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TECHNICAL NCTE D-332

AXTAL~FORCE REDUCTION BY INTERFERENCE BETWEEN
JET AND NEIGHBORING AFTERBODY

By William C. Pitts and Lyle E. Wiggins
SUMMARY

Experimental results are presented for an exploratory investigation
of the effectiveness of interference between Jet and afterbody in reducing
the axial force on an afterbody with a neighbering jet. In addition to
the interference axial force, measurements are presented of the interfer-
ence ncermal force and the center of pressure of the interference normal
force. The free-stream Mach number was 2.9&, the jet-exit Mach number
was 2.71, and the Reynolds number was 0.25x10°, based on bedy diameter.
The variables investigated include static-pressure ratio of the jet (up
to 9), nacelle position relative to afterbody, angle of attack (—50 to
lOO), and afterbody shape. Two families of afterbody shapes were tested.
One family consisted of tangent-ogive bodies of revolution with varying
length and base areas. The other family was formed by taking a planar
slice off a circular cylinder with varying angle between the plane and
cylinder. The trends with these varisbles are shown for conditions near
maximum jet-afterbody interference. The interference axial forces are
large and favorable. For several configurations the total afterbody
axial force is reduced to zero by the interference.

INTRODUCTION

It has been shown in references 1 and 2 that large positive pressures
can act on surfaces located in the flow field surrounding a jet. With
proper design these interference pressures can be utilized to reduce the
afterbody drag of a missile or airplane configuration that has the nacelle
neighboring the afterbody. To reduce the drag as much as possible (within
limits prescribed by other design factors), it is necessary to know the
effect of important variables such as jet-exit pressure ratio, nacelle
position relative to the afterbody, afterbody shape, and angle of attack.
At present little information of this nature is available for the jet-
afterbody interference problem. It is the purpose of this report to
present some exploratory results that show trends in the axial-force
variation with the above variables near the conditions for maximum jet-
afterbody interference. The symbols used in this report are defined in
appendix A.



APPARATUS

Wind Tunnel

This investigation was conducted in the Ames 1- by 3-Foot Supersonic
Wind Tunnels No. 1 and No. 2. Tunnel No. 1 is a continuous-operation,
variable-pressure wind tunnel with a flexible-plate nczzle which provides
a Mach number range from 1.% to 4.0, Tumnel No. 2 is an intermittent-
type wind tunnel with a Mach number range frcm 1.4 to 3.8.

Models

The geometry of the models used in this investigation is shown in
figure 1. The body consisted of a cone-cylinder combination with inter-
changeable afterbodies. Afterbodies A through E were formed by taking
planar slices off circular cylinders. Aftertodies F through I were
tangent-ogive bodies of revolution. The nace¢lle was a cone-cylinder
combination with a slightly flared afterbody (1.2° half angle). A
cross—sectional view of the nacelle is shown in figure 2. The exit to
throat area ratio was 3.37 which corresponds to a theoretical exit Mach
number of 2.76. The divergent portion of the nozzle was conlcal and
made an 11.2° angle with the axis.

Model Supports

The body and the nacelle were supported separately by struts that
projected from the side of the tumnel as shom in figures 3 and 4. The
body support strut was shielded from the flo7 by a hollow shroud. The
nacelle support strut was hollow and was usel to supply high-pressure air

to the jet nozzle. The nacelle was position:d by a series of interchange-

able plates shown as item 1 in figure 4, Th: nacelle positions used in
this investigation and the coordinate system used to designate these
nacelle positions are shown in figure 5; the reference point on the
nacelle is indicated in the figure.

Balance and Auxiliary Equipment

Forces and moments were measured only o1 the body using the
six-component, side-support, strain-gage-typ: balance described in
reference 3. For the present investigation oinly three components (axial
force, normal force, and pitching moment) were measured. The linkage
between the body and the balance is indicatedl in figure L.
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The jet total pressure was measured by the total-pressure tube
indicated in figure 2 and the free-stream static pressure was measured
by an orifice in the tunnel wall. These pressures were measured with a
manometer and recorded with a camera, except the upper range of total
pressures (pj/pm.E 7) for which the range of the manometer board was

exceeded and a Bourdon type gage was used.

A simple shadowgraph was used for flow visualization. A beam of
parallel light was directed onto the model assembly from one side. The
details of the jet structure were then visible on a white background
painted on the opposite side of the tunnel. These details were photo-
graphically recorded.

TESTS, PROCEDURES, AND DATA REDUCTION

Force and Moment Measurements

Several precautions were taken to insure consistency and reliability
of the data. Boundary-layer transition was fixed by a trip wire located
0.3 diameter aft of the apex of the body nose cone. Sublimation tests
indicated that the boundary layer was then turbulent over the entire body.
Strut interference was minimized by placing the afterbodies more than 3.5
body diameters downstream of the trailing edge of the body-support shroud.
Reference L4 shows that the effect of strut interference on body pressures
attenuates to a negligible amount in this distance. The afterbodies were
forward of the shock waves from the horizontal struts for the angle range
of the tests (-5° <o < 10°).

