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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-329

RADTATION SHIELDING OF THE STAGNATION REGION BY
TRANSPTRATION OF AN OPAQUE GAS

By John Thomas Howe

SUMMARY

The laminar compressible boundary layer in the two-dimensional and
axisymmetric stagnation regions has been analyzed to show the effects of
the injection of a radiation absorbing foreign gas on an incident radia-
tion field, and on the enthalpy profiles across the boundary layer. Total
heat transfer to the stagnation region is evaluated for numerous cases
and the results are compared with the no shielding case. Required absorp-
tion properties of the foreign gas are determined and compared with
properties of known gases.

INTRODUCTION

In some regimes of high-speed flight, the shock layer on a blunt
body emits thermal radiation which is incident on the vehicle. This
phenomenon becomes more prominent with increasing flight speed, diminish-
ing altitude, and increasing nose radius. Kivel (ref. 1) analyzes the
radiation problem in the inviscid shock layer. His results show, for
example, that the radiation heat transferred to the stagnation region
exceeds the convective heat transferred if the nose radius of curvature
is greater than about 1.7 feet and the vehicle is traveling at escape
speed at 200,000 feet altitude. The surface is assumed to be black and
to accept all of the incident radiation.

The problem of shielding the vehicle surface from this thermal
radiation becomes important. It is well known (ref. 2) that ordinary
convective heating in the stagnation region can be greatly diminished
by the injection of gas into the boundary layer. The possibility exists
that the radiative heat transfer to the vehicle surface can also be
diminished if the gas injected into the boundary layer is opague to
radiation. Of course, the absorption of radiation by the opagque gas
raises 1ts temperature and thus the temperature gradient of the boundary
layer at the wall, and therefore increases the convective heat transferred
to the vehicle. Thus the question arises, is a net saving of heat trans-
fer achieved by injection of the opague gas, and if so, what absorption
properties need this gas have in order to be effective? The purpose of
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this paper is to study the effects of an opaqie gas injected into the
boundary layer on the combination of radiative and convective heat trans-
fer in the stagnation region of bluff bodies traveling at hypersonic
speeds. However, an exact analysis of the interaction of a radiation
field with a mixture of air and a foreign gas in the compressible laminar
boundary layer is a very difficult problem. Iirst, because it requires
the solution of a set of nonlinear, coupled, partial differential integral
equations. Secondly, in the boundary layer where large temperature gra-
dients exist, it is doubtful that Kirchoff's law can be used to relate
emission and absorption properties of the mix:ure locally. For these
reasons, an exploratory analysis has been made in which simplifying
assumptions make the problem more tractable. It is expected that the
results of the approximate analysis will reta'n the significant qualita-
tive aspects of the actual physical behavior. If these results show that
gains are achieved by use of an opaque gas, oOle would be encouraged to
investigate the problem further, experimentally or theoretically.

Programming the problem for solution on *the electronic computer was
done by Mrs. Yvonne Sheaffer.

SYMBOLS
a slope of lines in figure 4 and equation (35)
cp specific heat at constant pressurs
C Chapman-Rubesin function, X

eMe
D coefficient of diffusion of foreign specles into air
f. F dimensionless stream functions
5 radiation flux
I ratio of total enthalpy to enthalpy exterior to the boundary
layer

h static enthalpy of the mixture
I radiation intensity (integrated cver wave length)

v2
J total enthalpy, h + =
k thermal conductivity
K absorption coefficient, defined by equation (7)

I dimensionless radiation intensity defined by equation (21)
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Lewis number, fr
Sc

exponent in equation (1), zero for two-dimensional case and
ity for axisymmetric case

pressure

c
Prandtl number, i“
total heat-transfer rate (convective and radiative)

radius of cross section of body of revolution

dimensionless transformed independent variable parallel to
body surface (eq. (9))

Schmidt number, -
oD

velocity component parallel to surface
velocity component normal to surface
mass fraction of foreign species, %%
distance along body surface measured from stagnation point
distance normal to body surface

dimensionless absorption coefficient defined by equation (26)

constant in velocity relationship (eq. (17))

dimensionless transformed independent variable normal to body
surface (eq. (10))

coefficient of viscosity
gas density

stream function

7

J2

Superscripts

derivative with respect to the independent variable concerned



Subscripts
e flow exterior to the boundary layer
W gquantities at the wall
1 foreign absorbing gas in the bourdary layer
= air
ANATYSTIS

The physical model chosen for analysis is represented by sketch (a).

