

TECHNICAL NOTE

D-1037

THE USE OF DRAG MODULATION TO LIMIT THE RATE AT WHICH
DECELERATION INCREASES DURING NONLIFTING ENTRY

By Lionel L. Levy, Jr.
Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1037

THE USE OF DRAG MODUTATION TO IIMIT THE RATE AT WHICH
DECEIERATION INGREASES DURING NONLIFTING ENTRY
By Lionel L. Levy, Jr.

SUMMARY

The method developed in NASA TN D-319 for studying the atmosphere entry of vehicles with varying aerodynamic forces has been applied to obtain a closed-form solution for the motion, heating, range, and variation of the vehicle parameter $\mathrm{m} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ for nonlifting entries during which the rate of increase of deceleration is limited. The solution is applicable to vehicles of arbitrary weight, size, and shape, and to arbitrary atmospheres. Results have been obtained for entries into the earth's atmosphere at escape velocity during which the maximum deceleration and the rate at which deceleration increases were limited. A comparison of these results with those of NASA TN D-319, in which only the maximum deceleration was limited, indicates that for a given corridor depth, limiting the rate of increase of deceleration and the maximum deceleration requires an increase in the magnitude of the change in $m / C_{D} A$ and results in increases in maximum heating rate, total heat absorbed at the stagnation point, and range.

INTRODUCTION

Man's performance of useful duties during atmosphere entry requires that the maximum deceleration and the rate at which the deceleration increases be held within prescribed limits (see refs. 1, 2, and 3). The problem of limiting the maximum deceleration has been studied by several Investigators. In the study reported in NASA TN D-319 (ref. 4), a differential equation applicable to vehicles of arbitrary weight, size, and shape, and to arbitrary atmospheres was developed for entries during which the aerodynamic forces vary. A closed-form solution for nonlifting entries was obtained for the motion, heating, range, and variation in $\mathrm{m} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ required to maintain specified maximum deceleration limits. The purpose of the present investigation is to obtain a solution of the equation developed in reference 4 for the case of specified decelerationrate limits as well as specified maximum decelerations. The solution is used to determine the effect of limiting the deceleration and the rate of increase of deceleration (by varying $m / C D A$) on the corridor depth, heating characteristics, and range for vehicles making shallow nonlifting entries into the earth's atmosphere at escape velocity.

A
deceleration in g units
specified rate of increase of deceleration, $\frac{d G}{d t}, \mathrm{~g} / \mathrm{sec}$
lift force, 1 b
mass of vehicle, slugs Btu $\mathrm{ft}^{-2} \mathrm{sec}^{-1}$ (eq. (26)) point, Btu ft^{-2} (eq. (28))
distance from planet center, ft
radius of curvature of vehicle surface, ft
range measured from entry point, ft (see eq. (29))
time, sec ft sec^{-1}
dimensionless velocity ratio, $\frac{u}{\sqrt{g r}}$
resultant velocity, $\frac{u}{\cos \gamma}$
convective heating rate per unit area at the stagnation point,
dimensionless function proportional to convective heating rate
total convective heat absorbed per unit area at the stagnation
dimensionless function proportional to total heat absorbed,
tangential velocity component norral to a radius vector,

W	weight of vehicle at earth's surface, mge, lb
y	altitude, ft
Z	dimensionless function of \bar{u} (eq. (4))
β	atmosphere density decay parameter, $\mathrm{ft}^{-1}, 1 / 23,500 \mathrm{ft}^{-1}$ for earth
γ	flight-path angle relative to the local horizontal, negative for descent
\triangle	vehicle parameter, $\frac{m}{C_{D} A}$
Δy_{p}	corridor depth, statute miles
ρ	atmosphere density, slugs ft ${ }^{-3}$
$\bar{\rho}_{0}$	mean value for exponential approximation to atmosphere densityaltitude relation, slugs $f^{-3}, 0.0027$ slugs f^{-3} for earth Subscripts
i	Inftial
\max	maximum
mod	modulated entry
0	surface of a planet
unmod	unmodulated entry
1, begin	point in the trajectory where modulation begins
2	point in the trajectory where modulation for constant deceleration rate ends
3, end	point in the trajectory where modulation ends
I,II,III	phase of a trajectory
	Superscript
	differentiation with respect to \bar{u}

ANALYSIS

In the present analysis of shallow nonlifting entries, $m / C_{D} A$ will be varied so that both the maximum deceleration and the rate at which the deceleration increases do not exceed specified limiting values. The trajectory for this type of modulated entry generally consists of the four distinct phases illustrated below. The deceleration-time histories

for an unmodulated entry and a modulated entry are shown for the same initial conditions. Druring phase I the vehicle enters the atmosphere with a given velocity (\bar{u}_{i}) and entry angle $\left(\gamma_{1}\right)$ and maintains a constant $m / C_{D} A$. The deceleration increases monotonically until the specified value of the deceleration rate is attained at velocity \bar{u}_{1}, at which velocity the magnitude of the deceleration is G_{1}. At this velocity phase II begins with the modulation of $m / C_{D} A$ in such a manner that the deceleration rate is held constant at a specified value K; that is,

$$
\begin{equation*}
G=G_{1}\left[1+\frac{K}{G_{1}}\left(t-t_{1}\right)\right] \quad \text { for } \quad t_{1} \leq t \leq t_{2} \tag{1}
\end{equation*}
$$

The velocity \bar{u}_{2}, at which phase III begins, is determined as that velocity at which the specified value of the maximum deceleration G_{2} is first attained. Iuring phase III, $m / C_{D A}$ is modulated in such a manner that the deceleration is held constant until the velocity is reduced to the value \bar{u}_{3}. This velocity (\bar{u}_{3}) is determined by specifying that termination of the modulation will allow the deceleration to decrease monotonically as the vehicle completes its entry. Phase IV is this final phase of the entry. It should be noted that phases I, III, and IV of this report correspond to phases I, II, and III, respectively, of reference 4.