In the discussion of the results of this investigation two types of
measured quantities are considered. One is the incremental interference
effects of the jet on the axial force, normal force, and pitching-moment
coefficients of the entire body. The other is the total axial-force
coefficient on the afterbody alone with the jet on (see fig. 1 for defi-
nition of afterbody). The procedures for obtaining the incremental and
total afterbody coefficients will be discussed separately.

Jet-interference forces.- The interference forces are defined as
those acting on the body with the jet on minus those acting on the body
with the jet off (nacelle present); these forces were measured in a
straightforward fashion. The sequence of operation for each model
configuration was to set the angle of attack and then to vary the pressure
ratio from jet off to the maximum of about 9 in rapid succession. The
forces on the body with the jet off were then subtracted from those with
the jet on to obtain the interference quantities directly. This procedure
minimized errors in the incremental force measurements due to strain-gage
temperature drifts and weight tares due to angle of attack. The quantities
obtained in this fashion are designated herein as ACh, ACy, and ACy.




The interference forces were measured in Tunnel No. 1 at a Mach -
number of 2.94 and a Reynolds number of O.25XLO6, based on body diameter.
Some data were taken at R = O.5xlOG. The test section total pressures
corresponding to the above Reynolds numbers were 14.7 and 30.0 pounds per
square inch absolute, respectively.

Total axial force on afterbodies.— The total afterbody axial-force
coefficient with jet on CA is (CA + A@A) where CA is the afterbody
o] ol

axisl-force coefficient at zero angle of atta:k with the nacelle and strut
removed. This neglects the interference effe:ts of the nacelle and strut.
However, measurements of axial force with and without the nacelle showed
the interference effects of the nacelle and strut to be sufficiently
small, compared to the interference forces of the jet, that neglect of
this term did not alter trends. The magnitude of the nacelle and strut
interference term Fn/qu is given in table I.

The quantity CAo was obtained indirectly. The axial force for the

entire body was measured for each afterbody with the nacelle and strut .
removed. Then the forebody axial force was estimated and subtracted from

the total sxial force to obtain the afterbody axial force. The forebody

axial force was estimated by subtracting the theoretical base plus skin- he
friction axial force of cylindrical afterbody J1 from the meazsured total

axial force for the body with afterbody J.

—n

The data used to obtain CA were taken in Tunnel No. 2 at a test
0

Mach number of 2.96 and Reynolds number of O.95x106. To maintain super-
sonic flow= it was necessary to operate Tunnel No. 2 at a higher Reynolds
number than Tunnel No. 1.

Jet Calibration

Two total pressure tubes were used to celibrate the nozzle. One was
fixed inside the nacelle (see fig. 2) and the other was mounted on a sting
so that the end of the tube was at the center of the jet exit. A jet Mach
number of Ms: = 2.71 was then obtained from the measured pressures Dby
using a one—gimensional flow analysis and assuming no total pressure loss
between the nozzle chamber and the exit. The pressure ratio, pj/Rw’ was

obtained from the calibrated jet-exit Mach number, the chamber pressure,
and known tunnel conditions. To avoid the pcssibility of condensation
shocks the air was dried so that the water ccntent was less than 0.00005
pound of water per pound of air. No hysteresis was observed in the nozzle
calibration.

IThe base drag was estimated from charts of reference 5 and the skin -
friction was estimated by the T' method used in reference 6.
2A correction of 0.008 was added to Cp, from Tunnel No. 2 data to

allow for Reynolds number effect on skin friction between the two tunnels.
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Equivalence of Hot and Cold Jets

Since a cold jet was used in +he bresent investigation, the useful-
ness of the results depends on relating them to g hot-gas jet. In this
investigation the afterbodies are always placed well outside the Jjet
boundary. Therefore, it is necessary for the cold-air jet to provide
simulation of only the flow external to the jet boundary. This is
equivalent to similating the Jjet-boundary shape since the Jet boundary
is a streamline. A brief summary of the results of reference ' regarding
the equivalence of Jet boundaries is given in appendix B.

Accuracy of Data

Uncertainties are summarized in the following table.

-—6 —
Rx10 o range AC, ACy; %x/a CAO pj/poo @
0° to 2° | +0.002 .
0.25 #0.02 [ £0.25 | +0.002 [ #0.1 | #0.1
—50 to 0° "
+.00
2° to 10° 005
.50 -5° t0 10° | +.005

The repeatibility of the data was found to be consistent with the above
table. The accuracy of E/d depends strongly on ACy. In the presen-
tation of the data, X/d is arbltrarily discarded when the estimated
uncertainty is greater than 0.25.

RESULTS AND DISCUSSION

The basic jet-interference data are presented in figures 6 and 7 as
a function of the ratio of Jet-exit static pressure to free-stream static
pressure. Table II shows the organization of these data. The shock
waves shown as dotted curves in the inserted sketches on the figures are
reproduced from shadowgraph pictures for pj/pw = 9 to the extent of

visibility of the shock waves in the pictures. The afterbody designation
is given in figure 1 and the nacelle-position designation is summarized

in figure 5. As pointed ocut in the Accuracy of Data section, the accuracy
of the center-of-pressure measurements decreases rapidly as ACN becomes



small. When the uncertainty in E/d exceeds *0.25 the center-of-pressure
data are not presented. Some free-jet characeristics which might be
useful in interpreting the interference effec:s are presented in

appendix B.

