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SUMMARY

As part of a general investigation to determine the effects of
similator motions on pilot opinion and task performance over a wide
range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program
was conducted on the centrifuge at Johnsville, Pennsylvanla. The test
parameters and measurements for this program duplicated those of earlier
studies made at Ames Research Center with a variable-stability airplane
and with a pitch-roll chair flight simulator. Particular emphasis was
placed on the minimum basic damping and stability the pilots would accept
and on the minlmum dynamics they considered controllable in the event
of stability-augmentation system failure.

Results of the centrifuge-similator program indicated that small
positive damping was required by the pilots over most of the frequency
range covered for configurations rated acceptable for emergency condi-
tions only (e.g., failure of a pitch damper). It was shown that the
pilot's tolerance for unstable dynamics was dependent primarily on the
value of damping. For configurations rated acceptable for emergency
operation only, the allowable instability and damping corresponded to
a divergence time to double amplitude of about 1 second.

Comparisons were made of centrifuge, pitch-chalr and fixed-cockpit
simulator tests with flight tests. Pilot ratings indicated that the
effects of incomplete or spurious motion cues provided by these three
modes of similation were important only for high-frequency, lightly
damped dynamics or unstable, moderately damped dynamics. The pitch-
chalr similation, which provided accurate angular-acceleration cues to
the pilot, compared most favorably with flight. TFor the centrifuge
similation, which furnished accurate normal accelerations but spurious
pitching and longitudinal accelerations, there was a deterioration of
pilots' opinion relative to flight results.

Results of simulator studies with an analog pilot replacing the
human pilot illustrated the adaptive capability of human pilots in coping
with the wide range of vehicle dynamics and the control problems covered



in this study. It was shown that pilot-response characteristics, deduced
by the analog-pilot method, could be related to pilot opinion., Possible
application of these results for predicting flight-control problems was
illustrated by means of an example control-problem analysis.

The results of a brief evaluation of a pencil-type side-arm control-
ler in the centrifuge showed a considerable improvement in the pilots’
ability to cope with high-frequency, low-damping dynamics, compared to
results obtained with the center stick. This improvement with the pencil
controller was attributed primarily to a marked reduction in the adverse
effects of large and exaggerated pitching and longitudinal accelerations
on pilot control precision.

INTRODUCTION

A number of flight and simulator studiles have investigated the range
of vehicle dynamics which pilots consider desirable and the range they can
cope with in the event of stability-augmenter failure (e.g., refs. 1 to 7).
However, relatively little systematic work has been done in correlating
these results in order to determine the accuracy with which simulator
studies of advanced vehicle control problems can be extrapolated to flight. .
Some information bearing on this problem is provided in references 8 to 13.

As part of a general study of the adequacy of ground-based flight
similators, a cooperative NASA-AMAL program was conducted on the centri-
fuge at the Naval Air Development Center, Johnsville, Pennsylvania, to
determine the effects of centrifuge motions on task performance and pilots?
opinions of a wide range of vehicle longitudinal short-period dynamics.
The range of vehicle dynamics corresponded to that of earlier studies made
at Ames Research Center with a variable-stability airplane and with a
pitch-roll chair flight simulator. Most of the centrifuge program vas
conducted with a conventional center stick similar to that used in the
previous flight and pitch-chair studies; however, a brief evaluation of
a pencil-type side-arm controller was also made to determine for certain
problem areas the control improvement that might be realized with this
type of controller.

The present study has three main objectives: First, the centrifuge
flight-simulator results are examined to identify major longitudinal-
control problems in terms of vehicle dynamics and pilots' task performance
and to define the minimum damping and stability the pilots will accept
in the event of failure of the stability augmenter. Second, the effects
of incomplete or spurious kinesthetic or vestibular motion cues on control
problem simulation are shown by comparing centrifuge, pitch-chair, and
fixed-cockpit results with flight-test results. Third, simulator results
with a linear analog model replacing the human pilot are analyzed to
determine whether pilot-response characteristics deduced by this method
can be related to pilot opinion, thereby meking it feasible to predict
flight control problems analytically.
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SYMBOLS
vehicle normzl acceleration factor (ratio of accelerating force
to weight), g

perturbations in vehicle normal acceleration factor relative to
trim or bias g, g

vehicle longitudinal acceleration factor, g
vehicle lateral acceleration factor, g
wing mean aerodynamic chord of test vehicle

numerator constant in pitch transfer function, 1/sec®
numerator constant in pitch transfer function, l/sec2

pilot stick force, 1b

acceleration of gravity, 1 g = 32.2 ft/sec?
pilot-analog static gain, 1b/deg
control-system static gain, SS/FS, deg/1b

numerator constant in normal acceleration transfer function,
1/sec®

centrifuge arm length, ft

centrifuge inner gimbal (pitch) angle
centrifuge outer gimbal (roll) angle
Laplace transform variable

time, sec

control-system first-order lag, sec
pilot-analog first-order lag representing smoothing of error, sec
pilot-analog first-order lead, sec

pilot-analog first-order-lag approximation to neuromuscular lag,
sec
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o stabilizer deflection, deg
€ tracking error, deg
Wy vehicle undamped short-period natural frequency in pitch,
radian/sec
w angular velocity of centrifuge arm, radian/sec
W angular acceleration of centrifuge arm, radian/sec2
T pilot—~analog visual reaction time, sec
¢ vehicle short-period damping ratio in pitch A
8 vehicle pitch attitude, deg g
01 target motion, deg 2

