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SUMMARY

Recently applications have exposed polymer matrix composite materials to very high

strain rate loading conditions, requiring an ability to understand and predict the material

behavior under these extreme conditions. In this first paper of a two part report,

background information is presented, along with the constitutive equations which will be

used to model the rate dependent nonlinear deformation response of the polymer matrix.

Strain rate dependent inelastic constitutive models which were originally developed to

model the viscoplastic deformation of metals have been adapted to model the nonlinear

viscoelastic deformation of polymers. The modified equations were correlated by

analyzing the tensile/compressive response of both 977-2 toughened epoxy matrix and

PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the

modified constitutive equations appear to do an adequate job of modeling the polymer

deformation response. A second follow-up paper will describe the implementation of the

polymer deformation model into a composite micromechanical model, to allow for the

modeling of the nonlinear, rate dependent deformation response of polymer matrix

composites.

LIST OF SYMBOLS

DO
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q

Sij
t

At

Z

Zo

material constant representing maximum inelastic strain rate

elastic modulus of material

material constant representing rate dependence of material

material constant representing hardening rate of material

deviatoric stress component
current time

current time increment

scalar state variable

material constant representing initial isotropic hardness of material
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Zl
E

E I

E_ij

_x
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U

Us

material constant representing value of scalar state variable at saturation

uniaxial strain

uniaxial inelastic strain

inelastic strain component

effective inelastic strain

inelastic strain at saturation

constant total applied strain rate

uniaxial back stress

back stress component

material constant representing value of back stress at saturation

uniaxial stress

value of stress at saturation

quantities with dots above them represent rates

INTRODUCTION

NASA Lewis Research Center has an ongoing research program to develop new

technologies to improve aircraft engine fan containment systems. The program contains a

feasibility study to replace metallic containment systems with polymer matrix composite

hardwall containment systems. In such an application, the composite would be loaded at

strain rates up to several hundred per second. In designi:ag a polymer matrix composite

containment system, the ability to correctly model the c¢,nstitutive and failure behavior of

the composite under the high rate loading conditions present is of critical importance.

Experimental techniques to characterize the behavior of polymer matrix composites

under low strain rate loading conditions have been well established for many years.

Furthermore, numerous analytical methods have been de veloped to model the constitutive

and failure behavior of composites under quasi-static lo_ds. However, the analytical

methods required to characterize and model the constitutive and failure behavior of

polymer matrix composites under high strain rates are not nearly as well developed as is

the case for materials under quasi-static loads. Furtherrr, ore, the effects of strain rate on

the material properties and response is still an area of aczive investigation.

This paper, the first of a two part report, describes the adaptation of constitutive

equations designed to model the viscoplastic deformation response of metals to the

problem of modeling the inelastic, strain rate dependent response of a polymer. First,

some general background, including a review of the literature, will be presented. In the

background section of this report, previous investigation s into characterizing and

modeling the rate dependent response of polymers and polymer matrix composites will be

described. Specifically, experimental tests designed to determine the rate dependence of

the properties and response of a polymer matrix composite will be described. In addition,

analytical methods which have been developed to represent the rate dependent response

of both bulk polymers and polymer matrix composites will be discussed.
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After the background section, the strain rate dependent, inelastic constitutive equations

which were utilized to model the polymer matrix will be discussed. For the constitutive

equations, techniques which were originally designed to represent the rate-dependent,

viscoplastic response of metals have been adapted and modified to model the inelastic

response of a polymer. A description of these methods, and how they were modified to

analyze the tensile/compressive response of a polymer, will be given. Furthermore, the

analytical procedure utilized to obtain material constants for two representative materials,

Fiberite 977-2 toughened epoxy and PEEK thermoplastic, will be described. The

experimental procedures which were utilized to obtain the material data will also be

presented. The computational approach used to implement the equations will be

discussed, and the stress-strain curves obtained by using the developed models will be

presented. Conclusions on which of the presented constitutive models will be utilized in

the remainder of the project will be given.

BACKGROUND

Strain Rate Effects on Material Properties

Several experimental studies have been performed with the goal of determining the

effects of strain rate on the material properties and response of polymer matrix composite

systems at high strain rate conditions. One such method of performing such studies

involves using the split Hopkinson bar technique, which was utilized by researchers such

as Harding and Welsh [1], Staab and Gilat [2] and Choe, Finch and Vinson [3]. The

technique has been extensively utilized in characterizing metals at high strain rates [4].

The basic technique involves propelling a striker bar into a pressure bar. The pressure bar

then transmits a compression stress wave which propagates through the specimen,

sandwiched between the pressure bar and a transmission bar. Gages on the pressure and

transmission bars are then utilized to compute the force and displacement in the specimen

based on the wave propagation profiles.

Harding and Welsh [1] created a modified split Hopkinson bar apparatus to allow for

the tensile testing of unidirectional graphite/epoxy composites at high strain rates. Tests

were conducted at strain rates ranging from 5E-04/sec to 450/see on composites with a

[0] fiber orientation. The stress-strain curves obtained were nearly linear until failure,

and there was minimal change in the elastic modulus and fracture strength with strain

rate. Since the response of a [0] composite is primarily fiber dominated, these results

indicate that the graphite fibers have minimal strain rate dependence. Harding also

conducted split Hopkinson bar tests on glass/epoxy and glass/polyester woven composites

loaded with a punch loading condition [5]. For both types of materials tested, the study

found that increasing the punch speed resulted in an increase in the maximum punch load

present in the specimen, as well as an increase in the shear strength of the specimen.
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Staab and Gilat [2] conducted tensile split Hopkinson bar tests and static tests on

glass/epoxy composites over a strain rate range from 1E-04/sec to approximately 1000

/sec. Laminates with fiber orientations ranging from [-+15]s to [-+75]s were examined. For

each of the laminate orientations considered, increasing the strain rate increased the initial

modulus, maximum stress and failure strain. The difference between the static results

and the high strain rate results increased significantly as the laminate orientation angle

decreased. In compressive split Hopkinson bar tests that Choe, Finch and Vinson [5]

conducted, the ultimate stress and modulus were found to increase with strain rate for

unidirectional graphite/epoxy specimens. The ultimate stress also increased with strain

rate for quasi-isotropic graphite/epoxy specimens.

