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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-319

AN APPROXIMATE ANALYTICAL METHOD FOR STUDYING
ATMOSPHERE ENTRY OF VEHICLES WITH
MODULATED AERODYNAMIC FORCES

By Lionel L. Levy, Jr.
SUMMARY

The dimensionless, transformed, nonlinear differential equation
developed in NASA TR R-11 for describing the approximate motion and heat-
ing during entry into planetary atmospheres for constant aerodynamic
coefficients and vehicle shape has been modified to include entries during
which the aerodynamic coefficients and the vehicle shape are varied. The
generality of the application of the original equation to vehicles of
arbitrary weight, size, and shape and to arbitrary atmospheres is retained.
A closed-form solution for the motion, heating, and the variation of drag
lecading parameter m/CDA has been obtained for the case of constant,
maximum resultant deceleration during nonlifting entries. This solution
requires certain simplifying assumptions which do not compromise the
gccuracy of the results.

The closed-form sclution has been used to determine the variation of
m/CDA required to reduce peak decelerations and to broaden the corridor
for nonlifting entry into the earth's atmosphere at escape velocity. The
attendant heating penalty is also studied.

INTRODUCTION

A number of studies have been made of the motion and heating of
vehicles entering planetary atmospheres. In one such study (ref. 1) an
approximate analytical method for studying entry into any planetary
atmosphere was developed and applied to vehicles of arbitrary constant
welght, size, and shape with constant aerodynamic coefficients. In
reference 2 the method of reference 1 was applied to the study of corri-
dor depth and guidance requirements. Also presented in reference 2 is a
limited discussion of the effect on corridor depth of varying (modulating)
the aerodynamic coefficients and the vehicle shape during entry. Other
investigators have made studies of the trajectories for modulated entries.
For example, entries at circular and supercircular velocities with varying
lift-drag ratios, but with constant drag, have been studied in reference 3;



entries at circular and supercircular velocities with a particular
variation of drag with 1lift have been studied in references %, 5, and 6;
and nonlifting entries at circular velocity (and one case of entry at
supercircular velocity) with varying drag have been studied in reference 7.
The analyses of references 3 through 7 all employ time as the independent
variable and separate sets of calculations are required for each specific
vehicle and planetary atmosphere.

The purpose of the present investigation is to extend the method of
reference 1 to include vehicles with variable aerodynamic coefficients
and varisble vehicle shapes. The general applicability of the method to
vehicles of arbitrary weight, size, and shape and to arbitrary atmospheres
is retained. Calculations are made to illustrate the effect of varying
vehicle drag coefficient and area on the corridor depth and heating
characteristics of nonlifting vehicles entering the earth's atmosphere at
escape velocity. The type of variation considered 1s that which reduces
the maeximum resultant deceleration to some specified constant value during
the modulation period. The varlation of vehicle drag coefficient and area
required to maintain a constant resultant deceleration is determined.

NOTATION
a resultant deceleration, ft sec™®
A reference area for drag, sq It
B constant defined by the deceleration at the beginning of
modulation, Gi/[Br
Cp drag coefficient, 2D/pVZA
D drag force, 1b
Fp conic perigee parameter (eq. (22)), dimensionless -
g gravitational ‘acceleration, ft sec™®
gc gravitational conversion constant, 32.2 ft sec™2
G deceleration in g's, a/g
L 1ift force, 1b
m mass of vehicle, slugs
dg convective heating rate per unit area at the stagnation

point, Btu ft-2 sec-t
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dimensionless function proportional to convective heating
rate (eq. (26))

total convective heat gbsorbed per unit area at the stagnation
point, Btu ft-2

dimensionless function proportional to total heat gbsorbed,

(eq. (28))
distance from planet center, ft
radius of curvature of vehicle surface, ft

dimensionless radius used in the definition of FP
(See eq. (23).)

time, sec

tangential velocity component normal to a radius wvector,
ft sec-1

dimensionless velocity ratio, uAfgr

radial velocity component, ft sec~—1

resultant velocity, Vvu2 + v2 = u/cos 7
dimensionless velocity ratio, VAfgr

weight of vehicle at earth's surface, mge, 1b
altitude, ft

dimensionless function of 4 (eq. (3))
atmosphere density decay parameter, £t~

flight-path angle relative to the local horizontal, negative
for descent

vehicle parameter, m/CpA
corridor depth between conic perigee altitudes, statute miles
atmosphere density, slugs -3

mean value for exponential approximation to atmosphere
density-altitude relation, slugs f£t-S