CENTRIFUGE FLIGHT SIMULATOR SETUP

General Description

A block diagram of the closed~loop simulator setup used for the AMAL
centrifuge portion of the program is shown in figure 1. As indicated,
the tracking task, control-system dynamics, aircraft dynamics, and the
coordinate conversion system were set up on the analog computer. The
stick force applied by the pilot was converted to normal-acceleration
perturbations (AAN) and pitch angle through the transfer-function
relationships shown. The computed normal accelerations were then trans-
formed by the coordinate conversion analog into centrifuge commands.
(A detailed discussion of the centrifuge operation and capabilities is
provided in refs. 14 to 17.) The centrifuge cab included a contoured seat
with restraint for the pilot, a force-command center stick similar to
that used in the flight study, and a display presenting conventional
pitch-attitude information to the pilot, as well as simulated target
motion. The bungee used to restrain the stick provided about 10 pounds
stick force per inch of stick deflection. Maximum stick deflection was
about *4 inches. The pilot-restraint system was not critical for this
study, since the accelerations encountered were in the relatively low
range of 2g to Ubg. The system used was a portion of that described in
detail in reference 18. A photograph of the interior of the cab as -
modified for the present study is shown in figure 2.
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Coordinate Conversion System

During the initial phases of the centrifuge program, considerable
effort was expended in optimizing the coordinate conversion system for
this study. What was desired was accurate reproduction of the normal-
acceleration perturbations with minimum introduction of spurious rolling,
longitudinal, and lateral accelerations. A total of 16 different schemes
were tried and the system finally selected was a compromise between
accurate reproduction of normal acceleration, pilots' impressions of the
realism of the similation, and minimization of longitudinal and lateral
linear accelerations and rolling angular acceleratlions. In order to
minimize these extraneous motions, the work was conducted at a bias
trim normal acceleration of 3g. That 1is, the normal-acceleration
pertubations were referred to 3g rather than lg to avoid the disorienting
effects on the pilot characteristics of centrifuge operation at lower
g levels. The pilots generally felt that this bias g had little effect
on their ability to evaluate a given set of dynamics.

Some of the results obtained during the coordinate conversion
evaluation and a detailed description of two of the coordinate conversion
analogs tested are presented in appendix A.

TESTS AND PROCEDURE

Since one of the primary purposes of the centrifuge program was to
compare the results with those of a previous flight study, the control
system and airframe dynamics were matched to those of the aircraft for
the particular test conditions of the flight investigation. Specifically,
the invariant constants in the pitch-transfer function Co and C1
(see fig. 1) were set at 25 and the control system time constant %
was fixed at 0.1 second to correspond to the airplane values. Varlations
in wp® from 1 to 36 and in 2fw, from 10 to -1 were evaluated with the
stick force per g held constant at 8 pounds per g. This was accomplished
both in the airplane and slmulator tests by varying the control-system
gain K. as wp® was varied. Tests were also conducted for values of
wp® from -1 to -10 (corresponding to negative maneuver margins of -1
percent to -13 percent ¢) for damping 2fw, of 0.5, 4, and 8. For these
latter tests, the control-system gain was fixed at 0.140 per pound. Most
of these tests were conducted with a force-command center stick similar
to that used in the flight tests. However, a brief evaluation of a
pencil-type side-arm controller was also made. Photographs of the pencil-
controller installation and the pilot arm restraint used for this portion
of the program are shown in figures 3(a) and 3(b), respectively.



The test conditions described were evaluated by six experienced test
pilots, including four from the NASA, and one each from the Naval and Alr
Force Flight Test Centers. Both static and dynamic evaluation runs were
made for each set of airframe dynamics. The evaluation procedure used
by the pilots was to "feel out™ the pitch attitude and normal-acceleration
response to stick-force commands. When the pilot considered himself
familiar with the particular test conditlon, he was asked to perform
pitch-angle and normal-acceleration transitions of about 3° and 1g,
respectively, as abruptly as possible consistent with the vehicle dynamics
being evaluated. He was then given a tracking task of one minute duration
which simulated tracking the horlzon in turbulent air with a fixed sight.
The target motion comprised the sum of four sine waves to provide a
random-appearing motion to the pilot. The pilot's tracking score was
computed from the relationship 100[1- (erdt/]@iEdt)] and is a measure
of the pilot's ability to minimize the mean square error relative to the
mean square target motion. For this study the mean square target motion
was about (0.6°)2 with maximum excursions of about 2°. Additional details
of the tracking task used are presented in reference 10. The pilot was
then asked to assign a numerical rating on the over-all controllability
and tracking characteristics of the simulated airplane, assuming a mission
typical of a current operational fighter.

RESULTS AND DISCUSSION OF CENTRIFUGE TESTS

Pilot's Evaluations of Vehicle Longitudinal Dynamics

Basic data from the centrifuge tests showing the variation of pilots?
ratings with damping at several constant values of wn2 and with wn2
at several constant values of damping are presented in figures 4(a) and
5(a), respectively. Results are presented both for constant stick force
per g of about 8 pounds per g (fig. 4) and for a constant control gain Ko
of 0.14° per pound (fig. 5). The pilot rating schedule (tsble I) is a
standard system used at Ames Research Center for the past several years
and is described in detail in reference 19. The scatter of about two
rating points for "good dynamics" is the normal variability between pilots
or between repeat runs for the same pllot. These basic data for the
six participating test pllots were averaged, faired, and replotted to
define regions of constant pilot opinion in terms of vehicle longitudinal
dynamics.

