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TECHNICAL REPORT R-1

SUPERSONIC FLOW PAST A FAMILY OF BLUNT AXISYMMETRIC BODIES

By Minton D. Van Dyke and HELEN D. Gorpon

SUMMARY

Some 100 numerical computations have been
carried out for unyawed bodies of revolution with
detached bow waves. The gas 1s assumed perfect
with v=56/3, 7/5, or 1.
are taken as 1.2, 1.5, 2, 8, 4, 6,10, and «. The
results are summarized with emphasis on the sphere
and paraboloid.

INTRODUCTION

The problem of supersonic flow past blunt
bodies, which has so far largely resisted analytical
attacks (ref. 1), has recently yielded to numerical
procedures. Of the various schemes that have
been proposed (refs. 1 to 6), the simplest is that
devised independently in references 1, 3, and 4.
It consists in straightforward numerical integra-
tion of the equations of motion proceeding down-
stream from an assumed shock wave.

Various objections can be raised against this
procedure, but none has proven fatal. First, the
numerical procedure is unstable, in the sense that
the inevitable small errors grow geometrically as
the solution proceeds. Nevertheless, it can be
argued that any given degree of accuracy is at-
tainable in principle, and numerical examples do
show that the effect of the instability can be con-
trolled. Second, the method being an inverse one,
one must be content with whatever body shapes
result. However, shock waves described by conic
sections are found to be associated with bodies
that are closely described by conic sections, so
that one can obtain such bodies of practical interest
as the sphere and paraboloid.

These and other aspects of the method have
been discussed in reference 1 on the basis of some
50 cexamples calculated on an electronic com-
puting machine. The purpose of the present
paper is to present in greater detail the numerical

Free-stream Mach numbers

results for those and additional solutions for
axisymmetric bodies at zero angle of attack—
a total of some 100 examples.

NUMERICAL PROCEDURE

The numerical method set forth in reference
1 will be summarized here for convenience, and
amplified and extended in the light of subsequent
experience.

EQUATIONS OF MOTION

Coordinate system.—The detached shock wave
is assumed to be described by a conic section so
that it is a portion of a hyperboloid of revolution,
paraboloid, prolate ellipsoid, sphere, or oblate
ellipsoid. In cylindrical polar coordinates origi-
nating from its vertex (fig. 1), any such shock is
described by

r*=2R,x— Bx* (1)

Here R, is the nose radius of the shock and B,, a
convenient parameter that characterizes the ec-
centricity of the conic section, will be called the
bluntness. As indicated in figure 2, the bluntness

r2:2 Rox=B; x?

Ficure 1.— Notation for shock wave.
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Fraure 2.—Significance of bluntness B.

is zero for a paraboloid, negative for hyperboloids,
positive for ellipsoids, and unity for a sphere.

An orthogonal coordinate system (£9) ihat
contains the shock wave as one of its coordinate
surfaces is introduced by setting

1 :
F=7 LVU=BAU—B+Ba] @)
Tr=leln (2b)

Special cases are

7?=% (1+£—9?) for parabola (B,=0) (2¢)

SN oy
R,l wWl—§

for circle (B,=1) 2d)
The shock wave is described by =1. For cllipses
(B,>0) this gives only the left half, which is the
only part that may form a shock wave. Indeed,
except at infinite Mach number, somewhat less
than half the ecllipse is significant, because the
shock degenerates to a Mach wave at

g M—1
T M-1)B,+1

This happens also for parabolic and hyperbolic
shock waves if B,>—(M?2—1)"1.

For a shock wave no blunter than a sphere
(i.c., a hyperboloid, paraboloid, prolate ellipsoid,
or sphere), equation (2) deseribes the entire region
of interest.  As indicated in figure 3, the upstream
axis is described by §=0 and the downstream axis

F1eure 3.—Shock no blunter than a sphere (£3,<1).

by 9=0. A focus lies on the axis at E=9=0;
since this singularity eannot lie outside the body,
a branch cut can be drawn downstream from it
as shown.

For a shock wave blunter than a sphere (oblate
ellipsoid) the foei lie off the axis (fig. 4). The
flow between and to the right of them is sometimes
of interest, but it 1s not accessible with the present
coordinate system. Kquation (2a) shows that
away from the vertical line joining the foci, varia-
tions in x are proportional to the square root of
variations in . This means that the flow quan-
tities, which are presumably analytic functions of
the physical coordinates (z,r), will not be analytic
in the curvilinear coordinates (£,9) in  that
vicinity. Since the numerical procedure rests on
analyticity, it breaks down there. This is of
course a purcly artificial limitation introduced by
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Fioure 4.- -Shock blunter than a sphere (13,>1).
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the coordinates, and could be eliminated by
choosing another system.

In this coordinate system, with the azimuthal
angle ¢ as the third orthogonal coordinate, the
line clement ds 1s given by

(e A o oot e o)

where C=1—DB,. Here v is a parameter that is 0
for plane and 1 for axisymmetric flow, so that both
cases can be treated concurrently.

Differential equations and initial conditions.—

-

Let V be the velocity referred to the free-stream
speed V., p the density referred to its free-stream
value p,, and p the pressure referred to p., V2
Then for a perfect gas with constant specific heats
the equations of continuity, motion, and energy
are, in vector form

div(pV) =0 (4a)
p (f’-gmd) I_/')+grad p=0 (4b)
f’-gmd (le") =0 (40)

where v is the adiabatic exponent.

Then transforming to the (¢,7) coordinate system
with the aid of standard vector relations (and
dropping the subscript from B, for simplicity)

gives
, + » +
o E ] o]
(5a)

& 72 C+ Byt
P T

Cet4-n?
(5b)

u2

1—Bg? Ctv _ _
* \/o+32 w(oet i) oo e

w1—=BE(p/p") e+ WO+ Bn(p/p"),=0 (5d)
-
where #,p are the components of V in the &9
directions.

The first (continuity) equation is satisfied by
introducing a stream function (which is that of
Stokes in the axisymmetric case) according to

%Z(En)”‘/pg_;gnzpu — (&) \/ £+ BE’ pY

Then the last (energy) equation simply states

that
p=p"f) @

in accord with the fact that entropy is constant
along streamlines. Using this to eliminate the
pressure from the equations of motion gives

vttt [ e (42 )= (247) |

C +__B 7 Bt
— pern (W [ W) g Vel

+ (e H” (o forb o™ 1Y) =0 (88)

VsV b [m( ) %(pfﬂ)]

Ct — B¢
—(YEQH (7+Bn2 ‘#52+¢v > 0+B P ¢E¢’n
g+

+ (577) b (“1_% B:z (‘Ypyfpf+pv+]f,‘l/5) =0 (8b)

Values of u,0,p,p just behind the shock wave
(at =1) are found from the oblique shock rela-
tions (e.g., ref. 7) in terms of the slope of the bow
wave, 41— Bg¥t. Expressed in terms of the
stream function, these give the initial conditions

_ (y+1)M?*(1—Bg)
P2+ Fo—n)M(1—Bg)’

£1+v

1+v,
and for the function f(¥)

= Ya=ptt at =1 (9)

f(w)__Q'yZ\lz(l—Bsz)—('y—l)(1—|—Cs’) 3
T G DM O
2(1+ 059 + (y— 1) M2(1—Bs?)
Bt It o
2
s*=[(1+o)y] 1+ J

Form of problem for numerical computation.—
For numerical work it is advantageous to use as the
independent variable (1-») ¢/, which is con-
stant on the shock and elsewhere more nearly
independent of ¢ than is ¢, and vanishes only on
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the body rather than also on the axis of sym-
metry. Henee set

1+
YiE,m) =17 w(£,n)
an

:é— tlw(t,n) for axisymmetric flow

Then the initial conditions become
. (y+DAM21—Bg)
PTIAFOR + — DM (1—Bg)’
w=1,w,=(1+vpatg=1 (12)

and the equations of motion

[ (o ) (2 ]
_11[?35“" <“’+1%> lfgzﬁ
EPE)+E wze] ( _}_liiel}) (wﬂ_*_l’c’:_s:;)
+ (w+fii) o [( +1£iev)
8 (e £50)

1——]?52
(e L) e as

)G

(o)

v Bn \_ o fee
+11 C’+Bn) 14+v p

_4nC 1—B£’< Eowy fuw, ]

g4 O+ Br? +1+V) 1+V)

v+1 2»_f+" pf
+ (10" fn OB LY 5
+He DY ()] am

where

F2M— B — (=) (L4 ()
DM+

2(1+aeﬂ>+gv—1)M2<1—Bs2)]
(y+1)M?*(1—Bs? =

(13¢)

so that

a2 _ B -
v=ld ___ o 1y _ o
E T I B T

20— (7—1)11'213

+ 504

2B+ =) :I (s
S — B — (=D (a0 | 1Y

After these equations have been solved for p and
w, the pressure can be found from equation (7),
the local Mach number Af, from

2 [24(—1DM?2,p
pJ— v__?g.__
M= 51 A p 1 (14a)
This becomes indeterminate at y=1, and one
must use instead
Mp2=M+2n % (14b)

where

AreAp—p) 41

PETTaO-Byed Mp,

The angle 6 between the streamline and the axis
is given by

B g e [ 1B
g—1tan Jl— -|"Bx71 £ an- 1—B,4+ B2 ¢,

(15)

NUMERICAL SOLUTION OF THE EQUATIONS

The initial value problem represented by equa-
tions (12) and (13) has been solved numerically
by forward (i.e., downstream) integration from
the shock wave (n=1) toward smaller values
of n. The procedure is indicated schematically
in figure 5.

Finite-difference scheme.—Over cach interval
An, the dependent variables p and w, are extrapo-
lated linearly. Then at each new value of 7 the
£ derivatives are evaluated by 11-point numerical
differentiation (ref. 8). In this process central
difference formulae can be used near the axis by
taking advantage of symmetry in £, and elsewhere
except at the largest 5 values of ¢ where succes-
sively more noncentral formulae are required.
The procedure may be summarized as follows:

0. Calculate initial values at 5=1 from
equation (12).
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1. Calculate ¢ derivatives ppwgwp,wg DY
11-point numerical differentiation.
2a. Calculate p, from equation (13a).
2b. Calculate w,, from equation (13b).
3a. Extrapolate p and w, linearly to next
smaller value of #:

p(m+l)=p(m)___ (An)p’(’m"w’(’m+l)=w;m)_ (An)wr(mm‘

(16a)
3b. Extrapolate w using averaged value of w,:

W™= ™ — 14 (An) g™ +a™ 7] (16b)
4. Repeat steps 1 to 3b at this new value
of 5, and continue until w is entirely
negative at all N points.
The surface of the body is then found on each line
f=const. as the point at which o vanishes ac-
cording to equation (16b). This is at =1 —&
where
(p)__Jw’(’p)z__zw(p)w‘(”I:)

[

—_—n
on= @@
m

(16c)

if w becomes negative after the pth point.

