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THE INTERACTIONS BETWEEN NITROGEN AND OXYGEN MOLECULES

By Wirtarp F. MEeapor, Jr.

SUMMARY

A mathematical analysis is given of the delta
Junction model for atomic interactions for the pur-
poses of (1) establishing conditions for which the
procedure 1s applicable, and (2) obtaining physical
wnsight into the reasons why the method, simple
though 1t 18, yields potential curves which are in such
good agreement with erperimental data. Lippin-
cott’s original model is then ertended to include the
different effects of K~ and Li-shell electrons in molecu-
lar bond (or antibond) formation, and a screening-
dependent parameter 1s introduced in the exrpression
for the delta function strength. In addition, modifi-
cations are made which make the model more general
in application-—in particular, in regard to hetero-
nueclear molecules.

Modified versions of the delta function model,
together with general valence bond and molecular
orbital theories and a reasonably ectensive treatment
of resonance, dispersion, and configuration inter-
action phenomena, are applied to selected excited
states of the N;, NO, and O, molecules. The results,
in conjunction with known spectroscopic data and/or
calculations of the ratios of exchange integrals, are
then wused to find curves representing N,—N,,
N:—0,, and O,— 0, interactions, chosen because of
their tmportance in problems of aerophysies. Al-
though the absolute accuracy of the latter potentials is
difficult to ascertain, they are at least consistent with
available scattering and viscosity measurements. This
18 especially true of the Ny—N; calculation in which
remarkable agreement with scattering experiments 18
obtained. It 1is further believed that the points
covered in this paper will prove wuseful in future
investigations of the interactions between ions and
neutral species.

INTRODUCTION

Interactions between oxygen and nitrogen mole-
cules are of fundamental importance in the study
of atmospheric transport properties and other
phenomena associated with man’s venture into
space (ref. 1). As a first step in the theoretical
investigation of scattering cross sections, for ex-
ample, it is necessary to have a fairly detailed
knowledge of the functional form of the interaction
polentials between the elements of the gas under
consideration. However, the standard methods of
molecular quantum mechanics (e.g., the Heitler-
London (ref. 2) and molecular orbital (ref. 3)
approaches), in spite of the very lengthy mathe-
matical procedures involved, do not result in
sufficiently accurate curves for quantitative analy-
sis, Tt is therefore mnecessary to develop new
techniques for the ealculation of these curves or
else resort to their determination from experi-
mental scattering and viscosity data. The latter
can be extremely difficult and, while acceptable
as far as the end result is concerned, is certainly
not as satisfying to the theorist as is the former.

Mason and Vanderslice (ref. 4) have recently
presented a method for the calculation of inter-
molecular forces using a one-dimensional model
in which the nuclear-electronic coulomb potentials
are replaced by delta functions. Thus far, most
of the applications of this model have been made
on such simple systems as hydrogen (rel. 5) and
rare gas atoms (ref. 4) because of the spherical
symmetry and closed electron shells, which imply
only one possible interaction curve. The results
are in surprisingly good agreement with experi-
mental data in view of the simplicity of the as-
sumptions involved.
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Despite this success, however, it has been
generally conceded that the model is really only
semiempirical and that a cancellation of errors
plays a large part in the results. The purpose of
the present paper is fourfold as follows:

1. To analyze the delta-function model and
show why it works.

2. To apply modified versions of the model to
N,—N;, N;—0,, and 0,—0, interactions.
The first example is used to iron out many
of the procedural difficulties and is chosen
because of the chemical similarity of molec-
ular nitrogen to the rare gas atoms. Also
experimental scattering data exists for this
case.

3. To investigate the effects of a variable
sereening parameter.

4, To investigate the importance of disper-
sion forces, especially in regard to their
short-range cut-off behavior.

LIST OF SYMBOLS

a radius of the outermost electronic shell
in an atom
a,4,B, constants which appear in the approxi-
e,d mate wave functions and interaction
potentials
a,b coefficients of linear combination of

atomic orbitals

variable used in the delta function
model and related to the atomic
energies at infinite internuclear sep-

aration

d molecular bond length

E energy

g delta function strength

H total Hamiltonian operator

I atomic ionization potential

Iy ionization potential of atomic hydrogen

e ionization potential of atomic lithium

Ji exchange integrals between atomic
orbitals 7 and j on different atoms

k ratio of squares of overlap integrals;
also resonance parameter

n number of effective electron pairs in a
diatomic molecule

N symbol for atomic nitrogen; also an

atomic orbital centered on nitrogen
when used with the subscript z, ¥,
or z

0

R,
Sij

Vv

V,

1’.’:’/’2

symbol for atomic oxygen; also an
atomic orbital centered on oxygen
when used with the subscript z, ¥,
or z

exponent defined in connection with
the delta function strength

probability of the resonance state
Ot—N-

distance of an electron from its own
nucleus; also interatomic separation

distance between centers of mass of
molecules

position of Van der Waals minimum

overlap integral between atomic or-
bitals ¢+ and j centered on different
atoms

potential of clectron; also interaction
potential for diatomic molecules as
defined in text

constant which appears in the expo-
nential curve fit of several interaction
potentials

Cartesian coordinates of an atomic
clectron; also variables defined in
connection with the overlap integrals

effective nuclear charge of L-shell
clectrons

parameter in the modified Buckingham
empirical function

spin functions

parameter in the Hulburt-Hirschfelder
empirical function

variable related to the resonance pa-
rameter

half width of square well potential
(approaches zero to form delta func-
tion); also depth of Van der Waals
minimum

resonance parameter

clliptical coordinates

distance between delta function centers

volume element (dr)

interaction potential between mole-
cules

interaction potential between mole-
cules as obtained from an expo-
nential curve fit

wave function (subscripts o and =n
signify ground and nth excited
states, respectively)
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w frequency of cosine wave function (sce
eq. (4b))

Energies are given in units of twice the ioni-
zation potential of atomic hydrogen, or in electron
volts, as noted. Distances are given in units of
first Bohr radius of atomic hydrogen, or in ang-
stroms, as noted.

THE DELTA-FUNCTION MODEL

HYDROGEN-LIKE ATOMS

The wave equation for a ground state hydrogen-
like atom is, in atomic units,

— [%( dr>+°Z’”:| v=Eg, ()

where
2 1/2
Eoz'—?i’ ¢o:<g) e % (lb)
2 T

and Z is the atomic number of the nucleus.

Now, considering the application of the Lap-
lacian operator in Cartesian coordinates to ¢,
we obtain

o (e 2
S (VL) (20)

and
—5 V=g (PAE2-L) (=45 )0 1)

It is apparent then that the simple mathemaltical
procedure of reducing the problem to one dimen-
sion by taking the components ¥ and 2 to be zero
in ¢, and equation (2a) results in

b (o,
dﬁ_(z +lr lrl)"b” (38)
or
\ &y, 7
“aqs= g ¥ (3b)

This last equation is obviously equivalent, at
least insofar as the mathematical eigenvalue
problem is concerned, to equation (1a) but with
the very important physical exception that a
potential energy function is not included. The
fortuitous cancellation of the second and third
terms on the right-hand side of equation (3a)

is the crux of the simplification with the result
that the wave function of the atom may be
represented in one dimension by the dotted curves
shown in sketch (a).

o
L

Wave function, ¢

——CO0S wX

o] *

Sketeh (a).—The hydrogen atom wave funection in the
delta-funetion model.

The correct excited state cnergies are also
casily obtainable from equation (3b) by simply
using ¢,=exp(—Z|zl/n), where n is the principal
quantum number; however, the situation tends
to become more obscure and further removed from
physical reality because of the fact that the
true wave functions are not simple exponentials.

Sinee it scems possible to get along so well
without worrying about a potential cnergy
function in the one-dimensional Hamiltonian, the
question might reasonably be asked, at this point,
as to why Mason and Vanderslice (ref. 4) bother
about introducing a square well at the position of
the nucleus and then letting the width of this well
approach zero and its depth approach infinity
in such a way as to degenerate into a delta funec-
tion, especially since the correct energy values
are obtained without doing this and the model is
but a mathematical construct. The answer is
that in order o apply the method to the more
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complicated cases of molecules, it will be neces-
sary at least that the equations represent some
sort of physical situation, even though it might
notl be that of an atom, and that they satisfy the
boundary conditions of general quantum theory.
Tt is quite apparent that the latter condition is
not fulfilled in the above simplified model from
the mere fact that the slope of the wave
function is not continuous at the origin, an obser-
vation which clearly indicates a potential center
at this point.

A possible procedure for circumrventing the
above difficulty is to connect the two exponential
regions (i.e., exp(er) for x<0 and exp(—ex) for
£>>0) with a suitable even funetion of x, such
that the slopes are continuous, and then to find
the corresponding potential from which it can
originute. Perhaps the simplest such connecting
function is the cosine, the [requency of which
may be allowed to approach infinity, and which
is the wave function of a particle in a one-dimen-
sional box —hence the use of the delta function
type of potential (sce sketeh (a)). It follows then
that while the delta functions associated with two
such atoms cannot, of course, overlup, the corre-
sponding wave Tunctions ean. The situation for
the individual atom is, in some tespects, sunilar
to the “tunnel effect” in the « decay of radio-
active nuclei.