Fffect of Shock-Wave Boundary-Layer Interaction

One of the principal and most complex jet interference effects is
that caused by the interaction of the shock wave from the jet and the
body boundary layer, especially if the boundary layer has appreciable
thickness. Unpublished data obtained in the Ames 1- by 3-Foot Supersonic
Wind Tunnel by Donald M. Kuehn indicate that the boundary-layer thickness
at the afterbody is of the order of 0.2d for the model of this investiga-
tion when turbulent flow is induced at the ncse. This thick boundary
layer causes considerable pending of the shock wave near the body. In
view of the complex flow phenomena, a reasonebly simple theoretical method
for estimating the results of this investigation does not appear likely.

Effect of Nacelle Position Relative to Afterbody

The interference forces are strongly deyjendent upon the nacelle
position or more correctly on the position o the exit shock wave relative
to the afterbody. This is shown by figures ¢ and 9. Figure 8 shows the
effect of moving the nacelle in an axial dircetion for fixed values of
r/d and pj/pw. The parameter s 1is the dis.ance from the shoulder of

the afterbody to the point of intersection oo the shock wave with the
cylindrical body or its imaginary extension. For the slab-sided after-
bodies there is a rather sharp peak in ACp when the shock wave 1is near
the shoulder (s/d = O). For afterbody H the slope of the curves of ACy

is not as great as for the slab-sided afterbydies. Generally, the data
points are not spaced sufficiently close to letermine the location and
magnitude of the peaks precisely, and for this reason most of the peaks
are shown dashed.

The variation of ACA with s/d can be =xplained qualitatively for
the slab-sided afterbodies in figure 8 by usz of the idealized, inviscid,
two-dimensional model in sketch (a). When the shock
wave is well forward cf the shoulder (as shown) the
axial—force increment is small. As the shock wave

Exit shock —of ,&'—High interference .
: pressures is moved aft, ACp begins to increase when the high
é pressure region reaches the shoulder. The quantity
Wﬁ. ACp continues to increase as more of the high pres-
" sure region impinges cn the slab portion of the
Sketch (o) afterbody until the shock wave crosses the shoulder.

Then as the shock wave is moved farther aft, AC,  rapidly decreages from
jts maximum value because the slope of the slab effectively increases the
distance between the nacelle and the point of shock-wave impingement on
the afterbody.

\O =N
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Figure 9 shows the effect of radial position of the nacelle. The
curves are cross plots of figure 8 for two fixed values of s/d. As
might be expected, the interference forces fall off rapidly as the nacelle
is moved away from the body.

Effect of Pressure Ratio

In general, the data of figures 6 and 7 show a large increase in the
magnitude of ACp and ACy  with increasing pressure ratio. The effect on

X/d is generally small. The maximum interference axial force for a = O
was obtained for afterbody A with pJ./poo = 9 (figs. 6(a) and 6(c)).

For these conditions AC, 1is just equal in magnitude (0.12) to the drag

on afterbody A without the nacelle present so that the total afterbody
drag with interference is zero. The corresponding normal-force increment
is about 0.4 which is the maximum observed.

On the basis of axial-force reduction a highly underexpanded nozzle
flow (pJ./Rm >> 1) is desirable. An underexpanded nozzle also has less

external drag than a fully expanded nozzle. However, an underexpanded
nozzle gives less thrust than a fully expanded one, so that the final
choice in design for maximum thrust minus axial force must depend on some
optimization procedure involving these several variables.

Effect of angle of attack.- In some cases the effects of angle of
attack on the interference forces were significant, but in general they
were not as great as the effects of nacelle position and jet pressure
ratio. (The body and nacelle are always at the same angle of attack.)
Typical angle-of-attack effects are summarized in figure 10.

Effect of Afterbody Shape

The intent of preceding sections was to examine the effects of
particular variables on jet-afterbody interference. For that purpose it
was adequate to consider the incremental quantities ACyp and ACy. To

compare the various afterbody shapes, however, it is more meaningful to

examine the total afterbody axial-force coefficient for o = O

(CA =Cp + ACA) since the afterbody with the greatest favorable interfer—
o)

ence force may have a relatively large axial force without interference.

The afterbody axial-force coefficients without interference, Cp ,
(o

are presented in figure 11. The curve for the family of ogival after-
bodies is at a lower level and is smoother than that for the slab-sided
afterbodies. The shape of the latter curve is probably a result of
complex vortex patterns and separation in the afterbody region. The
vortices, due to flow separation at the sides of the afterbody, are



indicated for bodies E, B, and C in the pictures of sublimation patterns
shown in figure 12. (The dark blotches near the center of the slab
surfaces are due to model imperfections.) Shadowgraph pictures (not
published) indicate that the flow near the top of the body remained
attached aft of the shoulder for afterbodies 4, B, and C but was separated
at the shoulder for afterbody D.

