for It:),
so that additional lmmping capacity may |lave to

bc provided to maintain an adequate vacuum in

the rest of the s:/stem.

TEST PROCEDURE

Sputtering yMds in atoms per ion were con>

lmted from tile measured weight losses of targets

subjected to a known anaount of bonll)ardment.

Targets were machined in ill(, shape of (or at-
tached to) l-inch-diameter disks, __, inch thick,

with a mounting and handling knob on one face

(fig. 3). Targets were cleaned witli ordinary sol-

vents, such as acetone, and kept in a desiccator

until mounted, and then quMdy introduced into

the rough-pumping chamt)er. The 2-inch gate
wdve could t)e opened ,rod the target l)Ushed into

position behind the suppressor electrode within
two minutes. This procedure was reversed for

remoxqng the targets after bombar(hnen[. Except

for tile small roughing chamber, all parts of the

apparatus couht thus be constantly kept under

high vammm.

The targets were weighed on a _[etth,r Type

M5 microbalanee after stays of 1 to 4 hours in the

desiccator (to ensure reproducibility of possibh,

adsorptions). Targets were put through the ,d>ove

coml)h, te procedure, except for t>oml)ardmen[, and

found to weigh the same before and after to within

the weighing accuracy of 4-5 #g (the balance is

capable of more accuracy, but this requires a

degree of air conditioning which was not availabh_
at, tile time of these measurements). Tile sput-

tering weight losses typically ranged f,'om 500 to

2,000 #g, though a few data points were obtained
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n the 100 to 500 gg range because of time limit, a-

tions (bombaMment times ranged fl'om 30 rain

to 4 hrs). Tile number of atomic layers removed

ranged from 250 to 23,000. Visible roughening of

the surfaces occurred, and as one might expect, no

difference in yieht was observed between first run

and resputtered targets. The surfaces were, how-

ever, repolished when enough sputtering had oc-

curred to introduce an uncertainty in macroscopic

angle of incidence.

The total charge delivered to tile target (0.5 to 4
coulombs) was measured to :i_1 percent by an E1

Dorado Model CI-100 current integrator. The

instrument, ca lit)ration was periodically checked

with standard cells and capacitors, and found

constant to better than 0.5 percent.

RESUI,TS
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FIGVRE 7. Sl)utiering yields of copper and nickel borne

barded by N + and l)y N_ + ions at energies below 900

ev; nornml incidence.

A sputtering yMd curve for Cu bombarded

at normal incidence by A + ions (fig. 6) was ob-

tained to offer a comparison with available dala

from other observers (including representative

early data, refs. 2t and 22). This seemed desir-
able since no dala. were found for sueh a com-

parison for nitrogen-ion bombardnwnt.

A special effort was made t,o oblain (lala for

copper and nickel at very low bombarding ener-

gies. Results for normally incident N2 + and N +
ions with 20 to 900 ev are given in figure 7. The

(ill{it ]lave been corrected for energy dispersion

in l.he beam with the ]Mp of retar([ing potential

curves (fig. 5). YMds are still appreeiM)le, of

the order of 0.1 alom/ion, at 25 ev.
The values obtained for lhc sput:lering yMds

of Cu, Xi, Fe, Me, and W are given graphically
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FIGURE 6 Sputtering yMd of copper bombarded 1)y

.'_- ions as a function of ion energy; normal incidence.

as a function of bombarding energy (250 ev to

8 key), bombarding ion (X_ + and N+), and angle

of incidence (normal and 45 °) in figures S through

12. TIm yiehls increase rapidly with energy
from a low value around 25 ev and tend to level

off above 3 key. YMds at 45 ° incidence are

higher lhan at normal incidence, by about 25

percent for Cu, and l)y .50 to 100 l)ereent for Ni,

Fe, M-o, and W. The effect of 2 N + ions tends
t,o be smaller ltlan Illal of an Na + ion with t lw same

total kinetic energy a| lOW energies, but. equal to

or greater l]mn the N: + effect at higher ener_es

(figs. 13 and 14).
Sputtering yMds were found to be about 10

percent higher at a target chamt)er pressure of
6XIO -_ than at 6XlO -'_ mm IIg. No dependence

of yiehls on larger lemper,_lure was found be-
lween 40 ° and 120 ° C, except, for a drop of about

20 l)ercent in Fe yiehls between 80 ° and 40 ° C.