In other words, consider the x axis to be divided
into three regions with the following set of wave
functions and potentials:

b= expler), V=0 <—o) (40)
Yu=DB cos wr, VT==V,(—eLr<e) (4b)
Y=l exp(—ecx), V=0(r>¢€) (4c)

where ¢ is essentially an effective nuclear charge
and is equal to (—2F)" in this problem. The
parameter w is determined in such a fashion as to
satisfy the one-dimensional wave equation, in-
cluding the delta-function potential, and 2¢ repre-
sents the width of the square well. Thus

1 d2 .
—3 I (cos wr)+V cos wr=F cos wr  (5a)

F=2(E—V)=2(E+V,)=—c42V, (5b)

or

The quantity « must be real, of course, otherwise
¥y would be a hyperbolic function.

Now V7, may be obtained from the requirement
that the functions and their first derivatives join
smoothly at the boundaries of the regions, that is,

Vi=vn, ¥'=y¢u atr=—e (6a)
Yu=v¥m, ¥u' =¥’ atr=e (6b)

This results in w tan we=c and, since e may be al-
lowed to approach zero without loss of generality
for purposes of simplification, we have

wle=—c% -2V e=c (7a)

Letting g=c+c’%, this vields

V=3

w2=—02+i—] (7h)
Tn this example, g=¢, but this is not necessarily
truc in the case of molecules,  This point will be-
come clearer in a subsequent section of the report
on H,*™.

It should be noted here that the shrinking of
the width (2¢) of the potential well to zero auto-
matically leads to the increase of the depth (g/2¢)
to infinity, but in such a way that the product of
width and depth is equal to g, a finite number.
Thus, the potential used here is indeed a delta
function of strength g; however, it is in no way
unique, that is, this is not the only way in which
a one-dimensional analysis can be made physieally
plausible.

Finally, it must be remembered in what follows
that, when use is made of this model, no coulombie
interaction of any kind appears explicitly in the
Hamiltonian operator of an atomic system,.
Therefore, as follows from the first-order nature
of this procedure, induction and other second-
order effects must be added arbitrarily in order
to obtain a complete deseription of forces between
two or more interacting species.  Moreover, any
analysis involving a three-dimensional quantity,
for example, angular momenta different from zero
and their interactions with spin resulting in fine
structure corrections, must be handled in a some-
what different manner. The loss of this type of
general physical insight, however, is not an un-
common occurrence when mathematical simpli-
fications are made for the purpose of dealing with
a more specific effect.
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THE H;* AND H; MOLECULES

Following Lippincott’s (ref. 5) method of bring-
ing two delta-function atoms together to form a
delta-function molecule, we may divide the x axis
into five regions with the following wave functions:

(ms —%-—e) (8a)

(—5—e<rs—f+) @b

Yr=le”

Yu=2>~5, cos wx
Yor=D[exp(—cx)+exp(ez)]

<~§+e5xs§—e) (8¢)

(§—e<azhte) 0

II/IVIBZ COS wr

by=de= (s25+¢) (0
where p 1s the distance between delta-function
centers.  The positive sign is used in ¢ to make
the wave function symmetrie in an interchange of
nuclei, since, by general molecular orbital theory,
this corresponds to a concentration of probability
density in the region between nuclei and leads,
therefore, to the lowest energy.

Using equation (7h) and applying the appro-
priate boundary conditions to the region end-
points results in the equations

(.2

E=—§ (9a)
c=g(1+¢ %) (9b)

E=—5 (I4eo)Pm =5 (14279 (9¢)

Equations (9b) and (9¢) may now be solved
simultancously to determine ¢ and F as a fune-
tion of the delta-function separation p. The
parameter ¢ 1s, of course, determined simply by
the requirement that the energy approach the cor-
rect isolated atom energics as p goes to infinity
(g=1 for TI,* and 22 for 1,).

Lippincott now makes the further argument
that the approximation should be considerably
improved by using “floating” delta functions,
that is, by allowing the delta function centers to

be shifted off the nuclear centers. This procedure
will clearly enable the charge distribution to be
more concentrated in the region between nuclei
{(p<r=internuclear separation) in the case of
bond formation and in the regions outside of the
nuclei (p>r) in the case of repulsive states,
This is essentially equivalent to the shifted
atomic orbital procedure as applied to H, by
Gurnee and Magee (ref. 6) and to H; by Meador
(rel. 7), and it is also similar to second-order
perturbation theory in which, for example, hybrid
1s and 2p orbitals are used for H, in the ground
state (rel. 8). 'The methods for specifying p as a
function of r will become apparent in the next

section.
72 ; +
THE «' EXCITED STATE OF N;

In a recent paper Vanderslice, Mason, and
Lippincott (rel. 9) applied the delta-function
model to the calculation of the energy of the
>3 stateof N, in which all the valence electrons
are unpaired. The antisymmetric wave functions
appropriate to repulsive states were used in place
of the symmetrie ones discussed previously and
resulted in the equations

c=g(1—e=*) (10a)
2
E=—-% (1—2¢7) (10b)

where n is the number of electron pairs (seven in
this case). The assumption is made that the
many electrons may be replaced by a single
effective charge distribution; more precisely, the
total interaction energy consists of n times the
average interaction energy of all pairs of clectrons,
as for two hydrogen atoms.

The interaction energy may now be expressed as

V(ry=E@r)—E(=)=ng"* (11)
where
p=r-2ac"" (12)

This last equation is merely a simple way to
satisfy the requirements:

asr—-w

(a) p>r(repulsive state), p-—or

(b) p(r=0)=2a, where a is the average ra-
dius of the outermost clectronic orbit of
an isolated atom (a=0.56 X (ref. 10)
for nitrogen)—the “united atom.”
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With the idea that the delta-function strength
(9) may be regarded as proportional to the
ionization potential of an isolated atom, as implied
by the earlier scattering investigations of Bloch
for heavy targets (ref. 11), one obtains

g=2(In)"" (—11-)22”2 (II:}) (13)

where T and Ty are the ionization potentials of
atomic nitrogen and hydrogen, respectively. This
procedure finally yields a potential energy which
can be represented by the expression

V(r)=317.8 exp(—2.753 7) (14)

where 7 is measured in angstroms, and V is in
clectron volts.

The present paper is an extension of the above
work in that allowances are made for the smallness
of the contributions of the inner or K-shell clec-
trons to the repulsive forces between atoms (or
to bond formation in the case of bound states).
The question is raised also as to whether the
delta-function strength should be proportional to
I or to I'?, or perhaps to some power m between,
especially in view of the fact that equation (13)
signifies a discontinuity in going from hydrogen
(g~1'?) to a more complicated atom (g~1I). As
a more natural assumption, the introduction of a
variable parameter in order to make this transition
less ubrupt seems appropriate. In addition, since
there are only five L-shell electron pairs involved
in N,, it is expected that the final form for g
should more closely resemble that for hydrogen
than for the heavy atoms.

The first extension involves a comparison with
lithium instead of hydrogen in the equation for
g. In this case the following system ol equations

results (energy in electron velts, and r in
angstroms):
p=(aggp T2 1164e 0% (152)
g2 _L!n)”?(_{) 5. 26‘;) 14.48
TN 27.206 I, 27.206 5. ‘363
5b)
c=yg(l—e ) (15¢)
V() =5(27.206) g% ~»=136.03g% (15d)

where p is a number, to be determined, between
one-half and unity.

A comparison of this approach with experi-
mental data will be given below, where it is shown
that p=¥% gives very good results. This corre-
sponds to 5122(1/"27.206)”2 so that the interaction
energy may be represented (after some manipula-
tion using Newton’s iteration procedure and curve
fitting) by the expression

V(r)=253.9 exp(—2.716r) ev (16)

Tt should be noted here that the method of approxi-
mation of perfect pairing, as employed in subse-
quent sections of this report, involves only 2p type
clectrons in a description of interatomie forces.
For this reason, it perhaps would have been more
consistent to have considered three electron pairs
in equation (15d), instead of five, and to have used
boron, instead of lithium, in equation (15b). The
above treatment emphasizes the shell structure,
and hence regards only the two 1s clectrons as
being transnuclear, whereas the Iatter points out
the division into subshells and is used only in
finding relationships between energy states.

Equations (15) point out clearly the advantages
of using the delta-function model, at least from the
standpoint of mathematical simplicity, since the
wave equation becomes completely separable in
the clectron coordinates, and complicated coulomb
and exchange integrals, ete., do not enter the
picture.

THE N,-N.; INTERACTION

The approximation of perfect pairing (ref. 12)
describes the interaction between two nitrogen
molecules as simply the sum of four atomic inter-
actions. In the case of neutral species (i.e., neg-
Iecting any ionic contributions due to resonance)
the interaction potential is thus given by a partic-
ular sum of exchange integrals as follows:
Sl

TY:ZIJU_ ZSJU

where

2., the sum over orbitals with paired spins (anti-
parallel)

2, the sum over orbitals with parallel spins

2, the sum over orbitals with nonpaired or ran-
dom spins

i
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The choice of coefficients, of course, follows
direetly from simple valence bond theory. For
example, the factor—)% in the last term is a con-
sequence of the fact that this represents a com-
pletely random situation and the degeneracies of
paired and parallel spin states are one and three,
respectively.  The exchange cnergy is, therefore,
(%“‘%)JU:_%JU

Further assumptions concerning molecular in-
teractions are:

1. The exchange integrals arc essentially the

same as would prevail if the atoms were
isolated instead of being members of mole-
cules. The dircctions of the distortions
experienced by the clectronic charge dis-
tributions as the molecules approach each
other certainly tend to make this approxi-
mation good and, in any case, the crror in-
troduced is probably very smuall for the
distances under consideration (2.4 to
3.2 ).
The resonance contribution is insignificant
because of the small clectron affinity of
molecular nitrogen. In many respects N,
behaves like an inert gas atom so that N,
is extremely unlikely.