Stable dynamics.- The faired results for stable dynamics (positive
wp2) are presented in figure 6. Shown are regions of satisfactory,
unsatisfactory, and unacceptable dynamics expressed in terms of wnz, the
square of the vehicle undamped natural frequency in pitch, and the damping,
2fw,. For a given ailrcraft, wn2 1s proportional to the degree of
stability or to the maneuver margin. In the ensuing discussion, therefore,
it is considered appropriate to use these terms (i.e., w2, stability

n
and maneuver margin) interchangeably. The damping 2§wn 1s inversely
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proportional to the subsidence time to one-half amplitude of the short-
period oscillation. These parameters are those of the characteristic
second-order equation used to describe the vehicle motions (see fig. 1).
For positive wnz, the motion is either oscillatory or pure subsidence.
For the negative w 2 case, to be considered shortly, the vehicle motion

n
is a pure divergence.

It may be seen in figure 6 that the pilots are sensitive primarily
to the amount of damping. The minimum damping the pilots considered
acceptable for emergency operation (e.g., failure of a pitch damper)
corresponds to maximum acceptable subsidence times to one-half amplitude
of about 2 to 4 seconds.

Region I was considered by the pilots to be the most acceptable
area., Region II was characterized by a control sensitivity problem; that
is, the pllots felt that the stick forces required to maneuver near trim
and to track were extremely light, and they found it difficult to avoid
inducing continual oscillations. It should be noted that this problem
was undoubtedly aggravated by the effects on control precision of the
exaggerated fore and aft accelerations impressed on the pilots at the
higher frequencies because of deficiencies in the coordinate-conversion
analog. (See appendix A.) Region III was characterized both by moder-
ately sensitive control response and by a tendency to overcontrol and
exceed the desired response considerably. In region IV, large stick
forces were required to maneuver near trim and to track, and an over-
control tendency was noted. Typical transient-response characteristics
for these four regions of vehicle dynamics are presented in figure 7
in terms of the normal-acceleration response from trim for step stick-
force commands of 8 pounds.

Since the pilots indicated that with the arm properly restrained,
a side-arm controller might be used to advantage in coping with the
control sensitivity problem (region II), a pencil-type side-arm controller
(fig. 3) was evaluated for the higher frequencies. The results of this
study are presented and compared with similar results for the center
stick in appendix B.

Unstable dynamics.- Figure 8 presents the faired results of pilots’
evaluation of vehicle dynamics extending well into the unsteble region
(negative wnz). In this case the control-system gain was held constant,
since it is obviously not possible to maintain constant stick force per g
as the stability is decreased through zero. The particular value of
gain selected (K. = 0.14° per pound)® was the same as that used in the
previous flight study where the gain was optimized for regions of low
and negative static stability and for moderate damping.

11+ is interesting to note that the resulting control-power gradient
of about 0.5 radian per second® per inch of stick travel falls well within
the optimum range defined in reference 20 for atmosphere-entry type
vehicles.



Comparison of the results in figure 8 with those for constant stick
force per g (fig. 6) shows that the pilots will tolerate somewhat lower
values of stability if the control gain 1s incressed. For example, the
boundaries for pilot ratings of 3.5 and 5 are shifted to near zero stabil-
ity and to low negative stability at the higher damping levels. (For
wp2 = 1, the control power gradient for Kg = 0.14 is approximately 10
times that for constant stick force per g.) The results also show the
powerful effects of damping on the degree of instability the pilots would
tolerate. For damping less than 1, any instability was considered
unacceptable while for wvalues of damping of about h, instability corre-
sponding to negative maneuver margins of up to 4 percent € were consid-
ered acceptable for emergency operation (e.g., failure of a stability
augmenter) .2 Computed transient responses for three sets of vehicle
dynamics located on or beyond the boundary between acceptable and
unacceptable dynamics are shown in figure 9. These results are indicative
of the control problem encountered; that is, the magnitude and rate of
divergence of the normal-acceleration response to very small step stick
forces (Fg = 1 lb), as compared to the results shown in figure 7 for
stable dynamics for step stick-force commands of 8 pounds. The increase
in negative stability with damping along constant pilot opinion contours
(fig. 8) corresponds to essentially constant divergence times to double
amplitude over most of the damping range. This is shown more clearly
in figure 10 where contours of constant pilot opinion are plotted as a
function of damping and of the reciprocal of time to double amplitude.
These results suggest that pillot opinion is related to divergence time
rather than to the degree of instability.