Another type of test technique utilized to determine the response of polymer matrix

composites at high strain rates involves subjecting the composite to explosive pressure

pulse loadings. Such methods were utilized by Daniel, Hsaio and Cordes [6], Daniel,

Hamilton and LaBedz [7] and A1-Salehi, A1-Hassani anti Hinton [8]. Daniel, et. al. [6,7]

utilized an expanding ring, where a thin composite ring is subject to an explosive pulse

loading. In combination with static tests, the effects of strain rate on the longitudinal,

transverse and shear properties of a unidirectional graphite/epoxy composite system were

determined. The experiments were conducted using strain rates ranging from 1E-04/sec

to 500/sec. In the longitudinal direction, the modulus increased slightly, but the strength
and failure strain showed almost no variation as the strain rate was increased. In the

transverse direction, on the other hand, the modulus and strength increased sharply, and

the failure strain showed a slight increase with higher strain rates. When the shear

properties were examined, the modulus increased significantly, the strength increased a

moderate amount, and the failure strain showed a slight decrease with increasing strain

rate. Since the longitudinal properties of a unidirectional composite system are fiber

dominated, the results obtained indicate that for a graphite/epoxy composite the

properties of the carbon fiber do not vary significantly with strain rate (similar to what

was found by Harding and Welsh [1]). However, since the transverse and shear

properties are matrix dominated, the results indicate that the behavior of the epoxy matrix

does vary significantly with strain rate, and drives the ra,e dependence of the composite.

Utilizing similar testing techniques, A1-Salehi, et. al. [8] found that for a filament wound

glass-epoxy tube, the burst strength and failure strain increased, while the elastic modulus

displayed minimal variation, with higher strain rates.

The correlation between the strain rate dependence of the composite and the rate

dependence of the matrix, particularly at high strain rate:q for graphite/epoxy composites

was further established by Groves, et. al [9]. In compression tests on a graphite/epoxy

composite, the compression strength was found to increase with strain rate, with the

increase being most pronounced at higher strain rates (on the order of 100-1000/sec). To

attempt to explain this behavior, tensile and compressiw; stress-strain curves were

generated for the epoxy matrix over a variety of strain rates. For both tensile and

compressive loadings, the modulus was found to increase with strain rate, with significant

increases occurring at strain rates above 10/sec. Furthmmore, the compressive strength

was found to increase steadily with strain rate, while the tensile strength was found to
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increase dramatically at strain rates above 10/sec. The results from these tests confirmed

that strain rate had a significant effect on the properties of the epoxy matrix in a

graphite/epoxy system.

The overall result from these experimental studies is that while the details may vary

based on the type of fiber and fiber orientation angle used, the material properties and

response of polymer matrix composites do vary with strain rate, particularly at high strain

rate conditions. In particular, for graphite/epoxy systems, the strain rate dependence

appears to be driven by the strain rate dependence of the polymer matrix, indicating that

in modeling composites of this type, capturing the rate dependent response of the polymer

matrix is of critical importance.

Polymer Constitutive Modeling

Polymers have long been known to have a rate-dependent constitutive response.

Traditionally, for very small strain response, linear viscoelastic techniques have been

used to model the rate dependent behavior on a phenomelogical level [10]. In linear

viscoelastic models, combinations of springs and dashpots in series and parallel may be

used to capture the rate dependent behavior. When the strains are large enough that the

response is no longer linear, nonlinear viscoelastic models have been developed. For

example, in a model developed by Cessna and Sternstein [11], nonlinear dashpots are

incorporated into the constitutive model. Empirical equations are also used to capture the

rate dependent response, in which the yield stress is scaled as a function of strain rate

[12].

A more sophisticated approach to polymer constitutive modeling takes a molecular

approach. In this approach [13], it is assumed that the deformation of a polymer is due to

the motion of molecular chains over potential energy barriers. The molecular flow is due

to applied stress, and the internal viscosity is assumed to decrease with applied stress.

The yield stress (the point where permanent deformation begins) is defined as the point

where the internal viscosity decreases to the point where the applied strain rate is equal to

the plastic strain rate. Internal stresses can also be defined [13,14], which represent the

resistance to molecular flow which tends to drive the material back towards its original

configuration. Another approach to polymer deformation assumes that the deformation is

due to the unwinding of molecular kinks [15]. In both approaches, constitutive models

have been developed [13-17] in which the deformation response is considered to be a

• function of parameters such as activation energy, activation volume, molecular radius,

molecular angle of rotation, and thermal constants. Furthermore, the deformation is

assumed to be a function of state variables which represent the resistance to molecular

flow caused by a variety of mechanisms. The state variable values evolve with stress,

inelastic strain and inelastic strain rate.

An alternative approach to the constitutive modeling of polymers is to utilize, either

directly or with some modifications, viscoplastic constitutive equations which have been

developed for metals. For example, Bordonaro [18] modified the Viscoplasticity Theory
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Based on Overstress developed by Krempl [19]. In Bordonaro's model, the original

theory was modified to attempt to account for phenomerta encountered in the deformation

of polymers that are not present in metals. For example, polymers behave differently

from metals under conditions such as creep, relaxation, and unloading. Other authors,

such as Valisetty and Teply [20] and Zhang and Moore [21], utilized techniques

developed to model the deformation of metals directly with no modification. However,

they primarily limited their study to analyzing the uniaxial tensile response of polymers

and did not consider phenomena such as unloading, creep or relaxation.

The conclusion to be drawn from the work discussed above is that it is possible to

analyze the rate dependent response of polymers by simulating the physical deformation

mechanisms. Furthermore, the physical deformation mechanisms can be modeled by the

use of state variables. This approach is very similar to what is used in viscoplastic

constitutive equations which are utilized for metals. The work completed to date

indicates that modeling techniques developed for metals can be adapted for use with

polymers. However, appropriate modifications must be made to the equations and

consideration must be given to the range of applicability of the model.

Composite Constitutive Modeling

Previous efforts to simulate the rate dependent response of polymer matrix composites

at high strain rates have utilized both macroscopic and micromechanics approaches. In

the macroscopic approach, the composite material is modeled as an anisotropic,

homogenous material, without any attention being paid lo the individual constituents.

For example, Weeks and Sun [22] developed a macroscopic, rate-dependent constitutive

model to analyze the nonlinear high strain rate response of thick composite laminates.

Building upon previous work conducted by Yoon and Sun [23] and Gates and Sun [24],

the inelastic behavior of a carbon fiber reinforced thermoplastic was simulated through

the use of a quadratic plastic potential function. A scaling function was defined to model

the variation of the response due to varying fiber orientation of a single ply. The finite

element method was utilized to analyze a composite lan_inate, where a layer of elements

was used to simulate a single ply. The rate dependence 3f the deformation response was

captured by varying the material properties as a function of strain rate. This technique

was later modified by Thiruppukuzhi and Sun [25] in order to directly incorporate the rate

dependence of the material response into the constitutive model. A similar type of

approach was utilized by Espinosa, Lu, Dwivedi and Zavattieri [26]. However, the finite

element procedures utilized were specifically reformulated to account for the dynamic,

large deformation response often seen in high strain rate impact problems.