3. Only the valence 2p,, 2p,, and 2p, atomic
orbitals are considered as contributing to
the exchange forces between atoms.

4. The coulomb interaction between neutral
molecules is negligible at fairly large inter-
nuclear separation in comparison with the
exchange forees.

5. Only once N;—N,; interacticn curve is con-
sidered to be of importance, that is, the
possibility of chemical reaction is ignored.

The 723, state of Ny may now be represented by

Tv(r) z_(J-.u_!_ Jyy"{‘ Jzz) (17)

o]

and the interaction between nitrogen atoms, either
or both of which are members of molecules, by

V’(T)%—% (J.rz+ Jyy+ Jzz) (18)

Combining equations (16), (17), and (18), we
have

T/,vr(]l) z% I'(,,):I,Yoe—br: 127.0e=276r oy (19)

The total interaction between two nitrogen
544424 —61——2

molecules is then given by the sum of the four
interactions between their constituent atoms, four
in all, and depends implicitly on their relative
orientations. For comparison with experimental
scattering and viscosity data, it is convenient to
average geometrically (ref. 9) over all possible
orientations, which yields for the average N,—N,
interaction

B(R)=4V e "E(B’Rd*)~"[2(b R+ 2)(cosh bd—1)

—2bd sinh b(l]—3gﬁo ev  (20)
where
R distance between the centers of mass of
the molecules
d bond length of N,=1.094 X (ref. 13)

—36.0/R* Tondon dispersion or second-order per-
turbation cnergy (ref. 14)
Calculuted values of @ from this equation and from

_ 36.0
PR Vg (2])

where A=658.66 and B=2.630 for p=0.5, as
obtained from curve fitting, are presented in table
I. Also shown is the energy for p=0.6 in order
to show the trend when this parameter is varied.

Comparisons between the theoretical results of
this paper and those of Vanderslice, Mason, and
Lippmcott (refl. 9), together with the experimental
data of Amdur, Muson, and Jordan (seattering
measurements, ref. 15) and Mason and Rice (vis-
cosity measurements, rel. 16), are presented in
table IT and sketeh (b). The excellent agreement
would seem to justily the present approach.

There is, hiowever, a discrepancy at large R
where the theoretical curve does not approach
zero as rapidly as the viscosity data, but this may
be due partly to the inadequacy of the experi-
mental results in this region. Tt is also apparent

' (Ry=:e

TABLE T. -N,—N; INTERACTION EXNTRGIES

Eqg. (20) Fq. (20) Eq. (21)

R and and and
p-=0.6 p=0.5 p=0.5

2.4 0. 6272 1. 0071 1. 0080

2.5 . 4637 L7726 L7723

2.6 L3411 L H011 . 5905

2.7 L2404 . 4508 . 4507

2.8 . 1812 . 3429 . 3432
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TABLE II. COMPARISON OF N;—N: INTER-
ACTION ENERGIES
Calculated Measured
R
Eq. (21)
Ref. O and Ref. 15 Ref. 16
p-=0.5

2.4 1. 190 1. 008 1. 045
2.5 . 905 L 772 . 757
2.6 . 692 . 591 . 568
2.7 . 527 . 451 440
2.8 . 400 . 343 . 336
2.9 . 303 . 261 . 257
3.0 . 229 . 198 . 200
3.1 173 . 149 . 157
3.2 . 130 112 0. 093
3.3 . 050
3.4 . 023
3.5 . 011
3.6 . 005
1.2

8 Calcuiated

----ref. (9)
¢ r - €q.(20)
ar+
Megsured |
I ref.(15)---7
ref.(18)--—~~___ _ "
0 N I ] N e S S
2.4 2.8 3.2 36

-]
R, A

Sketeh (b).—-Comparisons of N:—N; interaction energies.

that the two theoretical curves converge at large
distances because of the decreasing importance of
distinguishing between K- and T-shell electrons.
Finally, the fact that the curve of this paper lies
below the one derived from seatiering data for I
less than about 2.45 is duc primarily to the in-
ability of the model to account for the strong
repulsive forees encountered when the electronie
charge distributions effectively overlap; that is,
the dintomic theoretical curve for the 257 ex-
cited state does not approach infinity at r equal to
zero. The specific neglect of coulomb interactions
in the Hamiltonian operator apparently is valid
only when the intermolecular separation is large
enough that the forces (other than exchange)

between individual particles cancel out. These
arguments thus make clear the limitations of the
delta-function simplification and point the way to
the modifications necessary when one or both of
the interacting species is an lon.

Finally, another lower limit on the distance
between molecules, insofur as this theory is con-
cerned, is the point at which the procedure of
averaging over orientations becomes invalid.
Such a point would correspond to a separation
at least as great as 2(d/2)=1.094 i

DISPERSION FORCES

The diserepancy between theory and experiment
at small 72 (sketeh (b)) may, to a minor extent
compared to the reasons stated in the preceding
section, be aseribed to the poor expression for the
dispersion term. The approximations involved
in the derivation of this term are such that, in
short-range interactions, it is usually better to
negleet dispersion entirely in comparison with the
first-order cencergies. For this reason it would
probably have been more realistic to have omitted
the term —36.0/R* in equations (20) and (21);
however, because of its not insignificant contri-
bution to the total energy (—36.0/L% varies from
—0.188 at R=2.4t0 —0.075 at ’=2.8), an attempt
must be made to compensate for the omission of
the term by allowing the p of equation (15b) to
be greater than 0.5.

The best agreement with experiment is obtained,
and to this extent the entire procedure must be
regarded as essentially semiempirical, if p is taken
to be 0.55. The results are shown in table III,
where colummn 2 wvalues were calculated using
equation (20) without dispersion and c¢olumn 3

TABLE TIT.. -N,— N, INTERACTION ENERGILS

Eq. (20)
without Fgs. (20)] Fg. (21)
e disper- | Eaq. (22) and and Ref. 15
sion (15d) p=0.5
and
p- 0.55
2.4 | 1.000 1. 003 0. 989 1. 008 1. 045
2.5 . 759 . 759 . 755 LT772 . 757
2.6 . 575 . 575 . 575 . 591 . 568
2.7 . 436 . 435 . 437 . 451 . 440
2.8 . 330 . 329 . 332 . 343 . 336
2.9 . 250 . 249 . 251 . 261 . 257
i 3.0 . 189 . 189 . 190 . 198 . 200




THE INTERACTIONS BETWEEN NITROGEN AND OXYGEN MOLECULES 9

corresponds to the associated exponential curve
fit given by

&' (IR)=800.52 exp(—2.7841) (22)

Column 4 of the same table results from using
an equation of the form (15d) directly in the
expression for ®(2), instead of going through the
intermediate step of equation (16), and the two
remaining columns are reprints {rom table IT for
purposes of comparison. Thus, at least in the
range 2.5<1R<(2.8, this last description of the
interaction does an even better job of matching
the scattering data, as the average discrepancy
between theory and experiment at the points
cited 1s reduced from 0.014 to 0.004 e¢v. The
inadequacy of scuttering measurements apparently
begins to take hold for I greater than approxi-
mately 2.9.

In addition, a graphically constructed con-
necting curve between the present theoretical
results and those obtained from viscosity data
could yield a valuable empirical determination of
the effective reduction factor and short-range
cutoff of the dispersion forces. This will be shown
more clearly in connection with N;—O.,.

For {urther comparison with the work of Van-
derslice, Mason, and Lippincott (ref. 9), a cal-
culation ol the interaction energy between nitrogen
atoms and molecules was made using cquations
(15) in conjunction with p=0.55,

‘7'(7') zl " (7Eu+)=Vae—br

5 (cf. eq. (19))  (23)

and
B, (R) =2V e *R(b2Rd) ! [2(m+1) <inh (%’)

_» (’g’) cosh (”Z‘Z)] (24)

Equation (24), ol course, follows [rom the same
type of averaging procedure as that used to obtain
equation (20), and the intermediate stage of equa-
tion (16) was again omitted; that is, cquation (23)
was used for each value of R but no attempt was
made to represent the entire range by a single
exponential function.