External iteration on p.—After completion of
the integration, the accuracy of p (and hence
of p) can be greatly increased by recomputing
it using the averaged values of p, over cach interval
Aq, so that the revised value after the mth step
is given by

o™ —p®—(An) (V4o +pi" + p{?

o bR (1)
66
65} y-d
e
Without p/
64 iteration 7
N4
£ P-4
6.3

OF BLUNT AXISYMMETRIC BODIES 5

FiGurE 5.—Finite-difference scheme.

Figure 6 shows how in a typical case the accuracy
is thus improved by at least an order of magni-
tude. The virtue of this “external iteration” is
that just like conventional iteration it reduces the
error in p (and p) from 0(Ag)? to 0(An)3, but the
computing time is almost unchanged rather than
doubled.

Instability.—The numerical procedure is un-
stable in the region of subsonic flow. However,
the effect on the solution is altogether negligible
except at Mach numbers very close to unity. An

Exact value at
stagnation point

TLWith external

iteration
6.2
6.1 |-
60 i 1 i L i 1 _
~00 96 92 88 84 B8O 76 .72
n

Fi1Gure 6.—Density on axis behind parabolic shock wave at M=o, y=7/5.
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example in reference 1 showed that at M= « the
vound-off errors are amplificd by the instability
5o as to invalidate the last two significant figures
il one takes 11 steps between the shock and the
nose of the body, the last 4 figures if one takes 15
steps, and so on.  However, 5 or 6 steps are found
o give the flow quantities of interest accurate to
within 1 percent. Ience, the instability is of no
practical concern.

The instability becomes discernible only when
the free-stream Mach number is reduced to some-
thing like 1.2. Then the derivative w,, displays
appreciable oscillations just ahead of the stagna-
tion point, as shown in figure 7. The nose of the
body is corrugated as a consequence. However,
the effect is still so small that the corrugations
have been magnified fortyfold in figure 8 to make
them visible. In any case, it is a virtue of the
instability that the errors oscillate (rather than,
say, varving exponentially) in the vertical direc-
tion, so that they can never go undetected.

Convergence, existence, and uniqueness.—It
secems eertain that the numerical procedure, though
unstable, converges in the sense that the error can
be reduced below any preassigned small limit.  (To
inerease the accuracy one must work with more
significant figures, but this is true also of stable
schemes.)  Apparent convergence was demon-
strated experimentally in reference 1, both inter-

12
8
“Wan
4+
1 J
0 .08 16
3

Firoure 7. -Effeet of instability on w,,, ease 139, n=0.76.

Nose of body

_--Corrugation
-~~~ magnified
40 times

Fraure 8.— Effect of instability on nose shape, case 139,

nally by refining the mesh size and externally by
comparing with the method of Garabedian and
Licberstein (ref. 6), for which convergence has
been rigorously proved.

The difference scheme used for the 4 integration
is the simplest possible one (except for the ex-
ternal iteration). The truncation error could be
reduced by iterating cach step, but beeause the
procedure is unstable the round-off error would be
greatly inereased.  Whether a net gain would re-
sult is probably best determined by trial.  (Itera-
tion was attempted at an carly stage in the pres-
ent investigation, and found to be disastrous.
However, this is now believed to have resulted
from the division by zero in ealeulating p,/p that
is discussed in the next section.)

Tt may appear inconsistent to combine such a
crude scheme for the yintegration with an 11-point
difference formula for the £ derivatives.  The pur-
pose was to make the crror associated with A
negligibly small, and thus simplify consideration of
the truncation error by effectively reducing it to a
function of An alone. Trial has shown in one case
that the accuracy is unaffected by using a 7-point
formula instead, but definitely deteriorates with a
3-point formula.

Detached shock waves scem always to be
smoother than the body that produces them.
Henee it is fair to conjecture that an analytic
body produces an analytic shock. Conversely,
an analytic shock wave undoubtedly leads to a
body that is analytic if it cxists at all. However,
it is not clear that a real body will always cxist.
For example, applying the present procedure to
the wiggly shock wave of figure 9 might lead to
singularitizs before a body is reached, or to a num-
ber of small bodies. Fortunately, the family of

SRt

T
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e Singularity

FicoRrE 9.—Analytic shock waves that do and do not
produce single bodies.

conic-section shock waves appears to be sufficiently
smooth that it always leads to a single body.

Experience suggests that if a body exists for a
prescribed shock wave, its shape is uniquely de-
termined. It is true that, particularly at high
Mach numbers, the shock shape wvaries only
slightly with changes in body shape. However,
this remaining dependence is readily determined
with the present numerical method. (See ref. 1.)

Program for electronic computer.—This pro-
cedure has been programed for machine computa-
tion on the IBM 650 electronic digital computer
with floating decimal attachment. For each
value of 5 the flow quantities are calculated at the
N equally spaced values #=(n—1)(af), 1 <n <N,
where N may have any prescribed value between
11 and 50. These straddle the axis of symmetry
(fig. 5) in order to avoid the indeterminate form
pe/p in equation (13b) (which would otherwise re-
quire the evaluation of p; on the axis and the use
of IL’Hospital’s rule). The mesh dimensions
(Af) and (A7) are arbitrary (but equal for all steps).

Provision has also been made for dropping five
of the outermost points at each step in 4. Drop-
ping five points means that only central-difference
formulae are being used. The equations actu-
ally programed embrace plane as well as axisym-
metric flow (ref. 1). Thus the parameters that
are prescribed, and their ranges, are

M free-stream Mach number 1< M ®

B, bluntness of conic section — o<B,< ©
describing shock wave

v 0 for plane, 1 for axisym-
metric flow

¥y adiabatic exponent 1<y

Af, Ay mesh dimensions 0< At Ay

N number of points on shock 11 <N <50
wave

c number of end points ¢c=0or5

dropped per step

08307 O -71 -2

The machine is programed to stop when » becomes
negative at the outermost point, which ordinarily
means that the entire computation has reached the
interior of the body.

Machine computing time is 1) minutes per
value of # if 20 points are taken on the shock wave
and none dropped. Four to eight steps in 7
yield ample accuracy, so that a typical case
requires 5 to 10 minutes computing time.

The flow variables that are ordinarily printed
for each mesh point are

W, g, Wy, Gp
p (externally iterated), p, (not iterated)

p (calculated from externally iterated p)

_ ¥ , (897 fep \!
D—[v(n tlfyt 1~Rg?) (w+1+ V)J
M,

As discussed in the next section, the quantity D,
which is seen from equation (13a) to be the
denominator in the computation of p,, is printed
to determine whether it becomes negative.

Table I shows the printed results for a sphere
at infinite Mach number with y=1.4. Forbrevity,
only alternate (even-numbered) values of £ have
been included.

LIMITATIONS ON SOLUTIONS

In the example of table I, the computation
terminated as planned, @ having become entirely
negative at the last value of . Unfortunately,
this conclusion is not invariably reached. There
are several shortcomings in the procedure which
may prematurely stop the computation, and these
limit the extent to which the solution can be
carried downstream. These and other difficulties
with the program will be described here.

Division by zero in computing p,/p.—The coeffi-
cient of p,/p in equation (13a), already denoted:-by
D, vanishes along a line that runs downstream
from the body to the shock in the supersonic
region, as illustrated in figure 10. The right-hand
side of equation (13a) should also vanish there,
so that p,/p is regular. However, in a numerical
solution the numerator and denominator do not
vanish on precisely the same line, and the resulting
singularity produces wild fluctuations that shortly
lead to a negative value of p and thereby stop the
solution.

No way of overcoming this difficulty has been



8 TECHNICAL REPORT R—1——NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Fraure 10.—Form of line where D=0,

found, and the solution must accordingly be re-
stricted to the region where D is positive. Tt is
for this purpose that D) appears in the printed
results (cf. table I). Fortunately, the surface
Mach number reaches 1.3 or 1.5 in that region, so
that the solution extends well beyond the sonie
line adequate for continuing the solution by the
method of characteristics.

Using a similar numerical procedure, Mangler
has calculated a single example, that of plane
flow past a circle at M =7 withy=1.4 (ref.3). He
finds that the accuracy becomes insufficient some-
what behind the sonie line.  If this is evidence of
the difficulty under discussion, his example
would suggest that it will not necessarily be
eliminated by a transformation of variables, since
his are entirely different. It would be helpful to
determine whether the line D=0 has any simple
physical significance.

Division by zero in computing w,,—A second
imperfection appears when the factor [w+Ewe/ (14
»] in cquation (13b) vanishes, leading to a
singularity in w,. This can happen only inside
the body (for @< 0), so that the effect is usually
1ot serious, but it sometimes stops the calculation
prematurely by one step. This difficulty could
be eliminated by re-programing so that all points
that fall inside the body are deleted from the
computation (which would require the use of
noncentral differentiation formulae near the axis).

End instability.—At the outermost 5 values of
¢, progressively more noncentral formulae are
used for the numerical differentiation. These
involve small differences of large numbers, and so
produce instability even in the region of supersonic

flow. In reference 1, all limitations on the down-
stream extent of the calculation were attributed to
this “end instability.” However, the more flexible
present program permits the end instability to be
eliminated by dropping the outermost 5 points at
each step. Thus it has been found that end
instability is almost as harmless as the conventional
numerical instability, and that the two types of
division by zero just discussed are the prineipal
causes of premature stopping of the computation.
However, the oscillations resulting from division
by zero near the axis (in the second case) may,
because of the end instability, induce oscillations
at the outermost points which stop the compu-
tation there. Fortunately, this ordinarily occurs
only after the surface of the body has been reached
over the whole range of £ Otherwise, end insta-
bility usually does no more than make the outer-
most 2 or 3 points erratic near the body surface.