Other approaches have been used to model the high strain rate response of polymer

matrix composites on the macroscopic scale. For instan:e, O'Donoghue, et. al. [27]

assumed an orthotropic, linear elastic deformation response, but reformulated the

constitutive equations to separate out the hydrostatic and deviatoric stresses. This stress

separation facilitated implementation of the technique into a transient dynamic finite

element code. A simple approach developed by Tay, Ang and Shim [28] utilized an
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empirical model which scaled the "dynamic" stresses (i.e. the stresses due to dynamic

loading) as a function of strain rate.

Research has also been conducted in simulating the high strain rate deformation

response of polymer matrix composites utilizing a micromechanics approach. In

micromechanics, the effective properties and response of the composite are computed

based on the properties and response of the individual constituents. For example,

Espinosa, Emore and Xu [29] utilized a finite element approach in which the fibers and

matrix were explicitly modeled in the finite element mesh. A molecular, state variable

based polymer constitutive equation, similar to what was described in the previous

section of this report, was utilized to model the inelastic, rate dependent deformation

response of the polymer. Another approach that has been taken utilizes analytical

methods which explicitly compute the effective properties of the composite based on the

properties of the constituents. For instance, Clements, et. al. [30] utilized the Method of

Cells developed by Aboudi [31] to account for the stress wave propagation at the

constituent level seen in an impact problem. Aidun and Addessio [32] also utilized the

Method of Cells to simulate a high strain rate impact problem. For their analysis, they

developed a nonlinear elastic constitutive equation to model the response of the polymer

matrix. In addition, they reformulated the micromechanics equations to separate out the

hydrostatic and deviatoric stress components to facilitate implementation of the technique

into a transient dynamic finite element code.

The overall conclusion from this review is that the high strain rate deformation

response of composite materials can be modeled using a variety of methods.

Furthermore, the nonlinear response of the composite can be accounted for within the

constitutive equations. In macroscopic techniques, the nonlinearity and rate dependence

of the deformation response are accounted for at the ply level. In micromechanical

techniques, the rate dependence and nonlinearity of the polymer matrix is modeled at the

constituent level. The homogenization techniques then compute the effective

deformation response of the composite based on the response of the individual
constituents.

MATR/X CONSTITUTIVE MODEL

State Variable Modeling Overview

As discussed in the previous section, the rate dependence of a polymer matrix

composite loaded at high strain rates is primarily a function of the rate dependence of the

matrix constituent. Furthermore, the stress-strain response of polymers is nonlinear at

loads above one or two percent strain [10]. Consequently, a need exists for constitutive

equations which capture the nonlinear, rate dependent deformation response of the matrix
material.
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It is possible to utilize constitutive equations for polymers which incorporate the

deformation mechanisms of the material. For polymers, deformation is due to the motion

of the molecular chains in the material [13]. At small deformation levels, prior to yield,

there is also a resistance to the molecular flow. In constitutive models, a state variable

approach can be utilized to model the mechanisms which cause material deformation

[33]. In this type of approach, the specific changes in the local details of the material

microstructure are not simulated. Alternatively, variables are def'med which are meant to

represent the average effects of the deformation mechanisms which are present. These

variables can evolve as a function of external parameters such as the stress, inelastic

strain, and the current value of the state variable. Furthermore, the inelastic strain rate

can be defined to be a function of the state variables and external variables such as the

current stress state.

The state variable approach to constitutive modeling has been fairly extensively

utilized to model the inelastic deformation response of metals, which exhibit a

viscoplastic response above about one-half of the melting temperature. An important

characteristic of this approach is that there is no defined yield stress or onset of

inelasticity [33]. Alternatively, inelastic strain is assumed to be present at all values of

stress. The inelastic strain is just assumed to be very small compared to the elastic strain

at low stress levels. When the inelastic strain evolves to a more significant level, the

stress-strain curve will then begin to exhibit a nonlinear response. Furthermore, a single,

unified variable is utilized to represent all inelastic strains. The effects of viscoelasticity,

plasticity and creep are not separated out in this type of approach, but are combined into
one unified variable.

There is some physical motivation to utilize state variable models which were

developed for metals to simulate the nonlinear deformation response of polymers. For

polymers, while the nonlinear deformation response is d_ae to nonlinear viscoelasticity as

opposed to viscoplasticity, a unified inelastic strain variable can still be utilized to

simulate the nonlinear behavior. In addition, the "saturation stress" in metals and the

"yield stress" in polymers (the point where the stress-str:fin curve becomes flat) are both

defined as the stress level at which the inelastic strain rate equals the applied strain rate in

constant strain rate tests [13, 33].

In metals, the inelastic strain rate is often modeled a_, being proportional to the
difference between the deviatoric stress and "back stress" tensors. The back stress is a

resistance to slip resulting from the interaction of dislocations under a shear stress with a

barrier. As dislocations pile up at a barrier, atomic forces will cause additional

dislocations approaching the barrier to be repelled. This repelling force is referred to as

the back stress. The back stress is in the direction opposite to the local shear stress in

uniaxial loading (and thus will be orientation dependent in three dimensional loading).

The net stress producing slip or inelastic strain is the difference between the shear stress

and the back stress [33]. An isotropic initial resistance to slip is also present in metals

due to the presence of obstacles such as precipitates, grains and point defects. This initial

resistance to slip is often referred to as a "drag stress". In an alternative modeling
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approach, the inelastic strain rate can be modeled as being proportional to a single scalar

hardening variable which includes the effects of both the "back stress" and the "drag

stress" [33]. Similar concepts have been used in the deformation modeling of polymers.

Ward [13] discusses how creep strain and plastic strain can be defined as being

proportional to the difference between the applied stress and an "internal stress". The

internal stress is defined as evolving with increasing strain. Alternatively, Qian and Liu

[17] define a nonlinear viscoelastic strain which is proportional to a single isotropic state

variable at small deformation levels. In this case, the state variable represents the

resistance to deformation due to the interaction of the molecular chains. An orientation

dependent back stress state variable is also defined for this model, but it is only utilized in

the large deformation, post-yield regime.

It is important to note several significant limitations in using models developed for

metals to simulate the nonlinear deformation response of polymers. Polymers exhibit

nonlinear strain recovery on unloading, while metals display linear elastic strain recovery.

The unloading behavior of polymers may not be represented accurately with a constitutive

equation which was developed for modeling metals. Furthermore, phenomena such as

creep, relaxation and high cycle fatigue may not be simulated correctly in polymers with a

metals based constitutive model. However, for predicting failure in high velocity impact

loading, none of these phenomena are considered to be extremely significant.

Specifically, for the application under consideration only tensile or compressive loading,

along with at most one unloading cycle, will be considered.

The constitutive models considered will most likely only be valid for relatively ductile

polymers such as thermoplastics or toughened epoxies, where the correlation between the

polymer deformation response and the deformation response of metals is strongest. State

variable type techniques have been used to model both amorphous and semi-crystalline

polymers, and it is not clear at this time whether the degree of crystallinity in the polymer

will have a significant effect on the applicability of the equations. To fully simulate the

complete range of polymer deformation response, a combined viscoelastic-viscoplastic

model would most likely be required. A combined viscoelastic-viscoplastic model would

have the ability to completely represent all of the mechanisms present in polymer

deformation. Efforts have been made by several researchers to develop such a model

[16,17,34]. However, such a combined model, which could be very complex, will not be

considered here in this preliminary study.