The results are shown in table IV and sketch (¢).
There are, unfortunately, no experimental data
available to check their validity. The Vander-

TABLE IV—N—-XN; INTERACTION ENERGIES

R FEq. (24) | Ref. 9
2.4 0. 376 0. 550
2.5 . 285 . 418
2.6 . 215 .318
2.7 . 163 . 242
2.8 123 . 184
2.9 . 092 . 140
3.0 . 070 . 107

! 1 i |

24 26 2.8 30
A,

A
Sketeh (e).—Comparisons of N — N interaction energies,
slice, et al., (ref. 9) curve was calculated from
®,"(R)=387.8 exp(—2.733R) (25)

To summarize, the exponential curve fit of
cquation (22) provides a very smmple function for
use as the repulsive part of the potential appearing
in cross-scction and transport integrals. The
neglect of dispersion forees at large distances, how-
ever, prevents the usual potential minimum, which
occurs at 5.160 A as computed from equation (21)
with the term —36.0/R%.  The corresponding value
of the potential at this point is —0.0011 ev, whereas
the Vanderslice, et al. (rel. 9), equations predict
—0.0001 cv at 5.203 . On the other hand, in
high-energy scattering experiments, the effect of
this attractive contribution is often quite negligible
and equation (20), without dispersion and without
further modifications, should give very adequate
results for this type of measurement.
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INTERACTIONS BETWEEN NITROGEN
AND OXYGEN

METHOD

For the interaction between nitrogen and oxygen
atoms, both of which are members of their respee-
tive N, and O, molecules, the approximation of
perfect pairing yields

1 1 1 1 1
V0y=—3[2(§) Tty Tty Tty b2 (5)
1 1 1 i
+jJ22+§ Jzz+§ JW+2 <§> Jzz]

where the & axis is taken to coincide with the line
of nuclear centers. Here again only p ftype
atomic orbitals are considered and advantage
has been taken of the small electron affinity of
N..

Since symmetry requirements dictate that Jy,
is identical with J,,, the above expression can be
immediately reduced to

T()=—2 (Jat2J,) (20)

Tn previous papers (refs, 9 and 17) employving
this approach it has been customary to eliminate
g and J,, from similar equations by using the
same approximation of perfect pairing in connee-
{ion with wvarious states of associated diatomic
molecules, the potential curves of which are
obtamed from spectroscopic data or by adoptling
the delta-function model.  Such a procedure was
particulurly simple mn the case of N,;—N; because
of the almost trivial relation expressed in equation
(19); in other words, only one diatomie state had
to be considered and this was especially adaptable
to a delta-function treatment, The present prob-
lem is considerably more complicated because of
the following three major factors which enter into
the nitrie oxide caleulation:

1. Any attempt to use a delta-function model
must take into account the {act that there
will be two different sets of delta-function
strengths and “floating” parameters.

2. The appearance ol four p eclectrons in
atomic oxvgen implies the cexistence of
three-cleetron bonds or antibonds in the
states ol nitric oxide. Thus, a careful
analysis of the approximation of perfect
pairing, which works so well in the case of
N3, becomes necessary.,

3. The possible attachment of the “extra”
oxygen clectron to the nitrogen atom to
form a resonance N~—O7 state must also
be considered.

The addition of an associated resonance parame-
ter to the two unknown exchange energies in
equation (26) requires a minimum of at least three
independent  relutions to solve uniquely the
N,—O0, problem. Unfortunately, only the AT
ground state of nitric oxide is sufficiently stable to
provide enough spectroscopic data for an appli-
cation of the Rydberg-Klein-Rees semiempirieal
method (refs. 9 and 17).

It a recent paper by Vanderslice, Muason, and
Maisch (ref. 17) these difficulties are more or less
avoided by some arbitrary assumptions concerning
the resonance phenomenon.  In addition, a some-
what questionuble method of obtaining the bound
1 state of NO, by using the spectroscopie con-
stants of the corresponding state of O, in a
Hulburt-ITirsehfelder function, is employed. Tt
is shown in the present work that a more consistent
determination of the interaction potentials is
obtained when a delta-function model is used to
caleulate the resonance parameter. A derived
relation involving the ratio of exchange integrals,
together with the aforementioned X°IT ground
state data, Is then suflicient to specify completely
the molecular interaction.

THE RESONANCE PHENOMENON

As mentioned above, the ground state X?IT
potential curve of nitric oxide has been caleulated
by Vanderslice and co-workers nsing the Rydberg-
Klein-Rees semicmpirical procedure. Tt has also
been shown (ref. 17) that the long-range tail of
this curve joins smoothly with the following
Hulburt-Hirsehfelder expression (ref. 18):

V(A1) =6.609 [(1—e#)?
+0.06780 8°(14-2.663 8) e #—1]  eov (27)

where

o {7—1.1508
B=3.1570 ——=-5—
1.1508
and 7 is the distance between atoms (in angstroms).
Tf the customary molecular notation (ref. 13)
is used, the configuration of the seven valence p

clectrons may be deseribed by

(0)* (11,)* (IL,)* (T *)
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where the molecular orbital wave functions are
approximately given by

II,:¢0,+-bN,
I,*:¢0,—bN,, cte.

and where a and b are cocflicients of the linear
combination of atomic orbitals. The O, and N,
of course, refer to 2p, atomic orbitals centered on
oxvgen and nitrogen, respectively.

An application of the approximation of perfect
pairing leads to VI =dJ .+, plus the contri-
bution from the remaining IT, and II.* molecular
orbitals.

This last term, however, concerns three elec-
trons, and the aforementioned simple theory is not
adequate to desceribe such a situation. A very
feasible extension has been suggested by Linnett
(ref. 19) in terms of a mixture of atomic and
molecular orbitals, which follows direetly from the
properties of matrices and determinants. The
basis of this procedure is easily scen from a con-
sideration of the case where one electron is in the
I, orbital and another 13 m the I* orbital and
where both have their spins in the same direction,
The wave function for this two-electron problem
is then given by

I (De(1)
I(2)e(2)  IL*(2)a(2)

[2O0. (DN (D]a(1)  [a0.(1)—bN.(D]a(1)
[@0.(2)+ON.(2)]«(2)  [a0.(2)—bN,(2)]«(2)

IL* (D a(1)]

~

Adding the second column to the first, dividing
by 2, subtrueting the resulting first colunm from
the second, and finally multiplying by 1/a and
—1/b, gives, apart from a constant factor,

O0.(Ma(l)  N,(Da(l)
0, (2)0‘(2) N, (2)0‘(2)

~

In other words, in the deseription of these two
electrons, it is irrelevant whether they are said to
occupy the molecular orbitals or the corresponding
atomic orbitals, that is, the contribution to V(2II)
is —dJ,, regardless of the viewpoint taken.

The remaining electron in the three-clectron
bond must, in order to satisfy the Pauli principle,
have a spin function 8 and may roughly be con-

sidered as occupying the molecular orbital 1.
But what is its contribution to the interaction po-
tential?  One might reasonably expect to find that
since this single electron forms a one-clectron houd,
and since the strength of such a bond is usually
about one-hall that of the corresponding two-
electron bond, a fairly good approximation ought
to be

o 1
! (*H):JIA—-2 o
This question will now be more thoroughly in-
vestigated in the light of the molecular orbital
theory.
Using the ideas of Tinnett and allowing the

extra electron to be located either in M, or T1,*, we
have for the threc-electron wave function

{0:(Da(1)  N.(Da(1)  O0,(1)8(1)
y~a 0:2)a(2) N.(2)a(2) 0.(2)8(2)
0.(3)a(3) N.(3)a(3) 0.(3)8(3)
O.(Da(1)  N.(Da(1)  N(1)8(1)
+b 0.2)x(2) N.(2)a(2) N.(2)8(2)
0.(3)a(3) N.(3)a(3) N.(3)8(3)

We expand these determinants and negleet the
multiple exchange integrals giving rise to the pos-
sibility of all three electrons being exchanged be-
tween the two atoms.  Such interaction terms are
usually quite small in comparison with other con-
tributions, as can be seen from overlap considera-
tions. The interaction potlential is then found
to be

V~—a(0,N,:0,N,:0,0,)—b%0,N,:0,N,:N,N,)
+24b(0,0,:N,N,:0,N,)

where
<ozxz:ozxzzozoz):f[. .. 0(D0,(2)0,(3)]*

H[. . NL(HN.(2)0,(3)dr, cte.

77T is the Hamiltonian operator of the entire sys-
temy, and the asterisk («) signifies taking the com-
plex conjugate.

In general, if O and N are tuken to represent
symbolically any two atoms, there are two extreme
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cases to consider as follows:

(1) Suppose that N, for example, refers to an
atom whose electron aflinity is zero, so
that the coefficient & vanishes. Normali-
zation then requires that a be equal to
unity and results in

‘72 - (O‘NZIO‘NZ:OZOZ) _ Jzz

where the last equality follows from the
definition of exchange. In other words,
the quantity in parentheses refers to the
situation in which two electrons are ex-
changed back and forth between N and
0, whereas the third electron remains sta-
tionary on the O atom. Moreover, this
interpretution is certuinly consistent with
the approximation ol perfect pairing be-
causc the spins are random, in which case
we have

Vo (—% Ju)z—Jﬂ

(2) Suppose that N and O now vefer to the
same type of atom, for example oxygen,
so that the cocfficients, @ and b, are cach
nearly equal to (2)="2. The interaction
potential then becomes

"7"’3 —_ J;z + (Ozoz:NzN:,:OzNZ)

where the last term signifies one electron
on one atom, another eclectron on the
other atom, and the third electron equally
dividing its time belween the two atoms.
Thus, this last integral, together with its
coeflicient (unity in this case), is called a
hybrid coulomb-exchange integral, and
it clearly provides a measure of the im-
portance of resonance configurations.
Also, it is quite obvious [rom the form of
the integrals involved that a good ap-
proximation to 17 should be

Vae—dJ.£N.,

where \ is a resonance parameter and, in
general, depends on the interatomie sep-
aration. Vanderslice, Mason, and Maisch
(ref. 17) set this quantity equal to a con-
stant, 0.5, but it will be treated here as a
variable. The plus sign, of course, refers

to the “extra” electron being in the IL
orbital and the negative to IL* occu-
pation.