Unattainability of very blunt bodies. -Flat-
nosed bodies cannot be treated with the present
coordinate system. They lie downstream of the
foci (fig. 4), a region into which the present scheme
cannot penectrate.  Ahead of that region the
method gives every indication of converging.
Ilence to treat very blunt bodies (such as flat-
nosed ones) it would merely be necessary to
substitute a coordinate system that is analytic
past the foci. A suitable choice is the nonorthog-
onal “shearcd Cartesian’ system (z,7) illustrated
in figure 11.

Nose corrugation.—Most of the solutions were
carried out with N=20, giving some 15 points on
the body between the stagnation point and the
sonic line. This spacing is much closer than
required for accuracy, and at low Mach numbers
may unnecessarily accentuate the nose corruga-
tion indicated in figure 8. This difficulty can be
minimized by choosing A¢ no smaller than 0.02 at
Mach numbers near 1.

Ficure 11.—Sheared Cartesian coordinate system.
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Other limitations,—There are two other limita-
tionsto beremembered. First, if B,> — (M?2—1)",
the range of £ must not extend to the point where
the shock wave degenerates to a Mach wave, at

. M1
¢ T (M—1)B,+1

Violating this restriction leads to a division by
zero which promptly stops the computer. Second,
with the 11-point differentiation scheme of the
present program, the computation stops if the
number of points at any value of n (which is N
if no end points are dropped) falls below 11.

The choice of interval sizes (Af,An), and of the
number of points depends on the stand-off dis-
tance and the extent of the subsonic flow region.
To facilitate the choice, the values of  at the nose
of the body, 7,, and of £ at the sonic point on the
body, &,, are shown in figure 12 for the sphere and
paraboloid.

REDUCTION OF DATA

The shape of the body and sonic line were found
by hand computation from the machine results
exemplified by table I. (Had a larger computer
been available, this work would also have been
done by the machine.)

.8
T porboloid
$s 4 \W —
0 \j
6 -
Sphere, y=, 5/3
7 2 75 ]
!
170
sl Paraboloid B
~
op==" yd -
1.0 1 A 1 )| {
© 06 4 3 2 1.5 1.2 1.0

TFicure 12.—Coordinates of sonic point and of nose for
sphere and paraboloid.

Determination of body and sonic line.—At each
value of ¢ the value of 7 at the body surface is
given by equation (16c). Then equations (2)
give the Cartesian coordinates of body points.
The surface pressure was found by extrapolation
to the same value of 5 using the values of pressure
at the last three points outside the body; that is

po:p“"”—% (Z—") [p?—p?~?]
n

2
(Y g

if w becomes negative after the pth point for a
given value of &.

Values at the outermost points (n=2N) were
invariably discarded because of the end instabil-
ity, and their neighbors were also regarded with
suspicion and rejected in case of doubt.

Values of 5, and p on the axis of symmetry were
obtained by extrapolation from the first and
second points (n=1,2) according to

9, 1
Mpy—== My @
p=g “p—g *p (19)

Points on the sonic line were calculated simply
by interpolating linearly (with respect to 4 at a
given £) in the local Mach number.

Approximation of body by conic section.—The
bodies are found to be desecribed by simple smooth
(undoubtedly analytic) curves. They can invar-
iably be closely approximated by conic sections
back to the sonic point (or, what is practically the
same thing, back to the limiting characteristic
beyond which changes in body shape do not affect
the subsonic flow field). Thus, corresponding to
equation (1), the body is approximated by

7'2=2RD(I—A)—'—BD(I—A)2 (20)

where A is the stand-off distance, R, the nose
radius of the body, and B, its bluntness (cf. fig. 2).
The fit was made by plotting r?/2(z-A) as a func-
tion of (z-A) for the computed body points, and
simply estimating the best straight-line approxi-
mation back ‘to the sonic point. The shapes are
so close to conic sections that no greater care is
necessary. Thus, in the example of table I the
body is approximated by a sphere of radius
R,/R,=0.7662 with center at z/R,=0.8645, and
the actual computed body points (table IV, case
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180) deviate from that sphiere by less than 1 part
in 1000 back to somewhat beyond the sonie point.
Shortly thercafter, however, the shape begins to
differ significantly from a conic section.

RESULTS OF CALCULATIONS

SURVEY OF BODY SHAPES

The first stage in the investigation was a system-
atic survey of the family of axisymmetric bodies.
The effects of varying both shock shape and free-
stream Mach number were explored for y=7/5
and, to a lesser extent, for y=1 and 5/3 (which are
the possible extremes for a gas).

Tabulation of solutions.—Table II summarizes
80 solutions for axisymmetric flow. The present
survey began with case 86, but a number of earlier
solutions at various Mach numbers, including
those used in reference 1, are also given. The
number of steps taken on the axis between the
shock wave and body is shown as a measure of
accuracy, five or more steps generally assuring an
accuracy of less than 1 percent in all physical
quantities of interest. The original case numbers
have been retained to avoid confusion. Gaps in
numbering correspond to solutions for plane flow,
abortive attempts, or cases of little interest (such
as repetitions, coarser meshes, ete.).

Dependence of body shape.—Figure 13(a)

~ shows the variation of body shape (as measured

by its bluntness) with shock-wave shape for
v=17/5 at the standard free-stream Mach numbers
of 1.2, 1.5, 2,3, 4,6, 10, and «. (Solutions for
M= o were actually computed with A/=10,060.)
The range is sufficient to encompass the sphere
(B,=1) and the paraboloid (B,=0) except at low
Mach numbers. Similar surveys for y=1 and
y=5/3 were Testricted to the neighborhood of the
sphere, as shown in figures 13(b) and 13(¢). The
slopes through points for B,=1.0 were estimated
by comparison with figure 13(a).

By interpolating in the results of the survey
(figs. 13), one can determine with good accuracy
the shock wave that leads to a desired conic-
section body at a given Mach number. The
sphere (or hemisphere) is a convenient standard
shape for cither wind-tunnel or free-flight testing,
so that the greatest amount of experimental data
has accumulated for it. Consequently, the sphere
has been chosen as one of two shapes to be investi-
gated in detail here, and it alone has been studied
at values of v different from 7/5.

3

N

3 _ -
S SN I S S
M=1.2 15 |246®

| o — | ‘y% R
0

{c}
S R R | I S R S
A -3 -2 -l 0 | 2

£
() vy=7/5 ) y=1 (¢) y=>5/3

Frnure 13.—Relation between shock wave and body
shapes.

Figure 14 shows the variation with Mach num-
ber of the shock-wave shape for a sphere with
~=1, 7/5, and 5/3, and for a paraboloid with
~v=7/5. At high Mach numbers the variation
with vy is seen to be greatest for v near 1.
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Ficure 14.—Shock wave bluntness for sphere and
paraboloid.

SOLUTIONS FOR SPHERES AND PARABOLOIDS

On the basis of the survey, final solutions were
run for the sphere with y=1, 7/5, and 5/3, and the
paraboloid with y=7/5. The initial data and
various geometrical ratios for the resulting body
are summarized in table III.

Table IV gives for each of these 29 cases the
shapes of the body, shock wave, and sonic line
(all expressed in Cartesian coordinates with origin
at the shock vertex and initial shock radius of
curvature as unit of length) and the surface pres-
sure (referred to p.V.?). The exact value of
pressure at the stagnation point is also listed as a
criterion of accuracy. For brevity, results are
given only for alternate points (even values of n).

Figures 15(a) to 15(d) show the variation with
Mach number of the shock wave and sonic line.
(Here the origin is at the center of curvature of
the body, and its radius is the unit of length.)
No attempt has been made to fair the sonic lines
into the shock wave with the slope which can,
with some effort, be computed exactly (ref. 9).
Figure 15(e) shows the slight movement of the
sonic line as v is varied at a Mach number of 1.2.
The computed points are shown as an indication
of the consistency of the results.

DISCUSSION OF RESULTS

Shape of sonic line.—Several investigators have
recently discussed the shape of the sonic line, in
particular as it issues from the surface of the body.
In plane flow it must always lean downstream as
it emerges. In axisymmetric flow, however,
Probstein has pointed out (ref. 10) that it may
lean upstream at sufficiently high Mach numbers,
and has suggested that the change will occur at
about M=3 for a sphere in air. Figure 15(a)
confirms his qualitative conclusions, and shows
that the change occurs near M=4. The signifi-
cance of this change is that at higher speeds,
changes in body shape in the supersonic region
do not affect the subsonic flow region.

Figure 15(d) shows that for spheres in mona-
tomic gas the change never occurs. On the other
hand, figure 15(b) shows that it has already
occurred at M=2 for a paraboloid in ajr.

Stand-off distance.—The distance A between
the shock and the body on the axis of symmetry
is an easily measured quantity that has recently
been employed as measure of real gas effects (e.g.,
ref. 11). The variation of this quantity with
Mach number is shown in figure 16(a). Com-
parison with experiment is shown for diatomic
gases ' (y=7/5) in figure 16(b), and for mona-
tomic gases (y=5/3) in figure 16(c).

Various students of hypersonic flow have sug-
gested that the stand-off distance should depend
only on the density ratio across a normal shock
wave. The extent to which this is true is shown
in figures 17(a) and 17(b) by correlating on that
basis the present solutions for different body
shapes and values of y. The result of Lighthill’s
incompressible approximation is shown for com-
parison (ref. 12). The correlation seen in figures
17 serves as a check of the over-all consistency of
the numerical solutions. It also suggests that
interpolation for stand-off distance at other
values of ¥ should be carried out on the basis of
figure 17(a).

Surface pressures.—The solutions with y=1 do
not include M= » because that is a degenerate
case in which the shock wave and body coalesce,
with finite pressure changes occurring in the
intervening infinitesimal layer. In that limit
the flow field is given analytically by the ‘“New-
tonian plus centrifugal” theory of Busemann

I The experimental values for chlorine are unpublished values measured
by J. Eckerman of the U.S, Naval Ordnance Laboratory.
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M=12

(e

(a) Sphere with y==7/5. (b) Paraboloid with y=7/5. (c) Sphere with y=1.

(d) Sphere with y=5/3.

(e) Sphere at M=1.2.

Frcure 15.—Shape of shock wave and sonic line.