Constitutive Equation Overview

For this work, three constitutive equations were considered to simulate the

deformation behavior of the polymer matrix. To determine which equation would

provide the best representation of the material behavior, uniaxial stress-strain curves

obtained at constant strain rate were characterized and modeled. For now, only the

uniaxial simplifications of the equations are considered. An important point to note is

that all of the equations in their three-dimensional formulation are based on deviatoric

stresses and stress invariants, which for both polymers and metals are the primary causes
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of inelastic deformation [12, 33]. In addition, only the equations for the inelastic strain

rate are presented. However, for all of the equations the total strain rate should be

considered to be the sum of the elastic strain rate and the inelastic strain rate, as follows

for uniaxial loading:

wheret_ is the total strain rate, t_ is the stress rate, t__ is the inelastic strain rate, and E is

the elastic modulus of the material.

Several key assumptions were made in all of the constitutive equations. First, even

though in high strain rate impact situations adiabatic heating may be a significant issue,

for this preliminary study temperature effects have been neglected, and all of the results

were obtained for room temperature. Second, small strain conditions have been assumed.

In reality polymers, particularly in compression, can be subject to very large strains.

Furthermore, in high strain rate impact situations smactures are subject to large

deformations and rotations. However, incorporating large deformation and rotation

effects into the constitutive equations would add a level of complexity which is beyond

the scope of this study. For the purposes of this preliminary modeling effort, therefore,

all large deformation effects have been neglected. Futme efforts will include modifying

the constitutive equations to account for large deformation effects. Finally, stress wave

effects due to dynamic loading may play a significant role in the material response when

subjected to high rate loading, even at the local constituent level [30]. For the purposes

of this study, any stress wave effects will be assumed to be fully accounted for on the

macroscopic level by a finite element code within which the model is implemented.

The first constitutive equation which was considered is a simple power law. This

equation, based on an equation developed by Qian and I_iu [17], bears a strong

resemblance to the Maxwell equation, which is commonly used for linear viscoelastic

analysis of polymers [ 10]. The model also bears a resemblance to an Arrhenius equation

for dislocation creep is metals [33]. The inelastic strain rate has the following format,

where a scale factor of I/sec is assumed to premultiply the right hand side of the equation

to ensure dimensional compatibility.

°e' = * I_] (2)

In the equation _ is the inelastic strain rate, o is the total stress, n is a material constant

which controls the rate dependence of the deformation response, and Z is a scalar state

variable which represents the resistance to molecular flow.
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Theevolutionof thestatevariableZ canbedefinedusingthefollowing expression.
Theequationis theoneusedby Stouffer[33] to modeltheevolutionof the scalardrag
stressin metals.However,theinelasticstrainrateis usedinsteadof the inelasticwork
rate(assuggestedby Walker [35]).

= q(Z_ - Z) _t (3)

In the equation Z is the state variable rate, t_I is the inelastic strain rate, and Z is the

current value of the state variable. Material constants include q, which is the "hardening"

rate, and Z1, which is the value of Z at saturation.

Equation (3) can be integrated to obtain the following form for the value of the state

variable Z:

Z = Z 1 - (Z 1 - Zo ) * exp(-q e I ) (4)

where Zo (a material constant) is the initial value of Z, e I is the inelastic strain, and all

other terms are as defined for Equation (3).

The next constitutive equation which was considered is the expression developed by

Bodner [36], which was originally utilized to model metals. This equation defines the

inelastic strain rate as being proportional to the exponential of the stress. This type of

relationship is somewhat similar in form to the molecular based constitutive models for

polymers discussed by Ward [13]. Specifically, the inelastic strain rate is defined by the

following equation:

rr (5)
d:, 2 l ( Z _Z"],__

- -f3 o°exp -Tt J ] lal

where _r is the inelastic strain rate, o is the stress, and Z is a scalar state variable which

represents the resistance to molecular flow. Material constants include Do, which is a

scale factor which represents the maximum inelastic strain rate, and n, which is a variable

which controls the rate dependence of the deformation response. Equation (3) is once

again used to specify the evolution of the state variable Z. This evolution law is slightly

different from the equation utilized by Bodner in that the inelastic strain rate is used

instead of the inelastic work rate.

The third model which was considered is the constitutive equation which was

developed by Ramaswamy and Stouffer [33], which also was originally developed for

metals. The major difference between the Bodner model and the Ramaswamy-Stouffer

model is that the Stouffer model utilizes a tensorial state variable as opposed to a scalar

state variable. The tensorial state variable represents an "internal stress" which models

the resistance to molecular flow. This "internal stress" is similar to the "back stress"
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conceptutilized in metals,asdiscussedin theprevioussection.Theinelasticstrainrateis
consideredto berelatedto thedifferencebetweentheappliedstressandtheinternal
stress.Unlike thescalarstatevariableutilized in theothertwo constitutiveequations,the
tensorialstatevariableis orientationdependent.Thestatevariableis assumedto beequal
to zerowhenthematerialis in its virgin state,andevolvestowardsamaximumvalueat
saturation.By usingthis approach,aswill bediscussedlaterit is possibleto modelto
someextentthenonlinearstrainrecoveryobservedduringunloadingfor manypolymers.

Theinelasticstrainrateis definedby thefollowing equation:

I1lZ0;nloO- -_ D°exp --2 ItT---_l Itr-n------_ (6)

wheret_ I is the inelastic strain rate, t_ is the stress, and f/is the state variable (called

"back stress" in metals) which represents the resistance to molecular flow. Material

constants include Do, which is a scale factor which represents the maximum inelastic

strain rate, n, which is a variable which controls the rate dependence of the deformation

response, and Zo, which represents the isotropic, initial "hardness" of the material before

any load is applied. The value of the state variable fi is assumed to be zero at the start of

loading. While not apparent from the uniaxial form of the flow equation, _ is a tensorial,

not a scalar, variable.

The evolution of the state variable f_ is described by dae following expression,

(7)

where _ is the state variable rate, t__ is the inelastic strain rate, and f_ is the current value

of the state variable. Material constants include q, which is the "hardening" rate, and

f_m, which is the maximum value of the "back stress" at saturation. This equation is

slightly different than the original equation developed by Ramaswamy and Stouffer [33],

in that the original equation includes an additional stress rate term which is not used here.

The original stress rate term was included in order to pr¢,vide for additional hardening at

low stress levels [33]. This additional hardening was folmd to not be required for the

materials analyzed in this study. For tensile loading, where the absolute value of the

inelastic strain rate equals the inelastic strain rate, Equation (7) can be integrated to obtain

the following form:

= f_,. - _,. exp(-qe I ) (8)

where exis the inelastic strain, and all other parameters are as defined for Equation (7).