The region between the shock wave and the body is divided into a shock
layer of hot radiating air and a boundary larer consisting of a mixture
of air and a foreign absorbing gas being injected through and normal to
the porous body surface.

: ——————— Absorbing gas

.
_-.--Stagnatlon point

57 _______ Body surface

~——

T=~Jdioundary layer

“~Shock layer

Sketch (a)
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The following assumptions are made regarding the properties of these
regions. Additional assumptions will appear and be discussed where they
are needed in the analysis.

1. The radiant energy being emitted from the hot shock layer is
incident on the outer edge of the boundary layer in beams of radiation
of integrated (over wavelength) intensity I. (ref. 3, eq. (5) and foot-
note of ref. 4, p. 53), all assumed to be traveling normal to the wall.

2. The air within the boundary layer is assumed to be transparent
to the incident radiation and its emitted radiation is neglected in
comparison with the incident radiation flux.

3. The injected foreign gas, which will absorb a portion of the
incident radiation before it reaches the body surface, has absorption
properties which are assumed to be independent of the wavelength of the
radiation (i.e., it is a gray gas).

4. The mixture of air and the injected foreign gas in the boundary
layer is assumed to be chemically inert.

5. The surface of the vehicle is assumed to be cold and black; thus
it absorbs all incident radiation which reaches the surface and it emits
no radiation.

Before proceeding to the mathematics of the problem, it should be
noted that the assumption of a black vehicle surface is a limiting case.
Tdeally, if the surface of the vehicle were purely a reflector, it would
not accept the incident radiation, and a nonabsorbing gas could be injec-
ted for the usual convective heating protection. Indeed, in that case an
absorbing gas would be undesirable in that it would trap radiation energy
in the boundary layer and probably increase the convective heat transferred
to the reflective surface by raising the temperature gradient at the wall.
However, the characteristics of the actual vehicle surface will be between
those of a perfect reflector and of a black surface and at some degree of
surface absorptivity it will become desirable to inject an absorbing
foreign gas. To simplify the mathematical problem, the analysis which
follows considers the limiting case of the black surface.

The partial differential equations describing the laminar compressible
boundary layer of a binary mixture of gases in the presence of a radiation
field are statements of continuity, the momentum theorem, conservation of
energy, and diffusion of foreign species and are expressed, respectively,
as

O (pureh) + L(pvroh) = 0 (1)
Ox oy
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The boundary conditions are
at y=20
V=V, u=0, J= Jy, W= Wy (5)
at ¥y o
U= U, J* Je, W C (6)

The exponent n 1in equation (1) is zero for two-dimensional flow
and is unity for axisymmetric flow over a body of revolution. The third

term on the right-hand side of equation (3) can be derived from reference 5,

page 457, and arises from molecular diffusion of the two gases. It will be
neglected by saying sz = Cpl (and therefore h; = hs) in order to
simplify the treatment of the problem.

The last term in the energy equation (3) is the rate of gain of
energy per unit volume due to the radiation flux. For the case where the
element of gas volume is exchanging radiant erergy (by absorption and
emission) with all other element gas volumes inside and outside the
boundary layer, the radiation flux is expressed by integration over all
space. Then the energy equation (3) is a partial differential integral
equation which is exceedingly difficult to solve. The problem will be
simplified by neglecting the radiant energy enitted by the absorbing gas
in comparison with the radiant energy abosrbed. An energy balance 1s
still maintained of course; enthalpy and other forms of energy are simply
not diminished by emmission of radiation., This simplification is Justi-
fiable if (1) either the absorbing gas is a good absorber and poor emitter,
or (2) if the rate of energy emmission from the foreign gas is small com-
pared with the rate of energy absorption. The second instance above can
be visualized under some circumstances. It cen be expected a priori that
a large mass fraction of the dense boundary-leyer region (near the wall)

—
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will be absorbing gas, and a small mass fraction of the much less dense
region (near the shock layer) will be absorbing gas. Therefore, the bulk
of the absorbing gas is in the dense region which is cold compared with
the shock layer. If the shock layer and boundary layer are behaving like
black bodies and because they both emit energy at a rate proportional to
the fourth power of their respective temperatures, then it is clear that
the energy emitted by the shock layer (and thus absorbed by the foreign
gas) is large compared with energy emitted by the boundary layer, and the
latter can be neglected. For shock-layer emission deviating from black
body conditions, the argument is weakened but not necessarily invalidated.
For purposes of this exploratory analysis, the radiant energy emitted by
the absorbing gas will be neglected in favor of the energy absorbed, and
the results apply whenever this situation exists.