DISCUSSION

PRINCIPAl, YIELD CURVES

Comparison with other data. Our results for

copper are plotted in f_gures 7 nnd S together with
tim data obtained in Amsterdam by Rol, Fluit,

and Kistemaker (ref. 4) where the energy rnnges

overlap. The discrepancy between these l_o
sets of data is outside our probable experimental

error, and for argon t)ombardmcnt a discrepancy

of the same magnitude exists between the Amster-

dam results and ours (fig. 6). The Cu-A + yMds
which were obtained at Oak Ridge by Tents,
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Norman<l, _md tIarrison (ref. 1) agree very ch)sely

with ours (fig. 6). The Oak Ridge group noted

tile discrepancy _ith the Amsterdam results and

attributed it to a pressure del)endencc of sputter-

ing; in effect they surmised that the vacuum in

the Amsterdam isotope separator was not _ls high
as Ihat obtainable in the Oak Ridge calutron.

Our ovum evidence hinds to support this view, as

_ill be shown later in the discussion of pressure
effects. Similar conclusions can be reached in

regard to the yichl values obhdncd 1)y Pitkin,

M_tcOregor, Salcmme 'm([ Bierce (ref. 6) in

the 10 to 40 key range; their wducs wore obtained

at test chamber pressures _d_()ve 10 -3 mm tlg,

and are low compared to the Ca],: Ridge values
obtained at pressures of about 4X 10 -'_ into Ilg.

Cu and Ni yields.--Copper and nickel both

have face-centered <'ul)ie lattices, and their atomic

weights are similar (Cu, 63.54; Ni, 58.7l). The

energy-transfer characteristics from the ion to the
lallicc and within the lattice are thus expected

to be similar for any simple mcchanic,'d model,

and the yiehl curves should exhibit similar char-
actcristics. For example, the slight downward

trend of the normal incidence Cu N + yichl above

about 6 key (fig. 8(,)) is also observed for Ni N +

(fig. 9(a)). 5[any inconsistencies between lhe

data and predictions of mechani('al models are

present, however, and _ill be made apparcut in
further discussion.

The generally higher sputtering rate of copper

can be qualitatively accounted for by its lower
atomic heat of sublimation (Cu, 3.5.57 cv; Ni,

4.413 ev). Preliminary measurements indicate,

however, Ihat aluminum, also an fcc metal, has a

lower Sl)Utlct ing rate than either nickel or copper
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FIaVRE D. Sputtering yield of nick('l bomb'tr(h'd by .N "_

and by N:* ions as "l flmctlon of ion enorgy; normal and

45 ° in(,hhmces.
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in spite or its lower atomic heat of sublimation,

3.252 ev. Tile rehttive importance of the incident

particle and of disphteed lattice pa,'lMes ill tile

sputtering process has not been definitely esl.ab-

fished, but it is worth noting that tile mechanical

ion-lattice energy transfer is more eft]eient from

nitrogen to aluminum (at. wt. 26.98) than to

copper or nickel. Note also that aluminum has a

rchttively low sputtering yiehl, under I{g+' bom-
bardment (ref. 9), in whic]t case the ion-lattice

energy transfer isless efficient than tMt for Cu IIg _

or Ni--IIg +.