Note that in this uniaxial form, Equation (8) strongly resembles Equation (4). The only

difference, the lack of a term representing the initial value of the state variable f_ in

Equation (8), is related to the fact that this initial value is always zero.
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Material Constant Determination

The procedure for determining the constants for the Ramaswamy-Stouffer model will

be described here. The techniques for determining the material constants for the other

two models are similar. Detailed discussions of the methods for finding the material

constants can be found in [34,36,37]. Do is currently assumed to be equal to a value 104

times the maximum applied total strain rate, and is assumed to be the limiting value of

the inelastic strain rate. Future investigations may be conducted to investigate whether a

relationship between Do and the shear wave speed can be determined. Such a relationship

could allow the effects of stress waves to be more completely accounted for within the

matrix constitutive equations.

To determine n, Z0 and _"2m, the following procedure is utilized. First, the natural

logarithm of both sides of Equation (6) is taken. The values of the inelastic strain rate,

stress, and state variable f2 at "saturation" are substituted into the resulting expression.

As a reminder, the "saturation stress" in metals (the point where the stress-strain curve

becomes flat) is defined as the stress level at which the inelastic strain rate equals the

applied strain rate in constant strain rate tensile tests [33]. As mentioned before, the

"yield stress" in polymers has a similar definition [13], and is actually the mechanism

which is being considered here. However, in order to maintain consistent terminology

with the original development of the equations, the terms saturation and saturation stress

will be used in this report. The equation which is obtained is as follows:

I 2 ln(V/-3_° 1]In - (,-_0)j = 2nln(Zo)-2nln(tr _ -_,,,)
(9)

where t_s equals the "saturation" stress, _o is the constant applied total strain rate, and the

remaining terms are as defined in Equations (6) and (7).

To determine the required constants, a family of tensile (or compressive) curves

obtained from constant strain rate tests are utilized, with each curve being obtained at a

different strain rate. Data pairs of the total strain rate and saturation stress values from

each curve are taken. Values for _"_m are estimated for the material, with initial estimates

ranging from 50% to 75% of the highest saturation stress found to work well. These

estimates are similar to the values used for large-grain metals. For each strain rate, the

natural logarithm of the difference between the value of the saturation stress level and the

estimate for _')m is taken. This value is considered to be the x-coordinate of a point on a

master curve. Likewise, for each strain rate the total strain rate value is substituted into

the left hand side of Equation (9), and the computed value is considered to be the y-

coordinate of a point on a master curve. The data pair obtained from the tensile curve at

one strain rate thus represents one point on the master curve. The number of points in the

master curve equals the number of strain rates at which tensile tests were conducted.
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A least squares regression analysis can then be performed on the master curve. As

suggested by Equation (9), the slope of the best fit line is equal to -2*n. The intercept of

the best fit line is equal to 2*n*ln(Zo). The value for tim can then be adjusted until an

optimal fit to the data is obtained.

To determine the value for m, Equation (8) is utilized At saturation, the value of the

back stress is assumed to approach the maximum value, resulting in the exponential term

approaching zero. Assuming that saturation occurs when the following condition is

satisfied:

exp(-qe_ ) = 0.01 (10)

the equation can be solved for q, where _i is the inelastic strain at saturation. The value

of the inelastic strain at saturation is estimated by determining the total strain at saturation

from a constant strain rate tensile curve, and subtracting the elastic strain from this value.

The elastic strain at saturation is computed by dividing the saturation stress by the elastic

modulus, as suggested by Equation (1). The value of the inelastic strain at saturation is

substituted into Equation (10), and solved for q. If the inelastic strain at saturation is

found to vary with strain rate, the parameter q must be computed at each strain rate and

regression techniques utilized to determine an expression for the variation of q. Note that

if compressive data is being characterized, the absolute ,0alue of the inelastic strain at

saturation is to be utilized.

An important point to note is that the meaning and ranges of the material constants

when the equations are used to model polymer deformation are not the same as when the

equations are utilized for simulating the deformation of metals. For example, when

analyzing metals using the Ramaswamy-Stouffer model, a value of n greater than or equal

to 3.0 indicates that the response is relatively rate insensitive [33]. However, in modeling

polymers, this rule of thumb most likely does not apply due to the differences in

deformation mechanisms between the two types of materials. Furthermore, the rate

dependence observed in polymers is not as dramatic as the rate dependence seen in

metals. Similarly, other rules of thumb observed in analyzing the deformation response

of metals most likely do not apply in modeling polymer deformation.

Three Dimensional Extension of Constitutive Equations

While the unidirectional representation for the Ramaswamy-Stouffer equations is

described by Equations (6) and (7), the full three dimensional formulation for the flow

equation, as described in [33], is as follows:

[ l(Zo 2 ")"] S o-niJ
(11)
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whereSij is the deviatoricstresscomponent,_"_ij, is the component of the state variable,

t_i_ is the component of inelastic strain, n and Zo are as defined in Equation (6), and K2 is

defined as follows:

(12)

The back stress variable rate, _0 ' is defined by the following relation:

_2ij= _ qn,,e U - qni.ig:/
(13)

"1
where ee is the effective inelastic strain rate, defined as follows:

/-2 "1 "1

,_/ =_t_je, (14)

where repeated indices indicated summation using the standard indicial notation

definitions [33]. The remainder of the terms are as defined in Equations (6) and (7).

A key difference between the three dimensional Ramaswamy-Stouffer equations, and

other equations that use tensorial state variables, such as the Walker model [35], lies in

the definition of the tensorial state variable. In the Ramaswamy-Stouffer model, the back

stress is defined in the same manner as the stress deviator. Under uniaxial loading, the

tensorial state variable tensor has the following format:

-2

3n 0 0
1

0 --_f_ 0
1

0 0 --K]
3

(15)

where D represents the uniaxial value of the state variable. In the Walker model, the state

variable tensor under uniaxial loading is defined as follows. This definition is similar to

the definition of the plastic strain tensor in standard plasticity theory [33]:

D 0 0
1

0 o

0 0
1

2

(16)
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While both tensors are deviatoric tensors, the varying definition of the state variable

results in varying definitions of the K2 term. Using the definition of f_ij specified in

Equation (16), K2 would be defined as follows:

2 3

K 2 =3(_Sq-_-'_ij)(3Su-_)q) (17)

which is what is seen in the Walker equation.

As discussed by Stouffer and Dame [33], the values of the material constants for the

full three dimensional formulation of the equations would be identical to those obtained

using the uniaxial representation of the equations. Three dimensional formulations of the

flow equation for the power law and Bodner models would be obtained in a similar

manner. Since the state variable for the power law and Bodner model is a scalar variable,

the evolution equation would not change from the uniaxial expressions except for

replacing the uniaxial inelastic strain rate with the effective inelastic strain rate.