(see refs. 1 and 12 for discussion of that theory).
For the sphere the surface pressure is given by

_sin38_ . 4.,
P=ggng L35 @1)

compared with the “simple Newtonian” value of
cos?9. Figure 18(a) shows that the surface pres-
sure distributions for y=1 approach that limit as

M increases, and linearly in 1/M? as they should.
Unfortunately, the present solutions do not
extend to §=60°, where a zcro in the surface pres-
sure (cf. eq. (21)) and consequent singularities in
higher approximations has led to some contro-
versy regarding the proper interpretation of the
Newtonian plus centrifugal theory. It would be
necessary to extend the present solutions by the
method of characteristics to resolve that difficulty.
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Ficure 16.—Variation of stand-off distance with Mach
number.

The effect of carrying out the Newtonian
limiting process in reverse order, letting v tend
toward 1 at infinite Mach number, is shown in

—r \‘:\r'?‘w'—::

xperiment, argon & krypton (ref.1)

6 78910

2 3 4 5

(¢} Comparison with experiment for monatomic gas.

Figure 16.—Concluded.

figure 18(b). The approach to the limit appears
less ‘“‘uniform” in this case. Each curve for
4>1 crosses the limiting one for y=1, but the
point of intersection moves rapidly. Its limit is
given by Freeman’s second approximation (ref.
13), which is otherwise, however, seen to be of
little utility for 4 appreciably different from 1.

Upstream limiting line.-—One of the oldest ana-
lytical attacks on the blunt-body problem con-
sists in expanding the flow field in Taylor series
starting from the shock wave. It was suggested
in reference 14 that this method will fail because
the analytical continuation of the flow upstream
through the shock wave contains a limiting line.
If this limiting line is closer to the shock wave
than is the body, the radius of convergence of
Taylor series will not extend to the body. This
conjecture has been investigated numerically for
spheres with y=7/5 for M=1.5, 3, and «. On
the axis of symmetry the nose of the body is
found to lie, respectively, at 3.2, 1.8, and 1.35 of
the distance (in terms of ) to the limiting line.
Hence the series cannot reach the body even at
M=,

Possible modifications and extensions of the
numerical method.—Except for case 244, all final
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Ficure 17.—Correlation of stand-off distance according to density ratio across normal shock wave.

solutions were calculated without dropping end
points, so that the outermost few points are
affected by end instability. Repeating several
cases shows that this difficulty can be entirely
eliminated by dropping the 5 outermost points at
cach step and that the same range of body surface
can be attained. Unfortunately, this procedure
is not always applicable because so many points
are dropped that one would have to include a
portion of the shock wave beyond where it has
degenerated to a Mach wave, which stops the
solution. However, it has been noted that trial
shows a 7-point differentiation scheme to be
essentially as accurate as the 11-point one used.
Hence it is suggested that future solutions should
use a 7-point central difference scheme, dropping
only 3 points at each step.

Two other modifications suggested previously
should also be considered: elimination of division
by zero in computing w,, and the use of “sheared
Cartesian” coordinates (fig. 11).

The gencral idea of starting a numerical solu-
tion from an assumed shock wave is susceptible
to many interesting variations. Currently non-
circular cones in supersonic flow are being treated
using the full inviscid equations by starting from
an elliptical conical shock wave. Starting from
a sinusoidal shock would probably lead to choked
flow past a lattice. General three-dimensional
problems could probably be handled with a larger
computing machine; the initial attack might well
start from elliptical-paraboloidal shock waves.
Angle of attack could be considered by tilting the
shock waves used here; the camber of the resulting
body might be negligible back to the sonic line.
This would be simpler in plane flow, where a
stream function exists; but a pair of stream
functions can be used for general three-dimensional
flows.

Ames REsEARcH CENTER

NATIONAL AERONATUTICS AND SPACE ADMINISTRATION
MorreETT Fierp, Cauir., Oct. 2, 1958
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APPENDIX A
PRINCIPAL SYMBOLS

bluntness of conie section (sec eq. (1))
1 —B,

denominator in computation of b
p

'

PXi

free-stream Mach number
local Mach number

total number of points along shock wave
number of point along shock wave
pressure (referred to p. V%)

radius in cylindrical polar coordinates
nose radius
sce equation (13¢)

velocity components along &9 axes
velocity

abscissa

adiabatic exponent
stand-off distance of shock wave from body
mesh widths

sec equation (16¢)

curvilinear coordinate orthogonal to £
local stream angle

0 for plane, 1 for axisymmetric flow
curvilinear coordinate orthogonal to ¢
density (referred to po)
azimuthal angle

stream function
reduced stream function
value associated with shock wave
value associated with body
free-stream value

value at mth interval in ¢
value at mth interval in g
value at sonic point on body
value at vertex of body
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TABLE I.—EPITOME OF MACHINE SOLUTION FOR SPHERE AT M=o, y=7/5 (CASE 180)

n £ L I Wan | Pn p M, D

.00 | 0.0175 | 1.00000 0 ’ 12. 000 ! 37. 441 ! 6. 0000 | —9. 7451 0. 83104 ' 0. 39630 E 6. 0000
0525 | 1.00000 : 0 ; 12. 000 39. 403 | 6. 0000 |—8 6121 . 82092 1 . 46970 ' 6. 0000

-0875 | 1.00000 , 0O ; 12. 000 42. 945 1 6. 0000 | —~6. 5728 | . 80301 . 58054 | 6. 0000

1225 | 1. 00000 0 , 12. 000 48. 086 | 6. 0000 ‘ -3.6245 | . 77782 1 . 71406 , 6. 0000

1575 | 1. 00000 0 i 12. 0600 54. 866  6.0000 | . 2425 1 . 74603 | . 86296 ; 6. 0000

1925 | 1. 00000 0 i 12,000 63. 356 . 6. 0000 5. 0515 . 70844 | 1. 0244 . 6. 0000

2275 | 1. 00000 0 12. 600 73.676  6.0000 | 10. 849 . 66597 | 1. 1980 . 6. 0000

. 2625 | 1.00000 = O 12. 000 86. 017 , 6 0000 | 17. 715 . 61954 | 1. 3848 . 6. 0000

. 2975 | 1. 00000 0 12. 000 100. 67 | 6. 0000 | 25. 785 . 57008 | 1. 5867 6. 0000

.98 . 0175 . 76749 . 06430 | 11. 251 43.372 6. 1671 ' —6. 0668 . 86418 . 31213 | 6. 3871
. 0525 . 76788 . 06446 | 11.212 4 511 6. 1420 | -5. 8894 . 85179 . 30115 | 6. 3463

. 0875 . 76859 . 06529 | 11. 141 46. 535 i 6. 1055 |—3. 9789 . 82094 . 50465 | 6. 2725

L1225 | . 76962 . 06701 | 11.038 49. 401 | 6.0491 | —1.2816 | .79934 | .63670 : 6. 1653

L1575 | L 77097 . 06975 | 10. 903 53. 051 | 5. 9762 2. 1416 | . 76095 | . 78080 : 6. 0240

. 1925 L T7267 . 07454 1 10.733 57. 415 ! | 5. 8873 6.2213 . 71590 . 03488 | 5. 8470

. 2275 L 77474 . 08216 | 10. 526 62. 417 & 5. 7827 | 10. 886 . 66539 ;. 1. 0989 5. 6320

L2625 | . 77720 . 09408 | 10. 280 67.978 ¢ 5. 6621 | 16. 071 . 61067 | 1.2739 5. 3752

. 2975 . 78013 . 11204 9. 9865 74. 034 | 5. 5249 | 21. 726 . 35288 | 1. 4621 5.0711

. 96 L0175 | . 55114 . 23018 | 10. 384 45.538 | 6.2843 |—4.7540 | . 88779 | .23700 | 6. 4766
. 0525 . 53254 . 22037 | 10. 322 45951 | 6.2416 |-3.7703 | .87342 1 .32316 | 6. 4006

. 0875 . 55507 . 23011 | 10. 210 46. 600 | 6. 1658 |--2. 0459 . 84812 . 43912 | 6. 2644

L1225 | . 55873 . 23265 | 10. 050 47.745 | 6. 0584 . 3453 | . 81281 . 56927 | 6. 0694

. 1575 | . 56353 . 23827 | 9.8417 49. 106 | 5. 9217 3.3074 | . 76871 . 70881 | 5. 8167

L1925 1. 56950 . 24939 9. 5846 50. 758 | 5. 7577 6. 7344 | . 71723 | .85677 | 5. 5076

. 2275 . 57669 . 26925 9. 2781 52.700 | 5. 5686 | 10. 524 . 65986 | 1. 0138 5. 1425

. 2625 . 58521 . 30225 8. 9201 54. 957 | 5.3555 | 14. 598 . 59805 | 1. 1817 4.7209

. 2075 1+ . 59521 . 35489 . 8 5059 57.628 | 5. 1183 | 18.933 . 53309 | 1. 3631 4. 2405

.04 . 0175 . 35257 44717 1 9.4730 44.776 | 6. 3610 (-2 9165 . 90349 . 17010 ¢ 6. 3392
. 0525 . 35530 . 44367 9. 4027 44,677 | 6.2998 | —2. 0451 . 88745 . 26352 | 6.2373

. 0875 . 36020 | . 44222 0. 2766 44. 524 | 6. 1915 @+ —. 5294 . 85926 . 38323 | 6. 0561

. 1225 . 36728 | . 44275 9. 0954 44.356 | 6.0395 | 1.5474 . 82001 . 51074 | 5. 7991

. 1575 . 37652 | . 44751 8. 8595 44,224 | 5. 8478 = 4. 0805 L7711 . 64566 5. 4705

. 1925 | . 38796 | . 46179 | 8. 5694 44. 180 | 5.6208 . 6.9600 | .71419 | . 78835 5. 0751

. 2275 . 40167 - . 49173 8. 2241 44. 336 | 5. 3624 . 10. 094 . 65093 . 94036 | 4. 6168

. 2625 41779 . 54652 7. 8210 | 44. 799 | 50751 ; 13. 442 . 58285 | 1.1043 | 1. 0981

. 2975 . 43662 | . 64660 7.3533 45. 868 | 4. 7580 - 17. 099 . 51109 1,284 3. 5186

.92 . 0175 . 17207 . 67525 8. 5775 40. 891 | 6. 4036 1 --1. 3372 L 01241 . 11424 ) 6. 0346
. 0525 . 17618 . 66857 | 8. 5092 40. 648 . 6. 3260 | —. 5817 . 89504 . 22018 | 5.9170

. 0875 . 18358 . 66614 = 8 3861 40. 206 | 6. 1895 . 7265 . 86452 . 33755 | 5. 7088