Going back to the original problem of the ground
state of nitric oxide, it is certainly to be expected
that the resonance parameter, x, will lic somewhere
between its maximum value in case (2), in which
the resonance is complete, and its value of zero
in case (1). Tlowever, we still have to develop a
procedure for its caleulation.

Since (0,0,:N.N.:0.,N,) must be greater than
J.. because of overlap considerations, and since
) must vanish whenever a or b is zero, a reasonable
functional form seems to be

N=yab

where v in general depends on the interatomic
separation and is greater than 2 in the case of
complete resonance.

To the extent that y can be regarded as constant,
an assumption which will not be used in our future
calculations, its value may be determined by a
consideration of the problem described in case
(2) above, in which @ and b are both nearly equal
to (2)~2. Since this situation implies that the
extra electron is just as likely to be found on O as
on N, it can be imagined that the contribution of
the three-clectron boud to the interaction energy
of the (IT,)*(II.*) state is

o (1 1, 1
_Jzz+2 <§> <1+§> Jzz“2 Jzz

that is, ¥y =3 (an excellent example is the resonance
stubilization of He,*).

Proceeding one step further with this idea, it 1s
now possible to derive an expression for the proba-
bility (P) of the resonance ionic state OF—N~,
This probability is equal to % and, by using the
normalization condition a®>--5?=1, we can wrile

P=1—qa?
where

_A_ A
G=sp3p1

Eliminating ¢ and solving the ensuing quadratic
equation yields

P=-é [3— (9—4)&)1/2] (28)
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A somewhat better determination of the reso-
nance parameter may be obtained by a considera-
tion of the ground N7II state of nitric oxide in
conjunction with the excited “2J state, which will
be described in the next scction by use of the
delta-function model. The electronic configura-
tion of this latter state is

(o) (0*)*(IT,) (11,*) (T1) (11, %)
so that the two energies involved are
VI =2y (29)
V(E22)=—(14+N =2y (30)

THE %3 7 STATE OF NO

and

A brief study of the potential function given in
equation (30), especially when cognizance is taken
of the fact that J,; 1s usually many times greater
than «/,, in magnitude, clearly indicates that this
particular ®> state of nitric oxide is the most
repulsive one obtainable from ground stale atomic
orbitals—at least as long as the interatomic
separation is not so small that the coeflicients of
linear combmation of atomic orbitals are effec-
tively different for T, and II,*. In addition, it
should be noticed that ¢ type orbitals are empha-
sized, so that evegything scems to point to this
being the state most accurately deseribed by a
delta-function model with its associated hydrogen-
like approximation of tuking average electrons.

As pointed out ecarlier, the situation in the case
of heteronuclear molecules is complicated some-
what by the existence of two sets of delta-function
strengths and shifting parameters. However, as
will be justified later in connection with the treat-
ment of exchange integrals, it is a good approxima-
tion to take the geometric mean between corre-
sponding homonuclear molecules, O, and N, in
this problem, in which case the new potential
function becomes

V(2= (mn,)%(27.206) 9,9, exp [:(———“c'p;; p’p2)]ev
(31)

where the subseripts 1 and 2 refer to oxygen and
nitrogen, respectively; for example, n,=6 and
n,=2>5.

The values of ¢,, p;, and ¢, are, of course, given

by expressions similar to those in equations (15)
and, in particular, values for e,p, and gy, as well as
», may be obtained from the previous calculations
on nitrogen. Since the parameter p depends pri-
marily on the number of clectron pairs involved
and seems to be fairly insensitive to a small
change in this number, the assumption that
p=0.55 for O, as well as N, is probably not too
bad. Thus, the only additional information
needed is the radius of the outermost electron shell
of atomic oxvgen, defined as the distance at which
the cleetron charge density is a maximum and
caleulated to be 0.48 A by use of empirical sereen-
ing parameters (ref. 20) in Slater atomic orbitals,
and the corresponding ionization potential (13.550
ev).

A straightforward caleulation, using Newlon’s
iteration procedure lo solve equation (15¢),
vields the results presented in the third column of
tuble V. Also shown in this table is the interac-
tion cnergy corresponding to the NPT state, as
computed from the Hulburt-Hirschfelder function
in equation (27).

THE RESONANCE PARAMETER

Tt will now be convenient to define a new param-
cter k as the ratio of exchange integrals J.. to

Jy. Equations (29) and (30) may then be
written
V) =dJ,(k+N) (32)
and
V(2 ) =—Ju(k+2+kN) (33)

Dividing the first by the second and solving for
A vields
N RV 3) + (k2 VEID]
V(2 +EVEm)

where everything on the right-hand side is"known
with the exception of &, Notice that A approaches

(34)

TABLE V.—ENERGITS OF TIIE X AND ‘>
STATES OF NITRIC OXIDE

T X 23

2.5 —0. 1718 0. 2693
2.6 ~—. 1307 . 2033
2.7 --. 1009 . 1533
2.8 --. 0788 L1156
2.9 --. 0621 . 0872
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zero as & approaches infinity (see table V).

In order to determine this last parameter, use
is made of the fact that the exchange encrgies
should, in a major way, be dependent on the
corresponding overlap integrals.  Tn fact, a rea-
sonable approximation would appear to be the
following:

= (0N, 0,N.) = 8.7((0,0,:0,0,)
4 (N,N,N, N 4-2(0,0,:N,N)] (35)

T (0.5,0,X,) = §,7(0,0,0,0,)
+NNNN)+20,0,N,N)] (36)

where

(O.X,:0,5)= [[. . . 0.)0,]*
) I, .. NJ(ON,()dr, ete.

IT is the complete Hamiltonian operator of the
entire molecular system, and S, 1s the overlap

integral fOi *Ndr.

Each of the integrals appearing in the right-
hand members of cquations (35) and (36) repre-
sents atomie plus coulombic energies.  Since the
coulombic energies may be shown to be essentially
independent of whether p, or p, is used and to
constitute only about 0.08 percent of the atomic
encrgies for the distances under consideration, we
have to a good approximation (since F) is small

compared with )

(0,0,:0,0,) ~(0,0,:0,0,) ~ E(O)
+EMN)+EO)—-I(N)  (37)

(N,NLN,ND) = (NN, N, N) = E(O)
+IE(N)—=F(0)+F(N) - (38)
and

(0,0,:N,N,) = (0,0,:N,N) = J1(0) + F(N)  (39)

where E(0) and E(N) are the total energics of
atomic oxvgen and nitrogen, respectively, and
I2,(0) and F5(N) refer to the corresponding one-
cleetron encrgics. Thus, the expressions for J.
and J,, reduce to

Iz = S 1FE(0) +E(N)] (40)
and
gy =S, AE(0)+2(N)] (41)
so that )
(5) 2

The overlap integrals may be evaluated using
elliptical coordinates in which the variables are
u= 1/ (ro¥rx), »=0UM)(ro—rx), and ¢, and
where 7o and ry refer to the distances of an arbi-
trary point from the nuelei O and N, respectively.
The parameter 7 still represents the internuclear
separation and it is also the distance between the
foei of the associated ellipse.

Remembering now that risin angstroms and using the ordinary atomic wave functions, we obtain the

following expression for the parameter £:

e i +1 27
f r [ — 2t 1)+ u?] exp (—ap—1yv) dp dv du
J1 e 0

=1

k

where
z  [(z1+2)/4(0.5292)]r=23.9919r
v [(2—2)/4(0.5292)1=0.3071r

2, cffective nuelear charge seen by an IT-shell
clectron in atomic oxygen (~4.55)

= = Y1 [ow
[ 7 B e =1t i) exp () costip o
Wit J-1Jo i}

(43)

2, analogousquantity {~3.90) for atomic nitrogen

In the case of fairly large internuclear separa-
tions, it is obvious from the definition of the
clliptical coordinate system, and from the fact
that the major contributions to the overlap
integrals come from the region roughly half way
between the nuclei, that a very reasonable
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assumption at this point should be the setting of
v equal to zero. For the purposc of obtaining an
idea of the error thus introduced, we shall suppose
that the maximum contribution is attained along
the lince (1/2)(a,4-a,) —a; ~0.04 X to the oxygen
side of the geometric center of the molecule.
This corresponds to the position of touching of
Bohr-type orbits, and the resulting shift will be
assumed constant over all greater separations,
Assuming, in addition, that the effective mag-
nitude of u remains of the order of unity, we have
the following effects on the integrands of equation
(43):

(1) The value of v for the above displacement
of 0.04 &, and for r=2.7 §, is ~ —0.03.
Since the smallest power of » appearing
in the integrands is »% it is easily seen
that this particular effect of the assump-
tion »==0 is to increase only slightly the
values of the overlap integrals.

(2) The negleet of », on the other hand,
serves Lo decrease the values of the over-
lap integrals through the omission of the
factor exp(—yv) =exp(+0.025).

(3) The exchange integrals are further de-
creased when full advantage is taken of
the geometrie mean procedure discussed
in conuection with equation (31). This
implies that the expressions given in
ecquations (40) and (41) should be multi-
plied by the lactor

[£0) E(N)]'2
F(0)+ FE(N)

which is slightly less than unity.