Effects of Vehicle Dynamics on Pilots?
Task Performance

The pilots were asked to perform two evaluation tasks during each
test run. One task was to perform pitch-angle and normal-acceleration
transitions, and the other was the simulated long-range tracking task.
Since the tracking task was generally considered more difficult than
the transition task, the pilots' ability to perform the former over the
complete range of short-period dynamics covered in this study will be
examined. -

Basic results showing the effects of vehilicle longitudinal dynamics
on the tracking-task performance of the participating pilots are pre-
sented in figures 4 and 5. The results for constant stick force per g
are shown in figure 4 and those for constant control gain are given in
figure 5. These results indicate that the pilots were able to maintain

2Maneuver margin can be related to wx2 only for a specific air-
plane and for a specific flight condition. For the particular vehicle
and flight conditions simulated in this study, the maneuver margin, in
percent ¢, is approximately 1.25 wn2.
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reasonably high tracking-performance levels over a wide range of vehicle
dynamics because of their adaptive capability (i.e., their ability to
compensate for variations in vehicle dynamics by varying their response
characteristics appropriately to maintain good closed-loop performance

of the pilot-airframe system). For extremely poor dynamics, however, the
tracking score shows both a marked reduction and a large increase in
variability between pilots and between repeat runs for the same pilot
relative to the results for good dynamics. This is evident at very low
damping, particularly at the higher short-period frequencies (fig. 4) and
at low and negative stability (fig. 5). These results indicate that the
pilots were able to adapt or to compensate only partially for very poor
vehicle dynamics.3

Figure 11 was prepared to illustrate more clearly the relative
deterioration in task performance in the several regions discussed in the
previous section for stable and unstable dynamics. Comparative average
tracking scores are shown for the six pilots for regions I, II, III, and
IV for stable dynamics, and for lightly damped and moderately damped
unstable configurations. It 1s apparent that the greatest reductions in
tracking efficiency occur for region IT (Low damping, high frequency) and
for lightly damped, unstable dynamics. An appreciation of the pilots!
problem in performing the tracking task with reasonable proficlency may
be gained by referring back to the associated transient-response charac-
teristics (figs. 7 and 9). It is clear that the initial abrupt g response,
followed by rapid, lightly damped oscillations (region II, fig. 7), and
the magnitude and rate of divergence of the g response for very small
control inputs for lightly damped, unstable dynamics (fig. 9) preclude
the precise control required to track well. As pointed out in appendix
B, the use of a pencil-type controller minimized the reduction in task
performance observed for region II.

Since the pilots base their oplnion, at least in part, on their
ability to perform the tracking task, it is reasonable to assume that some
interdependence between pilot opinion and task performance exists. To
obtain a measure of this correlation, the basic data in figures L and 5
were replotted in figure 12. Although the results show that pilot opinion
is roughly related to tracking score, the correlation 1s considered
fairly poor. The poor correlation is typical of previous efforts made
to correlate pilot performance with pilot opinion (refs. 3 and 10) and
is attributable to the fact that this type of correlation does not account
for the pilot effort or pilot response required to obtain a given level
of task performance.

3There is also some evidence provided in reference 21 which indicates
that the pilots' ability to compensate for poor vehicle dynamics was
further impaired as the steady-state acceleration field exceeded the 3g
level of the present tests.
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COMPARISON OF FLIGHT AND SIMULATOR RESULTS

The previous sections of this paper identified some of the major
longitudinal-control problems in terms of pilots® evaluations and task
performance. In this section corresponding data from three different
simulators are compared with flight-test results to study the effects
of the various incomplete or spurious motion inputs or cues supplied to
the pilot. Since only one pilot, pilot B of Ames Research Center,
participated in all simulator programs, as well as in the flight study,
comparisons are available only for this one pilot. However, since his
evaluations during the centrifuge program agreed fairly well with the
average for all six participating pilots, the following results may be
considered fairly general. Two of the regilons where significant differ-
ences in the pilots! evaluations were observed will be considered first
since this is where the selection of simulators for research will be the
most critical.

Nw £

Pilot Opinion

In figure 13, the flight-test results are compared with three stages
of motion simulation. The particular centrifuge used has three degrees
of freedom - two angular rotations and linear translation in a circle.
The desired linear normal accelerations were matched with flight, but
this had to be done at the expense of exaggerated angular accelerations
in pitch and spurious fore-and-aft accelerations. The pitch-roll chair
has two rotational degrees of freedom to match the angular accelerations
in flight, but no linear motion. The fixed cockpit, of course, furnishes
no motion inputs and the pilot has only the visual instrument display.

In figure 13(a) the four sets of pilot-opinion data are compared as
fuhctions of damping (at high short-period frequency) or stability. The
first thing to be noted is that all of the curves show fairly good general
agreement. However, at low damping where the pilot has difficulty, the
centrifuge and fixed-cockpit simulator become somewhat more difficult to
control and are rated worse than flight or the pitch-roll chair. This
result was unexpected since it was felt that motion inputs would gener-—
ally have an adverse effect on pilots! ability to control a lightly
damped vehicle. Apparently, the correct angular accelerations provided
by the pitch-roll chair and in flight are beneficial, while the masking
of the correct normal accelerations by spurious centrifuge motions pre-
cludes an assessment of the importance of normal-acceleration feedback
to the pilot in this particular control problem.

Figure l3(b) shows, for moderate damping, the comparisons of pilot's
ratings of stability from various simulators. Again the curves are in
general agreement, but the angular acceleration cues in flight and on the
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pitch-roll chair appear to be beneficial for moderately unstable dynamics.
In the region of low positive stability, the simulator results appear
somewhat optimistic.