L1225 | . 10424 . 66633 | 8 2082 39. 562 | 5.9990 | 2.5066 ; .82205 . 46100 | 5. 4155

1575 0 . 20817 . 67235 7. 9751 38. 759 | 5.7604 4. 6597 . 76021 . 50084 | 5. 0439

1025 . . 22541 . 69301 7. 6856 37.915 . 4803 7. 0500 . 70773 . 72871 | 4. €012

2275 . . 24605 . 73887 7. 3374 37. 164 | 5. 1641 9. 7339 . 63035 | . 87715 | 4. 0038

2625 . . 27034 . 83158 6. 9250 36. 758 | 4. 8144 | 12. 628 . 36545 . 1. 0400 3. 5250

L2975 29873 1. 0158 6. 4359 37 414 ' 4. 4263 | 16. 071 . 486356 | 1. 2239 2. 8920

.90 L0175 @ . 00870 . 89409 7. 7597 —13. 959 . 6. 4161 . 0813 .91533 1 . 08288 ; 5. 6170
.0325 | . 01413 . 88253 7. 6962 13. 573 | 6. 3246 L7287 | . 89693 | . 19153 | 5. 4879

. 0875 | . 02389 . 88030 7. 5820 25 378 | 6. 1638 1.8454 | . 86460 | .30372 , 5. 2688

. 1225 . 03799 . 88477 7.4170 29, 845 | 5. 9403 3. 3583 . 81960 . 42071 | 4. 9613

L1375 | . 05642 . 90305 7. 1999 31.295 | 5.6620 | 5.1825 | .76358 | .54450 ; 4.5739

L1925 | . 07928 . 93627 6. 9273 31.248 | 5.3370 | 7.2406 | .69830 | .67761 | 4. 11I0

L2275 1 . 10674 ;1. 0099 6. 5941 30. 631 | 4.9716 | 9.5158 | .62539 | .82357 | 3.5913

. 2625 . 13919 I 1. 1813 6. 1898 30. 243 | 4. 5665 | 12. 158 . 54580 | . 98802 | 3. 0043

. 2975 . 17749 ‘ 1. 5200 5. 6876 30. 840 | 4. 1071 | 15. 850 . 45859 | 1. 1820 2. 3433

. 88 . 0175 —. 14929 1. 1785 8. 0388 2. 4130| 6. 3981 1. 7254 . 91212 . 10167 | 5. 1082
05325 |—. 13708 : . 42060 7. 4248 34. 572 | 6. 2961 2.1166 | . 89331 . 18531 ¢ 4. 9869

0875 |—. 12267 | . 81210 | 7.0745 42.736 | 6. 1152 3. 0129 . 83973 | . 28411 | 4, 7700

1225 |—. 10438 1. 0115 6. 8201 47.376 | 5. 8640 4. 2700 . 81284 . 39119 . 4. 4659

1575 | —. 08132 1. 0804 6. 5740 67. 507 | 5.5523 | 57843 | .75435 | .50735  4.0837

1925 [—. 05300 1. 1143 6. 3004 10. 123 | 5. 1896 | 7.4965 | .68600 | .63529  3.6320

. 2275 1—. 01902 1. 3265 5. 9815 22.552 | 4.7813 | 9.5140 | . 60900 | 77969 | 3 1162

. 2625 . 02144 1. 5795 5. 5850 24. 798 | 4. 3248 | 12. 017 . 52362 . 94846 | 2. 5329

.2975 . . 06991 | 24793 5. 0708 26. 036 | 3.7797 | 16. 883 . 42507 | 1. 1625 1. 8551
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TABLE I.—EPITOME OF MACHINE SOLUTION FOR SPHERE AT M=oco, y=7/5 (CASE 180)—Concluded

n £ w wg Wy Wiy [ Pn P M, D
. 86 . 0175 |—. 30958 . 16746 7. 9906 8. 2739] 6. 3431 3. 7664 . 90158 | . 15945 | 4. 5343
. 0525 |—. 27866 | —1. 4840 6. 7333 40. 568 | 6. 2411 3. 3883 . 88427 . 20331 | 4. 4367
. 0875 | —. 25561 . 26120 6. 2197 45. 834 | 6. 0458 3.0338 | .85026 | .28091 | 4. 2345
L1225 |—. 23131 . 25014 5. 8726 33. 012 | 5.7732 4. 8147 1 .80225 | .37438 | 3. 9454
L1575 |—. 19929 | —43. 204 5.2238 | —203. 43 5 5062 |—1.1779 | . 75539 . 45453 | 3. 5470
L1925 |—. 17698 |—25. 505 6. 0979 |—1531. 8 5. 1169 § —, 2274 | . 68623 . 57105 | 3. 1645
L2275 |—. 13414 1. 2243 5.5305 | —183. 72 4, 5888 9.7366 | . 58002 . 74579 | 2. 6697
. 2625 1—. 08530 1. 9127 5. 0890 5. 4146, 4. OR18 | 12. 278 . 49831 . 92243 | 2. 1054
. 2075 |—. 02630 4, 7750 4, 5501 26. 470 | 3. 4037 | 20.723 . 38056 | 1.1784 1. 4049
TABLE II.—SUMMARY OF PRELIMINARY SOLUTIONS
Case A ¥ B, At Aq N A Ry A B, |Stepsto
No R, R, R, nose
17 2. 408 1.4 —0.03064 | 0.05 0. 05 20 | 0.1515 0. 57 0. 266 0. 97 4
24 5 8 1. 4 14 .04 .04 20 . 1081 L 710 . 152 .70 3
27 10¢ 1.4 0 . 025 . 015 20 . G082 . 726 . 135 .35 7
29 2 1. 4 0 . 025 .04 20 . 1705 . 508 . 336 1. 16 5
35 58 1.4 .25 . 05 .04 20 . 1080 . 710 . 152 . 85 3
36 5 8 1.4 .30 .05 .04 20 . 1083 . 727 . 149 99 3
40 10 1.2 0 . 05 .02 20 . 05942 817 . 073 29 3
41 104 1.1 0 .05 .01 20 . 03436 888 0387 20 4
42 104 1. 05 0 .05 . 005 20 . 01919 034 0205 10 4
43 10 1. 025 0 .05 . 0025 20 . 01032 964 0107 .07 5
44 104 1. 4 1. 25 .03 .03 20 . 00827 . 836 118 2. 33 4
45 10¢ 1. 4 1. 00 . 035 .03 20 . 09808 . 810 121 1. 85 4
46 10¢ 1. 4 .75 .04 .03 20 . 0979 . 780 . 126 1. 40 4
48 10¢ 1.4 .25 . 045 .03 20 . 0975 .74 . 132 . 65 4
49 104 1. 4 0 .05 .03 20 . 0973 . 720 . 135 .33 4
50 104 1.4 —. 25 . 065 .03 20 . 0973 . 706 . 138 .04 4
51 104 1.4 —. 50 . 06 .03 20 . 0972 . 685 . 142 —. 25 4
52 1.3 1.4 —2.6 . 035 . 06 20 . 2005 .22 .91 .8 5
53 1. 81 1.4 —. 8 . 035 .06 20 L1778 . 404 . 440 .52 4
51 2. 81 1. 4 0 .04 .05 20 . 1384 . 595 . 233 .70 3
55 3. 52 1. 4 1 .05 .05 20 . 1245 . 645 . 360 .72 3
56 14. 2 1.3 —. 5 .04 .03 20 . 0819 . 725 . 113 —. 26 3
57 14. 2 1. 35 —. B .04 .03 20 . 0908 . 698 . 130 —. 13 4
59 104 1.4 .5 .04 .03 20 . 0077 . 763 . 128 1.0 4
60 10¢ 5/3 0 . 05 . 06 20 . 13386 . 646 . 207 .43 3
64 14. 2 1.3 .5 .04 L, 03 20 . 0819 .79 . 104 1. 12 3
65 14. 2 1. 35 .5 .04 .03 20 . 0910 770 . 118 1.0 4
66 2 1.4 —. 27 . 035 .06 20 . 1686 . 4814 . 350 . 82 4
67 20 1.4 0 . 025 . 025 20 . 0987 . 721 . 137 . 38 5
69 12 1.4 —. 006993, .05 .03 20 . 1000 . 714 . 140 .34 94
70 2 1. 4 —-. 2 . 035 . 06 20 . 16918 . 490 . 345 . 88 4
71 20 1. 4 0 .05 . 025 20 . 0987 . 720 137 .32 5
86 2 1. 4 -15 .03 .04 20 . 16444 .38 .43 0 6
87 2 1. 4 -1L0 .03 .04 20 . 16628 . 413 . 403 .22 6
88 2 1.4 —. 5 .03 . 04 20 . 16827 . 458 . 367 . 59 5
89 2 1.4 0 .03 .04 20 . 17048 . 506 . 337 1. 06 5
91 3 1.4 - 1. 00 L 04 .03 20 . 13275 . 513 . 259 .33 6
92 3 1.4 —. 75 . 04 .03 20 . 13220 . 535 . 247 —. 15 6
93 3 1. 4 —. 50 .04 .03 20 . 13344 . 554 . 241 . 06 5
04 3 1.4 —. 25 .04 .03 20 . 13412 . 584 . 230 . 38 5
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Case M ¥ B, AE Aq N A _]IL: A 3, Steps to
NO. R, n, R, nose
95 3 1. 4 0 0.0t .03 20 0. 13466 . 60D 0 221 0. 67 5
96 3 .4 .25 L0t .03 20 . 13524 . 637 . 212 1. 02 5
a7 3 .4 .50 .04 .03 20 . 13561 . 657 . 206 1. 25 5
99 4 1.4 — 100 .05 025 20 . 11841 . 946 L2170 —. 61 6