Comparison of normal and 45 ° yields.--An

important inconsistency with the anticipated

similarity between Cu and Ni yMd curves is tlte

following. Tile 45 ° Cu yMds are eonsistenlly 20

to 30 percent above those at. normal incidence,
while the difference between 45 ° and normal inci-

dence Ni yiehls increases noticeably with energy,

reaching about 110 percent of the normal yieht

1.2 --

.4

0

g

t-.--- F--- -
3

t
o Normal incidence

__ o 45 ° incidence
Fe - N +

to)

3.o

::2 2.5 ....

2.0 -- I -- i

0 I 2 3 4 5 6 7 8 9

Energy, key

(a) Fq! N +
(b) Fe N_ +

Fm_:nE 10. Slmltering yield of iron bombarded I) 5" N _-

and by N2 + ions a,_ a fmwtion of ion energy; normal and

45 ° ineidence.q,

at 8 key. For lt-g + bombardment (ref. 12), gener-

ally smaller angular dependencies have also been
found for Cu and tilt, noble metals, Ag, Pt, and

Au, than for Ni (all these metals are fee). This is

not presently understood: One might expect the

electronic configuration of the target atoms to
affect the sputtering r'lles, bu{ not to affect, lhe

dependence of these rates on the angle of incidence

of the bombarding ion. This httter effect, shouhl

depend primarily on tile geometric parameters,

crystal slruet.llre antl crystal orientation (r:mdom,

in the experiments reporled).

Tilt' yMd curves of tile body-cenlered cubic

metals, iron, n_tolybdenum, and tungsten, are

shown in figures 10 through 12. The 45 ° yiehts
are 100 to 125 percent higher than those at normal

incidence for Fe-N2 + and Me N._+, an<l 50 to 75

percent, for a_' N+. SiInilar numbers for N +
boml)ardment are not as high: 30 to 50 percenl,

for Fe-X + aml W N +, and S0 to 100 percent for

Me N +. Welmer, using I[g+ boml)ardmenl (ref.

1.0

81

o_

E

o 2.4 --- -

o ,Mo_N2+
I

2.0 ......
>- 0 o

_.6...... _ _---"_-- _---

1.2-- -- 1 -_ "_ --- _:_ --
I

I(b)

_t
0 i 2 i 4 ,5 6 7 8 9

Energy, key

('0 Me N +
(b) Mo-- NF

Fin'[rOE 11. Sputtering yield of molybdenum bombarded

by N + and by N2 _ ions as a flmetion of ion energy;

nornml and 45 ° incidences.
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i
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Energy, key

(at W N+
(b) W Na*

FI(_I--RE12. Sputtering yield of lungsten bombard(,d t)y
N + and by Na + ions as a function of ion energy; norm:d
and -15° incidences.

12), Mso foun(l (he angular (h,l)en(lence of spu( ter-

ing more pronounced for Fe and _[o and hmst for

Cu. (We recall that olIF differences for Cu were

20 (o 30 percent.) Furlhermore, Wehner reporled

m.uch 1)n'ger ratios of 45 ° [o normal yiehIs (han

(.hose repm'le(l here; the _[o Hg difference n( 800

cv, for examph,, is abollt 1400 percent. Tiffs is in
qualitative agreement with our observalion (hat

the 45 ° (o normal yield ratio increases with the

mass of tlm bombarding ion.

Comparison of N + and Na+ yields. Further

examination of (he (Iat_, however, reveals some

serious difli('ul(ies in lhe comparison or N + with

Na-."- yi(,hls. The impinging ion is n(,ulrMizcd on

impact, art(1 the neutralization energy, 15.,5 ev,

is negligible compared to the hombarding energy

so that spu(lering can t)e assumed to ])e charge-
independenl. Since, in addition, the dissociation

energy of Na is 9.76 ev, one wouht expect, in (he

energy range under consideration, the N: mole-

cule to break up on impact into lwo atoms, of

about equal ener_-, which [hen mighl act inde-

pendently. If this were indeed the case, sput-

tering by N2 + shouhl l)e equiwdent to sputlering

by 2N + with the same total energy, and there

should be no difference in the 45 ° to normal yield
ratios of N_,+ and N +.