The general differential equation which defines the trajectory for the four phases of the modulated entry (and the unmodulated entry) is obtained from reference 4 as

$$
\begin{equation*}
\bar{u} z^{\prime \prime}-\left(z^{\prime}-\frac{z}{\bar{u}}\right)+\bar{u} z\left[\frac{\Delta^{\prime \prime}}{\triangle}-\left(\frac{\Delta^{\prime}}{\Delta}\right)^{2}\right]+\bar{u} z^{\prime}\left(\frac{\Delta^{\prime}}{\Delta}\right)-\frac{1-\bar{u}^{2}}{\bar{u} z} \cos ^{4} \gamma=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{u}=\frac{u}{\sqrt{g r}} \tag{3}
\end{equation*}
$$

is the dimensionless independent variable,

$$
\begin{equation*}
z=\frac{\bar{\rho}_{o} \sqrt{\frac{r}{\beta}}}{2 \Delta} \bar{u} e^{-\beta y} \tag{4}
\end{equation*}
$$

Is the dimensionless dependent variable first presented in reference 5, and

$$
\begin{equation*}
\Delta \equiv \frac{m}{C_{D} A}=\Delta(\bar{u}) \tag{5}
\end{equation*}
$$

The accompanying expression for the flight-path angle is

$$
\begin{equation*}
\sqrt{\beta r} \sin \gamma=Z^{\prime}-\frac{Z}{\bar{u}}+Z\left(\frac{\Delta^{\prime}}{\Delta}\right) \tag{6}
\end{equation*}
$$

Equation (2) is applicable to vehicles of arbitrary weight, size, and shape, and to arbitrary atmospheres. The solution of equation (2) for the present analysis consists primarily of determining the solution for phase II of the modulated portion of the trajectory, since the solution for phase III is indicated in reference 4 and the solutions for the unmodulated portions of the trajectory (phases I and IV) are indicated in reference 5 .

There are four basic steps to the solution of equation (2) for phase II. First, by eliminating Z and its derivatives from equation (2) there results a differential equation which defines the required
variation in $m / C_{D} A$. Second, the solution of this differential equation is obtained. Third, the duration of phase II is determined (i.e., the velocity \bar{u}_{2} is determined). Finally, the solution for phase II is matched with the solutions for phases I and II:..

The first step is accomplished by means o:: the equation from reference 4 for the resultant deceleration during shallow nonlifting entries, ${ }^{1}$ which is

$$
\begin{equation*}
G=\sqrt{\beta r} \bar{u} Z \tag{7}
\end{equation*}
$$

An expression for the Z function during phase II can be obtained by eliminating G from equation (7) in the following manner. The first derivative of equation (1) can be written

$$
\begin{equation*}
\frac{d G}{d t}=K=\frac{d G}{d \bar{u}} \frac{d \bar{u}}{d t} \tag{8}
\end{equation*}
$$

Substitution of $d G / d \bar{u}$, as obtained from differentiation of equation (7), and $\alpha \bar{u} / d t$, as obtained from reference 4 for $J / D=0$,

$$
\begin{equation*}
\frac{\partial \bar{u}}{d t}=-\sqrt{\beta g} \bar{u} z \tag{9}
\end{equation*}
$$

In equation (8) ylelds the differential equation for the Z function during phase II

$$
\begin{equation*}
\overline{\mathrm{u}} Z\left(\overline{\mathrm{u}} Z^{\prime}+Z\right)=-\frac{K}{\sqrt{\beta g} \sqrt{\operatorname{lr}}}= \tag{10}
\end{equation*}
$$

If it is noted from equation (7) that

$$
\begin{equation*}
\frac{d\left(\frac{G^{2}}{\beta r}\right)}{d \bar{u}}=\frac{d(\bar{u} Z)^{2}}{d \bar{u}}=2 \bar{u} Z(\bar{u} Z, \ldots Z) \tag{11}
\end{equation*}
$$

and that at $\bar{u}=\bar{u}_{1},(\bar{u} Z)^{2}=G_{1}{ }^{2} / \beta r$, equation (IO) can be integrated to yleld the desired expression for Z during phese II

$$
\begin{equation*}
z=\frac{B_{1}}{\bar{u}} \sqrt{a+b \bar{u}} \tag{12}
\end{equation*}
$$

where

[^0]\[

$$
\begin{align*}
\mathrm{a} & =1-\mathrm{b} \bar{u}_{I} \\
\mathrm{~b} & =-\frac{2 K}{\sqrt{\beta g} \sqrt{\beta r} \mathrm{~B}_{1}^{2}} \tag{13}\\
\mathrm{~B}_{1} & =\frac{\mathrm{G}_{1}}{\sqrt{\beta r}}
\end{align*}
$$
\]