(4) Finally, the net effeet of (1) and (2),
only, is to decerease the exchange integals
by a very small amount for the range
under consideration. However, as pointed
out in a recent paper by the author (ref.
7), and particularly in regard to the sup-
posedly rigorous calculation of the X1
state, the cffective nuclear charges are
probably a bit larger than the ones men-
tioned above. In consequence of this,
the exchange integrals should be reduced
slightly because of the more compact
charge distributions and resulting de-
crease in overlap.  Thus, the elimination
ol » i1s perhaps better for our purposes

than is a direct evaluation of the integrals
in equation (43).

In view of the above arguments, the expression
for k may now be written

2f w2 oxp (—rp)du
k=] == (44)

(*—p?) exp (—ap)dp

or

[ a2 T r
AWI:(-I:3+512+12,;~+12) (45)

As mentioned ecarlier, the character of the
exponentials in equation (44), that 1s, the form of
essentially a product of exp(—=zr) and exp(—z.r),
justifies to a large extent the use of the geometric
mean in the delta-funetion model in preference to
the arithmetic average.

The results for the resonance parameter, A, as
caleulated from equation (34) using equation
(45), are presented in table VI and shown graph-
ically in sketeh (d). A comparison with the
2=0.5 assumption of Vanderslice, Mason, and
Maisch (ref. 17) is also indicated.

TABLE VI. THE RESONANCE PARAMETER FOR
NO AND ASSOCIATED PROBABILITY

r A P
2.5 0. 5474 0. 0345
2,6 . 5363 . 0331
2.7 . 5016 . 0288
2.8 L4495 . 0230
2.9 . 3860 . 0168

26 2.8

Do

*

Sketch (d).—Resonance parameter for NO.
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Also shown in table VI is the probability of the
resonancestate O —N~, ascomputed from cquation
(28). Tts small magnitude further justifies our
use of equations (32) and (33), without any ionic
contributions, and explains the validity of the
Hulburt-TTirschfelder curve fit in connection with
the ground state. At the same time, since the
Hulburt-Hirschfelder function also excludes any
ionic effects, we can reasonably postulate that
such good fortune will not prevail in the casc of
diatomic oxygen, where \ is approximately equal
to 1.5 and P is correspondingly much larger,
These ideas have been conflirmed in recent calcula-
tions on O, by the theoretical group at the
University of Maryland (ref. 21).

A question might reasonably be asked at this
point as to why, if the ionic forces are negligible
anyway, we cven bother to introduce X into
equations (32) and (33). The answer is, of
course, in order {o have some means of correcling
or accounting for the fuct that the orbital occupied
by the “extra” electron is warped one way or
the other, depending upon whether it is an
altractive or a repulsive bond, and thereby to
include the perhaps much larger effect on the
exchange forces. Thus, the use of a resonance
parameter without an ionic foree is entirely con-
sistent in this problem.

THE ‘0 STATE OF NO

As mentioned previously, Vauderslice, et al.
(ref. 17), employ a very approximate method for
obtaining the exeited *IT state of nitric oxide, with
the result that a strange hump appears in the
potential-energy curve even though no rotation is
included. Tt was, thercfore, thought interesting
to pursuc this question of the existence of an
activation energy more thoroughly in the light
of the present procedure,

The clectronie configuration of the 'IT state is

(o) *(IT,) (TL,*) (T1.) *(I1.*)
with the corresponding energy given by

V() = Jm— (2—N) (46)
or

V(I = Jyu(k—2-+0) (47)

Dividing by equation (32), one readily obtains
2
7O = V(2 _
vm=vem (1-725 ) (48)

The results are given in table VII, together
with those of Vanderslice, et al., corresponding
to points beyond the negalive minimum, and it
is seen that the hump has now disappeared.

THE N;— O; INTERACTION

The interaction between nitrogen and oxygen
atoms, cach of which is a member of its own
respective diatomic molecule, has already been

discussed and summarized in equation (26),
which may now be written

7 2 19

! =—§ Ju(k+2) (49)

Dividing by equation (32) and solving for ¥,
we obtain

2 (h2 ]
v=—2vem ) (50)

k+2

the results of which are nicely curve fitted by the
equation

V=17, exp(—ar) (51)

The desired interaction between nitrogen and
oxyeen molecules may now be expressed as a sum
of the four atomic interactions, each of which is
given in the form of equation (51), the orientation
dependence being implicitly included through the
four values of internuclear separation.  In many
instances, however, and if the intermolecular
separution is sufliciently large, it is convenient to
average (ref. 17) the total interaction energy (&)

TABLE VIL.- THE V({) INTERACTION FOR TIHE
41 EXCITED STATE OF NITRIC OXIDE

r Ref. 17 Eq. (48)
2.5 0. 0488 |—0. 1657
2.6 . 0453 --. 1265
2.7 . 0376 - . 0979
2.8 . 0288 --. 0767
2.9 . 0207 --. 0606
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over all orientations to obtain
P(R)=4V, exp(—aR)(@Rdid,)™"

[4(a,R+2) sinh (“f‘) sinh ("g)
—4 <(1(771> sinh (C%[z) cosh (a;]l
ady\ . ady\ a.([2>:| -
—4 (»2 ) sinh (~2—> cosh (7 ev (52)
where

I distance in angstroms between the centers
of mass of the molecules
di,d; bond lengths of O, and N, respectively, that
is, 1.207398 and 1.094 & (ref. 13)
This equation yields the results shown in table
VIII and plotted as curve IIT in sketeh (e).  Also

TABLE VIII. -INTERACTION TNERGIES FOR
THE N;— 0, SYSTEM

R | Eq (52) | Eq. (53)

2.5 | 0.7377 | 0.7287

2.6 5654 5692

2.7 . 4306 44146

2.8 . 3457 3473

2.9 2741 L2713
i5 -

\\
~ v
~ \\/ v
~— /
o 1 |
25 30 35

R, A

Sketeh (¢).—Comparisons of N;—O; interaction energies.

shown, for purposes of comparison, are the two
computations of Vanderslice, Mason, and Maisch
(ref. 17), both with (curve TI) and without (curve
I) the addition of the second-order Toundon dis-
persion energy. The broken curve (V) is simply
a graphically constructed connection between the
present results and curve IV, which was derived
(ref. 17) from measurements of the viscositics of
diatomie nitrogen and oxygen at high tempera-
tures. Finally, as illustrated in column 3 of table
VIII, a fuirly good approximation to equation (52)
is given by the exponential formula

&' (Ry=:A exp(—BR) ov (53)

where A and B have the values 350.3 and 2.470,
respectively.

As is evidenced by the somewhatl greater con-
sisteney of curve IIT with the one derived from
high-temperature-gas viscosity data and the rela-
tively greater case with which the gap can be
covered by a reasonable interpolation, the present
procedure of using the delta-funetion model, a
variable resonance parameter, and the ratio of
exchange integrals would seem to be preferable
to that of previous calculations. A somewhat
different analysis of the introduction of the pa-
rameter b will be presented below in connection
with O,—0,.

The procedure of Vanderslice, Muson, and
Maisceh, however, does present a reasonable first
approximation and, in consequence of the fewer
equations involved, may prove quite useful in
dealing with more complicated species.  In par-
ticular, the choice of 0.5 for A is just about as good
as can be obtained within the limitations imposed
by the assumption that it is independent of inter-
nuclear separation. The principal blame for the
discrepancies between curves 1T and ITT in skeich
(e) probably lies in the fact that the range covered
in the N,—O, calculation falls precisely in the
region of the hump in the *IT state of nitric oxide,
which state plays such a vital role in the Vander-
slice, et al., method.

It is, on the other hand, difficult to assess the
absolute accuracy of the present calculations be-
cause of the Tack of experimental seattering data
to determine the potential curve at smaller sepa-
rations. Its justification must depend to a large
extent on the fact that the procedure involved is
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basically the same as that of the previous treat-
ment of N;—N,, for which scattering data were
available and with which exeellent agreement was
obtained. Indeed, the observable variations (e.g.,
the divergence of curve 111 from curve V resulting
from the neglect of dispersion forces) may be ex-
plained in a similar fashion to the explanation of
the variations connected with the N;—XN, problem.
Morcover, a very interesting observation on curves
I and IT at 2.9 X indicates that their difference is
very close to what is needed to make curve IIT
coimeide with V, that is, the simple London dis-
persion encrgy may be added to the present results
to obtain the complete potential curve beyond
this point.
OXYGEN INTERACTIONS

METHOD

The interaction cnergy between two oxygen
molecules will now be determined in much the

same manner as in the previous calculations on
N.,—N, and N,—O0,. Again, because of the
compuct charge distributions, O*—O~ resonance
(three-clectron bonds) between atoms belonging
to different O, molecules will be ignored. There
remains then the following set of nine possibilities:

Oxygen atom

Oxygen atom
(moleeule B)

(molecule A)

Number of electrons Number of electrons

in— in—
r, rP, PP, lP,, P..r. P, P,! P, P, P,
2 141 11201 2111 111 2
2 111 1,12 1121 211 ]
2 171 1,12 1142 12 1
1 211 1 1] 2 211 1 1 1 2
1 211 1121

A straightforward application of the approximation of perfect pairing to each of these configurations

vields, since the spins are random,

V[ (2t )+ (Tt Tt ) (e y Tt i)+ (e Sk T

b (St 2ty 7 ) 4 (et ot )+ (Tt g Tt L) (3 Tt o)

where the z direction is taken to coincide with the
line of nuclear centers.