The total nmmml incidence yield for 2N+ ions,

each with 1/2 the energy of an N2 + ion, is plotted

togelher with the data for Na + in figure 13. The

a_eement between N2 + and 2N + yields is excel-
lent for the fcc metals, Cu and Ni, although there

seems to be a slight (end(,ncy for Ni-2N + to be too

high at high energies. This may no{ be signifi-

cant, in view of the maximmll in t,he Ni-N + yield

curve; unfortunately, Ni-N2 + data with which to

egret,me the comparison at)eve 8 key are not
available.

l!I Copper

[- _ Nickel n

o

o10

8
e0 5

4

.8
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.4
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• I 0

I ron

O Tungsten o

_i ..... i ...... • ...... t
I 2 5 4 5 6 7 8 9

Energy, kev

FI(_(TRE 13. Comparison between the yields resulting

from t)ombardment by N2* and those from 2 N + (each

N + with _4 the N_ + energy); normal ineid(mce,
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The agreement is not at all as good in the cases
of the bee metals, Mo, Fe, and W. Here the

2N + curves lie below the corresponding N2 +

curves at, low energies, then cross over to the high

side at the high-energy end. This behavior has

also been noted by Gronlund and Moore (ref. 5)

who bombarded silver (an fcc metal) with various

isotopes of atomic and molecular hydrogen.

Three possible explanations for these discrep-

ancies are the following. First, the assumption

of eharge-indepen(lenec of sputtering may not be

valid. (The possible significance of the electronic

configuration of the target atoms has already been
noted in conneclion with 45 ° to normal incidence

yiehl ratios.)
Second, it has been suggested that the inilial

ion-target collision might play the dominating

role in tile sputtering process, and since N2 + can

transfer more energy to a target atom in one col-

lision than can N +, tile N: + yiehls should be higher.

1_ must be pointed out, however, that 2N + can

transfer more energy than N: +, if one assumes

classical interaction. Furthermore, the initial

momentum transferred is directed into the target,

and only reflected nmment um can cause Slmit ering.

Energy and nmmentum-transfcr theories have
been checked for many metal-ion eomhinations

by plotting sputtering yiehls versus energies nor-

mnlized hy maximmn transferable energy factors,
naomentum transfer factors, and combinations of

these with atomic heats of suhlimation (refs. 9, 15,

and 19); no valid correlations were found. Such

plots similarly do not bring out correlations be-

tween N + and N2 + yields.

A third possible explanation for the 2N + versus
N2 + discrepancy has been offered. The increase

in yields at oblique incidence has been ascrit)cd
to a smaller depth of penetration of the particle

into tile target. If this is so, it would appear

that the incident particle retains its initial direc-

tion over a significant distance. This, however,
would not bc true of the atoms from normally

incident N_+; these atoms probahly have an

oblique initial direction of motion, and hence,
could cause more Sl)uttcring than two normally
incident N + ions.

This last h33)othcsis can he investigated further

by plotting comparison curves (2N + and N: +) for

45 ° incidence data; it seems reasonable to assume
that the initial motion of the atoms from 45 °

incident N_ + is on the average at 45 °, so that the

comparison may have more validity than that for

normal incidence. The 45 ° plots, shox_m in figmre

14, exhil)it two surprising features: First, the low

energy discrepancies are emphasized, rather than

reduced, and even appear in copper and nickel;

the one exception is tungsten, for which the 45 °

2N + and N., + curves coalesce to within experi-

mental scatter. Second, tile 2N + curves no longer

cross to the high side of the N_ + curves at high
energies. These observations are in direct con-

tradiction to our expectalions, and no satisfactory
explanations have been found.

The threshold region.--We conclude the dis-

cussion of the yield curves with some remarks on

sputtering in the threshold region. The following

definitions are important for this discussion.