Figure 13 shows the minimum value of CA for each afterbody as a

function of pressure ratio for the conditions specified in the figure.

The ordinate Cp | is the sum of Cp and ~he maximum negative value
in o]

of AC, as determined from curves similar to those of figure 8. Because

of insufficient data to determine such curves for afterbody A, the data

of figures 6(a) and 6(c) were used directly to compute CAm for after-
in

body A in figures 13(a) and 13(b), respectively. Since the maximum
negative values of AC, are not precisely de“ermined, differences less

than 0.01 in CAm' should not be considered significant in figure 13.
in
Note that CAm = Cp for jet off. For low jet static-pressure ratios
in (e)

the ogival-afterbody family (dashed curves) o’fers a lower axial force
than the slab-sided afterbody family. Howeve, the slab-sided afterbody
family is more effectively influenced by the jet shock wave so that as
pJ./poo is increased the slab-sided afterbodies offer the lower axial force.

Ames Research Center
National Aeronautics and Space Administrition
Moffett Field, Calif., June 6, 1960
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AXTATL~FORCE REDUCTION BY INTERFERENCE BETWEEN
JET AND NEIGHBORING AFTERBODY

By William C. Pitts and Lyle E. Wiggins
SUMMARY

Experimental results are presented for an exploratory investigation
of the effectiveness of interference between jet and afterbody in reducing
the axial force on an afterbody with a neighboring jet. In addition to
the interference axial force, measurements are presented of the interfer-
ence normal force and the center of pressure of the interference normal
force. The free-stream Mach number was 2.9k, the jet-exit Mach number
was 2.71, and the Reynolds number was 0.25X106, based on body diameter.
The variables investigated include static-pressure ratio of the jet (up
to 9), nacelle position relative to afterbody, angle of attack (-5° to
lOO), and afterbody shape. Two familieg of afterbody shapes were tested.
One family consisted of tangent-ogive bodies of revolution with varying
length and base areas. The other family was formed by taking a planar
slice off a circular cylinder with varying angle between the plane and
cylinder. The trends with these variables are shown for conditions near
maximum jet-afterbody interference. The interference axial forces are
large and favorable. For several configurations the total afterbody
axial force is reduced to zero by the interference.

INTRODUCTION

It has been shown in references 1 and 2 that large positive pressures
can act on surfaces located in the flow field surrounding a jet. With
proper design these interference pressures can be utilized to reduce the
afterbody drag of a missile or airplane configuration that has the nacelle
neighboring the afterbody. To reduce the drag as much as possible (within
limits prescribed by other design factors), it is necessgary to know the
effect of important variables such as Jet-exit pressure ratio, nacelle
position relative to the afterbody, afterbody shape, and angle of attack.
At present little information of this nature is available for the jet-
afterbody interference problem. It is the purpose of this report to
present some exploratory results that show trends in the axial-force
variation with the above variables near the conditions for maximum Jet-
afterbody interference. The symbols used in this report are defined in
appendix A.



APPARATUS

Wind Tunnel

This investigation was conducted in the Ames 1- by 3-Foot Supersonic
Wind Tunnels No. 1 and No. 2. Tunnel No. 1 Zs & continuous-operation,
variable-pressure wind tunnel with a flexible-plate nozzle which provides
a Mach number range from 1.4 to 4.0. Tunnel No. 2 is an intermittent-
type wind tunnel with a Mach number range frcm 1.4 to 3.8.

Models

The geometry of the models used in thigs investigation is shown in
figure 1. The body consisted of a cone-cylinder combination with inter-
changeable afterbodies. Afterbodies A throuzh E were formed by taking
planar slices off circular cylinders. Aftersodies F through I were
tangent-ogive bodies of revolution. The nac:lle was a cone-cylinder .
combination with a slightly flared afterbody (1.2O half angle). A
cross-sectional view of the nacelle is shown in figure 2. The exit to
throat area ratio was 3.37 which corresponds to a theoretical exit Mach
number of 2.76. The divergent portion of th= nozzle was conical and
made an 11.2° angle with the axis.

Model Supports

The body and the nacelle were supported separately by struts that
projected from the side of the tumnel as shcwn in figures 3 and 4. The
body support strut was shielded from the flcw by a hollow shroud. The
nacelle support strut was hollow and was used to supply high-pressure air
to the jet nozzle. The nacelle was positiored by a series of interchange-
able plates shown as item 1 in figure L. Tre nacelle positions used in
this investigation and the coordinate systern used to designate these
nacelle positions are shown in figure 5; the reference point on the
nacelle is indicated in the figure.

Balance and Auxiliary Equipment

Forces and moments were measured only cn the body using the
six-component, side-suppor?t, strain-gage-tyr e balance described in
reference 3. For the present investigation only three components (axial
force, normal force, and pitching moment) were measured. The linkage
between the body and the balance is indicated in figure 4.
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The jet total pressure was measured by the total-pressure tube
indicated in figure 2 and the free-stream static pressure was measured
by an orifice in the tunnel wall. These pressures were measured with a
manometer and recorded with a camera, except the upper range of total
pressures (pJ./poo > 7) for which the range of the manometer board was

exceeded and a Bourdon type gage was used.