Figure 14 presents a "broad-brush" treatment of the over-all corre-
spondence between simulator and flight results over the complete range
of dynamics covered in this study. Centrifuge and pitch-chalr pilot
ratings are compared with the corresponding flight-test evaluations.
(Fixed-cockpit simulator results fall somewhere between these two sets
of data.) The correlation is fairly good, indicating that the results
of all three modes of simulation extrapolate reasonably well to the flight
case. However, a closer look shows somewhat more scatter for the centri-
fuge correlation, and for extremely poor dynamics (the higher pilot
ratings), the centrifuge simulation tends to amplify the flight control
problem. This point was considered in detail in figure 13(a). It would
appear, for the particular control problems studied, that angular
acceleration cues are more important than linear accelerations for
accurate simulator evaluations of flight control problems. However, it
may be of interest to point out that for this particular study pilots
with considerable experience in centrifuge, pitch-chair, and fixed-
cockpit simulators preferred the centrifuge because they considered it
more realistic; that is, they felt the control technique in the centrifuge
more closely approximated that which they used in flight and they were
more appreciative and respectful of the major control problems. It 1is
probable that the over-all favorable reaction of the pilots to the centri-
fuge simulation was primarily due to the effort expended in optimizing
the coordinate conversion analog for this investigatlon. It is clear
from the results presented in appendix A that the use of a nonoptimum
coordinate-conversion scheme or a lower bias g level would have resulted
in somewhat less favorable pilots'! impressions and correlation with
flight results.

Aside from the favorable subjective impression of the pilots to the
centrifuge simulation, the results indicate that for routine studies of
flight control problems, where sustained high levels of acceleration are
not expected, the use of a fixed-cockpit simulator or a relatively
uncomplicated, inexpensive, angular meotion simulator, such as the Ames
pitch-roll chair, provides an adequate simulation. For a realistic
assessment of piloting control problems for unusual flight environments,
such as for sustained high g levels during orbital injection and re-entry
(e.g., see refs. 21 and 22) or for extended low-level flights in turbu-
lence, the use of a centrifuge or other g producing flight simulator
is indicated.
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Pilot Tracking Performance

T1lustrated in figure 15 are the effects of simulator motions on a
pilot®s ability to perform the tracking task for the two regions of
vehicle dynamics where appreciable differences in pilots' ratings and
task performance were observed (i.e., high frequency, low damping, and
unstable, moderately damped dynamics). Unfortunately, results are not
available for the flight case, since the tracking task was not performed
in flight. Briefly, the results in figure 1> show very little effect of
motion cues on pilots' task performance over a wide range of damping and
stebility. However, for very low damping at high frequency, it may be
noted that the motion cues provided by the pitch chair were favorable and
those supplied by the centrifuge were adverse. The adverse effects of
centrifuge motion on pllots! evaluations and task performance for this
case were discussed previously. The reason for the favorable effect
on task performance of the pitching motions provided by the pitch chair
is not readily apparent, since it might be expected that any motion
feedback to the pilot would have an adverse effect on control precision
for this case. One possible explanation is that small phase lags (due
to pitch-chailr dynamics) of the order 20° or 30° would tend to increase
the system darping with the pilot in the loop.

For moderately damped, unstable dynamics (fig. 15), the motion cues
provided by both the centrifuge and pitch-chair simulators had a favorable
effect on task performance. This may be attributable either to greater
pilot motivation when motion cues are supplied, or to the additional
information provided the pilot, which he 1s able to use to advantage
in this case.

One conclusion to be drawn from these results is that in the selec-
tion of simulators for evaluating effects of vehicle dynamics on the
pilots! ability to perform a specific control task, much can be accom-
plished with a static simulator, that is, a simulator which provides only
visual cues. However, for accurate assessment of pilot control in
critical areas (e.g., failure of dampers or stability-augmentation system),
realistic motion cues are necessary but care must be taken to insure that
spurious or unrealistic cues do not compromise the results obtained.

ANATOG PILOT STUDIES

The final section of this paper is concerned with studies of a mathe-
matical model of the human pilot. The human pilot is of course a remark-
ably adaptive controller who constantly changes his response characteris-
tics in order to maintain good performance as his task or the dynamics
problem becomes more difficult. His changes can be represented mathe-
matically by the terms of an equation expressing his output or control
force as a function of his input, the tracking error signal. If the
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terms of the equation, or analog pilot, can be related to the dynamics

of the airplane and its controls and to the pilot opinions of the dynamics
just presented, then it should be possible to use the analog pilot to
predict adverse pilot opinions or control problems on a purely analytical
basis.

Analog Pilot Model

With this in mind, figure 16 shows the simulator setup with the
analog pilot replacing the human pilot. The expression for the analog
pilot contains five parameters: a gain Kp, a reaction time T,

a first-order lead term Ty, and two first-order lag terms, Ty, which
approximates the human actuator lag, and T1, a smoothing term. Of these,
the reaction time T and the actuator lag Ty are relatively unalterable
by the human pilot and were fixed at 0.2 and 0.1 second as shown. The
other three parameters then are presumed to be those that express the
changes in the pilot behavior as he copes with changes in the vehicle
dynamics, tracking task, and so forth. In this particular study, it was
found that the human pilot could be approximated fairly well by changing
only the gain and the lead terms; therefore, the smoothing term TI was
fixed at 0.1 second.