The threshohl energy is, of course, the intercept;

of the yield curve with tile energy axis (it. is

difficult quantily to determine experimentally).
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FIGURE I4,--Comparison between the yields resulting
from bombardment by N_ + and those from 2 N ÷ (each
N + with }_ the N2+ energy); 45° incidence.
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Another energy has been defined, the "cut-in"

energy, whi('h is tile intercept of the extraI)olated

linear part of the yieht curve with the energy

axis. (Yiehts tend to be linear functions of

energy in the 100 to 500 ev rang(,.)

Langt)erg (rcf. 19) has Wen one of tile best
theoretical discussions of these energies. I[(, takes
into account the atomic heat of sul)limalio,l of

the metals, the numt)ers and types of bonds hohl-

ing surface atoms, and the energy (ransferat)le
from the ion to the lattice in the fi,'st collision.

The intera('tions in the latliee are represented t)y

a _lorse t)otenlia]. The sputtering is caused by

a recoiling lattice alom, so thal the ion enlers

only into the initial collision and the model shouhl

be faMy applicable to N2 + bombardment. The

energy taken Ul) by dissociation wouhl tend to
make the observed yMds lower than those prc-

dictc(l by the theory.

As predi('lcd from I,angt)erg's theory, the.
threshohl and cut-in energies, in ev, are as Mlows:

Tbreshoht Cul-in Thre_hohl Cut-in

Fo N2" 51.0 76 Cu Nz _ 45.0 73

Fe N 4 70. 6 105 Cu N 4 64. 8 I(10

M'o N2 + 96. 0 1-10 Ni N2 + 5-1. 0 88

5Io N + 151 22(1 Ni N* 76. I 12l

W N2 _ 196 28g Cu A _ 40. 4 66

W Ni 3 I0 500

It is not possible to draw meaningful straight.

lines through our low energy data, so that no
"observed values" are quoted for comparison (it

is not cnlir(,ly clear whether lhe la('k of linearity
is a real effect or an apparent one due to experi-

menial st,alter). It is quite ('h,ar from the data,

however, l]lal the predicted threshohls arc in-

variably too high (see figs. 6 through 12). This is

parlimdarly apparent in copper and nickel, for
which more exteusive low energy data were

obtained (fig. 7); while the theoretical thrcshohls

range from 45 to 76 or, significant amounts of

spultering are still present at 25 or.
The many discrepancies noted in the above

discussion emphasize the need for additional

theoretical work and experimental data. Existing

models fail to explain many observed features of

sputtering, although they take into accounl all of

the apparently significant energy, nlomentum, and
structural parameters of the ions and lattices

involved. It is strongly suggested that the details
of the interaction models are at rauh, in particular

the assumption of successive binary collisions.

This assnmplion is usually justified for the repre-

senlalion of the large-angh, defle(qion resulting

from a series of small-angle and small-energy-

transfer collisions, which is to say in the case
of weak interactions. This is not a good assmnp-

lion for the sputtering process. It appears,
lherefore, l]lal one IIItlst seek t)clter approximate

representations of the nmltil)ody inlcra('lions
involved.

THE EFFECTS OF PRESSURF., TEMPERATUllE, AND DEAM

INTENSITY

An altempt was made at controlling lath,-

pendently the pressure in lhe tal'get area, ihe

targel temperature, and the beam densily. In

order to achieve good control over sizal)le ranges
of these paran3eh, rs, one wouhl m,ed excess pm33p-

ing capacity and nn in(let)cndcnl means of healing
or cooling the targets. _[o(lifi('alions of the

apparatus are now under way to meet these needs.
In tim meantime, however, it was found possible
to obt'fin a certain amount of data over more

limited ranges of the parameters in question.