A simple shadowgraph was used for flow visualization. A beam of
parallel light was directed onto the model assembly from one side. The
details of the jet structure were then visible on a white background
painted on the opposite side of the tunnel. These details were photo-
graphically recorded.

TESTS, PROCEDURES, AND DATA REDUCTION

Force and Moment Measurements

Several precautions were taken to Insure consistency and reliability
of the data. Boundary-layer transition was fixed by a trip wire located
0.3 diameter aft of the apex of the body nose cone. Sublimation tests
indicated that the boundary layer was then turbulent over the entire body.
Strut interference was minimized by placing the afterbodies more than 3.5
body diameters downstream of the trailing edge of the body-support shroud.
Reference U4 shows that the effect of strut interference on body pressures
attenuates to a negligible amount in this distance. The afterbodies were
forward of the shock waves from the horizontal struts for the angle range
of the tests (-5° <a < 10°).

In the discussion of the results of this investigation two types of
measured guantities are considered. One is the incremental interference
effects of the jet on the axial force, normal force, and pitching-moment
coefficients of the entire body. The other is the total axial-force
coefficient on the afterbody alone with the jet on (see fig. 1 for defi-
nition of afterbody). The procedures for obtaining the incremental and
total afterbody coefficients will be discussed separately.

Jet-interference forces.- The interference forces are defined as
those acting on the body with the jet on minus those acting on the body
with the jet off (nacelle present); these forces were measured in a
straightforward fashion. The sequence of operation for each model
configuration was to set the angle of attack and then to vary the pressure
ratio from Jjet off to the maximum of about 9 in rapid succession. The
forces on the body with the jet off were then subtracted from those with
the jet on to obtain the interference quantities directly. This procedure
minimized errors in the incremental force measurements due to strain-gage
temperature drifts and weight tares due to angle of attack. The quantities
obtained in this fashion are designated herein as AC,, ACy, and ACp.




The interference forces were measured in Tunnel No. 1 at a Mach
number of 2.94% and a Reynolds number of O.25XLOG, based on body diameter.
Some data were taken at R = O.5x106. The test section total pressures
corresponding to the above Reynolds numbers ware 14,7 and 30.0 pounds per
square inch absolute, respectively.

Total axial force on afterbodies.- The total afterbody axial-force
coefficient with jet on C, is (Cp + AC,) where C, 1s the afterbody
0

axial-force coefficient at zero angle of attack withothe nacelle and strut
removed. This neglects the interference effects of the nacelle and strut.
However, measurements of axial force with and without the nacelle showed
the interference effects of the nacelle and strut to be sufficiently
small, compared to the interference forces of the jet, that neglect of
this term did not alter trends. The magnitude of the nacelle and strut
interference term Fp/q A 1is given in table I.

The quantity CAO was obtained indirectly. The axial force for the

entire body was measured for each afterbody with the nacelle and strut
removed. Then the forebody axial force was e¢stimated and subtracted from
the total axial force to obtain the afterbody axial force. The forebody
axial force was estimated by subtracting the theoretical base plus skin-
friction axial force of cylindrical afterbody Jt from the measured total
axial forece for the body with afterbody J.

The data used to obtain CA were taker in Tunnel No. 2 at a test
0

Mach number of 2.96 and Reynolds number of O.95x106. To maintain super-
sonic flow” it was necessary to operate Tumnel No. 2 at a higher Reynolds
number than Tunnel No. 1.

Jet Calibration

Two total pressure tubes were used to ceclibrate the nozzle. One was
fixed inside the nacelle (see fig. 2) and the other was mounted on a sting
so that the end of the tube was at the center of the jet exit. A jet Mach
number of Ms = 2.71 was then obtained from the measured pressures by
using a one—&imensional flow analysis and assuming no total pressure loss
between the nozzle chamber and the exit. The pressure ratio, pj/pw, was

obtained from the calibrated jet-exit Mach mumber, the chamber pressure,
and known tunnel conditions. To avoid the pcssibility of condensation
shocks the air was dried so that the water ccntent was less than 0.00005
pound of water per pound of air. No hystere:tis was observed in the nozzle
calibration.

IThe base drag was estimated from charts of reference 5 and the skin
friction was estimated by the T' method used in reference 6.
2A correction of 0.008 was added to CAo from Tunnel No. 2 data to

allow for Reynolds number effect on skin friction between the two tunnels.

(Vo= VIS
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Equivalence of Hot and Cold Jets

Since a cold jet was used in the present investigation, the useful-
ness of the results depends on relating them to a hot-gas jet. 1In this
investigation the afterbodies are always placed well outside the Jet
boundary. Therefore, it is necessary for the cold-air jet to provide
simulation of only the flow external to the Jet boundary. This is
equivalent to simulating the Jet-boundary shape since the jet boundary
is a streamline. A brief summary of the results of reference 7 regarding
the equivalence of jet boundaries is given in appendix B.