Analysis of Pilot-Response Characteristics

The procedure was to present the analog pilot with the same tracking
task given the human pilots during the simulator studies. The two
variables, the gain and the lead, were then adjusted on the analog
computer until the tracking performance matched that of the human pilot.*
To determine specific values of galn and lead, it was assumed the human
pilot optimizes his tracking performance with minimum introduction of
lead and for maximum gain consistent with stability considerations of
the closed-loop, pilot-aircraft combination. The procedure is illustrated
in figure 17, which presents two typical variations of analog pilot
tracking performance with gain, at constant values of the lead term.
Plots are shown for region I, the best dynamics tested, and for one
problem area (region II, high stability and low damping). For the good
set of dynamics there 1s a broad range of gain where fairly good track-
ing 1s obtained and the human pllots' performance can be matched with a
gain of 5 pounds of control force per degree of tracking error and no
lead at all, In contrast, for the poor region where the human pilots
complained of control sensitivity, the gain must be reduced to about
1 pound per degree, which is only 2 percent of the total control avail-
able. The gain adjustment must be fairly precise if elther unstable

4Tn the present study, the average tracking performance for all
pilots during test runs with the centrifuge cab fixed was used as the
reference human-pilot tracking level.
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operation of the controls or poor tracking scores is to be avoided. Also,
a small increase in lead still further reduces the allowsble gain varia-
tion and the tracking score. The latter result is characteristic of
configurations with control-sensitivity problems and is fairly indicative
of the information provided by this method of analysis.

The above procedure was applied to the complete range of dynamics
covered in the first part of this paper and the results are summarized
in figure 18. The range of gain and the lead required to match the
human-pilot tracking scores are shown with boundaries to indicate the
corresponding human-pilot opinion of the vehicle dynamics. The major
control problem areas are identified as in figure 6; that is, region I,
good dynamics; region II, high frequency, low damping; region IIT,
low frequency, low damping; and region IV, low frequency, moderate
damping. It can be seen that a reasonable general correlation is estab-
lished between pilots' ratings of satisfactory, unsatisfactory, and
unacceptable dynamics and the values of pilot gain and lead required
to cope with these dynamics. For example, satisfactory ratings correspond
to gain variations of about 3 to 12 pounds per degree of error (about
6 to 25 percent of the total available control) and leads of less than
0.4 second. The small leads the pilots will tolerate for satisfactory
ratings indicate that the pilots prefer to operate primarily as a simple
gain changer, within the 1imits noted. On the basis of the general
correlation established in figure 18 between pilot rating and pilot-
response characteristics, it appears feasible to predict control-problem
areas analytically before extensive pilot-operated simulator studles are
available. It may be pertinent to point out that the work reported on
in reference 23 also deals with the problem of correlating pilot-response
data with conventional handling-qualities research results, typified by
the data presented in the first section of this paper. 1In general, the
results of the present study and those presented in reference 23 show
substantial areas of agreement.

Example Control-Problem Analysis

As an example illustrating possible application of the analog-pilot
results for predicting flight-control problems, a longitudinal-control
problem recently encountered during the landing approach of a high-
performance airplane is examined. For this particular flight, the pitch
damper was inoperative and the problem encountered was one of large,
apparently pilot-induced, pitch oscillations Just prior to touchdown,
With the short-period dynamics adjusted to those of the airplane, the
tracking performance of the analog pilot was examined with the results
shown in figure 19. The results are both for the pitch damper inoperative
and operative. The human pilots' averaged tracking scores from fixed-
cockpit simulator evaluations are again included for reference. In this
case, the human pilots' tracking scores cannot be utilized to predict
the gains and leads required. However, use can be made of the fact that
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the human pilots'! tracking performance was found to correspond roughly to
the maximum performance of the analog pilot. In the present example, this
maximum performance is approximately that shown, that is, about 70 and

85 percent. For the case with the pitch damper off, these results would
indicate that the pilots would be required to employ very low gains (of
the order of 0.5 pound of control force per degree of tracking error) and
considerable lead (of the order of 0.8 second) to attain the predicted
level of performance. With the pitch damper on, the allowable gain 1is
increased to about 2 pounds per degree and the required lead reduced to
about 0.2 second, both favorable changes. These results are identified
in figure 18 as regions A and B. The predicted pilots' ratings (from
fig. 18) would be about 6 and 4.5, respectively. Figure 20 presents
actual results of pilots! evaluations and tracking performances in a
fixed-cockpit simulator for the example control problem. It can be seen
that the predicted ratings of about 6 and 4.5 agree reasonably well with
the actual ratings of about 5.5 for the pitch damper off and 4 for the
pitch damper on. In addition to the obvious advantage of keeping the
pitch damper on, the results in figure 18 suggest that further improvement
could be obtalned by reducing the control-system gain. For example,
halving the control galn (which is roughly equivalent to doubling the
allowsble pilot gain) would move configuration B into the satisfactory
region and would improve slightly configuration A to a rating of about 5.

SUMMARY OF RESULTS

Results of centrifuge flight-simulator evaluations over a wide range
of aircraft longitudinal dynamics were used to identify major control
problems and to define the minimum damping and stability the pilots will
accept 1n the event of stability-augmenter malfunction.

Comparisons of centrifuge, pitch-chair, and fixed-cockpit results
with flight-test results indicated:

1. The effects of incomplete or spurious motion cues, of the seat-
of ~the-pants or vestibular type, on control-problem simulation were
important only for high-frequency, lightly damped dynamics or moderately
damped, unstable dynamics.

2. Of the three modes of simulation studied, the pitch-chair simu-
lation, which provided accurate angular acceleration cues to the pilot,
compared most favorably with flight. For centrifuge simulation, which
supplied accurate normal accelerations at the expense of introducing
spurious pitching and longitudinal accelerations, there was a deterio-
ration of pilot's opinion relative to flight-test results.