The target temperature was varied between 40 °

and 120 ° C 1)y changing the total incident beam

cmTent, at the same lime keeping the beam density
as constant as possible by adjusting the focusing.

h'on is lhe only metal for which a t.emperatu,',_

dependence of the spullering yMd was found.

The yieht has a eonslant value h'om 120 ° (Iowa to

80 ° C, then drops to 80 percent of this vahw at

40 ° C. The vahws presented in figure 10 corres-

spoml to the constant-wflue range between $0 °
and 120 ° C'.

The results obtained on pressure effects are

more easily interpretable. The nitrogen pressure

in the larger ehnml)ev during bombardment was

generally 9)410 _ mm IIg, while the pmqial pros-
sure of olher gases was 4X10 -7 mm IIg, as esti-
mqled from the residual pressure before the beam

was turned on. The si_dfieance of this can be
t)ctter understood in lerms of the mlml)er of

collisions per second with the targets. These arc

shown in the following table, where it has been as-

sumed that oxygen constituted the bull,: of the

residual gases.
Collisions cm -_ sec -t

Y,('am I)ariicles at 250 .ua/cm _ 1.6X 1015

Target chamber N_

(a) av. pressure 9X10 -_mm Hg 3.6X10 _5

(b) min. pres,_ure=6X 10 _ mm Itg 2.4X 10 t5

(c) n:tax, pressure=6X 10 -'_ mm ltg 2.4X 10 I_

Target chamber 02

O2 pressure--4X 10 -r mm tig 1.6X 101
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At tile usual operating pressures, the numl)er of

beam and amt)ienl uiirogen collisions per second

with tlEe [aE'get were of the same order while lhe

collision number for oxygen was an order of nlagni-
rude lower. For sputlering yields _l atom/ion,

it is thus inlpE'obabh, that oxidation of targets

introduced any sigvlificant errors, even in the case
of nickel (the most likely of the me{ als invest [gated

to form oxide coatings).

The pressure was varied over nn order of mag-

nitude (see 'tbove table) bolh t>y choMng the

pumps and by introducing controlled oxygen and

nitrogen leaks. For Ill(' five metals investigated,

Ill(, yields are about 10 percent lower at 6X10 -s

than a{ 6X10 -6mnlHg. This is quite clear even

in lhe presence of lhe 15-percent scalier in the

dala, bill EEO(liffe,'enees can be seen between the
several melhods of varying the pressure. Tile

lowering observed is the same as ha,_ been reported

by Yeats, Normand, and Ilarrison (ref. 1) in the

same pressure range.
I1 is instructive a| this point 1o examine the

Cu A + data shown in figure 6. In all eases in
which Ill(' dais are lower than those of the present

experiment, the pressure was either known or sus-

pected to be above 1X10 -4 mm Itg. The agree-
men( between the present data and llEat of Wehner

is remarkat)h,, its the argon pressure in Wehner's

apparatus was above 10 -amm lIg (ref. 12). The

bomlmrding current densities used by Wehner,

however, were 5 to 12 ma/em 2, as compared with

0.2 to 0.5 ma/em _ in the present experiment.

These obserwttions strongly suggest that, in the

range 10 -_ to 10 -a mm tIg, 1he lowering of yMds
is due lo some suE'face cent am[nation process such

as adsorplion. Between 10 -a and 10 -= mm Hg,

mean free paths become comparable to apparatus

dimensions, and bacl.:-diffusion of sputtered atoms

plays an increasingly impoE'tant part in lowering
the observed sputtering ,'_Mds. The number of

collisions per second (with the target) of back-

ground argon was an order of magnitu(le larger

/.lEan that of A + collisions with the target in

Wehner's apparatus, l( would appear, then, 1hat
the elimitmtion of adsorption effects may be due

to local heating of the targets resulting from the

relatively high beam densit, y.
It is clear front the at)eve discussion that further

e:vperimentation is needed to separate clearly the

effects of pressure, temperature, and beam density.