Substituting equation (12) and its derivatives in equation (2) gives the differential equation which describes the variation in $m / C_{D} A$ required to maintain a constant deceleration rate
$\frac{\Delta^{\prime \prime}}{\Delta}-\left(\frac{\Delta^{\prime}}{\Delta}\right)^{2}+\left[\frac{b}{2(a+b \bar{u})}-\frac{1}{\bar{u}}\right]\left(\frac{\Delta^{\prime}}{\triangle}\right)+\frac{4}{\bar{u}^{2}}$

$$
\begin{equation*}
-\frac{3 b}{2 \bar{u}(a+b \bar{u})}-\frac{b^{2}}{4(a+b \bar{u})^{2}}-\frac{1-\bar{u}^{2}}{B_{1}^{2}(a+b \bar{u})}=0 \tag{14}
\end{equation*}
$$

and the related expression for the flight-path angle is obtained from equation (6) as

$$
\begin{equation*}
\sin \gamma=\frac{B_{1}}{\sqrt{\beta_{r}}} \frac{\sqrt{a+b \bar{u}}}{\bar{u}}\left[\frac{b}{2(a+b \bar{u})}-\frac{2}{\bar{u}}+\frac{\Delta^{\prime}}{\Delta}\right] \tag{15}
\end{equation*}
$$

The solution of equation (14) for the variation of $m / C_{D} A$, or Δ, with velocity during phase II can be obtained in closed form as

$$
\begin{align*}
\left(\frac{\Delta}{\Delta_{1}}\right)_{I I}= & \exp \left\{\frac{2}{3 \sqrt{a} b^{2} B_{1}{ }^{2}} X(\xi)\left(2 a-b \bar{u}_{1} \xi\right) \ln \frac{\sqrt{a}+X(\xi)}{\sqrt{a}-X(\xi)}-\ln X(\xi)\right. \\
& -\frac{4 a C}{3 b^{2}}[X(\xi)-1]+\frac{2 C \bar{u}_{1}}{3 b}[\xi X(\xi)-1] \\
& +\left(\frac{4 a}{3 b^{2} \mathrm{~B}_{1}{ }^{2}}+2\right) \ln \xi+\frac{2 \bar{u}_{1}}{3 b B_{1}^{2}}(1-\xi) \\
& -\frac{2 a \bar{u}_{1}^{2}}{3 b^{2} \mathrm{~B}_{1}^{2}}\left(1-\xi^{2}\right)+\frac{2 \bar{u}_{1}^{3}}{9 b B_{1}^{2}}\left(1-\xi \xi^{3}\right) \\
& \left.-\frac{2(3 a-1)}{3 \sqrt{a} b^{2} B_{1}^{2}} \ln \frac{\sqrt{a}+1}{\sqrt{a}-1}\right\} \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
\xi & =\frac{u}{\overline{\bar{u}}_{1}} \\
X(\xi) & =\sqrt{1-b \bar{u}_{1}(1-\xi)} \tag{17}\\
C & =\frac{\sqrt{3 r}}{B_{1}} \sin \gamma_{1}+\frac{1}{\sqrt{a} B_{1}^{2}} \text { in } \frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{2(3 a-1)}{3 b^{2} B_{1}^{2}}
\end{align*}
$$

The details of the derivation of equation (16) are presented in the appendix to this report. The expression for tie flight-path angle obtained from equation (15) and the derivative of equat:ion (15) is

$$
\begin{equation*}
\sin \gamma_{I I}=-\frac{B_{1}}{\sqrt{B r}}\left[\frac{1}{\sqrt{a} B_{1}^{2}} \ln \frac{\sqrt{a}+X(\xi)}{\sqrt{a}-X(\xi)}-\frac{4 a}{3 b^{2} B_{1}^{2}} X(\xi)+\frac{2 \bar{u}_{1}}{3 b B_{1}^{2}} \xi X(\xi)-c\right] \tag{18}
\end{equation*}
$$

The velocity \bar{u}_{2} at which phase II is te-minated is determined from the deceleration-velocity relation as that value of velocity at which the specifiea maximum deceleration G_{2} is first at.tained. From equations (7), (12), (13), and (17), the deceleration-ve.ocity relation is found to be

$$
\begin{equation*}
G=G_{1} \sqrt{1-b \bar{u}_{1}(1-\xi)} \tag{19}
\end{equation*}
$$

and from equation (19), the value of ξ_{2} (and fence \bar{u}_{2}) at which phase II is terminated is

$$
\begin{equation*}
s_{2}=1-\frac{1}{b \bar{u}_{1}}\left[1-\left(\frac{G_{2}}{G_{1}}\right)^{2}\right] \tag{20}
\end{equation*}
$$

For modulated entries during which only the deceleration rate is limited, the velocity \bar{u}_{2} is determined as indicated ir the appendix.

It now remains to match the solution for fhase II with the solutions for phases I and II. This is done by matching the attitude and flightpath angle at the velocities for the beginning and end of phase II (\bar{u}_{1} and \bar{u}_{2}, respectively). The quantities at the keginning of modulatior Z_{1}, or Δ_{I}, and γ_{I} are known from phase I (obtrined as indicated in ref. 5); hence, with the aid of equation (15) end the fact that at $\bar{u}=\bar{u}_{1}, a+b \bar{u}=1$, the solutions for phases I and II are matched by satisfying the conditions

$$
\begin{align*}
\Delta I I_{i} & =\Delta_{1} \\
\left(\frac{\Delta^{\prime}}{\Delta}\right)_{I I_{i}} & =\frac{\sqrt{\beta r}}{B_{1}} \bar{u}_{1} \sin \gamma_{1}+\frac{2}{\bar{u}_{1}}-\frac{b}{2} \tag{21}
\end{align*}
$$

where the subscript $I I_{i}$ denotes initial values for phase II. At the end of phase II, Δ_{2}, and γ_{2} are known (eqs. (16) and (18)), and the Z function and the equation for the flight-path angle are known for phase III (see ref. 4); hence, the solutions for phases II and III are matched by satisfying the conditions

$$
\begin{align*}
&{\triangle I I I_{i}}=\Delta_{2} \\
&\left(\frac{\triangle^{\prime}}{\Delta}\right)_{I I I_{1}}=\frac{\sqrt{\beta_{r}}}{B_{2}} \bar{u}_{2} \sin \gamma_{2}+\frac{2}{\bar{u}_{2}} \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{B}_{2}=\frac{\mathrm{G}_{2}}{\sqrt{\beta_{r}}} \tag{23}
\end{equation*}
$$

For modulated entries during which only the deceleration rate is limited, the solutions for phases II and III are matched as indicated in the appendix.