3. Over all, however, the results of all three modes of simulation
could be extrapolated to flight with a fair degree of accuracy.
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Results of simulator studies with an analog pilot replacing the human
pilot were presented illustrating the adaptive capability of human pilots
in coping with the wide range of dynamics and the major control problems
covered in this study. It was shown that pilot's response characteristics
deduced by this method could be related to pilot's opinion, thereby making
it feasible to predict flight-control problems analytically.

Comparison of results obtained from a brief evaluation of a pencil-
type side-arm controller in the centrifuge with those obtained for the
conventional center stick showed a substantial improvement in control
with the pencil controller for high-frequency, lightly damped vehilcle
dynamics, It was shown that the use of the pencil controller minimized
the adverse effects of large pitching and longitudinal accelerations on
the pilot's ability to apply the precise control inputs required.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Aug. 29, 1960
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APPENDIX A
DESCRIPTION OF CENTRIFUGE COORDINATE-CONVERSION ANATOGS

As indicated in figure 1, the purpose of the coordinate-conversion
analog was to transform the computed linear accelerations, as determined
by the analog computer from the appropriate aircraft transfer functions,
into centrifuge commands. These commands were in the form of inner (pitch)
and outer (roll) gimbal positions and arm angular rate. The two gimbal
commands were used to position the centrifuge gondola so that the pilot
would be subjected to linear accelerations similar in magnitude and
direction to those he would experience in flight. However, this was
ordinarily accomplished at the expense of spurious pitching and rolling
accelerations.

The standard coordinate-conversion analog, which was devised by the
Aeronautical Computer Iaboratory Group at NADC, Johnsville, for closed-
loop operation of the centrifuge, solved the following system of equations:

A = AP+ A+ AR (1)

A = <%L>2+ (‘“—ZL>Z+ 1 (2)

t
w =\_/; o dat (4)
o=sinR - QEL cos R + Ay (5)
o=7v sin P - oL cos P - Ay (6)
y = EZE sin R + cos R (7

Most of the previous closed-loop centrifuge programs utilized this standard
coordinate-conversion analog. In general, it was found in these previous
studies (e.g., ref. 24) that the pilots were not appreciably distracted

or disoriented by the spurious angular motions at the higher linear
accelerations of interest.
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For the purpose of the present study, where it was desired to
reproduce accurately the normal acceleration perturbations with minimum
introduction of spurious angular and linear accelerations, the standard
coordinate-conversion system was found iInadequate. This was due to both
poor reproduction of the normal accelerations and to excessive rolling
motions of the cab. Therefore, a number of different coordinate-conversion
analogs were evaluated to arrive at a system adequate for this study. Of
the 16 systems evaluated, pilot-opinion results for 7 will be presented,
and the coordinate conversion schemes for 2 will be described in detail.

Pilots! evaluations.- Figure 21 presents the results of the evalua-
tions for seven of the coordinate-conversion analogs tested. The various
symbols represent the four pilots who participated in this phase of the
program. The particular set of airframe dynamics chosen for this evalua-
tion (i.e., w2 = 16, and 2fw, = 2) was intended to be just poor enough
to indicate deficlencies in the coordinate-conversion system. The results
show an appreciable effect of the coordinate-conversion system on pilots!
evaluations and corresponding effects on their tracking scores. Pilots'
observations and a study of the centrifuge records indicated that for the
poorer systems (e.g., A, B, C) the centrifuge motions which were consid-
ered unrealilstic and exaggerated were the longltudinal linear and pitch-
ing angular accelerations and, to a lesser extent, the lateral linear and
rolling angular accelerations. System F, the best system tested, was a
compromise between accurate reproduction of normal acceleration and
minimization of the spurious centrifuge motions. Most of the evaluations
were conducted with g bias g of 3; however a brief study was made of the
effects of bias g level on pilot opinion and tracking score for one pilot,
and the results are presented in figure 22. The results are for the best
coordinate conversion analog tested and for good vehicle dynamics, mn2 = 16
and 26w, = 8. It can be seen that as the blas g was reduced below 2, the
pilot's opinion rapldly deteriorated. With the bias g set at 1.5, the
pllot stated that he became extremely disoriented because of the extreme
rolling motions of the cab, and it was necessary to terminate the run to
enable the pilot to regain his bearings. It was found that though the
pllot was disoriented, his tracking score suffered only mildly at the
lower bilas g levels, in this case. On the basis of these results, the
main portion of the centrifuge program was conducted with the optimized
coordinate conversion system T and with the bias g set at 3.