Subscripts
i initial value
max maximum value
mod medulated-entry value
o surface of a planet
ov overshoot boundary
P conic perigee point
un undershoot boundary
wnmod unmodulated-entry value
1 point in the trajectory where modulation begins
2 point in the trajectory where modulation ends

I,IT,I1I phase of a trajectory

Superscripts

! differentiation with respect to 1

ANATYSIS

In reference 1 the two-component equations of motion for entry into
planetary atmospheres

2 2
NS A\ S S L cos 7y + D siny
ate dt r m m
. (1)
du |, uv D
LR -4 + =
e + - - cos ¥ <} 5 tan %)

are transformed into a single, ordinary, nonlinear, differential equation
with the aid of certain simplifying assumptions and by the introduction
of the dimensionless independent variable

4= ulfer (2)
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and the dimensionless dependent variable Z, defined by

r
7= LoN B ge-By (3)

* (&)

The resulting differential equation for the Z function is

=2
VAR -<Z' _.%)_L‘Lcos% +~/Br%cos37=0 (W)

o oz

where cos y =+ 1 - sin®y can be expressed in terms of Z and Z' through
the equation for the flight-path angle

\/E?sin'y:Z' - (5)

s

In the analysis in reference 1 the terms m/CpA and L/D are constant
throughout the entry trajectory.

When the terms m/CDA and L/D are allowed to vary during entry (are

modulated) , the differential equation for the Z function is, as derived
in appendix A, given by

(o o1) ol @] 6)

1 - u* 4 L cos3y =
- == cos¥y +JPBr 5 cos®y = 0 (6)
where
and
dA _ da(m/CpA)
A= — = = 7
du du ( )

The attendant expression for the flight-path angle can be given by

\/ﬁsin7=2'-%+z<%'— (8)



Thus, the differential equation for the Z function during modulation -
contains the same terms as the equation developed in reference 1 for -
unmodulated entries plus the three additional terms in the curly brackets

(cf. egs. (4) and (6)). Equation (6) is applicable to both lifting and
nonlifting entries. However, as a result of the assumptions made in the
derivation, equation (6) is limited to shallow lifting entries for which

lL/D tan y| << 1 (see appendix A) and is applicable to nonlifting entries

for which the angles of descent are large as well as small.

Equation (6) can be reduced to a differential equation in which u
and Z are, respectively, the independent and dependent variables if a
drag polar and the type or purpose of the modulation are specified. In
this manner it is possible to express L/D, A, A', and A'' in terms of
7z, Z', Z'', and %.* Solution of the resulting equation for Z(&) permits
the calculation of many gquantities which describe the modulated portion
of the trajectory; for example, resultant deceleration, flight-path angle,
range, time, density, altitude, dynamic pressure, Reynolds number, con-
vective heating rate, and total heat absorbed at the stagnation point.
Detalled expressions for these quantities can be found in reference 1.

e

Nonlifting Entries Modulated for Specified Meximum Deceleration

As a specific application of the present analysis, modulated
nonlifting entries will be studied. In this study m/CpA will be
varied in such a manner that the maximum resultant deceleration does not
exceed some specified value G;. The modulated trajectory consists of
three distinct phases which can be described with the aid of sketch (a).
The deceleration time histories of an unmodulated and a modulated entry
are shown for a given entry sngle (7;) and entry velocity (&) . During
phase I the vehicle enters the atmosphere at a given entry angle and
veloeity (41) and maintains a constant m/CDA; the deceleration increases
monotonically until the specified value of the deceleration G; is attained
at velocity Ti. At this velocity, phase II begins with the modulation of
m/CpA in such a manner that the deceleration is held constant until the
velocity is reduced to the value 1Uz. This velocity is determined by
specifying that termination of the modulation will allow the resultant
deceleration to decrease monotonically as the vehicle completes its entry.
Phase IIT is this final phase of the entry.

*For example, in an analysis to reduce the maximum resultant
deceleration GOpyax, the equation for G given in reference 1 is used \
to relate G, L/D, Z, and T; that is, for shallow entries

G =JBr wzJ1 + (L/D)= .