Numerical Implementation of Ramaswamy-Stouffer Model

To implement the constitutive equations into a computer code, the following algorithm

was utilized, shown pictorially as a flow chart in Figure 1. The same basic algorithm was

utilized for all three constitutive models, and closely follows the procedure described in

[33]. For initial verification, the uniaxial representation of the models was utilized.

However, the results obtained using the uniaxial representation of the modified

Ramaswamy-Stouffer equations were compared to results obtained using the full three

dimensional formulation, and the results were identical. The computer code assumed

strain controlled loading, since when implemented into _ finite element code as a user

defined material model subroutine strains would be supplied as the input. An iterative

procedure is used, and for each time step the iteration loop is entered knowing the strain

at time t+At, and knowing the stress and the values of all of the state variables (and their

rates) at time t. The goal of the iterative procedure is to compute the stresses and the

values of the state variables (and their rates) at time t+At. An implicit trapezoidal rule

integration procedure with a constant time step was utili:_ed. Although not described

here, an explicit Runge-Kutta integration procedure was also developed and tested,

yielding results identical to the implicit integrator. For the stand alone computer codes,

implicit integration techniques are preferable to use due to their numerical stability [38].

However, when these equations are eventually implemented into transient dynamic finite

element codes, the use of explicit integration techniques for the material model might be

required due to the structure of the finite element algorithms.

The detailed procedures for implementing the Ramaswamy-Stouffer model will be

discussed in this section. Computations using the other constitutive equations would

utilize similar techniques. First, the material constants and load history are read from an

input file, and all appropriate variables are initialized. Upon entering the time step loop,
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thestrainrateandthevalueof anystrainratedependentmaterialpropertiesarecomputed,
andthetotal strainat timet+At is determined.Thefirst timethroughtheiteration loop,
anestimatefor thestressattimet+At is computedusingthefollowing forwardEuler
estimate:

tr(t + At) = E[e(t + At) - e' (t) - t_' (t)At] (18)

In this equation and the following equations in this section, t represents the current time,

At represents the time increment, and all other variables are as defined in Equation (1)

and Equations (6)-(8). A forward Euler estimate for the back stress (tensorial state

variable) rate and a trapezoidal rule estimate for the back stress at time t+At are given by

the following expressions:

_(t + At) = q_,,t_' (t) - q[f_(t) + _(t)At] _' (t) (19)

At .
_(t + At) = _(t) + --Z- [_(t + At) + _(t)]

Z
(20)

Once the back stress is computed, the inelastic strain rate and the accumulated inelastic

strain at time t+At can be computed using the following expressions:

2 1 Z o • o'(t + At) - _(t + At)

gz'(t+At)=--_Doexp -_ Itr(t+At)_f_(t+At) ) J Itr(t+At) -_(t+At)
(21)

At i
61 (t + At) = e' (t) +-_-[_ (t + At) + e' (t)] (22)

After the first time through the iteration loop, the stress estimate for time t+At is

computed using the following trapezoidal rule estimate, where the inelastic strain rate

estimate for time t+At comes from the previous iteration •

tr(t + At) = E[e(t + At) - e' (t) - [_1 (t + At) + t_' (t)]-_ -_-] (23)

The back stress rate estimate is computed using the following expression, while the back

stress estimate for time t+At is computed using Equation (20):

_(t + At) = qf_,,_' (t + At) - qO(t + At)] t_I (t + At) (24)

The inelastic strain rate and inelastic strain estimate for time t+At are computed using

Equations (21) and (22).
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MODEL CORRELATIONS

High Strain Rate Compression Analyses: Fiberite 977-2

Two materials were considered for this study, Fiberite 977-2 and PEEK. Consider

first Fiberite 977-2, a toughened epoxy. Since toughening the polymer makes it more

ductile and more damage resistant [39] than traditional epoxy resins, a material of this

type would be more likely to be used in applications where impact resistance is required.

To obtain the data needed to characterize this material, a two stage testing program was

carried out. First, high strain rate tensile tests were performed. This work was conducted

by University of Dayton Research Institute Impact Physics Lab [40].

Compression tests under strain rates varying from approximately 500/sec to 1500/sec

were conducted, in which the material was loaded at as close to constant strain rate as

could be achieved, and then unloaded (at varying strain rates) at an arbitrary point. The

split Hopkinson bar testing technique was utilized to obtain the data. Engineering stress

and engineering strain were measured due to the small strain assumptions which were

made for the model. Three experiments were conducted for each strain rate. All three

tests at each strain rate yielded similar values, therefore only the stress-strain curves from

one of the experiments at each strain rate will be shown in the results which follow.
Stress-strain curves obtained at nominal strain rates of 51)0/sec, 1000/sec and 1500/sec

are shown in Figure 2. An important point to note is that although the stresses obtained

are actually compressive, they are shown as positive val_Jes to promote ease of graph

interpretation. As can be seen in the figure, there is a definite, although relatively small,

rate dependence of the material response. As mentioned earlier, the rate dependence

observed in polymer deformation is often much less tha! what is observed in the

deformation of metals. Furthermore, the results were obtained over a relatively small

strain rate range (a factor of three). One important poinl to note is that, although not

shown here, there is considerable deformation beyond yi eld (or "saturation"), particularly

at the higher strain rates. However, only the portions of the curve up until yield is

reached were used to characterize the material models. Only a limited portion of the

stress strain curve was used because, for the application under consideration, the

compressive strain levels observed were not expected to approach or exceed the

saturation strain. However, since the material models utilized rely heavily on the

"saturation" stress and strain to obtain the material conslants, the data up until saturation

was utilized. In addition, although not shown here, the .,;tress-strain curves displayed

significant nonlinearity upon unloading.

High strain rate tensile tests were also conducted on lhe material, but the tests yielded

unusual results which could not be appropriately explained. Specifically, the stress-strain

curves exhibited a bi-linear response, with the secondary linear region having a lower

slope than was seen in the tensile response at low strain rates, which contradicts what is

normally expected in polymers [12]. Since these results could not be appropriately

explained, at the current time the high strain rate tensile data will not be used.
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Using the compressive curves obtained at high strain rates, the following inelastic

constants were obtained for the Fiberite 977-2 material for high strain rate compression:

Power Law: n=20, Zo=104 MPa, Z1=186 MPa, q=41

Bodner: Do=IE+07/sec., n=l.0, Zo=317 MPa, Z1=1070 MPa, q=41

Stouffer: Do=IE+07/sec., n=0.36, Zo=5560 MPa, q=41, f_m=170 MPa

A constant Poisson' s ratio of 0.40 was utilized. This value was obtained from low strain

rate tensile data, and was assumed to be valid for high strain rate compression. The high

strain rate compression modulus was found to have a slight variation with strain rate, with

average values as follows:

Strain Rate (/sec.) Modulus (GPa)

500 9.6

1000 10.8

1500 11.7

Compressive stress-strain curves computed using the power law, Bodner, and

Ramaswamy-Stouffer constitutive equations, along with experimentally obtained results,

are shown in Figures 3-5 for constant strain rates of 500/sec, 1000/sec, and 1500/sec.