Accuracy of Data

Uncertainties are summarized in the following table.

_6 —

Rx10 ange ANC AC x/d C . a
o veng R AN N VS
0° to 2° | +0.002 o

0.25 +0.02 | #0.25 | +0.002 | *0.1 | +0.1

-5° to Q° +
20 to 100 | *000
.50 -5% to0 10° | +.005

The repeatibility of the data was found to be consistent with the above
table. The accuracy of E/d depends strongly on ACyj.  In the presen-
tation of the data, X/d is arbitrarily discarded when the estimated
uncertainty is greater than 0.25.

RESULTS AND DISCUSSION

The basic Jjet-interference data are presented in figures 6 and 7 as
a function of the ratio of jet-exit static Pressure to free-stream static
pressure. Table II shows the organization of these data. The shock
waves shown as dotted curves in the inserted sketches on the figures are
reproduced from shadowgraph pictures for pJ./poo = 9 to the extent of

visibility of the shock waves in the pictures. The afterbody designation
is given in figure 1 and the nacelle-position designation is summarized

in figure 5. As pointed out in the Accuracy of Data section, the accuracy
of the center-of-pressure measurements decreases repidly as ACN becomes



small. When the uncertainty in i/d exceeds *0.25 the center-of-pressure
data are not presented. Some free-jet charactzeristics which might be
useful in interpreting the interference effects are presented in

appendix B.

Effect of Shock-Wave Boundary-Layer Interaction

One of the principal and most complex jet interference effects is
that caused by the interaction of the shock wave from the jet and the
body boundary layer, especially if the boundary layer has appreciable
thickness. Unpublished data obtained in the Ames 1- by 3-Foot Supersonic
Wind Tunnel by Donald M. Kuehn indicate that the boundary-layer thickness
at the afterbody is of the order of 0.2d for the model of this investiga-
tion when turbulent flow is induced at the ncse. This thick boundary
layer causes considerable bending of the shock wave near the body. In
view of the complex flow phenomena, a reasonsbly simple theoretical method
for estimating the results of this investigation does not appear likely.

Effect of Nacelle Position Relatite to Afterbody
The interference forces are strongly dependent upon the nacelle
position or more correctly on the position o the exit shock wave relative
to the afterbody. This is shown by figures & and 9. Figure 8 shows the
effect of moving the nacelle in an axial direetion for fixed values of
r/d and pj/pm. The parameter s 1s the dis .ance from the shoulder of

the afterbody to the point of intersection 0" the shock wave with the
cylindrical body or its imaginary extension. TFor the slab-sided after-
bodies there is a rather sharp peak in ACp when the shock wave 1s near
the shoulder (s/d = 0). For afterbody H the slope of the curves of ACy

is not as great as for the slab-sided afterbodies. Generally, the data
points are not spaced sufficiently close to letermine the location and
magnitude of the peaks precisely, and for this reason most of the peaks
are shown dashed.

The variation of AC, with s/d can be >xplained qualitatively for
the slab-sided afterbodies in figure 8 by us: of the idealized, inviscid,
two-dimensional model in sketch (a). When the shock
wave is well forward of the shoulder (as shown) the

, - S axial-force increment is small. As the shock wave
Exit shock ¢ High interference .
. pressures is moved aft, AC, begins to increase when the high
pressure region reaches the shoulder. The quantity
ACp continues to incr=ase as more of the high pres-
sure region impinges ca the slab portion of the
Sketch (a) afterbody until the shock wave crosses the shoulder.
Then as the shock wave is moved farther aft, AC, rapidly decreases from
its meximum value because the slope of the slab effectively increases the
distance between the nacelle and the point cf shock-wave impingement on
the afterbody.

\O &= 0 P
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Figure 9 shows the effect of radial position of the nacelle. The
curves are cross plots of figure 8 for two fixed values of s/d. As
might be expected, the interference forces fall off rapidly as the nacelle
is moved away from the body.

Effect of Pressure Ratio

In general, the data of figures 6 and 7 show a large increase in the

magnitude of ACp and ACy  with increasing pressure ratio. The effect on
X/d 1is generally small. The meximum interference axial force for a = O
was obtained for afterbody A with pJ./poo = 9 (figs. 6(a) and 6(c)).
For these conditions ACy  1s Just equal in magnitude (0.12) to the drag
on afterbody A without the nacelle present so that the total afterbody
drag with interference is zero. The corresponding normal-force increment
is about 0.4 which is the maximum observed.

On the basis of axial-force reduction a highly underexpanded nozzle
flow (pj/Rm >> 1) is desirable. An underexpanded nozzle also has less

external drag than a fully expanded nozzle. However, an underexpanded
nozzle gives less thrust than a fully expanded one, so that the final
choice in design for maximum thrust minus axial force must depend on some
optimization procedure involving these several variables.

Effect of angle of attack.- In some cases the effects of angle of
attack on the interference forces were significant, but in general they
were not as great as the effects of nacelle position and jet pressure
ratio. (The body and nacelle are always at the same angle of attack.)
Typical angle-cf-attack effects are swmarized in figure 10.