The solution of equation (2) is known for the remainder of the trajectory; that is, the closed-form solution for the variation of $m / C_{D} A$ required to maintain constant maximum deceleration during phase III is given in reference 4 and the solution for phase IV is given in reference 5 . However, it should be noted that in the present analysis, for phase III

$$
\begin{equation*}
\left(\frac{\Delta}{\Delta_{1}}\right)_{I I I}=\left(\frac{\Delta_{2}}{\Delta_{1}}\right)_{I I}\left(\frac{\Delta}{\Delta_{2}}\right)_{I I I} \tag{24}
\end{equation*}
$$

where $\left(\Delta_{2} / \Delta_{1}\right)$ II is determined from equation (16) with $\xi=\xi_{2}$, and $\left(\Delta / \Delta_{2}\right)$ III is determined from the closed-form solution of reference 4. As noted earlier, the closed-form solution of reference 4 for the variation of \triangle required to maintain a constant deceleration is for phase II of that reference.

RESULTS AND DISCUSSION

The closed-form solution of this report and that of reference 4 have been employed to study the effect on nonlifting entry trajectories of maintaining a specified deceleration rate and a specified maximum
deceleration by varying $W / C_{D} A$ during entry into the earth's atmosphere at escape velocity. ${ }^{2}$ In what follows, the effect of modulation on the
 discussed first. The effect of modulation on the corridor depth, heating, and range is then discussed.

Trajectory Parameters

Typical time histories of $\mathrm{W} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$, flight-path angle, deceleration, and velocity for nonlifting vehicles are presented in figure 1 for unmodulated and modulated shallow entries into the earth's atmosphere at escape velocity ($\bar{V}_{1}=1.4$). The curves shown a:e for an entry angle $\gamma_{1}=-6^{\circ}$. The modulated entries are for a 10 g : naxim m deceleration limit only (for which (dG/dt) $\max =0.95$ when $G=10$), and for the combined limits of a $0.25 \mathrm{~g} / \mathrm{sec}$ deceleration rate and a lng maximum deceleration. It is interesting to note that the maximum deceleration rate for an unnodulated 10 g entry $\left(\gamma_{1}=-4.32^{\circ}\right)$ is $0.22 \mathrm{~g} / \mathrm{sec}$. The data in figure I for the unmodulated entry and the entry modulated t_{0} limit the maximum deceleration only are reproduced from reference 4. J'or the entry considered above, it can be seen in figure $1(a)$ that addinf the restriction of a $0.25 \mathrm{~g} / \mathrm{sec}$ deceleration-rate limit to a 10 g maxirum deceleration limit requires that the $W / C_{D} A$ change capability of the vehicle must be 32 rather than 21. By beginning the modulation at an earlier time to satisfy the added restriction of the deceleration-rate "lmit, the flight-path curvature is slightly reduced relative to that 10 or the entry which satisfies only the maximum deceleration limit (see fig. $l(b)$) and this results in the reduced deceleration rate shown in figure $1(c)$ during phase II of the modulation period.

Corridor Depth

In this report the overshoot boundary is defined by the trajectory for which a vehicle would pass through just enol.gh atmosphere to reduce the velocity to local circular as the vehicle is about to exit from the atmosphere (see ref. 5). The undershoot boundary is defined by the trajectory for which a specified deceleration rete and/or maximum deceleration is not exceeded. For vehicles for which the initial $\mathrm{W} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ is identical for both the overshoot and undershoot boundaries, the corridor depth, for successful entry into an exponential atmosphere, depends only upon the allowable entry angle (set ref. 4). Changes in corridor depth considered herein result from the use of drag modulation to maintain specified deceleration time historics during entry along the

[^1]undershoot boundary. For example, increased corridor depths result from lowering the undershoot boundary by the use of modulation which permits entries at steeper angles than are possible without modulation.