Mode B.- This mode was essentially the standard coordinate conversion
with the addition of an arm equalizing filter and an additional input to
the inner gimbal command in the form of a filtered pitch-rate signal. The
purpose of the arm equalizing filter was to minimize the sizable time lag
of the centrifuge arm response so that better correspondence between com-
puted and measured normal-acceleration perturbations would be obtained.
Adding the filtered pitch-rate signal to the inner gimbal command was
intended as the best compromise between matching pitching accelerations
and normal accelerations simultaneocusly. The inner gimbal command was
then

Uw e
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Po=P +6
where
9'* - M‘szSé
(T1s+1) (Tos+1)

The values used for this mode were: K =3, Ti = 1 second, Ts = 0.5
second. In addition, the w contribution to the inner gimbal command
was modified by a first-order lag of 0.5 second. Evaluation of this
coordinate-conversion analog for relatively poor dynamics (wn2 = 16,

2lw, = 2) in terms of pllot's rating and task performance (fig. 21) indi-
cated mode B was one of the worst tested. The pilot observed that the
motions of the cab following rapid control inputs were unrealistic, and
practically uncontrollable. Results in figure 23, which compare the
command linear accelerations with the actual values, indicate that part

of the problem was due to the large, oscillating longitudinal accelerations
AX and, to a lesser extent, the lateral accelerations, Ay. It should

be pointed out that the commanded values of both Ay and X were zero for
this investigation. The fairly good correspondence observed in figure 23
between the commanded and actual values of Ay results from the favorable
effects of the arm equalizing filter.

Mode F.- This mode, which was considered the best of the 16 modes
evaluszted, consisted of the standard coordinate-conversion analog, the arm
equalization filter and reductions in both the command to the outer glmbal
and in the ® contribution to the inner gimbal of one-half. The results
provided in figure 24 indicate good reproduction of the desired, or com-
manded, normal accelerations with relatively small introduction of spurious
longitudinal and lateral accelerations. Pilots' comments for this mode
indicated that the centrifuge response to control inputs was fairly
realistic and that the objectionable rolling motions and fore and aft
accelerations were barely apparent, even for rapid control inputs.

Although this particular coordinate-conversion analog was found
adequate over most of the range of aircraft short-period dynamics studied,
deficiencles appeared, particularly at the highest short-period frequencies
and at very low damping levels. For these dynamics, spurious fore and aft
and lateral accelerations were introduced which had an adverse effect on
the pilots!' ability to control. Typical results illustrating these effects
are presented in figure 25.
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APPENDIX B
PENCIL-TYPE SIDE-ARM CONTROLLER RESULTS

Brief tests with the pencil-type side-arm controller (fig. 3) were
conducted to assess the effects on pilots! ratings and task performance
of minimizing inadvertent control inputs due to centrifuge motioms. Since
results of the main portion of this program with the center stick indicated
that inadvertent control was a problem only at the higher short-period
frequencies, the pencil-controller tests were confined mainly to values of
wy? of 16 and 36 radians® per second®. (A few check runs for unstable
dynamics indicated no substantial control improvement compared to results
obtained with the center stick.) The basic results for the four pilots
who participated in this phase of the program are presented in figure 26.
The pilot-opinion data in this figure were averaged and replotted to obtain
lines of constant pilot opinion as a function of short-period frequency

and damping.

The falred results are presented in figure 27 where they are compared
with similar data obtained for the center stick. The shift in the pilot
opinion lines to considerably lower damping levels shown for the pencil
controller results is attributable to two factors. First, the use of the
pencil controller appears to have minimized inadvertent control inputs and
consequent tendencies toward pilot-airplane instability, since no signifi-
cant difference was noted between dynamic simulation (fig. 27) and static-
similation results (not shown). This is verified, in a more quantitative
fashion, in figure 28 which presents comparative averaged tracking scores
for both the center stick and the pencil controller for region II (wnz = 363
2fw, = 0.5). It is apparent that very little reduction in task performance,
due to centrifuge motions, occurred with the pencil controller, while a
marked decrease in performance resulted with the center stick. Second,
the pilots indicated a preference for the pencil controller for the static
as well as dynamic mode of centrifuge operation. They generally agreed
that the pencil controller not only improved their ability to cope with
high-frequency, low-damping regions, but also was a better control than
the center stick for relatively good dynamics. One pilot went so far as
to assign a rating of 1-1/2 for region I dynamlcs (fig. 26), which
approaches the optimum rating of 1 as closely as possible without the
pilot actually admitting the ultimate in control response had been attained.
This improvement was probably due to the pilot's ability to apply smoother,
more precise control inputs with a finger-manipulated control than with the
conventional center stick, which requires hand and arm motions. It is of
interest to point out that in previous fixed-cockpit and centrifuge studies,
which compared the pllots! ability to control with various types of side-
arm controllers, including the pencil type (refs. 21 and 25), it was
generally found that the pilots could cope with lower levels of airframe
damping with the pencil controller than with the more conventional hand-

grip types.

™
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It should be pointed out that the results of the present study were
obtained with the pilots in a "shirt-sleeve” environment. It is possible
that the improvement in control observed for the pencil controller might
not have been so striking if the comparative evaluation had been made with

the pilots wearing full pressure suits and gloves.
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(a) Pilots' ratings. (b) Pilots' tracking scores.

Figure lU.- Basic data, constant stick force per g (Fg/g = 8).
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Figure 5.- Basic data, constant control gain (K, = 0.14° per pound).
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Figure 7.- Normal-acceleration step response from trim computed for a
stick-force command of 8 pounds for regions designated in figure 6.
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Figure 15.- Effects of simulator motions on pilot's tracking performance;

pilot B.
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Figure 18.- Summary of pllot response characteristics defined by the use
of the analog pilot.
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Pigure 23.- Comparisons of commanded and actual linear accelerations in
centrifuge for coordinate conversion; mode B; pilot A; w,2 = 16

2lw, = 2.
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Figure 26.- Basic data, pencil-type side-arm controller. (Maximum
control power about same as for center stick for constant stick-
force per g tests.)
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