SRR =l =

1

Unmodulated entry

Moduloted entry
I /- "

-——— Phase I

|- Phose 1

Sketch (a)

The present problem is reduced to the determination of the solution
during the modulated portion of the trajectory (phase II) since the
solutions for the unmodulated portions of the trajectory (phases I and IIT)
are indicated in reference 1. There are three basic steps necessary to
the solution for phase II. First, a relationship between Z, u, 7, G,
and m/CpA must be obtained in order to determine the required variation
in m/CpA. Secondly, the termination of the modulation period must be
determined (i.e.,-the velocity Tz must be determined); and finally, the
solution for phase II must be matched with the solutions for phases I
and III. The first step is accomplished by means of the equation from
reference 1 for the resultant deceleration:

G___\/—B—rﬁz

cos2y
During the modulation period G 1s constant and equal to Gi; hence

6 <EEEZ | (9)

cos2y



By combining equation (6) for L/D = 0 with equations (8) and (9) one
can obtain a differential equation for the Z function in terms of PBr,
%, and Gy, but the mathematical treatment is tedious and the resulting
equation is difficult to program for numerical solutions. This situation
can be circumvented, however, if only shallow entries are considered, so
that durlng phase II the flight-path angle is sufficiently small that
cosy = 1.2 Thus, from equation (9), the resultant deceleration during
the modulation period for shallow entries is glven by

Gy = Jpr W2 (10)

From equation (10) the Z function is defined during phase II as

1
Z=3B% (11)
where
B = 0 (12)

NG

By substitution of equation (ll) and its derivatives into equation (6)
(L/D = 0), the differential equation which describes the variation in
m/CpA required to maintain a constant resultant deceleration is obtained
as

re At 2 =2
é%r- \ <‘ > é% 21 2u cos4y = O (13)

and the related expression for the flight-path angle is

sny - 2 | 2(8) - 3] (1)

As a result of the multiplying factor cos4y of the last term in
equation (13), solutions for equation (13) must be obtained by numerical
methods.

If during phase IT the flight-path angle is further assumed to be
small encugh that cos4y = 1, a closed-form solution for A can be

2p1though the inaccuracies due to assuming cos2y =% 1 were not
investigated, they are believed to be negligible for the entry angles
considered in this report.

~ e
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derived. The resulting expression for the variation with velocity of the
m/CpA  required to maintain constant resultant deceleration is

e {2[tee (@) m@)e[r- &S]
e[ @])

where

(16)

E=C(1 - 2Gysin yy - §;2)

The details of the derivation of equation (15) are presented in appendix B.
The expression for the flight-path angle obtained with the closed-form
solution is

sin y = sin y1 + é% {%n <§£> + E%f [l - <§E>2J }» (17)

The accuracy of the closed-form solution relative to a numerical solution
for equation (13) will be discussed later.

The velocity Uz at which the modulation is terminated is determined
in the following manner. TFor a gilven set of entry condlitions and a
specified deceleration limit, the constants B, C, and E are fixed, and
it is a simple matter to determine from equation (15) that m/CDA
increases to a maximum value and then decreases. Continuation of the
modulation after m/CpA has reached the meximum would sustain a constant
deceleration sbove that which would result if the modulation were termi-
nated. Consequently, the value of the velocity T at which phase II is
terminated is determined as that value for which A/A; is a meximum. As
noted in appendix B the value of 1 is obtained as that value of the
velocity which satisfies the relation

1 i i\ 2 1 JBr
B—21n<a—l>—20 <‘-l_l> +?@f+<20 +—B—s1n 7’1>=O (18)
¢!
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Tt now remains to match the solution for phase IT with the solutilons
for the unmodulated portions of the trajectory, phases I and ITII. This
is done by matching the altitude and the flight-path angle at the velocl-
ties for the beginning and end of modulation (Ty and 9o, respectively) .
The quantities Z3, or Ay, and 71 are known at velocity Uy from the
first phase of the trajectory (obtained as indicated in ref. 1); hence,
with the ald of equation (lh) +he solutions for phases I and IT are
matched by satisfying the conditions 3

AII:T_ =02
— > (19)

t
<?; = —%E aiein 73 + éi
II; ' u

/

where the subscript II¢ denotes initial values for phase JI. The 2Z
function and A are known at the end of phase IT (eqs. (11) and (15)) and
AY/A = 0 at velocity Uo (A/A; 1s a meximum at @ = Tg); hence, with
the aid of equations (5) and (14%) the solutions for phases II and III are
matched by satisfying the conditions

1
Zrrry = B g
(20)
1
Zirn = P m

which, together with the velocity Tz, constitute the initial conditions
from which the trajectory characteristics of phase IIT are calculated as
indicated in reference 1. Within the basic approximations noted earlier,
the closed-form solution is applicable to any vehlcle making moduwlated,
nonlifting, shallow entries into any exponential atmosphere from any
approach velocity.