In order to express the last term in eguation (3) we consider thut
the radiation traveling in the negative y direction (toward the wall)
is absorbed by the foreign gas such that the fraction of the local inte-
grated intensity absorbed in traveling the small distance -Ay 1s propor-
tional to the local density of the absorbing gas and to the path length;
or in the form of reference 6 (pp. 5 and 24), for any fixed x,

oI
== = I
Sy Kp, (

—~J]
~

where K can be defined as an absorption coefficient. Because we have
assumed that there is no scattering and have neglected emission in the
boundary layer, there is only a y component of the radiation flux and
thus the last term in the energy equation (3) is simply

aiv B = oL (8)
oy

Equations (1), (2), (3), (4), and (7) are to be transformed from x
and y as independent variables to s and 1 making use of the Levy
transformation (ref. 7), a stream function, several definitions and
assumptions and some exterior flow relationships as follows.

The Levy transformation is

X
5 = f Deueueroznd—x (9)
(@]

n
- YeTo J

k J 2sCJg

p dy (1c)
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A stream function is defined so that

U T (1)

oy ox

and the continuity equation (1) is satisfied. The following quantities
are defined

g(n) = 3/Je (12)
P i
Balla C (re_ . 8) (13)
where (C is assumed constant and
£ () = wue (1%)

from which
£(n) = vN2sC (15)
In the axisymmetric blunt-body stagnation region it is assumed that
ro = X (16)

At the outer edge of the boundary layer, she external velocity is
described by

Ue = BX (11N
and it is assumed that

= 18
Pete (peue)stagnation (1)

IR g
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Use of equations (16), (17), and (18) in equations (9) and (10)
yields

_ BPeHe 2(1’1 + l)
® 2(n + 1) * (19)

Y
n + 1
= [ d 20
M ,BCDeHe_/op ¥ (20)

Thus for two-dimensional flow and axisymmetric flows, s 1is proportional
to x° and x*, respectively, while n 1s proportional to y modified by
compressibility. A dimensionless-radiation flux is defined by

I 2
3 p——— (21)
JePelelelo

Formally transforming equations (2), (3), (4), and (7) to the new
Independent variables s and 1 by means of the newly defined quantities
and the assumptions results in the following set of ordinary differential
equations (with constant Pr and Sc)

£M L PEIt o 22 !

I
o [ro
o |w
e
m(DC
NS
/i;\

S

]

™
Olp
N

- .
fa' +ig"—7,' :_1_1._9__a_l:<1__];_> flf”jJ (23)
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where

_ pe“ea—
@ =K /(ﬂ « 18 (29)

The corresponding boundary conditions (5) and (6) transform to
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at T]"’oo
£t ~>1,g>1,W=>0,1~1, (28)

where f; 1s proportional to the injection rate (as will be shown
subsequently) and the third of conditions (27) comes from the fact that
the wall is much colder than the flow at the outer edge of the boundary
layer. The last of conditilons (28) is the bowdary condition on equa-
tion (25), indicating that the local radiation intensity approaches the
incident radiation intensity near the outer edse of the boundary layer.

The set of differential equations (22) though (25) would be more
tractable if the right-hand sides of equations (22) and (23) were zero.
Then the equations would contain functions of only one independent vari-
able 7 and therefore similarity solutions could be obtained. This .
approach will be used and the right-hand side of equation (22) will be
neglected by virtue of the qualitative physical argument of reference 9
(based on the fact that the surface temperatur: is much lower than Tg).

Now, of course, eguation (22) with the right-hend side equal to zero is
the familiar Blasius equation (ref. 10) where 17 is related to the
Blasius ¢, and £(n) and its derivatives are elated to the Blasius F(&)
and its derivatives by

R

|
n=yJ2¢
£(n) = F()N2
} (29)
£1(n) = F'(e)/2

£(n) = Fr(e) /a2 )

Eguations (29) cause the boundary conditions or f(n) to be compatible
with the boundary conditions on F(t) (ref. 11). Thus a solution of equa-
tion (22) with the right-hand side equal to zero can be obtained at once
from reference 11l.