Effect of Afterbody Shape

The intent of preceding sections was to examine the effects of
particular variables on jet-afterbody interference. For that purpose it
was adequate to consider the incremental quantities ACp and ACy- To
compare the various afterbody shapes, however, it is more meaningful to
examine the total afterbody axial-force coefficient for a = 0
(CA = CAo + ACA) since the afterbody with the greatest favorable interfer—

ence force may have a relatively large axial force without interference.

The afterbody axial-force coefficients without interference, Ca »
o}

are presented in figure 11. The curve for the family of ogival after-
bodies is at a lower level and is smoother than that for the slab-sided
afterbodies. The shape of the latter curve is probably a result of
complex vortex patterns and separation in the afterbedy region. The
vortices, due to flow separation at the sides of the afterbody, are



indicated for bodies E, B, and C in the pictures of sublimation patterns
shown in figure 12. (The dark blotches near the center of the slab
surfaces are due to model imperfections.) Shadowgraph pictures (not
published) indicate that the flow near the top of the body remained
attached aft of the shoulder for afterbodies s, B, and C but was separated
at the shoulder for afterbody D.

Figure 13 shows the minimum value of CA for each afterbody as a
function of pressure ratio for the conditions specified in the figure.
The ordinate CAm' is the sum of Cp and —he maximum negative value

in o

of AC, as determined from curves similar to those of figure 8. Because

of insufficient data to determine such curves for afterbody A, the data

of figures 6(a) and 6(c) were used directly to compute CAm for after-
in

body A in figures 13(a) and 13(b), respective.y. Since the maximum
negative values of ACA are not precisely de:ermined, differences less

than 0.01 in CAm' should not be considered significant in figure 13.
in
Note that CAm = Cp for jet off. For low jet static-pressure ratios
in 0

the ogival-afterbody family (dashed curves) o fers a lower axial force
than the slab-sided afterbody family. Howeve:’, the slab-sided afterbody
family is more effectively influenced by the .jet shock wave so that as

pj/pm ig increased the slab-sided afterbodie; offer the lower axial force.

Ames Research Center
National Aeronauticgé and Space Administration
Moffett Field, Calif., June 6, 1960
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APPENDIX A

SYMBOLS

Symbols and sign conventions are shown in sketch (v)

ACy,

Ca ' OOCy F, +X

d  Afterbody

Exit shock
wave

e
J

|
i
|
Nry
-2
_— g

Sketch (b)

M

7
M
7

body cylinder cross-sectional area, sq in.

total afterbody axial-force coefficient with jet on,
CAO + ACA

afterbody axial-force coefficient with nacelle and strut removed
and a = O, based on g A
00

minimum value of Cp

interference axial-force coefficient,

(jet-on axial force) - (jet-off axial force)
qg A

[ee]

interference normal-force coefficient,

(jet-on normal force) - (jet-off normal force)

gwA
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ACp

na

interference pitching-moment coefficient referred to the -
rearmost point of the afterbody,

(jet-on pitching moment) - (jet—of” pitching moment)

qud

body cylinder diameter, in.

interference axial force acting on the body due to the presence
of the nacelle and strut, 1lb

base diameter of ogival afterbodies, in.

jet-exit Mach number

free-stream Mach number

jet-exit static pressure, 1b/sq in.

static pressure immediately aft of exit shock wave, 1b/sq in.
free-stream static pressure, 1lb/sq in. -
free-stream dynamic pressure, 1b/sq in.

Reynolds number based on body diameter

radial position of nacelle base, in.

axial position of nacelle base, in.

. AC .
center of interference pressure, Zz;}d, in.
1.

intersection point of jet shock with extended body cylinder, in.
angle of attack of nacelle and body configuration, deg

ratio of specific heats in jet

initial angle between jet boundary :nd jet center line, deg
angle between divergent portion of 10zzle and center line, deg

angle between slab portion of aftersody and body center line in N
vertical plane, deg

O =N
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APPENDIX B

EXPERIMENTAL OBSERVATIONS AND ESTIMATION

OF FREE-JET CHARACTERISTICS

Scme experimental observations — ~— (sobars %3:
of free-jet characteristics are
presented in this paragraph. Sketch
(c) shows the structure of the jet
for the model of the present inves-
tigation. The shock shapes and the ) o
Jet-boundary shape were determined 0 ' et boundory
from a shadowgraph picture. The ' = i
pressure rise across the exit shock
was computed by assuming local two-
dimensional flow. Schéfer's theo-
retical model (ref. 8) was used as
a8 guide to fill in the qualitative Sketch (c)
isobar detail. It might be expected :
from examination of the isobar
structure that interference effects
on a neighboring surface depend
strongly on the relative positions
of the surface and jet. Sketch (d)
(reproduced from shadowgraph pic-
tures) shows the effect on the
shock-wave shape of increasing the
static-pressure ratic from 3 to 9
for a = 0°. Sketch (e) shows the BED}“\
effect on the shock-wave shape of
increasing the angle of attack from

------- isobars —z‘ <
=

Exit shock

Interngl shock

Expansion wave

Sketch (d)

o o - . T
0° to 8% for pj/poo = 9. The pri -_ftzzo e -
mary effect of angle of attack is a-g° -7
on the lee side of the nacelle Ve tor e
where shadowgraph pictures indicate - o -7

flow separation. The flow separa- -
tion causes the exit shock-wave
system to move forward progressively
with increasing angle of attack.