Accuracy of the Closed-Form Solution

The inaccuracies due to assuming cos%y = 1 1in obtaining the
closed-form solution for phase II may be Jjudged from a comparison of
some trajectory parameters for which the calculations for phase II were
obtained from the closed-form solution and from the numerical solution
of equation (13). The time history of the velocity 1, the flight-path
angle 7, and W/CpA® are shown in figure 1 for a typical modulated,

3gince the remainder of the report is concerned only with entries
into the earth's atmosphere, the parameter W/CDA is subsequently used.

N
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10g-limited, nonlifting entry into the earth's atmosphere at escape
velocity (Vi = 1.4; 75 = -8°). Excellent agreement is exhibited between
the so0lid curves representing the trajectory characteristics as computed
from use of the numerical solution of equation (13) and the dashed curves
representing the corresponding trajectory characteristics as computed from
use of the closed-form solution (eq. (15)).

RESULTS AND DISCUSSION

The closed-form solutlon has been employed to study the effect of
varying W/CDA on nonlifting shallow entries into the earth's atmosphere
at escape velocity. In what follows, the effect of modulation on the
time history of the resultant deceleration, flight-path angle, W/CDA, and
velocity is discussed first. The effect of modulation on the corridor
depth and heating during entry is then discussed.

Trajectory Parameters

Typical time histories of the resultant deceleration, flight-path
angle, W/CpA, and velocity for nonlifting vehicles (I/D = O) are presented
in figure 2 for unmodulated and modulated entries into the earth’'s atmos-
phere at escape velocity (Vi = 1.4). The particular curves shown are for
an entry angle 7y = -6°, For the modulated entry, W/CDA was varied to
maintain a peak deceleration of 10g during phase II (see fig, 2(a)). It
will be noted in flgure 2(b) that the flight-path curvature during phase
IT of the modulated entry 1s conslderably less than that for the unmodu-
lated entry during the corresponding time interval. The reduced decelera-
tion of the modulated entry results primarily from the reduced flight-path
curvature., Since W/CpA is presented as a fraction of the value at the
beginning of modulation, the variation in W/CpA shown in figure 2(c) can
be applied to vehicles of any weight, size, and shape. The relative areas
under the velocity time-history curves (fig. E(d)) are indicative of the
greater range for the modulated entry.

Corridor Depth

In reference 2 the corridor depth in statute miles Ay, for
successful entry into an exponential earth atmosphere was shown to be

W
<Fp @> wn

<%b EIgﬂ)ov,

Ayp = 10 logio (21)



12

where the subscripts un and ov, respectively, refer to the undershoot
and overshoot boundaries of the corridor and Fp 1s the conic perigee
parameter given by
7; Brp(r - 1)
Fp = :-]; R — = (22)
Ui JT

for
Ti 1 +,/1 - ViZ(E - Viz)coszyi

(23)

T _
p Viacosayi
For the case of a nonlifting vehicle for which the initial W/CpA is

the same for both boundaries
X

Ayp = 10 logio (24)

FPov

and for a given entry altitude and vehicle (z3), and a given entry velocity
(33 = Vicos y;) the corridor depth depends only upon the allowable entry
angle (see egqs. (22), (23), and (24)). Thus the increased corridor depths
subsequently presented result from lowering the undershoot boundary by
using modulation which permits deceleration-limited entries at steeper
angles than is possible without modulation.