Next, the right-hand side of equation (23) will be neglected because
ueg << Jo Tfor the stagnation region in hyperscnic flow.
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The boundary conditions (27) and (28) on the diffusion equation are
mathematically sufficient, but are not very useful for initiating the
numerical integration at 1 = 0. For this reason, it is necessary to
choose initial values of Wy and W'y so that (1) a mass balance on the
air at the surface 1s satisfied for a given injection rate and (2)

W(w) ~ 0. The assumption that the air does not penetrate the wall through
which the absorbing gas is injected, leads to the following mass balance
on the air at the wall

Pwhvw %%) + pyve(l - Wy) = 0 (30)
w
which when transformed to the independent variable 1 Dbecomes
Wi = Sc £yl - Wy) (31)

Formally integrating equation (24) twice, making use of equation (22),
the boundary conditions (27) and (28), and equation (31), leads to

1

. % 2 (32)
1 - [(f"w)S /wacf (f")S dn]

WW =

Equation (32) gives the correct value of Wy so that W(w) -~ 0. Egua-
tion (31) gives the corresponding W'y used to begin the numerical
integration of egquation (2&).

In the radiation absorption law (eq. (25)), the absorption coefficilent
o {(and therefore K) is assumed to be constant although in principle X
could be any given function of temperature without destroying similarity.

Method of Solution

Egquations (22) through (25) (with the right-hand sides equal to zero)
sub ject to boundary conditions (27) and (28) were integrated numerically
by the Adams-Moulton (ref. 12, p. 200, egs. 56.6.2) predictor corrector
method using the IBM 704 electronic data processing machine. Briefly,
the sequence of machine computation was as follows: the quantities Iy,
'w, "%, &v, lyw, Pr, Sc, and o are specified (fy and £'y; are obtained
from reference 11 by use of equations (29)). Equation (22) (with the
right-hand side equal to zero) was integrated numerically as a convenience

Sc
for the machine computation and simultaneocusly the integral _&?(f”) dn
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wao evaluated for use in ceguation (32). Initial values Wy and W'y were
obtained from equations (32) and (31), respectively. Two values of -
were arvitrarily chosen. Each value of g'y was used separately to
interrate equations (24), (20), and (23) simultaneously (working in that
order). The values of ¢(») resulting from the two integrations were used
to Interpolate linearly to give an imvroved vaue on g'y, so that

g(n) = 1. The integration was repeated until “he boundary conditions were
satistied.

In all of the numerical examples, Schmidt number and Prandtl number

were taken to be 0.72 (and implicitly Lewis nuwiber is unity).
DISCUSSION OF RESULTS

Let owr [irst obJective be to determine the radiation intensity at

the wall in terms of that incident on the oute edge of the boundary layer.

This information 1s obtained from the solution of equations (22), (2&),
and (29). The ratio of the intensity of radiazion at the wall to that
incident on the outer edge of the boundary layer is plotted as a function
ol «w for two values of Ty in figure 1. The symbol £y 1s the value
ol the strecam function at the wall and can be shown to be directly propor-
tional to the mass injection rate by virtue of equations (ll), (15), (9),
and (10), which are combined to vield

' ~
oV = - Ty <Feueronue Jég;) (33)

An injection rate corresponding to fiyy = —1.235/J§ leads at once to
laminar separation (ref. 11 and egs. ?é9)). Tlis corresponds to an injec-
tion rate of about 0.023 pound per square foot second for a vehicle with

a nose radius of 1.7 feet, flying at escape speed at 200,000 feet altitude.

Therefore the injection rate shown in the figu'e corresponding to
= -1/J2 is substantial. The equation for ihe two curves shown in
figure 1 is obtained by writing the formal solition of equation (25)

Ze

The inbegral £;°w dn  has the values of 2.73 ¢nd 0.968 for £y = -1/\2
and -1/2/2, respectively.

It is seen that at a given value of the al:sorption coefficient «
for the higher injection rate (fy = —l/JE), much more radiation i1s
absorbed in the boundary layer before reaching the wall. It can be noted
that if « 1is about 2 or greater, almost all of the incident radiation
1s absorbed before reaching the wall.

e



13

Hext, 1t is interesting to examine in detail how the radiation
intensity diminishes from the outer edge of the boundary layer to the
wall. Profiles of the radiation intensity across the boundary layer are
shown in figure 2 for various values of the absorption coefficient and
Tor the stronger blowing case Ty = —l/JE. For increasing values of «,
the region in which most of the absorption takes place tends to move away
from the wall (n = 0).

The absorption of radiant energy within the boundary layer raises
the local enthalpy level. The influence of absorption on enthalpy can be
shown from solutions of the energy equation (23) which yields profiles of
total enthalpy across the boundary layer. Approximately 40 examples were
computed; some typical results are shown in figure 3. The lower curve
corresponds to either no incident radiation or no absorption. For either
increasing incident radiation intensity and a given absorption coefficient
or increasing absorption coefficient and a given incident radiation
intensity, the total enthalpy level at a given location (away from the
wall) increases.