Corridor depths and the corresponding entry angles attainable by modulating $W / C_{D} A$ during shallow nonlifting entries into the earth's atmosphere at escape velocity are shown in figure 2 as a function of the ratio of $W / C_{D} A$ at the end of modulation to $W / C_{D} A$ at the beginning of modulation. Results are shown for modulated entries for which the maximum deceleration is limited to $5.0,7.5$, and 10.0 g . For these entries the maximum deceleration rate is not limited and increases with increases in entry angle. For the above specified deceleration limits, results are shown which indicate the effect of imposing the additional restrictions of deceleration-rate limits of $0.10,0.25$, and $0.50 \mathrm{~g} / \mathrm{sec}$. With the restriction of a deceleration-rate limit of $0.10 \mathrm{~g} / \mathrm{sec}$ the maximum deceleration for entry angles less than -5.03° is less than 10 g , and the maximum deceleration for entry angles less than -4.32° is less than 7.5 g . Therefore, the data in figure 2 (and in all subsequent figures) representing these conditions are faired with a short dashed curve. It can be seen in the figure that the additional restriction of a deceleration-rate limit generally reduces the corridor depth. For example, a vehicle with a change capability in $W / C_{D} A$ of 21 can enter the earth's atmosphere at escape velocity through a corridor up to 30 miles in depth $\left(\gamma_{1}=-6^{\circ}\right)$ and not exceed a maximum deceleration of 10.0 g . However, the additional. restriction of a deceleration-rate limit of $0.25 \mathrm{~g} / \mathrm{sec}$ reduces the corridor depth to approximately 27 miles, which corresponds to an entry angle of approximately -5.8°. On the other hand, in order to attain a $30-\mathrm{mile}$ corridor and comply with this additional restriction, the change capability in $\mathrm{W} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ must be increased from 21 to 32. It is interesting to note from reference 6 that to use lift to attain a 10.0 g -limited, $30-\mathrm{mile}$ corridor, without modulation, the entering vehicle must have an L / D capability of at least ± 0.3. For this unmodulated entry along the undershoot boundary, however, the deceleration rate reaches a maximum value of $0.42 \mathrm{~g} / \mathrm{sec}$. To limit an unmodulated lifting entry along the undershoot boundary to 10.0 g and $0.25 \mathrm{~g} / \mathrm{sec}$, the L / D must be restricted to 0.05 . These restrictions $\left(-0.3 \leq \mathrm{L} / \mathrm{D} \leq 0.05, \mathrm{~K}_{\max }=0.25\right.$, and $\left.\mathrm{G}_{\max }=10\right)$, with no modulation, provide only a $1 \overline{7}-m i l e ~ e n t r y ~ c o r r i d o r . ~ T h i s ~ e n t r y ~ c o r r i d o r, ~$ however, could be increased by modulating L / D.

Heating

For the entries considered herein, peak heating occurs during the high-altitude portion of the trajectory where the density and the attendant Reynolds numbers are low; consequently, the following discussion of heating during entry will cover only those results obtained when a laminar boundary layer is considered.

Convective heating rate at the stagnation point. - The convective heating rate per unit area at the stagnation point during entry into the earth's atmosphere, as given in reference 5, is

$$
\begin{equation*}
q_{S}=\frac{590}{\sqrt{g_{c}}} \sqrt{\frac{W}{C_{D} A R}} \frac{\bar{q}}{\cos ^{3} \gamma} \tag{25}
\end{equation*}
$$

where for entries considered here with limited values of deceleration rate and maximum deceleration

$$
\bar{q}=\left\{\begin{array}{ll}
\bar{u}^{5 / 2} Z^{1 / 2} & \text { for phases I and IV } \\
B_{1}^{1 / 2} \bar{u}^{2}(a+b \bar{u})^{1 / 4} & \text { for phase II } \\
B_{2}^{1 / 2} \bar{u}^{2} & \text { for phase III }
\end{array}\right\}
$$

Equation (25) has been used to calculate the stagnation-point heat-transfer rate for modulated and unmodulated entries which have the same maximum deceleration. Results for the maximum heating rate as a function of corridor depth are shown in figure 3 for deceleration limits of 7.5 and 10.0 g , and for deceleration-rate limits of $0.1(1,0.25$, and $0.50 \mathrm{~g} / \mathrm{sec}$. Also shown are the values of maximum deceleration rate ($d G / d t)_{\max }$ for the entries which are modulated to satisfy only a maximum deceleration limit. In making these heating-rate calculaticns it was assumed that the radius of curvature R of the vehicle surface at the stagnation point was identical and constant for all entries. It was also assumed that the initial $W / C_{D} A$ was the same for all entries. It should be noted that the data presented in figure 3 can be used to calculate the ratio of stagnation-point heating rates for the same moculated and unmodulated entries (same γ_{i}) for which $R_{\text {mod }} \neq R_{u n m o d}$, provided R remains constant during entry. This is done by multiplying the ratio of heating rates shown in figure 3 by $\left(R_{u n m o d} / R_{\bmod }\right)^{1 / 2}$. If R varies during entry, the stagnation-point heating rate will depend upon the variation of R with time or velocity (see eqs. (25) and (26)).

The heating-rate penalty incurred by the use of modulation to increase corridor depth can be seen in figure 3. For example, the maximum heating rate for the 10 g -limited modulated entry (10 g cnly) which provides a $30-\mathrm{mile}$ corridor is about twice that for the urmodulated entry which provides a 7 -mile corridor. Adding the further restriction of limiting the deceleration rate to $0.25 \mathrm{~g} / \mathrm{sec}$ results in a maximum heating rate of almost two-and-a-half times that for the unmodulated entry.

Total convective heat absorbed at the stagnation point.- The total convective heat absorbed per unit area at the stagnation point during a modulated entry into the earth's atmosphere can be written (see ref. 5)

$$
\begin{equation*}
Q_{S}=\frac{15,900}{\sqrt{E_{C}}} \int \sqrt{\frac{W}{C_{D} A R}}\left(\frac{d \vec{Q}}{d \bar{u}}\right) d \bar{u} \tag{27}
\end{equation*}
$$

where

$$
\frac{d \bar{Q}}{d \bar{u}}=\left\{\begin{array}{ll}
\frac{\bar{u}^{3 / 2}}{z^{1 / 2} \cos ^{2} \gamma} & \text { for phases I and IV } \\
\frac{\bar{u}^{2}}{B_{1}^{1 / 2}(a+b \bar{u})^{1 / 4}} \quad \text { for phase II } \\
\frac{\bar{u}^{2}}{B_{2}^{1 / 2}} & \text { for phase III }
\end{array}\right\} \text { (28) }
$$