Corridor depths and the corresponding entry angles attainable by
modulating W/CDA during shallow nonlifting entries into the earth's
atmosphere at escape velocity are shown in figure 3 as a function of the
ratio of W/CpA at the end of modulation to W/CpA at the beginning of
moduwlation. Results are shown for deceleration limits of 5, 10, and 15g.
Tt can be seen that for a given deceleration limit, the larger the avail-
able change in W/CDA, the broader is the corridor into which entry may
be made. For example, the T-mile depth of the 10g-limited corridor for
an unmodulated entry is increased to 30 miles for = modulated entry during
which W/CDA at the end and beginning of modulation changes by a factor
of 21. Tt is interesting to note from refercence 2 that in order to use
1ift to attain a 10g-limited, 30-mile corridor without modulation, the
entering vehicle must have an 1/D of *0.3. It is also shown in refer-
ence 2 that without modulation the minimum peak deceleration for nonlifting
entry into the earth's atmosphere at escape velocity is 6.6g, which occurs
for 1 = -4°. Conseguently, no calculations for a 5g corridor have been

made for entry angles less than -4e,

Heating

For the entries considered herein, peak heating occurs during the
high-altitude portion of the trajectory where the density and attendant
Reynolds nunbers are 1low; consequently, the following discussion of
heating during entry will cover only those results obtained when a laminar

boundary layer is considered.

Convective heating rate at the stagnation point.- The convective
heating rate per unit area at the stagnation point during entry into the

~ R
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earth's atmosphere, as given in reference 1, is

_ 590 [W q
ds = JZc / CpAR cos3y (25)

where

_ ﬁ5/2 71/2 fop phases I and III
4= 1/2 =2 (26)
B 1 for phase II

Equation (25) has been used to calculate the stagnation-point heat-transfer
rate for modulated and unmodulated entries which have the same maximum
deceleration. Results for the maximum heating rate are shown in figure 4
for deceleration limits of 10 and 15g. In making these calculations it
was assumed that the radius of curvature R of the vehicle surface at the
stagnation point was identical and constant for both the modulated and
unmodulated entries. It was also assumed that the initial W/CpA was the
same for the modulated and the unmodulated entries. It should be noted
that the data presented in figure U can be used to calculate the ratio of
stagnation-point heating rates for the same modulated and unmodulated
entries for which Rpog # Rurmod, provided R remains constant during
entry. This is done by multiplying the ratio of heating rates shown in
figure L4t by the square root of the ratio of the radius of curvature of

the vehicle making the unmodulated entry to that of the vehicle making the

. modulated entry. If R wvaries during entry, the stagnation-point heating

rate will depend upon the variation of R with time or velocity (See
eqs. (25) and (26)).

The heating-rate penalty incurred by the use of modulation (to
increase corridor depth) can be seen in figure 5 which shows the ratio of
maximum heating rates for modulated and unmodulated entries as a function
of corridor depth. For example, in the case cited previously, in which
the depth of a 10g-limited corridor is increased from 7 to 30 miles, the
maximum heating rate for the modulated entry which provides the 30-mile
corridor is 90 percent greater than that for the unmodulated entry which

provides the 7-mile corridor.

Total convective heat absorbed at the stagnation point.- The total
convective heat absorbed per unit area at the stagnation point during a
modulated entry into the earth's atmosphere can be written (see ref. 1)

= 15,900 [ [ W_(3Q) 43 5
Qg = _ijgz_k/n AT <gﬁ an (27

where
g3/2
for phases I and IIT
i/2 2
- Z cos 7y

de . (28)
du Y ror phase II

1/2

B
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Equation (27) has been used to calculate the total heat absorbed per unit
area at the vehlcle stagnation point for modulated and wmodulated entries
which have the same deceleration 1limit. The results are shown in figure 6
for deceleration limits of 10 and 15g. In the calculations the same
assumptions were made with regard to vehicle shape and W/CDA that were
made in calculating the heating-rate data of figure k (i.e., Rpod = Runmod
and (W/CpA)1 = (W/CpA)unmoa) - For vehicles which satisfy these assump-
tions, the penalty in total heat absorbed at the stagnation point can be
seen in figure 6. As in the case of the heat-transfer rate, the data of
figure 6 may be similarly used to calculate the total heat absorbed at

the stagnation point for different vehicles when Rpog = constant % Runmod;