The dashed curve corresponds to a very large specified 1,. It
"overshoots" (i.e., g > 1) indicating that the local total enthalpy (and
temperature i it is taken to be roughly proportional to total enthalpy)
in the boundary layer exceeds that exterior to the boundary layer. This
situation is not compatible with the physical model being analyzed. In
the first place, energy cannot be transferred from a lower to higher
temperature without an input of work. Secondly, for higher values of
-le, the overshoot would be larger and would penetrate farther into the
boundary layer, violating the condition that the bulk of the absorbing
gas 1is at a temperature considerably less than that of the exterior flow.
Finally, the neglected reradiation would tend to smooth out and diminish
the overshoot. There is probably a region around the onset of overshoot
where the solutions are of diminishing value. However, for lack of other
criteria, solutions are presented up to, but not into, the overshoot region.
A different analysis would be necessary to study the behavior of the high
-leg conditions.

It can be seen in figure 3 that the enthalpy gradient at the wall
increases with increasing o and -le. This gradient is of major signifi-
cance because 1t is proportional to the convective rate of heat transfer
to the wall. It is obvious that the reduction of radiant heat transfer
resulting from absorption tends to be offset by an increase of convective
heat transfer. Before evaluating this situation, it is advantageous to
look at the influence of absorption coefficient and incident radiation
intensity on the enthalpy gradient at the wall in figure 4. Two features
of this figure are of particular interest. First, for a given o and fy,
g'w appears to be linear with 1le; that is,

gw= (g W)ZeZO - alg (35)
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where a = ala) is the slope of the straight line corresponding to a

given «. Secondly, the curves for o = 1.0 and 1.5 appear to lie out of
order, between the o = 0.1 and 0.5 curves rather than above them. That
is, for a given incident radiation flux (-le), increasing the absorption
coefficient (a) first increases the enthalpy gradient at the wall (g'w),
but for higher values of o, the wall enthalpy gradient tends to diminish
toward the no absorption value. Physically, this decrease in wall enthalpy
gradient for higher values of the absorption coefficient indicates that the
incident radiation energy is being absorbed iarther out in the boundary
layer and influences the wall enthalpy gradient less.

The single point for « = 0.3 shown in the figure was computed to see
if it lies in order, which it does (between the a = 0.1 and 0.5 curves) .

So far, it has been shown that in shielding the wall from radiant
energy the convective heat transfer to the well is increased. It now must
be shown whether or not a net saving in heat transfer results from injec-
tion of an absorbing gas. Injecting a nonabiorbing gas into the boundary
layer will diminish the total heat-transfer rate to the wall by reducing
the convective part of the heat-transfer ratec, as for example, is dia-
grammed. by the upper curve in sketch (b). The injection of an absorbing

Total
heat- B
transfer
rate [

“\\\\-~

Injection rate

Sketch (b)

cas might be expected to diminish the total lLieat-transfer rate even further
(such as shown by lower curve in sketch (b)). The total heat-transfer rate
with injection of an absorbing gas will be compared with that with injec-
tion of a nonabsorbting gas at the same rate 'A will be compared with B).
The dimensionless total heat-transfer rate to a wall through which an
absorbing gas is injected is obtained by sumiing the convective and radia-
tive heat-transfer rates and dividing by je\f(n + 1)CR(pahte)

stagnation’

e
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Thus

g with absorption - 14 <fg'f> (36)
) T Pr
Jenj(n + l)CB(Oe“e)stagn&tion

Similarly. the dimensionless total heat-transfer rate to a wall through
which a nonabsorbing gas 1s injected at the same rate is

qQ no absorption (_g'W)a=O

= Ze +
. ‘ Pr
JeNJln + 1)Cﬁ(pe“e)stagnation

(37)

Comparing the heat-transfer rate with absorption to that without absorption
at a given injection rate, by use of equations (36) and (37), yields

g with absorption _ lyfr - g'y (38)

q no absorption lePr - (ng)q:o

The comparison is shown in figure 5(a) for an injection rate corresponding
to v = —l/f?. The figure shows that a definite advantage is obtained
by injecting an absorbing gas. The effectiveness of this method of shield-
ing against excessive heating increases with Increasing absorption coeffi-
cient and increasing incident radiation intensity. For o« = 1.5 and

le = -0.5, the total heat-transfer rate at the wall is diminished by
approximately 2/3. The region to the right of these curves corresponds

to the enthalpy overshoot condition and, because the analysis is not valid
in that region, the curves are not extended beyond the overshoot boundary.