Equation (27) has been used to calculate the total heat absorbed per unit area at the vehicle stagnation point for modulated and unmodulated entries which have the same maximum deceleration limit. The results as a function of corridor depth are shown in figure 4 for deceleration limits of 7.5 and 10.0 g , and for deceleration-rate limits of $0.10,0.25$, and $0.50 \mathrm{~g} / \mathrm{sec}$. In all calculations the same assumptions were made with regard to venicle shape and $W / C_{D} A$ that were made in calculating the heating-rate data of figure 3 (i.e., R is identical and constant during entry, and the initial $W / C_{D A}$ is identical for all entries). For vehicles which satisfy these assumptions, the penalties in total heat absorbed at the stagnation point can be seen in figure 4. For example, in the case cited previously, in which modulation is used to increase the depth of a 10 g -limited corridor from 7 to 30 miles, the total heat absorbed at the stagnation point during the modulated entry which limits only the maximum deceleration is 1.8 times that for the unmodulated entry. Adding the further restriction of limiting the deceleration rate to $0.25 \mathrm{~g} / \mathrm{sec}$ results in the absorption of 2.3 times as much total heat as that for the unmodulated entry. As in the case of the heat-transfer rate, the data of figure 4 may be used, similarly, to calculate the total heat absorbed at the stagnation point for different vehicles where $R_{m o d}=$ constant \neq Runmod; otherwise, $R(\bar{u})$ must be available for use in equation (27).

As noted above, the comparison of the heating characteristics of modulated and unmodulated entries was based on the assumption that the initial $W / C_{D A}$ was the same for all entries. If, instead, it is assumed that the final $W / C_{D A}$ is the same for all entries, the heating per unit area at the stagnation point will be less for the modulated entries than for the unmodulated entries. Specifically, the data presented in figures 3 and 4 will be reduced approximately by the appropriate ratio of $\left(\Delta_{\text {begin }} / \Delta_{\text {end }}\right)^{-1 / 2}$ (i.e., the ordinates of figures 3 and 4 will be less than or equal to unity). The total heat absorbed by the vehicle, however, obtained by integrating the local heat absorbed over the vehicle surface may be greater or less for the modulated entries then for the unmodulated entries, depending upon the vehicle geometry during entry.

In reference 5 the range between any two points of the entry trajectory is defined as the circumferential iistance traveled between a point n where the dimensionless velocity is \bar{u}_{n} and a point $n+1$ where it is reduced to \bar{u}_{n+1}. Thus, from reference 5

$$
\begin{equation*}
\frac{\Delta s}{r}=\frac{1}{r} \int_{\bar{u}_{n}}^{\bar{u}_{n+1}} \bar{u}\left(\frac{d t}{d \bar{u}}\right) d \bar{u}=\frac{1}{\sqrt{\beta_{r}}} \int_{\bar{u}_{n+1}}^{\bar{u}_{n}} \frac{\cos \gamma}{Z} d \bar{u} \tag{29}
\end{equation*}
$$

In the present analysis equation (29) is used to determine the range during phases I and IV. For $\cos y=1, Z(\bar{u})$ as given by equation (12), and $G(\bar{u})$ as given by equation (19), equation (29) can be evaluated to yleld the range during phase II as

$$
\begin{equation*}
\left(\frac{\Delta s}{r_{0}}\right)_{I I}=\frac{2}{3 b^{2} G_{1}{ }^{2}}\left[\left(2 a-b \bar{u}_{2}\right) G_{2}-\left(2 a-b \bar{u}_{1}\right) G_{I}\right] \tag{30}
\end{equation*}
$$

Similarly, for $Z(\bar{u})$ as given by equation (7) with constant G, the range during phase III is

$$
\begin{equation*}
\left(\frac{\Delta s}{r_{0}}\right)_{\text {III }}=\frac{\bar{u}_{2}^{2}}{2 G_{2}}\left[1-\left(\frac{\bar{u}_{3}}{\bar{u}_{i}}\right)^{2}\right] \tag{31}
\end{equation*}
$$

Equations (29), (30), and (31) have been used to calculate the range for the same modulated and unmodulated entries fo: which the corridor depth and heating characteristics have been discussud previously. The results as a function of corridor depth are shown in igure 5 for $G_{\text {max }}$ limits of 7.5 and 10.0 g , and for the added restrictions of $\mathrm{K}_{\max }$ limits of 0.10 , 0.25 , and $0.50 \mathrm{~g} / \mathrm{sec}$. It can be seen that the range is generally reduced as a result of using modulation to increase curridor depth. However, as shown in figure 5(b) for a log-limited corridur, imposing the low deceleration rate $K_{\max }=0.10$ actually increases the range relative to that for the unmodulated log-limited entry.

CONCIUDING REMARKS

The differential equation developed in NiSA TN D-319 for entries during which the aerodynamic coefficients and vehicle shape vary has been used to obtain a closed-form solution for the motion, heating, range, and variation in $W / C_{D} A$ for nonlifting entries during which the rate of increase of deceleration is limited. The solution is applicable to vehicles of arbitrary weight, size, and shape, and to arbitrary atmospheres. The solution was used to calculate trajectory parameters for shallow entries into the earth's atmosphere at escape velocity. As an example of
the results obtained, the depth of a 10 g -limited corridor can be increased from 7 miles for an unmodulated entry to 30 miles for a modulated entry for a vehicle with a $W / C_{D} A$ change of 21 if no consideration is given to limiting the rate of increase of deceleration. However, if in addition to limiting the maximum deceleration to 10 g , the maximum rate of increase of deceleration is limited to $0.25 \mathrm{~g} / \mathrm{sec}$, a $\mathrm{W} / \mathrm{C}_{\mathrm{D}} A$ change of 32 is required to obtain the $30-\mathrm{mlle}$ corridor. For a given corridor depth, limiting the rate of increase of deceleration and the maximum deceleration results in increases in maximum heating rate, total heat absorbed at the stagnation point, and range, compared with limiting only the maximum deceleration. The heating results were obtained for the case in which the radil of curvature at the stagnation point were constant and equal during all entries, and the initial values of $W / C_{D} A$ were identical.