As can be seen in the figures, for all three strain rates the stress levels computed by the

power law model do not correlate well with the stress levels observed in the experimental

results. However, the Bodner and Stouffer models compute nearly identical results, and

correlate much more favorably with the experimental values. Specifically, the onset of

nonlinearity, the "saturation" of the stress strain curve and the strain rate dependence are

correlated reasonably well by these two models. The fact that the Bodner and

Ramaswamy-Stouffer models yield similar results is not surprising, as the Ramaswamy-

Stouffer model is based on the Bodner equations. The discrepancies between the

experimental and computed results seen at the lower strain levels are most likely due to

the nature of the experimental tests. Specifically, in a split Hopkinson bar experiment a

certain amount of time is required for the specimen to achieve a constant strain rate.

Furthermore, at low strain levels the measured strains are often not completely accurate.

A combination of these factors most likely resulted in the shape of the experimental

curves, and the variation between the experimental and computed results.

While the Bodner and Stouffer models compute very similar results, a significant

difference between the two models can be seen in Figure 6, where a load/unload cycle

was computed using the Stouffer model for a strain rate of 500/sec. As can be seen in

the figure, there are some elements of nonlinear strain recovery in the unloading curve,

which would be expected in a polymer [10]. While the nonlinearity is most likely not as

extensive as would be present in the actual polymer, the mechanism is at least accounted

for to some extent. As mentioned earlier, incomplete modeling of the nonlinear strain

recovery during unloading is a major deficiency in utilizing viscoplastic constitutive

models developed for metals to model the nonlinear viscoelastic deformation present at

small deformation levels in polymers. This deficiency could be overcome by modifying
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the constitutive equations, or by combining viscoelastic and viscoplastic terms into one

set of constitutive equations. One possible modification which might be investigated for

the Ramaswamy-Stouffer model is to reintroduce the stress rate term into the state

variable evolution law which was included in the original equations [33]. The stress rate

term was not utilized in the equations utilized here. Thi,; term would promote a faster

decrease in the value of the state variable during unloading (due to the negative stress

rate), which might allow for more significant nonlinear strain recovery. However, any

investigation of this type is beyond the scope of the preliminary investigative study

presented here.

It is not possible to simulate nonlinear strain recovery during unloading using the

Bodner model, as the state variable monotonically approaches a saturation value and

remains constant, even during unloading. In the Ramaswamy-Stouffer model, on the

other hand, by utilizing the difference between the deviatoric stress and the "back stress"

in the inelastic strain rate equation, once the stress level decreases to a level below that of

the current back stress, the inelastic strain rate can decrease while unloading takes place.

Furthermore, as mentioned above, the structure of these equations lead themselves to

possible future modifications which might promote improved simulation of the nonlinear

strain recovery. These results indicate that the modified Ramaswamy-Stouffer is the

optimal model to use as the polymer constitutive model for this study, and the remaining

analyses will be conducted using this model.

Low Strain Rate Tension Analyses: Fiberite 977-2

To further investigate the selected material model, tensile tests at low strain rates,

ranging from 1E-04/sec. to 0.1/sec., were conducted on the Fiberite 977-2 material by

Cincinnati Testing Labs, Inc. [41]. Although the application under consideration is a high

strain rate application, these experiments were conducted in order to characterize the full

range of material behavior of the Fiberite 977-2 epoxy. By obtaining data over a wide

strain rate range, the material could be more completely characterized, and the rate

dependence of the material response could be more completely examined. In addition,

performing low strain rate tensile tests would permit the obtaining of tensile data in a

manner which would avoid the problems encountered in conducting the high strain rate

tensile tests. Axial testing was utilized to obtain the datxt. Once again, engineering stress

and engineering strain were measured due to the small strain assumptions which were

made. Stress-strain curves obtained at constant strain ra_es of 0.0001/sec., 0.01/sec. and

• 0.1/sec. are shown in Figure 7. As can be seen in the fil,ure, there is a definite rate

dependence to the tensile response. It should be noted that the unusual response seen at

low strain levels for the two higher strain rates is most likely due to difficulties which

were encountered in ramping up to the desired strain rate during the experimental tests.

A unique set of material constants was obtained from the low strain rate tensile data.
It was not deemed advisable to use the material constants which were obtained from the

high strain rate compression tests to model the low strain rate tensile response. One

reason for not using the high strain rate compression constants is that in polymers there
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areoftendifferencesin thematerialresponsebetweentensileandcompressiveloading.
First of all, theyield stressin polymershasbeenfoundto beafunction of thehydrostatic
stress[13],which cancauseadifferencein thetensileandcompressiveresponse.
Furthermore,in tensionpolymerscanbesubjectto theformationof crazes,whichcauses
yieldingatamuchlowerstresslevelthanin situationswhereshearyielding is theprimary
yieldmechanism[42]. In compression,polymersareonly subjectto shearyielding.
Crazingcanalsoleadto theformationof cracks,whichresultsin thepolymerhavinga
morebrittle responsein tension,andamoreductileresponsein compression[42]. Even
if thematerialbehaviordid notchangesignificantlybetweentensionandcompression
overmajorportionsof thestress-straincurve,sincethehigh strainratecompressive
materialconstantswereobtainedoverarelativelylimited strainraterange,theconstants
obtainedmaynot bevalidover theentirerangeof strainrates.

To attemptto providefurtherinformationon the material behavior, which could then

be utilized to more completely and accurately determine a unified set of material

constants, compression tests at low strain rates are currently being conducted at the

NASA Lewis Research Center. From this data, a more complete set of compressive

material constants will be obtained. In addition, by comparing the low strain rate

compression response to the low strain rate tensile response, attempts will be made to

obtain a unified set of material constants covering both tensile and compressive behavior

over the full range of strain rates. A unified set of material constants will be critical in

actual applications, such as utilizing the constitutive model in a transient dynamic finite

element analysis to model impact problems. Furthermore, the rate dependence of the

material response can be more completely determined by obtaining a unified set of

material constants. If the low strain rate compression data cannot be obtained, the high

strain rate compression data and the low strain rate tensile data might be combined using

a suitable set of approximations to obtain a unified set of material constants.