It is worth noting that a combination of equations (38), (35), and
(3&) yields an expression for the curves of figure 5(&) (although the
curves were not obtained by this expression). It is

afPwa
le aa) + Pre™Jo L (g'w)1.=0
g with absorption _ © (39)

q no absorption _ 1
lPr (g W)le=O

Using for example the value 2.73 for the integral (see below eq. (34)),
0.72 for Pr, 0.071k for (g'w)lezo and, from figure 4, the value a = 0.160

corresponding to o = 1 yields the simple relationship
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q with absorption _ 0.287 l¢ - 0.0992 (40)
g no absorption le - 0.0092

which can be used to describe the appropriate curve in figure 5.

t 1s also of interest to compare the tctal heat-transfer rate during
injection of an absorbing gas to the total heat-transfer rate without any
injection (A vs C in sketeh (b)). The dimensionless total heat-transfer
rate at the wall without injection is

q no injection - (g'w)fw=0 )
mly - (%1)
je.j(n * l)CB(pe“e)stagnation
The ratio of equation (36) to (41) 1is
q with absorption _ lwPr - g'y (42)*
¢ no injection lePr - (“'W>fw=0

The comparison is shown in figure 5(b). The '‘njection rate for the absorp-
tion condition corresponds to Ty = -1A2. Here, of course, the effect is
very pronounced. Examination of the figure shows first of all that it is
advantageous to inject a gas whether it absorts radiation or not. As seen
before, the heat-transfer rate will be diminisched more by injection of an
absorbing gas. However, for low levels of incident radiation intensity, a
large absorption coefficient is not much more effective than a small
absorption coefficient in reducing the total leat-transfer rate. Again,
for large values of incident radiation intensity, large absorption coeffi-
cients are very advantageous. In particular, for « = 1.5, the heat-
transfer rate is only 1/5 that for no injecticn at all for all values of
incident radiation intensity, and less than 1/2 that for injecting a
nonabsorbing gas if 1o = -0.5.

Finally, something should be said about the actual absorption
coefficient X. The required X is dependent on the flight condition
by virtue of its relationship with o (eq. (2€)). TFor a flight speed of
3Lk,000 feet per second at 175,000 feet altitude, and body-nose radii of
1 to 10 feet, the required X 1is of the order of 10° to 107 ftz/slug for
values of « from 0.1 to 1.5. Little is knowa of the absorption proper-
ties of even ordinary gases. Measurements by Eckert and others (ref. 5,
pp. 384-386) can be interpreted to give an approximate "grey" K for
purposes of this discussion. It appears that :arbon dioxide has an
absorption coefficient of the order of 10 sq 't per slug at ordinary
pressures, for temperatures up to 1600° C. Tha coefficient for water

"Equations (42), (35), and (3%) could be -ombined to give the heat-
transfer comparison of injection with absorption to the no injection case

corresponding to equation (39).

= e
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vapor 1s roughly an order of magnitude higher than that of carbon dioxide,
and so the gas we want to blow into the boundary layer should be 3 to 5
orders of magnitude better than water vapor in this regard.

It is encouraging to find that at least one gas has a high absorption
coefficient. That gas is cesium vapor, which has an absorption coefficient
of the order of 108 square feet per slug at 0° C and l-mm Hg in the wave-
length region 2000 to 3000 A (which can be shown from ref. 13). Demon-
strably then, such opaque gases exist, and the problem is to find a
suitable one.

CONCLUDING REMARKS

There are several notable results of this exploratory analysis of
the effects of the injection of an opaque gas in the stagnation region of
a blunt body traveling at hypersonic speed. At a black vehicle surface
the reduction of the radiation heat-transfer rate by radiation absorption
in an injected opaque gas is accompanied by an increase in the convective
heat-transfer rate. However, the net effect is that a saving in total
heat-transfer rate (radiative plus convective) of as much as 2/3 can be
achieved by injecting the absorbing gas into the boundary layer. The
opaque gas must have a high absorption coefficient (3 to 5 orders of mag-
nitude higher than water vapor) in order *o effectively reduce the total
heat-transfer rate to the body. It is pointed out that under some condi-
tions, cesium vapor has an absorption coefficient 6 orders of magnitude
higher than water vapor. It would be worthwhile to search for gases that
have, for actual flight conditions of interest, suitably high absorption
coefficients as well as desirable injection properties.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 17, 1960
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