Ames Research Center
National Aeronautics and Space Administration Moffett Field, Calif., May I, 1961

CLOSED-FORM SOLUIION FOR $\mathrm{m} / \mathrm{C}_{\mathrm{D}} \mathrm{A}, \bar{u}_{2}$, AND γ FOR MODULATED SHALIOW
NONLTFTING ENLRIES FOR WHICH dG/at IS CONSTANT

The variation in $m / C_{D} A$ with velocity required to maintain a constant rate at which the deceleration increases is defined by equation (14). Upon substitution of the dependent variable

$$
\begin{equation*}
p=\frac{\Delta^{\prime}}{\Delta}=\frac{1}{\Delta} \frac{\alpha \Delta}{d \bar{u}} \equiv \frac{1}{m / C_{D} A} \frac{d\left(m / C_{D} A\right)}{d \bar{u}} \tag{AI}
\end{equation*}
$$

equation (14) reduces to

$$
\begin{equation*}
p^{\prime}+\left[\frac{b}{2(a+b \bar{u})}-\frac{1}{\bar{u}}\right] p=\frac{1-\bar{u}^{2}}{B_{1}^{2}(a+b \bar{u})}+\frac{a^{2}}{4(a+b \bar{u})^{2}}+\frac{3 b}{2 \bar{u}(a+b \bar{u})}-\frac{4}{\bar{u}^{2}} \tag{A2}
\end{equation*}
$$

The corresponding expression for the flight-path angle is (see eqs. (Al) and (15))

$$
\begin{equation*}
\sqrt{\beta r} \sin \gamma=B_{1} \frac{\sqrt{a+b \bar{u}}}{\bar{u}}\left[p+\frac{b}{2(a+b \bar{u})}-\frac{2}{\bar{u}}\right] \tag{A3}
\end{equation*}
$$

Integration of equation (A2) ylelds ($\sqrt{a+b \bar{u}} / \bar{u}$ is an integrating factor)

$$
\begin{align*}
\left(\frac{\Delta^{\prime}}{\Delta}\right)=p= & \frac{1}{\sqrt{a} B_{1}{ }^{2}} \frac{\bar{u}}{\sqrt{a+b \bar{u}}} \ln \frac{\sqrt{a}-\sqrt{a+b}}{\sqrt{a}+\sqrt{a+b}}=\frac{4 a}{3 b^{2} B_{1}^{2}} \bar{u}-\frac{2}{3 b B_{1}^{2}} \bar{u}^{2} \\
& +\frac{b^{2}}{2 a} \frac{\bar{u}}{(a+b \bar{u})}+\frac{2}{\bar{u}}-\frac{b}{2 a}+C \frac{: \overline{1}}{\sqrt{a}+b \bar{u}} \tag{A4}
\end{align*}
$$

where C is the integration constant which c an be evaluated in terms of the velocity and flight-path angle at the heginning of modulation; that is, at $\bar{u}=\bar{u}_{1}, a+b \bar{u}=1$, and from equation (A3),

$$
p_{1}=\left(\frac{\bar{u}_{1}}{\bar{B}_{1}}\right) \sqrt{\beta r} \sin \gamma_{1}-\frac{b}{2}+\frac{2}{\bar{u}_{1}}
$$

Thus from equation (A.4) evaluated at $\bar{u}=\bar{u}_{1}$

$$
\begin{equation*}
C=\frac{\sqrt{\beta} r}{B_{1}} \sin \gamma_{1}+\frac{1}{\sqrt{a} B_{1}{ }^{2}} \ln \frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{2(3 a-1)}{3 b^{2} B_{1}{ }^{2}} \tag{A5}
\end{equation*}
$$

Proceeding by integration of equation (Al)

$$
\begin{equation*}
\Delta=\frac{m}{C_{D} A}=\exp \left(\int p d \bar{u}+\text { constant }\right) \tag{A5}
\end{equation*}
$$

Equation (A.4) is readily integrable and the integration constant can be evaluated in terms of the velocity and $m / C_{D} A$ at the beginning of modulation (\bar{u}_{1} and \triangle_{I}, respectively). Thus, the closed-form solution for the variation of $m / C_{D} A$ which maintains a constant rate at which the deceleration increases during a shallow nonlifting entry is

$$
\begin{align*}
\frac{\Delta}{\Delta_{1}}=\frac{m / C_{D} A}{\left(m / C_{D} A\right)}= & \exp \left\{\frac{2}{3 \sqrt{a} b^{2} B_{1}^{2}} X(\xi)\left(2 a-b \bar{u}_{1} \xi\right) \ln \frac{\sqrt{a}+X(\xi)}{\sqrt{a}-X(\xi)}-\ln X(\xi)\right. \\
& -\frac{4 a C}{3 b^{2}}[X(\xi)-1]+\frac{2 C \bar{u}_{1}}{3 b}[\xi X(\xi)-1]+\left(\frac{4 a}{3 b^{2} B_{1}^{2}}+2\right) \ln \xi \\
& +\frac{2 \bar{u}_{1}}{3 b B_{1}^{2}}(1-\xi)-\frac{2 a \bar{u}_{1}^{2}}{3 b^{2} B_{1}^{2}}\left(1-\xi^{2}\right)+\frac{2 \bar{u}_{1}^{3}}{9 b B_{1}^{2}}\left(1-\xi^{3}\right) \\
& -\frac{2(3 a-1)}{\left.3{\sqrt{a} b^{2} B_{1}^{2}}^{2} \ln \frac{\sqrt{a}+1}{\sqrt{a}-1}\right\}} \tag{A7}
\end{align*}
$$