It appears from the present data that no further

variation with pressure will occur below about

10 -" mm Hg, but ill(, beam density could no! be
varied over a sullhqent range to cheek on the effect

of remaining adsorptions at these pressures. It

must, in any case, be borne in mind that the effects

of local heating (high beam density) can be two-

fohl: first, adsorbed gases can be driven off; and

second, local nMting and evaporation may teml

to dominale the spat t ering process.

SUMMARY OF RESULTS

The appli<'ation of high-intensity, high-

resolution toE>beam teehEEiques to very low energies

(20 cv to 8 key) has proved feasible and highly

successful in oblaining heretofore unavailabh, data
under closely controlled experimental conditions.
The fiE'st results obtained with the Ames 8 kv

accelerator are sputtering yMd curves of five

metals (Ca, Ni, Fe, Me, and W) under N + and X2 +

bonll)ardnlent. These curves follow ill(, general

pattern of a rapid rise from very low yiel(ts around

2,5 ev to a phtleau around 3 key. They exhibit, in

addition, a nunlber of noteworthy features, sum-

marized below together with lhe main derivative
conclusions.

1. £inlflarities might be expected between Cu

and Xi as ihe.v both fornl fee crystals and have

similar atomic weights and atomic heals of sub-

limation. The only significant similarlt 3 found,

however, was a slight downward trend appearing

in the Cu N + and Ni N + yields above approxi-

mately 6 kev.

2. The ratio of 45 ° to normal incidence yMds is

lower in Cu than in Ni. This may be due to the

difference in their eh'etronie configmralions. Small
angular dependencies of yMds have also been

reported for the noble metals, Ag, Pl, and Au,
which are electronic,lly similar to Cu. The effect

of eh'ctronic configur.tlion is not understood: it

shouhl affect, total yiehls, 1)ut not ratios of 45 ° to

normal incidence yidds.

3. The ralios of 45 ° to normal incidence yields
are somewhat higher for the bee titan for the fec

metals, 1)ut they are much smaller than those

report('([ for ttg + bombardment. Dala on addi-

tional bombarding ions are needed to determine

whether this is simply a mass and size effect.

4. The sputtering produced t)y an N,, ÷ ion is

generally not. the same as lhttt of 2 N + ions with

the same total energy, although N2 + shouh|

dissociate on impact.
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(a) At normal incidence, the N_+ and 2N +
yMds coincide for the fcc metals examined
(Cu, Ni), but for tile others (Fe, Me, W), the
2N + yiehls are too low at low energies and too
high at high energies.

(b) At 45 ° incidence, the 2N + yields are too
low at low energies and are either lower than or

equal to tile N2+ yields at higher energies.
5. In spite of the expected similarity between

N2+ and N _ bombardment, no correlation of
yields is obtained, nor arc the discrepancies of
item 4 above resolved, by attempts at normalizing

bombarding energies with combinations of energy
transfer factors, momentum transfer factors, and
heats of sublimation.

6. Yields in the threshold region are con-

siderably higher than have been predicted on the
basis of energy transfer to the lattice, heat of
sublimation, crystal structure, and numbers and

types of lattice bonds.
The principM summarizing conclusion drawn

front the dat_L is that classical models using bimtry
collisions are inadequate to describe the sputtering

process. Ibis is brought out particularly by the
dominance of the effect, of electronic configuration
over that of crystal structure (item 2) and the
absence of simple correlations between N2+ and
2N + yiehts (items 4 and 5). There are, in ,_ddition,
some obserwLtions which may be of practical

importance. In particular, the yiehls in the
threshohl re#on are higher than expected, oblique
incidence yields are higher than normal incidence
yields, and yiehts are higher at low pressures or
at locally high temperatures.

AMES RV;SI_;ARCI! CENTER

._N_ATIONAL AERONAVTICS AND SPACE AI)MINISTRATION

_IOFFETT FIELD, CALIF., Feb. 16, 1961
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