On setting J,,—J.. as a consequence of axial
symmetry, this equation may be reduced to

V() == (Jer-2) (55)

There remains now only the task of climinating
J., and J,, from equation (55) in order to specify
uniquely this interaction. As mentioned pre-
viously, however, the ground X350, state of O,
cannot be used for this purposc because of the
inability of a ITulburt-Hirschfelder function to
cope with the Of—O~ resonance phenomenon
arising from three-clectron bonds; that is, the use
of this empirical function would yield a potential
curve lying above the correct one. TIn faet, the
only diatomic state, and there are 18 (ref. 22)

+(§ g a2 )| (50

which ean dissociate into normal (*P) atoms, for
which such an empirical function appears to be
rigorously confirmed by a Rydberg-Klein-Rees
calculution (spectroscopic data) is (ref. 21)

A, (02)*(IL,) (1, %)*(IT,) (IL.*)

where the two three-clectron bonds of
4Y3Z,_[(U,)2(HU) (I, %) (T.)*(I1,%)]
have Dbeen replaced by one consisting ol two
clectrons and another containing four.
The appropriate equations for this stale are

V(A,)=0.9154[(1—¢%)
+0.0212478¢#(1-+1 32828 —1]  (56)
where

r—1.4804°

B=5.4637 ( 14804 (Hulburt-Hirschfelder)
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and
VEAY=d . —3dy
(approximation of perfect pairing) (57)

where the four-clectron bond has been obtained
by means of a straightforward extension of the
procedure for the three-electron variety discussed
previously in connection with nitric oxide. The
result, of course, is that the electrons involved
may again be described as belonging to atomic
rather than molecular orbitals and with a con-
tribution (random spins) of 4(%—¥)J,,=—2J,,
to the interaction potential. The question of
resonance thus does not enter this discussion.

Finally, a delta-function computation per-
formed on an excited °I, state of O, is used to
complete the aforementioned O,—O0, requirements
in the long-range “tail” region.

As a further check on the validity of the above
representation of the 3a, state, since there is some
uncertainty in the numbering of the vibrational
levels (ref. 21), a second calculation was performed
using the 'A; state as a basis. Despite the fact
that the Rydberg-Klein-Rees curve for this state
is not known over a large enough range to furnish
a stringent test of the fit of an empirical potential,
it is believed that the Hulburt-Hirschfelder fune-
tion should suffice beeause of the following two-
and four-cleetron bond structures:

1A, (0,)*(TT,) * (1L, *)3(T0,)?

The cquations corresponding to (56) and (57)
are

V('a,)=4.230[(1—¢#)?
1+0.0895018%~%(14-2.69768)—1]  (58)

where
— 2 490y r—1.2155
B 3'““( 12155
and
T'Y(IAU):']IJ:_CIW (59)

Altogether four determinations of V{(r) were
made and they may be summarized as follows:
1. 3A, (TTulburt-Hirschfelder) and 5, (delta-
function model) states of O,
2. 'A, (Hulburt-Hirschfelder) and °I1, (delta-
function model) states of O,

3. 3A, (Hulburt-Hirschfelder) and 'a, (Hul-
buri-Hirschfelder) states of O,

4. 5T, (delta-function model) state of O,
and the ratio of exchange integrals tech-
nique. An ulterior motive here is, of
course, an investigation of the wvalidity
of the introduction of the parameter & in
the N,—O; problem. In addition, valu-
able insight into the limitations of the
approximation of perfeet pairing should
be gained.

THE %11, STATE OF O

The clectronic configuration most appropriate
for treatment by a delta-function model is that
state in which each valence electron is antibonding
to its maximum extent, subject to the condition
that the dissociation products are normal atoms.
The state most closely fulfilling these requirements
appears to be

1, (o) (o) *(TL,) (T1,*) (L) (T1.*)

provided the internuclear separation is large
cnough that the magnitudes of the coefficients of
linear combination of atomic orbitals are not
effectively different from 2-'7

Tn the case of complete resonance (homonuclear
molecules) it was found previously that the
associated resonance paramefer (A)  should
approach (for small separations) one of the values
+3/2 for the “extra’” clectron in a three-electron
bond. Actually, this statement is true over the
entire range of 7 as long as one stays within the
confines of simple molecular orbital theory; but
sccond-order approximations, namely the intro-
duction of configuration interaction, indicate that
[A] should decrease from 3/2 at large distances.
An investigation of these cffects is presented in a
Jater section.

Thus, on remembering that a delta-function
calculation does mot in itself include ionic con-
tributions, we obtain, by application of the
approximation of perfect pairing,

V)= —1 (5J5+7,,) (60)
5

The delta-function equations are basically the
same as equations (15), except that the ionization
potential (13.530 ev), the outermost atomic shell
radius (0.48 &), and the effective number of
hydrogen-like clectron pairs (6) now refer to
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oxygen rather than nitrogen.  Again the param-
eler pin equation (15b) is taken to be 0.55, which
might possibly cause the interaction potential to
be slightly too high; however, as explained above,
this should be of only minor significance. The
results of this computation, together with those
from equations (56) and (58), are presented in
table IX,

THE V(r) INTERACTION

If equations (55), (57}, and (60) arc combined on
the one hand, and (55), (59), and (60) on the other,
the interaction between atoms belonging to two
different O, molecules may be expressed in the
following two ways:

V() =qaq [10‘ CI)+3V(3A,)] (61)
and

v (')—- RV CI)+ V(4] (62)

The results, as presented in the second and third
columns of table X, are very consistent with each
other, thereby indirectly implving that a Hulburt-
Hirschfelder function is wvalid for both the 34,
and ', states of O,.

The remaining two determinations of V() are
obtained from the combination of equuations (55),

TARLE IX. THE V() INTERACTIONS FOR O—-0
r 34, 1A, 1,
25 —0. 0387 - 0. 0854 0. 3278
2.6 - . 0269 —. 0638 . 2483
2.7 —. 0187 —. 0491 . 1880
2.8 —. 0130 —. 0388 . 1423
2.9 --. 0091 —. 0312 . 1077
TABLE X. -THE V() INTERACTION FOR 0,0,
r Eq. (61) | Eq. (62) Eq. (63) Eq. (68
2.5 0. 1278 0. 1267 0. 1382 0. 1179
2.6 . 0971 . 0962 . 1059 . 0892
2.7 . 0737 . 0726 . 0842 . 0674
2.8 . 0559 . 0546 . D688 . 0510
2.9 . 0424 . 0409 . 0572 . 0386

(57), and (59), and from (55) and (60), together
with the definition of % in equation (42), as

follows:
T =5 374 —51('a,) (63)
and
V=t <5n>()f;j_§ (64)

Since Z;=7, in this case, the equation analogous to (43) becomes

[ [\HJ‘ Vy—Vz(M4+l)+y O\p( ru)dedvdu

RN

where x=27r/2(0.5292), and 7 is the effective
nuclear charge of an L-shell electron in atomic
oxygen (~4.55).

In contrast to the handling of the nitrie oxide
problem and because of the fact that y is
identically equal to zero, thus making invalid one
of the principal arguments in support of settling
v equal to zero, equation (65) was evaluated
directly to obtain

(28 —=3*—15r— 15)2
A‘( L6415+ 15 (66)

Calculations based on equations (63) and (64)
are shown as columuns four and five of table X,

- (65)

(u2— 1)—V2(u —1)‘7“(# —uH)lexp (—xu) CO<2¢(IWIV@

where it is seen that they are in fairly good agree-
ment with each other and with columns two and
three. For example, the deviation between the
results of equation (64) and the average of (61)
and (62) is only about 7.5 percent, indicating that
the ratio of exchange intogruls technique is a
reasonable approximation whenever sufficient spec-
troscopic duta are not available. A further
discussion of this approach is presented in the
section ‘‘Limitations of the Approximation of
Perfeet Pairing.”

THE RESONANCE PHENOMENON

Since the °TI, state of Q. plays the role of a
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common denominator in equations (61) and (62),
and since the equations agree so well with each
other and are at the same time at odds with the
results of equation (63), the implications are quite
strong that something must be wrong with either
the delta-function model or the state chosen to be
represented by it,

An obvious first correction would secem {o be a
reduction in the parameter p of equation (15b);
but it has been stated previously that, if anything,
p should be greater than the N, value of 0.55 in
order to approach the correct limit of unity as the
atomic number increases. A more direct modifi-
cation would be perhaps the addition of configura-
tion interaction between states of the same sym-
metry species to account for the breakdown of
simple molecular orbital theory at large separa-
tions. This effect is more important here than
for N-—N and N—O because of the more compact
(larger effective nuclear charge) clectronic charge
distributions of O—0. Thus, the distances be-
tween atoms need not be as great as before to
produce the same molecular orbital deficiencies,
a fact confirmed to some extent by the increase in
pereentage deviation from 8 to 27 between the
results of equation (63) and the average of (61)
and (62), as r goes from 2.5 to 2.9 A.

Furthermore, the °M, state, for example,
deseribed in equation (60) should interact to some
degree with the configuration

T (a)*(o,*) (I1,)*(T1,*) (I1,) (TL.*)

the existence of which is to be expeeted on the
basis of the incorreet simple molecular orbital
prediction that both “extra’” electrons might
possibly be found on one atom, even at large
separations,

Although an exact treatment of this problem is
bevond the scope of the present paper, it is never-
theless apparent that the need for configuration
interaction may be roughly satisfied by the intro-
duction of a variable resonance parameter ([N<(3/2
and decreasing with increasing separation) into
equation (60); that is,

VOIL)=— (14N = (24N (67)

where it is assumed that the A associated with the
z direction is not far different from that associated
with .