To obtain the low strain rate tensile material constants, the stress-strain curves had to

be extrapolated since the tensile specimens failed before "saturation" occurred. To obtain

an estimate of the saturation stress and strain, the curves for the strain rates of 0.0001/sec

and 0.1/sec were extrapolated using a quadratic curve fit. Since the specimens failed in

tension before the saturation level was reached, it was assumed that matching the actual

saturation stress would not be critical. Once low strain rate compression data is obtained,

this data will be used to refine the material constants. By extrapolating, the following

estimates for saturation stress and saturation strain for the low strain rate tensile data were

obtained:

Strain Rate (/sec.) Saturation Stress (MPa)

1E-04 97 0.055

0.1 110 0.053

Saturation Strain
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Thelow strainratetensilematerialconstantsfor the l_:amaswamy-Stouffermodel,
which weredeterminedusingtheprocedurediscussedpreviously,areasfollows:
Do=IE+04/sec.,n--0.50,Zo=1030MPa,q=160,tim=69MPa. Thelow strainratetensile
elasticmoduluswasfoundto beratedependentasfollows:

Strain Rate (/sec.) Modulus (GPa)

1E-04 3.65

0.01 4.13

0.1 4.82

It should be noted that the low strain rate tensile modulus values are somewhat less than

the high strain rate compressive modulus values. Assuming that the tensile and

compressive moduli follow similar trends with strain rate, this modulus variation with
strain rate is consistent with what has been observed in literature, as described in the

background section of this report. A constant Poisson's ratio of 0.40 was once again

utilized.

Tensile stress-strain curves were computed for constant strain rates of 0.0001/sec,

0.01/sec, and 0.1/sec using the Ramaswamy-Stouffer constitutive equations and the low

strain rate tensile material constants presented above, and the results are shown in Figures

8-10. As can be seen in the figures, the computed results correlate with the experimental

values reasonably well overall. In particular, the nonlinearity of the stress-strain curves is

correlated reasonably well for all three strain rates. Any discrepancies between the

experimental and computed results is most likely due to the approximations which were

made in estimating the saturation stress and strain. Since the constants used in the

constitutive equations are strongly dependent on these wdues, any inaccuracies in these

values could signifcanfly affect the computed results. Furthermore, for the experiments

conducted at strain rates of 0.01/sec and 0.1/sec, as mentioned earlier difficulties were

encountered during the tests in ramping up to the desired strain rate, which could have

affected the experimental results.

Low Strain Rate Tension Analyses: PEEK

To determine if the selected constitutive model can accurately compute the stress-

strain behavior of a variety of materials, plus to verify the low strain rate tensile

capabilities of the constitutive equations for a material which has a distinct "saturation" in

the stress-strain tensile response, a PEEK (polyetheretherketone) thermoplastic was also

characterized and modeled. Tensile stress strain curves over strain rates ranging from 1E-

06/sec. to 1E-03/sec. were obtained by Bordonaro and Krempl [43]. As mentioned

previously, the tensile curves for this material exhibit a distinct saturation, or flattening

out, unlike the tensile curves for the Fiberite 977-2 epoxy. This result is to be expected

since a thermoplastic like PEEK is expected to be more cluctile than the toughened epoxy

Fiberite 977-2. A constant elastic modulus of 4000 MPa and a constant Poisson' s ratio of

0.40 were utilized. The inelastic constants for the Ramaswamy-Stouffer model were
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determinedusingtheproceduresdescribedearlierandareasfollows: Do=IE+04/sec.,
n-0.46,Zo=630MPa,q-310, f_m=52MPa.

Tensilestress-straincurveswerecomputedfor constantstrainratesof 1E-06/sec.,1E-
04/sec.and 1E-03/sec.Thecomputedcurvesandthecorrespondingexperimental
resultsareshownin Figures11-13.As canbeseenfrom thefigures,thecomputedvalues
correlatewith theexperimentalresultsextremelywell. Furthermore,themodelappears
to doabetterjob in simulatingtheresponseof thePEEK thanit did in thesimulationsof
theFiberite977-2epoxydiscussedabove.Thequalityof thesimulationsfor thePEEKis
mostlikely dueto thefact thattheexperimentaltestsyieldedsmoothstress-straincurves,
with noobviousinconsistenciesin theresults.As discussedearlier,both thehigh strain
ratecompressioncurvesandthelow strainratetensioncurvesfor theFiberite977-2
epoxydisplayedinconsistenciesin themeasuredstress-straincurves.Furthermore,since
themeasuredstress-straincurvesfor PEEKdisplayedadistinct saturation,or flattening
out, noextrapolationswererequiredin orderto obtainthematerialconstants.These
resultsindicatethatif thepolymerunderconsiderationcanbeappropriatelycharacterized,
theconstitutiveequationscandoagoodjob in computingthepolymerresponse.

CONCLUSIONS

In this study,ratedependent,inelasticconstitutiveequationshavebeentestedfor two
representativepolymericmaterials.Theresultspresentedhereindicatethatthe
Ramaswamy-Stoufferconstitutivemodelcandoa satisfactoryjob in computingthe
deformationresponseof apolymer. However,for theFiberite977-2toughenedepoxy,
whichwill betheprimarymaterialutilized in futureworkon impactfailuremodelingand
structuralanalysisusingthefinite elementmethod,severalareasof futurework are
indicated.Specifically,aunifiedsetof materialconstantswill bedeterminedwhich will
allow themodelingof bothtensileandcompressivebehaviorovera widerangeof strain
rates,with full incorporationof thecompleteratedependenceof thematerialresponse.

Severalmodificationsmaybemadeto theconstitutiveequations.First,effortswill be
madeto determineif arelationshipbetweentheDomaterialconstantandtheshearwave
speedcanbespecified.Throughsucharelationship,theeffectsof thedynamicloading
on thedeformationresponsemaybemoreaccuratelycomputedwithin theconstitutive
equations.A secondmodificationmayentailaddinga stressratetermto thestate
variableevolutionlaw. Thismodificationmayallow thenonlinearstrainrecoveryduring
unloadingto bemoreaccuratelycomputed.Oneothermodificationwhichmight bemade
to themodel is to developamoremechanisticallybasedmethodto capturetherate
dependenceof theelasticmodulus.Currently,asimplecurvefit is utilized.

In thesecondpartof this two part report,the implementationof thematrix constitutive
equationsinto compositemicromechanicalanalysistechniqueswill bedescribed.In this
manner,thenonlinearitiesandratedependenceobservedin thedeformationresponseof
carbonfiber reinforcedcompositepliessubjectto high strainrate loadscanbepredicted.
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Furthermore, the nonlinearities observed in the composite response can be predicted

based on the nonlinear response of the matrix constituenr:, which is the actual mechanism

taking place.

Once the deformation model is completed, an impact failure model will be developed

based on local failure mechanisms, and the combined deformation and failure model will

be implemented into a transient dynamic finite element code. Full deformation and

failure analyses will then be conducted on structures subject to impact loading conditions.
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Figure 1: Flow Diagram for Matrix Constitutive Equation Algorithm
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