The separation appeared to start
when the nacelle angle of attack

exceeded about 2°. Sm““\\\\\

Separated
flow

Sketch (e)
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Charts are presented in reference 7 for estimating the shape of a
jet boundary when it exhausts into still air. An equivalence rule 1is
presented which states that two jet-boundary shapes are equivalent to a
practical degree of accuracy if the initial slope of the Jjet boundary is
the same for both and if 7. 1is not too greatly different. This rule

was demonstrated to be true for the Jet exhausting into still air and
was suggested to be true for a jet exhausting into a supersonic flow.
Tt is demonstrated in figure 14 that the charts and equivalence rule of
reference 7 are adequate for estimating the jet-boundary shapes for the
supersonic flow conditions of this investigation. The estimated shapes
are compared with boundary shapes recorded on shadowgraph pictures when
a = 0° and the external flow over the nacelle was not separated. Since
an infinite number of combinations of Mj, O, 73 and pj/RDo will
duplicate the initial slope of the jet boundary, several combinations
were chosen for each comparison to show that considerable latitude is
available in the choice of parameters. The pcor agreement between the
experimental jet-boundary shape and the theoretical jet-boundary shape
for Oy = 20° (bottom table, fig. 1b4) indicates that 6y should be cho-
sen to simulate as nearly as possible the actual geometry. From the
above discussion the boundary shape of a cold-air jet is equivalent to
that of a hot-gas Jet, provided they both have the same value of 53.

On this basis, figure 15 was constructed for the nozzle of this investi-
gation. For small pressure ratios the effect of 73 is quite small.

The exit-shock shape can also be predicted to good engineering
accuracy when o = 0° and the flow over the ai'terbody of the nacelle is
not separated (see fig. 16). The shaded regiocns represent the range of
shock-wave shapes obtained for the estimated ,et-boundary shapes in
figure 1k with corresponding pressure ratio. (The shock wave for the
smallest diameter jet-boundary shape at the bottom of figure 14 was
excluded from figure 16.) The method of estination is essentially that
of reference 9 for axisymmetric bodies. For ~he present estimation the
initial inclination of the exit shock was detormined by assuming local
two-dimensional flow at the nozzle exit.

ANORN = \D I —
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TABLE II.- INDEX TO BASIC DATA IN FIGURES 6 AND 7

(oI IR N

Nacelle Figure 6 Figure 7
position slabbed afterbodies ogival afterbodies
r/d | x/a A B C D E F G H I J
0.110.8 - - - (££) | - - () | (e) - (p)
12 | - @ @] - (@] -] - [@] - |-
1.6 - (e) | (@) | (&) | - - - - - -
2.0 - (£) | (v) - - - - - - -
2k | -t @G- - -1-1-1-1-
2.8 - - - - - - - - - -
‘} 3.2 (a) - - - - - - - - -
5] 1.6 -l @) - @D - ()] (e} - -
2.0 - @)y - )] - - | ()| - -
ek L) | ()] (V)| - J(x)|(a)] (@) | (D) | ()] -
2.8 - (k) | (w) - (11)| - - - - -
3.2 - ()| (x) | - |(@m]| - - (31 - -
3.6 (e | = | (w) | - - - - - - -
1} 4.0 - - (z) - - - - - - -
.912.0 - - (aa)| - - - - (k) - -
2.k - - (bb)| - (nn) | - - (1) - -
2.8 - (m) | (cc)| - (o0) | - - (m) - -
3.2 - | (n) | (aq)| - | (pp)| - - || - -
Y 13.6 - (o) (ee)| - - - - - - -
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3A

15.00 L —
2.50 | e 425
| l
Forebody 1.25 ::__—“ Afterbody
1
; T f
f 900 Nacelle 1.0O
Note: Model dimensions i *
in inches I
250 f 2.20
2 9.50 — /1
i/
9
IL 4.25 ﬂi = 425
. Afterbody
A F
‘ lr* 400 - ,L 3.927
_B_/ G >
I 300 l— 1965 —
/ > s
C H 375
1
;-—— 2.00 — ‘-—-— 1.965 —|
e ‘L
D | / 750
T
100 | 1965
625 }
E / T J K 1.25
}—— 2.00 — 325

Figure 1.- Model geometry.
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Rotio of jet-exit static pressure to free-stream static pressure, pi/p

(1) Body B, r/d = 0.5, x/d = 2.0.

Figure 6.- Continued.
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Figure 12.- Pictures of sublimation patterns that indicate location of

vortices.
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Figure 1lL.- Comparison with experiment of the Jjet-boundary shapes estimated

from charts of reference 6; a = O.
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