where

$$
\begin{aligned}
\xi & =\frac{\overline{\mathrm{u}}}{\overline{\mathrm{u}}_{1}} \\
X(\xi) & =\sqrt{1-b \bar{u}_{1}(1-\xi)}
\end{aligned}
$$

and a, b, and B_{1} are given by equation (13).
The velocity \bar{u}_{2} at which modulation should be terminated when consideration is given to limiting only the rate at which the deceleration increases is determined in the following manner. For a given set of entry conditions and a specified limiting deceleration rate, the constants in equation (A7) are fixed, and it is a simple matter to determine from this equation that $m / C_{D^{A}}$ increases to a maximum value and then decreases. Continuation of the modulation after $\mathrm{m} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ has reached a maximur would sustain a constant deceleration rate above that which would result if the modulation were terminated. Consequently, the value of the velocity \bar{u}_{2} is determined as that value for which Δ / Δ_{I} is a maximum; that is, the
value of velocity obtained which satisfies tie equation which results from equating the right-hand side of equation (A4) to zero. When it is desired to terminate this modulation at an eirlier velocity at which a specified maximum deceleration is attained, us in the present analysis, the velocity \bar{u}_{2} is determined as indicated in the ANALYSIS section of this report.

The expression for the flight-path angle during the modulation period for constant deceleration rate is obtained form substitution of equation (A4) into equation (A3) as

$$
\begin{equation*}
\sin \gamma=-\frac{B_{1}}{\sqrt{\beta r}}\left[\frac{1}{\sqrt{a} B_{1}^{2}} \ln \frac{\sqrt{a}+X(\xi)}{\sqrt{a}-X(\xi)}-\frac{4 a}{3 b^{2} B \cdot:} X(\xi)+\frac{2 \bar{u}_{1}}{3 b B_{1}^{2}} \xi X(\xi)-C\right] \tag{A9}
\end{equation*}
$$

For entries during which it is required that only a specified deceleration rate shall not be exceeded, the end of the modulation phase is matched with the final unmodulated phase es follows. The Z function and \triangle are known at the end of the modulation period for constant deceleration rate (eqs. (12) and (16)), and $\Delta^{\prime} / \Delta=p=0$ at velocity \bar{u}_{2}; hence, with the aid of equation (A3) and the fact that the flight-path angle for an unmodulated entry 1 s given by (see ref. 5)

$$
\begin{equation*}
\sqrt{\beta r} \sin \gamma=Z^{1}-\frac{\Sigma}{i} \tag{AlO}
\end{equation*}
$$

the solution for the modulated deceleration-rate phase (phase II) and the unmodulated final phase (phase III) are matcled by satisfying the conditions

$$
\begin{align*}
Z_{I I I_{1}} & =B_{1} \frac{\sqrt{a+b \bar{u}_{2}}}{\bar{u}_{2}} \tag{All}\\
Z^{\prime} I I I_{1} & =-Z_{I I I_{1}\left[\frac{1}{\overline{u_{2}}}-\frac{b}{2(a}+\frac{\left.b \bar{u}_{2}\right)}{}\right]}
\end{align*}
$$

Equations (All) together with the velocity i_{2} constitute the initial conditions from which the trajectory charact r ristics during the remainder of the entry are calculated as indicated in reference 5. Where it is desired to terminate this modulation at an errlier velocity at which a specified maximum deceleration is attained, εs in the present analysis, the various phases of such a trajectory are ratched as indicated in the ANALYSIS section of this report.

1. Creer, Brent Y., Smedal, Harald A., Capt., USN (MC), and Wingrove, Rodney C.: Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance. NASA TN D-337, 1961.
2. Edelberg, Robert, Henry, James P., Maciolek, John A., Salzman, Edwin W., and Zuidema, George D.: Comparison of Human Tolerance to Accelerations of Slow and Rapid Onset. Jour. Aviation Medicine, vol. 27, no. 6, Dec. 1956, pp. 482-489.
3. White, William J.: Variations in Absolute Visual Thresholds During Acceleration Stress. Tech. Rep. 60-34, Wright Air Dev. Div., Apri1 1960.
4. Levy, Ifonel L., Jr.: An Approximate Analytical Method for Studying Atmosphere Entry of Vehicles With Modulated Aerodynamic Forces. NASA TN D-319, 1960.
5. Chapman, Dean R.: An Approximate Analytical Method for Studying Entry Into Planetary Atmospheres. NASA TR R-Il, 1959.
6. Chapman, Dean R.: An Analysis of the Corridor and Guidance Requirements for Supercircular Entry Into Planetary Atmospheres. NASA TR R-55, 1959.

(c) Resultant deceleration.

Figure 2.- Effect of varying $W / C_{D} A$ on the deceleration- and deceleration-rate-limited entry
corridor; $\bar{V}_{1}=1.4, I / D=0$, earth.

[^0]: ${ }^{1}$ In this report a shallow entry implies tr at during modulation the flight-path angle is sufficiently small that $\cos \gamma \approx 1$ is a valid approximation.

[^1]: ${ }^{2}$ Since the remainder of the report is concemed only with entries Into the earth's atmosphere $W / C_{D} A$ rather than $m / C_{D} A$ is used. Also, for earth, the value of 30 is used for $\sqrt{\beta r}$, anc. 27 is used for $1 / \sqrt{\beta g}$.