100 -4 1.4 —-. 50 .04 . 025 20 . TIROT . 606 196 ] —. 08 6

101 4 1.4 0 .04 . 023 20 . 11958 . 647 . I8R5 .00 6

102 4 1. 4 .50 .04 . 025 20 . 12026 L7010 172 1. 16 5

103 4 1. 4 1. 00 .03 . 025 20 . 12103 . 752 . 161 1. 91 5

104 6 1.4 —-. 75 .07 .02 20 10740 . 622 173 1 —. 48 6

106 6 1.4 —. 25 .05 .02 20 . 10780 . 666 . 162 .05 6

108 6 i. 4 .25 . 035 .02 20 . 16825 713 . 152 . 69 6

110 6 1.4 .75 .03 .02 20 . 1874 . 759 . 143 1. 41 [0

112 6 I. 4 1. 25 . 025 .02 20 . 10930 . 810 . 135 2. 31 [

113 10 1.4 —.5 . 06 .02 20 . 10133 . 668 L1520 —.29 6

114 10 1. 4 0 .04 .02 20 . 10165 LT712 . 143 .34 6

115 10 1.4 .5 .03 .02 20 . 10201 . 756 . 135 1. 02 6

116 10 1.4 1.0 .03 .02 20 . 10243 . 804 L 127 1. 86 6

117 10 1. 4 1.5 . 025 .02 20 . 10289 . 848 L 121 2. 69 5

121 2 1 .4 .03 .04 20 . 12496 . 602 . 208 1. 36 4

122 104 5/3 .25 .04 .03 20 . 13539 . 669 . 202 . 67 5

123 1.5 1.4 —1.0 .02 . 05 20 . 19881 . 331 . 601 . 84 5

124 1.5 I.4 —-. 5 .02 .05 20 . 20262 . 367 . 552 1. 16 5

125 1.5 1.4 0 .02 .05 20 . 20719 RS . 500 1. 48 5

129 2 1 0 . 025 . 025 20 . 12489 . 575 217 .09 6

130 4 1 .6 . 035 015 20 . 04303 . 855 L0503 1.12 3

131 4 1 . 8 . 035 . 015 20 . 04300 865 L0497 144 3

132 10t 5/3 .5 .04 . 025 20 . 13612 . 700 . 1. 06 6

133 4 5/3 .25 .04 . 025 20 . 15276 . 620 . 246 . 88 7

134 4 5/3 .4 .04 L 025 20 . 15323 . 637 .24 1. 06 7

135 2 5/3 0 .03 .04 20 . 19266 . 475 . 106 1. 07 6

136 2 5/3 —. 25 .03 .04 20 . 19100 448 . 426 . R3 6

137 2 5/ . 860 . 03 .04 20 . 18934 422 419 . 60 6

139 1.2 1. 4 -1 .02 .06 11 . 22021 . 287 . 767 1.7 5

149 104 1.4 .5 . 035 .02 20 . 09830 . 767 . 128 1. 00 6

151 104 15/13 0 . 05 .01 20 . 04891 849 . 057¢ .20 6

160 1.2 1.4 -3 . 025 . 06 20 . 20163 106 1. 029 1. 08 6

165 104 1.4 .25 .04 .02 20 . 09812 . 746 . 132 . 65 6

166 10¢ 1.4 —.25 .04 .02 20 . 09782 . 705 . 139 0 6

187 1.2 1 -3 . 025 .05 16 . 18842 213 . 885 1.19 6

188 1.5 1 —. 6 . 025 . 038 18 . 17382 . 393 . 442 I. 05 6
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TABLE III.—-SUMMARY OF FINAL SOLUTIONS FOR SPHERES AND PARABOLOIDS

Case Body M v B, At An N A Ry a0 Steps
no. shape R, R, R to nose
173 Sphere 1.2 1.4 -3.30 0.025 | 0. 06 16 0. 19227 0. 187 1. 066 6
174 1.5 1.4 —. 71 . 025 . 045 18 . 20004 . 350 . 574 6
175 2 1.4 —. 06 .03 .04 20 . 17020 . 500 . 340 5
176 3 1.4 .25 . 035 .03 20 . 13505 . 634 . 213 5
177 4 1.4 .38 . 035 . 025 20 . 12009 . 6895 L 174 6
178 6 1. 4 .47 .03 .02 20 . 10845 . 732 . 148 6
179 10 1. 4 .49 . 032 .02 20 . 10201 . 7535 . 135 6
180 10* 1.4 50 035 02 20 . 09828 . 7662 . 128 6
181 Paraboloid 2 1.4 —1. 50 .04 .04 20 . 16442 . 387 . 425 6
182 3 1. 4 —. 59 .05 .03 20 . 13344 . 550 . 243 6
183 4 1.4 —. 41 . 055 | -. 025 20 . 11908 . 613 . 194 6
184 6 1.4 —. 30 .06 .02 20 . 10776 . 662 . 163 6
185 10 1.4 —. 26 .06 .02 20 . 10148 . 689 . 147 6
186 10¢ 1.4 —. 25 .06 .02 20 . 09782 . 705 . 139 6
244 Sphere 1.2 1 —3.28 025 05 s 45 . 18648 . 201 . 028 6
240 1.5 1 —. 69 . 025 . 038 18 . 17337 . 386 . 449 6
189 2 1 .01 . 032 . 025 20 . 12488 . 573 . 218 6
223 3 1 .35 . 035 . 014 20 . 06908 . 764 . 0904 6
224 4 1 . 51 . 035 . 008 20 . 04338 . 854 . 0508 6
225 6 1 .67 . 035 . 0045 20 . 02156 . 931 . 0232 5
226 10 1 .80 . 035 . 0018 20 . 00855 . 976 . 00816 5
194 Sphere 1.2 5/3 —-3. 32 025 07 16 . 20651 . 179 1. 154 5
195 1.5 5/3 —. 73 . 025 . 055 18 . 21500 . 332 . 648 5
196 2 5/3 —. 08 .03 .04 20 . 19213 . 467 L 411 6
197 3 5/3 .22 . 035 . 036 20 . 16446 . 584 . 282 5
198 4 5/3 .35 . 035 . 032 20 . 15284 . 631 . 242 6
199 6 5/3 .43 . 030 .03 20 . 14373 . 666 . 216 6
200 10 5/3 . 46 . 032 .03 20 . 13875 . 684 . 203 5
z 201 104 5/3 .47 . 035 .03 20 . 13585 . 695 . 195 5

» 5 points dropped ecach step.

TABLE IV.—GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS

- Case 173; Sphere at M=12, v=7/5 Case 174: Sphere at M=1.5, y=7/5
Shock Sonic line » Body Shock Sonic line » Body
z/Rs | r/R. /R, /R, n | z/{R. r/R, 5 z/R, r/R. z/R, r/R. n | z/R. r/R. P
0 0 0.1411 0. 5808 00,1903 ; 0 b1. 188 1] 0 0.1627 | 0.5867 0]0.2008 | O b1, 081
. 006 .1101 L1994 .5139 2 .2011 .0257 | 1.168 .02 . 2007 . 2014 . 5430 2| .2020 ] .0283 | 1.075
.02 . 2033 . 2161 . 4001 4 .2080 | .0593 | 1.096 .05 . 3190 . 2270 . 4850 4] .2071 .0658 | 1.050
.05 . 3290 2221 . 3004 6 .2232 .0915 . 966 10 . 4851 . 2460 .4240 6] .2163 ] .1028 | 1.004
.10 . 4827 . 2305 L2272 8| .2440 | 12131 .7 .15 . 5621 . 2617 . 3652 8] .2206 | .1380 | .941
.15 .6118 L2411 L1732 10| .2736 | .1460 |.___.... .20 . 6545 .2763 3116 10 | .2471 1741 .859
.20 . 7294 . 2529 . 1326 .30 . 8148 L2007 . 2640 12 . 2688 L2077 .744
i .40 . 9558 14 . 2854 . 2390 . 587
16| .3335( .2632 j......_.
_ » First 5 values from supplementary case 241.

- & Exact: 1.1942,
« First 5 values from supplementary case 242, Last 2 from supplementary
case 233,
b Exact: 1.0836.
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TABLE IV.—~GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS—Continued

Case 175: Sphere at M=2, y=7/5

Case 178: Sphere at M=6, y=7/5

Shock Sonlc line Body Shock Sonic line Body
/R, 1/R, /R, r/R, n I/R, r/R, Py 1/R, /R, /R, r/R, n /R, r/R. P
0 0 0.1496 | 0.5482 0017020 21,007 Q 0 0.0880 | 0.4153 001084 | 0 a0. 928
.05 . 3165 .1949 . 5365 2 L1716 0365 | 1.0C2 .02 . 1995 L1218 . 4391 2 . 1096 L0400 | . 925
.1 . 4479 . 2298 . 5092 4 L1775 . 0849 . 980 05 L3144 L1544 . 4579 4 L1144 . 0932 .91
.2 . 6344 . 2568 L4722 6 . 1881 . 1330 . 942 1 . 4419 . 1853 L4717 ] .1232 . 1462 . 886
.3 L7781 . 2780 . 4297 8] .2039 . 1802 . 888 .2 L6174 .214) . 4805 8 . .1361 L1990 | 850
.4 . 8998 . 2950 . 3838 10| .2245 | .2264 | .817 .3 . 7468 . 2402 . 4838 10 ] .1530 | .2513 | .804
.5 1. 0075 12 . 2501 2712 731 4 . 8514 . 2628 . 4814 121 1742 .3032 | 750
14| .2810 L3140 | 631 .2783 . 4679 14 L1998 | L3543 | . 687
16 . 3180 . 3540 . 499 16 .23m . 4043 . 616
* Exact: 1.0072. 18| .3644 | .3880 | .247 * Exact: 0.9289. 18| .2654 | .4531 | .530
19 | .2850 | .4769 | .466
Case 176: Sphere at AM[=3, v=7/5 Case 179 Sphere at M =10, ¥v=7/5
Shock Sonic line Body Shock Sonic line Body
/R, r/R, z/R,. r/R, n /R4 r/R, P /R, r/R, z/R, r/R, n 1/R, r/R, Db
0 4] 0.1161 0. 4784 00,1350 |0 s0. 957 0 0 0.0820 | 0.4008 0]0.1020 [ O 20, 923
.02 .1998 . 1599 . 4928 2 . 1367 . 0450 . 952 .02 . 1995 . 1168 . 4284 2 . 1032 L0430 .919
.05 . 3152 . 1982 . 4958 4 . 1438 L1048 . 929 .05 L3143 L1511 . 4513 4 . 1087 L1002 . 903
1 . 4444 L2314 . 4900 6 . 1568 . 1641 . 89O 1 L4417 L1841 . 4695 6 . 1186 L1572 .86
.2 . 6245 . 2595 L4764 81 1757 L2228 | .834 .2 L6168 . 2151 L4821 81 .1331 . 2139 . 836
.3 b T600 . 2826 . 4559 10 | .2006 | .2805 . 766 .3 . 7456 L2431 . 4886 10 L1521 L2702 786
4 .8718 . 3008 . 4201 12} .2317 ) .3367 | .685 4 . 8495 . 2679 .4893 12 L1760 | 13259 ¢ 727
1 . 3160 . 3990 14 L2696 ¢ 3910 | .590 L2871 . 4814 14 . 2051 . 3807 . 658
- _ 16 | .3150 | .4422 | .469 16 | .2396 | .4344 . 580
* Exact: 0.9572, 18| .3710 | .4874 | .270 * Exact: 0.9230. 181 .2803 | 4861 | .490
19 ¢ .3038 | .5107 | .427
Case 177: Sphere at M=4, y=7/5 Case 180: Sphere at M=, y=7/5
| I
| Shock Sonic line Body Shock Sonic line Body
! 1R, | /R, 7/R, ¥R, n | z/R,. r/R, F zfR, | 1R, z{R, r/R, n; 1/R, 7/R, Db
! 0 i 0 0.1002 0. 4433 001201 [0 20, 940 0 0 0.0784 0.3921 0000830 0. 920
.02 P 1996 L1398 . 4646 2 L1218 . 0459 . 935 .02 L1985 L1140 . 4221 2 . 0097 L0472 .915
| .05 L3147 L1764 4T 4 L1285 L1070 L915 .05 L3142 L1493 L4478 4 . 1063 . 1100 L ROT
.1 ! . 4429 . 2097 . 4836 6| .1409 | .1678 | .87 .1 L4416 . 1836 . 4686 6 . 1180 L1726 | 864
l .2 : . 6203 .2393 . . 4826 8 L1580 | .2280 | .828 .2 L6164 . 2160 . 4837 8 . 1352 .2349 | .818
.3 T2 L2648 L4751 10 L1829 L2874 .776 .3 . 7450 . 2455 . 4924 10 . 1580 . 2066 7l
4 | .ss08 . 2859 L4611 12 L2128 . 3456 . 689 4 . 8485 . 2706 . 4934 12 L1867 . 3575 . 691
1 L3024 . 4408 14 . 2494 . 4023 .60 L2914 L4879 14 L2217 L4173 LB12
16 . 2031 . 4565 4% 16 . 2636 . 4753 . 519
» Exact: 0.0405. 17| .3182 | .4822| .429 * Exact: 0.9107. 18| .3140 | .53021 .398
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TABLE IV.—~GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS-—Continued