otherwise R(%) must be available for use in equation (27).
CONCLUDING REMARKS

The differential equation developed for entries during which the
aerodynamic coefficients and vehicle shape vary applies to vehicles of
arbitrary weight, size, and shape and to arbitrary atmospheres. The
closed-form solution for the motion, heating, and variation of W/CpA
was obtained by making certain approximations which do not compromise the
accuracy of the results. It was used to calculate trajectory parameters
of nonlifting entries into the earth's atmosphere at escape velocity. As
an example of the results obtained, the T-mile 10g-limited corridor for
an unmodulated entry can be increased to 30 miles for a modulated entry
with a W/CDA change of 21. For this same increase in corridor depth,
however, the maximum, laminar, convective heating rate and the total heat
absorbed at the stagnation point are increased by factors of 1.9 and 1.8,
respectively. These heating results were calculated for the case in which
the radii of curvature were constant and equal during the modulated and
ummodulated entries, and the initial values of W/CpA were identical.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif, Aug. 12, 1960
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APPENDIX A
DIFFERENTIAL EQUATION OF THE Z FUNCTION FOR MODULATED ENTRIES

The development of the differential equation of the Z function
for modulated, two-dimensional (no lateral forces) entries into spherically
symmetric, exponential, planetary atmospheres closely parallels that pre-
sented in reference 1 for unmodulated entries. Deviations from the
analysis of reference 1, 1t will be seen, occur only when velocity deriv-
atives are obtained, since, in the present analysis, the aerodymnamic
forces and vehicle shape (and weight) are considered to depend on velocity.

By use of a polar coordinate system with velocity components,
aerodynamic forces, and flight-path angle defined as in sketch (b), the

Flight path

.l

Sketch (b)

pair of motion equations in the radial and tangential directions,
respectively, can be shown to be

a2 dv v L D _.
- EE% = - g =8~ -pcosy+siny (A1)
du uv D L
&y - L2 cos 1+ = ta A2
* dt T m cos 7 <~ D B 7> (42)

By ubtilizing the same approximations used in reference 1 so that uv/r can
be neglected compared to du/dt (i.e., |dr/r| << }duw/ul), by introducing



16

the drag coefficient D = (1/2)CDpV2A and the exponential atmosphere
(p = 5Oe'8y), by noting that V = u/cos 7, and by introducing the inde-
pendent varisble

- u
G=-— (43)
Jer
so that
du_ 1 du
dt  JET dt ()
one can write equations (Al) and (A2)
142 1 dv . rpe V52 L
A R sin 7 - < cos ¥ (a5)
g qt2 g dt o[ > D
Y cos=y
T
/— - _=By-
5 B poe TUF
du _ _ Q <?,+ % tan %) (46)

@ cos 7Y

In order to reduce the pair of motion equations (A5) and (A6) to a
single equation, the dependent variable Z defined by

—By_
- 1ls [reu
CpA

is introduced. With the aid of equation (AT) equations (A5) and (A6) are
more conveniently written

1dv - JBrﬁZ< L >
e = =21 - 4+ ——— 1 sin - — COS A8
g dt cosZy 77D 7 (48)

U Uz
du _ _ JBZ u -

L
s os (? + = tan %) (A9)

D

—~
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A second equation for dv/dt is developed in terms of wu, Z, v, and
m/CpA by the use of equations (A7), (A9), and the following expression
for the radial component of velocity (see sketch (b))

%% = v =.gr 4 tan 7 (A10)

The resulting equation is then equated to equation (A8) to obtain the
desired single equation in terms of the foregoing variables.

Before the second equation for dv/dt is developed it is convenient
to introduce the notation

(A11)

>
It

_m
Cph
so that

AY = (A12)

aile

Thus, equation (A?) 1s rewritten
_1- [T e~PYg .
Z = E po E A (Alj)

Proceeding now with the development, differentiation of equation (A10)
yields

lav_fra(Gtany) @ [r d /- sin 7\ di
= /; 37 = ol —> (A1k)

E at g at cos y/ 4t

Upon substituting equation (A9) in equation (Alh) and noting that

4 = 4 & we obtain

aa  dy 4u ’
lav @z . JBT @ dy L
- S E T S0 <yﬁr sin y +% S IG 1+ 5 tan y (A15)

To provide the desired form of the second expression for dv/dt (eq. (A15)),
the flight-path curvature dy/du is expressed in terms of 1, Z, 7y, and .
A in the following menner. By differentiating Z/% from equation (Al3)
(' = dZ/dn) and keeping in mind the approximation |dr/r| << |4a%/dl
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2% _ 1 Feﬁy ay , &
i e o "0 B D am = A
_ _Z(,dyat A
- ﬁ(ﬁdt a@ A> (A16)

Use of equations (A9) and (Al0) in equation (A16) yields an expression
for the flight-path angle

Js_fsin7=<v -%+Z%'—><l+%tan7> (A17)

tiating equation (AL7), is .