A stmultancous solution of this equation with

(67) and (59) then yields

VOIL) = [3VCA) ~ 5T(,)]

AR W R O

(68)

The results, as given in table XT and plotted in
sketch (f), are of the predicted order of magnitude,
and the general behavior is seen to resemble very
closely that of the nitric oxide caleulations of
sketch (d).  The variation in the latter, however,
is smaller than that of equation (68) because, for
example, of the existence of only one three-electron
antibond in the 27 state of NO. Consequently,
conversion of this 1o a three-electron bond, as is
done in the O, (°M,) state above, would further
imply a change from approximately “gerade” to
“ungerade” symmetry. This results in smaller
off-diagonal interaction matrix elements.

Indeed, these agreements should prove quite
influential in any future attempt to corroborate
the initial assumptions.

LIMITATIONS OF THE APPROXIMATION OF PERFECT PAIRING

A determination of the parameter £ from the
37, and 'A, states of O, furnishes an excellent

TABLE XI1—-THE 0, RESONANCE PARAMETER, X

r Eq. (68)
2.5 1. 3049
2.6 1. 2828
2.7 1. 1718
2.8 1. 0044
2.9 . 8147
1.4~
L2F
A
[KO% of
1 Y
%5 4 29
5 A

Sketeh (f).—Resonance parameter for O,.
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example of the limitations of the approximation
of perfect pairing. The simultaneous solution of
equations (57) and (59), in conjunction with the
definition of %, yields

VEa)—3V(4,)

h =AY,

(69)

the results of which are found in table XII,
together with those from equation (66), for
purposes of comparison.

The order of magnitude discrepancies, as well
as the obviously incorrect decrease in % with
increasing #, may be most casily explained in terms
of the following three examples:

(1) In the usual case of using the approxima-
tion of perfect pairing to find the relation
between three different states of a
molecule, the equations involved are of
the general form

Vi=ad+bJ,,-F P
.‘YZ:CJII_*—(IJ]/V-'_FLZ
‘73:eJrz+wa+F3

where F; represents the corrections due
to Weinbaum type (ref. 23) ionic terms,
ete., in the wave function. Tt is then
assumed that these corrections are small
enough that they cffectively cancel out
in the equation of V7, possibly, as a linear
combination of V; and V,; or in other
words, the corrections add in the same
fashion as the exchange terms. The truth
of these assertions is difficult to ascertain,
although such seems to be the situation
m the N; problem. On the other hand,
this example may be too simple for any
adequate judgment.

TABLE XII.-THE RATIO OF ENXCHANGE
INTEGRALS, £

r Eq (66) Eq. (69)

2.5 52, 56 4, 655
2.6 58. 71 4, 455
2.7 63. 22 4,227
2.8 72. 10 4. 009
2.9 79. 33 3. 820

(2) Another technique in which this approxi-

mation might be employed is that of
determining the relation between Vi, Vy,
and %k, where the latter is obtained by
means of an independent calculation.
The appropriate equation in this case is

V. ak+br(FfJ,) _ak+b

Vo chtdt (Fofdy)  cktd

provided % is large enough that the
correction terms are insignificant in
comparison. The agreement of the pre-
vious N;—, curve with one obtained
from high-temperature-gas viscosity data
seems to justify this approach, at least
insofar as states for which the ionic
contribution is known to be of minor
importance are concerned.

(3) Finally, in the cxample of this section,

k is found solely from the relation between
V: and V3, but under the same general
restrictions that apply in case (2). The
ionic F functions associated with the %A,
and A, states of O,, while apparently not
strong cnough {o affect critically the
Hulburt-Hirschfelder deseriptions, never-
theless are not so weak as to be negligible
in the computation of £. In contrast to
the ground state, where conversion of the
two three-clectron bonds to antibonds
results in a quite different energy and
ordinary empirical curve fits are not
possible, the corresponding *A, and !4,
configuration interaction states have the
same valence bond energy as their
counterparts. These are, respectively,

SAur (0,%)(10,)(11,*)*(IT,) (TL,¥)
V=dp—3Jy
and
a0 (o%)?(I0,)* (I, %) "(11,%)*
(o2%)*(TL)* (T, *)(10,)*
(o) (X1, ¥(T1,*)*(I1,%)*
V=du—dJu

Hence configuration interaction, together
with its implied deerease in ionie forces,
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is much more important for the latter O,
excited species.

In spite of these uncertainties, the 0,—0,
interaction in the following section was computed
on the basis of equation (63). A more valid
representation, although not enough information
is available to evaluate all the unknown param-
eters, is

V() =5 13V ('8,) — 5V ('a,)+ 5F(1,)—8F(A,)]

where the condition for the recovery of (63) is
easily scen to be

F(a)=3 Fa,)
The validity of our procedure must, therefore, rest
on whether or not the three 'A, configuration
interaction states effectively lower the ionic
contributions below those corresponding to ®4,.
Such an occurrence does not seem too unreasonable
in view of our present knowledge.

In summary, the usefulness of the approxima-
tion of perfect pairing lies in its ability to yield
linear relations between potentials corresponding
to several different states. Any other application,
such as an attempt to analyze the component parts
of a particular state or to calculate the encrgy
directly, must be carried through only with the
most extreme caution.

THE O,-O, INTERACTION

Curve fitting the results of equation (63) by
means of an exponential function, and then
averaging the total O,— O, interaction energy over
all orientations according to equation (20), where
the London dispersion energy must be omitted
and d=1.207398 & for the bond length of ground
state O,, one obtains the potential values given in
column 2 of table XIII. The results tabulated
in column 3 were computed from the associated
expression

&' (R)=146.6 cxp(—2.109R) (70)

and it is seen that the agreement here is to about
one significant figure. Finally, column 4 of this
table represents the high-temperature-gas viscosity
data (ref. 17) as caleulated from the following

TABLE XTII.-THE O,— O, INTERACTION ENERGY

R ®(R) ¥'(R) ¢’ (R)
2.5 0. 7757 0. 7532

2.6 . 5999 . 6100

2.7 . 4812 . 4941

2.8 . 3963 . 4001

2.9 . 3314 . 3241

3.2 0. 0246
3.3 . 0069
3.4 —. 0030
3.5 —. 0082

modified Buckingham (exp-6) function (ref. 24):

v (W= ST an

where

e depth of the Van der Waals minimum (0.01137
ev)

R» position of this minimum (3.726 &)

a dimensionless parameter measuring the steep-
ness of the repulsive energy (17.0)

It is estimated from the temperature range of the

viscosity experiments that this curve is not valid

for distances smaller than about 3.2 4.

In sketch (g) are plotied the results of the pres-
ent paper (I), together with those from the vis-
cosity measurements (IT), and the ease with which
the gap between the two regions can be covered by
a reasonable interpolation (ITI) is quite apparent.
The divergence between curves I and ITI in the
neighborhood of 2.9 & may again be attributed to

~-1T
N
~
N
\\\ ’/JI
o 1 B
2.5 30 35
o
A, A

Sketeh (g).—Comparisons of 0,—0; interaction energies.
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the neglect of dispersion contributions, effects
which are more important here than in the pre-
vious examples because of the smaller cutoff dis-
tance arising from the interpenctration of more
closely packed charge distributions.

Also shown in sketeh (g) is a curve (IV) derived
{from vibrutional relaxation time data (refs. 25-29),
this being the only experimental information avail-
able in the region covered by the present theory.
An analysis of vibrational deactivation theory
shows that the discrepancies between curves T and
1V are to be expected on the basis that the latter
is a one-dimensional treatment involving only the
end-to-end molecular configuration.  This geome-
{ry is chosen, of course, because of the maximum
energy transfer on collision from vibration to trans-
Jation; however, it also represents the largest inter-
action encrgy of any molecular orientation and
should not strictly be compared with the random
situation covered here. An additional basice defect
of the vibrational theory, as pointed out by Cot-
trell and Ream (ref. 30), is that the slope of the
true interaction curve is not nearly as large as that
of the theoretical one, an obscrvation which is
clearly borne out in this example.

The recent caleulations of Vanderslice, Mason,
and Maisch (ref. 21) have been omitted from the
above comparisons beeause of essentially the same
reasons discussed in the precediug paragraph. In
effect then, any absolute confirmation of the be-
havior of curve I must await the performance of
a suitable scattering experiment.

A final rather interesting observation is that the
N.—N, repulsive curve is generally lower than the
one corresponding to 0,—0,. Thus, the effect of
the existence of one more ecleciron pair in any
0O—O0 type of interaction scems to overshadow the
fact that the clectronic charge distribution of nitro-
gen is less compact and thereby results in greater
individual repulsive overlap. The N,—0, curve,
on the other hand, tends to lie slightly lower than
cither of the above in the short-range region
(2.6 A) beeause the overlap between similar
transverse orbitals A and B on atoms of different
species 1s generally smaller than that between
orbitals A—A or B-B at the same separation.

Ames Researca CENTER,
NATIONAL AERONATUTICS AND SPACE ADMINISTRATION,
Morrert Frenp, Cavir., Sepl. 25, 1959,
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