Case 184 Paraboloid at A =8, y=7/5

Case 181: Paratoloid at M=2, y=7/5

Shock Sonic line Body
/R, r/R, /R, ' r/R, n /R, r/ R, Py
i
0 0 0.2266 | 0.7281 001644 : 0 s1. 004
.02 . 2015 L3112 . 7538 2 L1673 L0476 . 994
.05 L3221 .3841 ,| .7583 4 . 1801 . 1104 . 951
.1 . 4637 . 4716 L7799 61 .2027 L1718 . R87
.2 L6782 | 8| .2343 | .2312| .8I7
.3 . 8573 10 . 2736 . 2885 754
.4 1. 0198 12 . 3196 . 3439 7
14 L3711 . 3979 . 870
18 . 4270 . 4508 . 845
~Exact: 1.0072. 17| 4563 47721 .635
Case 182; Paraboloid ai M=3, vy=7/5
Shock Sonic line Body
z/R. { 1/R, /R, /R, n . z/R, | 1R, Dy
(] 0 0.1363 0. 5326 0013340 a0, 956
.02 . 2006 . 1885 . 5550 2 L1371 . 0637 . 945
.05 . 3186 L2379 . 5698 4 . 1531 . 1480 . 899
.1 L4538 . 2858 . 5804 [ . 1816 L2311 . 830
.2 . 6508 . 3342 . 5896 841 .2218] .31W | .751
.3 . 8082 . 3853 . 6004 107 .2728 | .3913 | .675
.4 . 9457 . 4429 . 6162 121 .3335 . 4684 | . 609
.5 1.0712 . 5198 . 6485 14 . 4027 . 5437 . 556
16 . 4793 . 6178 . 515
T 18 . 5622 . 6914 . 481
sExact: 0.9559,
Case 183: Paraboloid at M =4, +=17/5
Shock Sonic line Body
/R, 1 1R, /R, r/Rs n{ z/R, | 7[R, Pe
0 a 0.1082 | 0.4704 0011910 20. 940
.02 ¢ L2004 . 1588 . 5095 2 L1232 .07 [ .928
.05 L3178 . 2033 . 5316 4 L1415 | L1667 879
1 . 4518 2474 . 5508 i} L1740 | 2604 | (804
.2 . 6453 . 2830 . 5692 81 .2200| .3522 | .720
.3 . 7981 . 3418 . 5892 10 .2785 | .42 . 638
4 . 9304 . 3965 . 6133 12 . 3485 .5300 | .568
. 4628 . 6462 14 L4286 | .6163 .51
16| 5179 0 .7015 | .467
=Exact: 0.9405. 18] .6152 | .7862 | .428

Shock Sonic line Body
/R, | r/R. z/R, /R, n | /R r{R. D
0 0 0. 0981 0. 4461 0 0.1078 | 0 a0, 928
.02 . 2003 . 1360 . 4753 2 1125 0795 | .915
.05 L3174 . 1731 . 4993 4 . 1334 1849 . 861
.1 . 4508 L2118 . 5232 6 . 1705 L2890 ) .779
.2 . 6419 . 2523 . 5471 8 . 2232 . 3913 . 689
.3 . 7918 . 2055 . 5721 10 | . 2903 4916 . .603
.4 . 9209 . 3435 . 6003 12 . 3708 . 5902 . 530
. 3997 . 6345 14 | .4634 . 6873 . 471
L4713 . 6808 16 . 668 7837 . 426
»Exact: 0.9405.
Case 185: Paraboloid at M=10, y=7/5
Shock Sonic line Body
I[Ry | T/R: z/R, /R, n | 7/R, r/R, P
0 [} 0. 0903 0. 4274 0[0.1015}0 (. 923
.02 . 2003 . 1285 . 4591 2 . 1061 . 0802 .910
.05 L3172 L1677 . 4887 4 . 1266 . 1866 . 85T
1 . 4501 . 2090 . 5182 6 . 1631 . 2018 LT
.2 . 6406 . 2534 . 5487 8 L2150 | . 3955 . 688
.3 . 7896 . 3027 . 5823 10 . 2813 . 4975 . 603
4 L9174 . 3602 . 6218 12 . 3610 . 5980 . 530
. 4327 L6729 14 4531 . 6972 470
. 5379 . 7494 16 . 5564 . 7957 .422
aExact: 0.9230.
Case 186; Paraboloid at M=o, y=7/5
Shock Sonic line Body
z/R. /R, IfR: r/Ry n | z7/R. /R, P
0 0 0.0860 | 0.4170 000978 | 0 (0. 920
.02 . 2002 L1248 . 4510 2 L1024 0806 | .907
.05 L3172 . 1653 . 4838 41 12270 (1875 .855
.1 . 4500 . 2085 . 5171 6] .1580 | .2934 i
.2 . 6403 . 2560 . 5527 81 .2103 .3979 | .688
.3 . 7890 . 3105 . 5932 10 .2760 | 5000 ; .604
-4 L9165 L3770 . 6429 12} .3553 .6024 | .531
. 4674 L7115 14| 4468 [ .7029 | .472
. 6024 .8112 16| .5496 | .8028 | .424
aExact: 0.9184. 17 . B048 8529 | . 404
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TABLE IV.—GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS—Continued

Clase 223: Sphere at M =3, y=1

Cuse 244 Sphere at M=1.2, v=1

Shock Sonic line Body Shock Sonie line Body
/R, | r/R. xR, /R, n | &R, /R, Py IRy | 1/Rs /R, r/Re no xRy | T/R, i)
0 0 0. 1339 0. 5715 OO0 IRS [0 al 410 0 0 0.0524 | 0.3222 0100801 |0 »1. 0572
005 L1004 LIN2% . HR2 2 . 18K2 L0268 | 1,404 .02 L 1996 L0773 . 3499 2 L0707 LD488 1 1.0545
.02 L2032 L2016 L4158 4 L1962 L0620 ;1 1.335 .05 L3148 L1090 1 L3910 4 N L1137 ] 1.0330
.05 . 3284 . 2080 L3277 G L2105 L0957 | 11091 i | . 4433 L1357 L4155 [ . (M03 L1783 9981
10 . 4825 L2158 . 2546 8 . 2315 L1270 L9992 .2 L6213 . 1630 L4388 8 L1086 L2423 L9401
15 L6114 L2246 L2024 10 L2614 L1534 . 836 .3 . 7540 L1906 L4603 10 L1329 . 3066 . 8873
.20 L T2 LT . 1603 i . 2881 . 1584 . HR2 .4 . 8626 L2178 L4790 12 . 1634 L3678 &143
L2h . 8396 L2459 | L4974 14 L2004 L4285 7295
j 16 . 2447 L4870 L6308
= Exact: 1.05713. 18] .2076 | .5418 | 5027
sxact: 1.4150.
ase 240: S  M=15 y=
Case 240: Sphere at M=1.5, y=1 Case 224: Sphere at M=1, y=1
Shock Sonic line = Body Shock Sonic line Body
/R, | r/R, 7/R, /R, n | z/R, | 1/R. Db Z/R, | 1R, 2R, /R 2l 2R r/R, '
F - by 947
0 0 0. 1:130 0. 5438 oo 1.’,34 0 1. 247 0 0 0. 0301 | 0. 2445 000434 | 0 =1. 0319
. 005 . 2593 et . 5149 2 L1744 .0298 | 1.241 - - —
- - .02 1995 L0436 | L2715 2 .0449 ;1 .0502 | 1.0277
.02 . 5199 . 2026 . 4720 4 L1795 L0694 | 1.218 - - - -
. — .05 L3142 . 0631 L3017 4 L0515 L1170 10097
.05 . 8263 . 2222 L4244 6 . 1888 L1084 | 1.177 - i
- - - o L4415 . 0831 . 3353 6 .0635 | 1837 L9776
. 1.1784 . 2513 L3276 8 . 2021 L1467 | 118 -
.2 . 6161 L1058 L3719 8 .0810 | .2500 | .9324
N &) 1. 4552 . 2651 . 2852 10 . 2197 L1839 | 1.042 " -
- 3 . 7444 L1313 L4103 10 . 1041 . 3159 8756
.20 1. 6941 12 . 2416 . 2195 . 937 - ; -
e . 4 . 8476 . 1591 . 4487 12 L1332 . 3810 8075
.25 1.9092 14 . 2684 . 2530 . 800 - -
20 2 1080 16 3020 2826 614 L1875 . 4839 14 . 1686 . 4452 . 7204
) . ) ! . 2156 . 5150 16 . 2108 . 5080 . 0411
= Exact: 1.03174, 18] .2608 | .5686 | .5445
sFirst 4 values from supplementary case 245. T 19 | .2892 | .5976 | .4740
bExact: 1.2488.
Case 1R9: Sphere at Af=2, y=1 Case 225: Sphere at M =6, y=1
Shock Sonic line Body Shock Sonice line Body
/R, | r/R. T/R, T/R. n | T/R, /R, j) T/Rs | /R, 7/R, /R, n | I/R, TR, s
0 0 0.1054 | 0. 4589 001249 } 0 1], 132 0 0 0.0136 | 0.1644 000216 |0 1. 0139
.02 . 2000 L1380 | . 4640 2 1264 L0416 1.127 .02 0 1993 L0233 1 .1928 2 .0230  .0514 | 1.0100
.05 L3162 . 1666 . 4613 4 . 1331 . 0968 1. 105 .05 L3136 . 0358 . 2293 4 0204 L1198 9930
.1 L4471 L1920 . 4529 6 . 1453 . 1515 1. 065 .1 . 4397 . 0531 L 277 6 0409 . 1881 . 9630
.2 . 6321 . 2143 . 4397 8 . 1629 . 2053 1.010 .2 . 6109 L0775 . 3375 8 L0578 . 2563 9200
.3 L7740 L2337 L4224 10 . 1862 . 2580 . 938 .3 . 7346 . 1093 . 4046 10 . 0801 L3242 . 8651
.4 . 8935 . 2504 . 4017 12 . 2153 L3090 . 852 .4 . 8324 . 1458 . 4690 12 1083 . 3918 7994
. 2650 . 3786 14 . 2508 . 3576 . 743 L1833 . 5253 14 . 1426 . 4589 L7232
. 16 | .2941 . 4023 .671 16 . 1838 . 5251 . 6375
* Exact: 1.1332. 17| 3212 | 4212 | .359 * Exact: 1.01398. 18 | .2325 | .5902 | . 5434
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TABLE IV.—GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS—Continued