L = dy
1+=t =<
(~ + 4 tan %) =

An expression for the flight-path curvature dy/dﬁg obtained by differen-

r— -
L 29 (L 2. 54 — [T\'1 - cos2y
_ a <} D tan %) Eﬁ.<~ “g Z 7§> NPT D/ cos ¥
Jﬁr cos ¥ 1 - L tan y
D L >
L_ 1+ D tan 7y ) cos™y _
(A18)

By assuming that L/D tan y can be neglected compared to unity

(IL/D tan 7| << 1) and restricting the analysis for lifting vehicles to
shallow entries so that during the modulation period cos®y = 1, we can
reduce equation (A18) to

- dy _ il d<Z, z A
u -+ = — - - =+ L —
d \/ﬁcogydu u FA
' 11 1\2 1
A R G R I R )
JE} cos 7 \ u A A JAN

(A19)

Finally, upon substituting equation A19) in equation (A15)(L/D tan y << 1)
and equating the result to equation A8) the original pair of motion

—~
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equations (Al) and (A2) are transformed into a single differential equation
for modulated entries into exponential planetary atmospheres

- m e () )

_ 52
- E—EZE— cosdy + fBr % cos3y = 0 (A20)

In this equation, cos y = J1 - sin2y can be expressed in terms of Z,
Z', A, and A' through equation (A17) (IL/D tan y << 1).
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APPENDIX B

CLOSED-FORM SOLUTIONS FOR m/CDA , Uz, AND y FOR
MODULATED NONLIFTING ENTRIES
The variation in m/CDA with velocity required to maintain a

constant resultant deceleration 1s defined by equation (13) . Upon sub-
stitution of the dependent variable

ot 11 dw/Co) (1)
P=A "hAan mfcph  db
and assuming that cos4y = 1, equation (13) reduces to
1 1 - L
1 — T ee—— o —
p -F D = = (B2)

The corresponding expression for the flight-path angle is (see eqs. (B1)
and (14))

Jremr=2(5-5) (3)

Integration of equation (BE) yields (1/1'3. is an integrating factor)

_%p:iznﬁ_—u——+—2-+constant (BY4)
u B o2 O :

The integration constant can be evaluated in terms of the velocity and

the flight-path angle at the beginning of modulation (i.e., from eq. (B3),

at @ = Gy, pr = (82/B) VBT sin 71 + (2/81)). In this menner

AU _ @ G, B3 /a a2, 2 WBr - .
A—p—B22n<ﬁ1>+232<ﬁ1>[l—<ﬁ1 tg+ g beslnn (B5)

Proceeding by integration of equation (B1)

A= -(% = exp <fp aun + constant> (BS)

-

-J o
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Equation (B5) is readily integrable and the integration constant can be
evaluated in terms of the velocity and m/CDA at the beginning of
modulation (1 and Aj, respectively) . Thus, the closed-form solution
for the variation of m/CDA during a nonlifting modulated entry is

AAZ %: exp {2 {1 +C (%)2: in <§ﬁ§> + E [1 _ (%)2]

- 4_
+ % Chi2 [l - (ﬁi 4:} (BT)

=

where

(B8)

=1
I

c(1 - 2B JJBr sin y1 - W%

and B 1is given by equation (12).

The velocity Tz at which the modulation should be terminated has
been shown to be that value at which m/CDA reaches a maximum, that is,
the value of T for which the derivative of equation (B6) (eg. (B5)) is
zero, which for convenience is written

- -\ 2
izzn<_ll->-2c _l> +—?-——1——+<20 VAL, 71>=o (B9)
B Uy Uy 1—112 o \2 B
g
Trial and error solubions of equation (B9) yield the velocity Uz. The

expression for the flight-path angle during the modulation period is
obtained from substitution of equation (B5) into equation (B3)

- - -\2
sin ¥y = sin 71 + é% {?n <%i> + Eéi {l - <%i> J:} (B10)
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