Case 196: Sphere at M =2, v=5/3

Case 226: Sphere at M=10, y=1

Shock Sonic line Body
z/R, riR. T{R, /R, n i\ 1/R: riR, Ds

i} 0 0.0049 | 0. 0988 0 {0.00855 | 0. 1. 0050
.02 1 L1992 . 0101 . 1288 2 ].00895 ¢ .0520 | 1.0013
.05 | 3150 .0150 | .1505 4 .01618 L1214 . 9848

1 . 4382 L0254 . 1985 6| .0275 L1908 | . 9553

.2 . 6066 . 0451 . 2720 8 1 .0440 L2600 | . 9129

.3 . 7266 L0792 | .3673 16 | . 0660 .3202 | .8586

4 . 8198 L1200 | . 4539 12 | . 0937 L3982 | .7932

14 | .1276 L4670 | .7162

16 | . 1684 . 5354 . 6203

* Exact: 1.00501. 18] .2168 | .6033 | .5316

Case 194: Sphere at M=1.2, v=5/3
Shock Sonic line » Body

z/R, | r/R. z/R, /R, n | z/R | 1/R, De
0 0 0.1453 | 0.6005 002065 0 b1.118

.005 | 1004 . 2116 . 5106 2§ .2082 | .0250 | 1.100

.02 . 2033 . 2255 L3776 4 . 2161 L0577 | 1.025

.035 | (2722 . 2323 L2728 6| .2302 | .0860 | .850

.05 . 3201 . 2429 . 1998 8| .2508 L1179 . 648

Rir . 3953 . 2550 . 1465 10| 2794 L1422 1 . 306
1 . 4829 1 .3007 | 1490 | ...

.15 6121

» First 5 values from supplementary case 246.
b Exact: 1.1029.
Case 195: Sphere at M =1.5, y=>53
Shock Sonic line » Body
/R, | 1/R, z/R, 7/R, n | 7/R, /R, -

0 0 0.1731 | 0.60687 01021500 b1, 021
.02 1 .2007 L2178 . 5485 2 .2m81 L0274 | 1.015
.05 . 3191 . 2453 . 4740 4 L2212 . 0638 . 988
10| L4553 . 2656 . 3997 6 L2304 | L0997 | .941
.15 . 5625 .2830 ;1 3319 8| .2436 L1348 | .853
.2 . 6551 . 2894 L2122 10 . 2610 . 1688 . 769
.3 . 8159 3139 L2181 121 .2827 | .2012 ] .663
.4 L9575 14 ] .3080 | .24 . 523

16 L3416 L2578 1 .

» First 6 values from supplementary cases 247 and 234,

b Exact: 1.0134.

Shock Sonic line Body
/R, | TIR, T/R: /Ry n | /R, /R, 243
0 0 0.1701 | 0. 5852 001821 0 a0, 949
.02 ¢ .2001 L2134 . 5678 2 .1934 . 0352 . 944
.05 . 3165 . 2451 . 5342 4 . 1994 L0820 | .921
.1 . 4481 L2692 | 4923 6 L2102 | .1282 | .880
.2 . 6350 . 2888 . 4471 8 . 2258 . 1738 .823
.3 L7792 . 3050 . 4003 10 . 2464 . 2182 .751
.4 . 5016 L3173 . 3508 12 L2720 . 2612 . 659
14| .3029 | .3022 ) .53
16 | .3399 | .3402 ) .390
= Exact: 0.9518, 17 L3621 3569 353
Case 197: Sphere at M=3, y=7/5
Shock Sonic line Body
xR, r/R, z/R. /R, n | z/R: r/R. Ds
0 0 0.1460 | 0.5361 0701645 | 0 =0, 912
.02 1 .1998 . 1946 . 5411 2 .1661 L0432 | . 906
.05 | 3154 . 2344 . 5314 4 1733 .1006 | .883
't . 4448 . 2665 . 5107 6 1863 | .1575 | .838
.2 . 6255 .2018 L4814 8 2053 | . 2137 . 780
.3 L7617 L3116 . 4459 100 .2303 . 2687 . 708
.4 8745 . 3265 . 4050 12| .2615 3223 623
.5 L8721 . 3374 . 3600 14 L2095 1 3738 | .54
16| .3450 | .4219 | .389
18 .4030 | .4622 | .-
» Exact: 0.9115,
Case 198: Sphere at M =4, v=513
Shock Sonic line Body
1/R, 7/R,. 7/R, r/R, n | z/R, r/R, 13
0 0 0.1328 | 0.5093 0015810 Q). 896
.02 . 1996 L1794 . 5221 2 . 1544 L0440 . 891
.05 . 3148 L2190 . 5217 4 . 1613 . 1025 . 869
.1 4433 . 2522 L5112 6] .1738 | .1606 | .831
.2 . 6213 L2792 . 4918 81 .1919 § 2181 .78
.3 . 7540 . 3005 . 4651 10| .21589 | .2748 | .711
.4 . 8626 L3171 L4327 12 .2459 | .3301 . 631
.5 . 9552 .3305 . 3967 14| .2826 | .3837 | .538
16 | 3266 . 4345 418
i8 . 3812 L4795 | ...
= Exact: 0.8981.
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TABLE IV..—.GEOMETRY AND PRESSURE DATA FOR SPHERES AND PARABOLOIDS—C(Concluded

Case 199; Sphere at M=6, y=5/3 Case 200: Sphere at M=10, y=5/3
Shock Sonle line Body Shock Sonic line Body

/Ry T/R, /R, /R, n | z{R, r/R. P /R, /R, /R, 7/R, n ! 1/R, r/R, D
0 0 0.1228 0. 4891 03501437 [ 0 (. RR7 0 0 0. 1177 | 0.4785 00138 | 0 ~0. 883
.02 . 1996 . 1889 . 5072 2 . 1448 . 0382 B84 .02 . 1995 . 1651 . 5000 2 . 1400 L0410 . 879
.05 L3145 L2092 . 5132 4 . 1487 . 0891 . 869 .05 L3144 . 2069 . 5092 4 . 1455 . 0957 . 863
.1 L4424 . 2439 . 5085 6 . 1586 . 1398 . 842 .1 . 4420 L2429 . a077 6 . 1555 . 1501 .833
.2 . O187 L2737 . 4984 8 L1715 . 1901 . 804 .2 L6177 L2724 . 4963 8 L1700 L2042 . 792
.3 . 7492 10 . 1885 . 2400 L T56 .3 L T474 . 2953 L4755 10 . 1891 L2577 L T38
.4 . 8551 12 . 2098 . 2893 . 699 4 . 8523 L3149 . 4508 12 . 2132 L3105 L675
.5 . 9447 14 . 2355 L3377 . 632 .5 . 5407 14 . 2423 . 3624 . 602
16 . 2659 . 3850 . 857 16 L2277 . 4128 . 518

18 . 3016 . 4306 . 464 18 . 3180 . 4610 .411

* Exact: 0.8887. 19| .3218 [ .452¢ | .389 * Exact; 0.8840. 19| .3410| .4840 | .323

Case 201: Sphere at M=, ¥y=5/3

Shock Sonie line Body
1/R, riR, /R, r/R, n /R, 7/ R, Ps
0 0 0.1150 | 0.4730 001358 0 2. 880
.02 11995 . 1831 . 4964 2| .1373 . 0451 .876
.05 ] L3144 . 2060 . 5076 4 L1438 1 L1050 | .856
1 L4419 L2427 . 5074 6 . 1557 L1647 822
.2 . B17 L2729 . 4970 8 1730 .2240 ] .773
.3 . 7468 . 2064 . 4771 10 . 1959 L2826 LTl
4 . 8514 . 3145 . 4501 12 L2247 . 3402 041
5 . 9394 14 .2599 | .3965 | .55
16 § .3021 L4507 | . 451
18| .3533 | .5009 | .285

» Exact: 0.8813.
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