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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-10350

ESTIMATE OF SHOCK STANDOFF DISTANCE AHEAD OF A
GENERAL STAGNATION POINT

By Eli Reshotko

SUMMARY

The shock standoff distance ahead of a general rounded stagnation
point has been estimated under the assumption of a constant-density
shock layer. It is found that, with the exception of almost-two-
dimensional bodies with very strong shock waves, the present theoretical
calculations and the experimental data of Zakkay and Visich for toroids
are well represented by the relation

43D _ (Pex sym 2
Rs, x Ry J\K + 1

where A 1is the shock standoff distance, Rg,x 18 the smaller principal
shock radius, and K is the ratio of the smaller to the larger of the
principal shock radii.

INTRODUCTION

In recent years much attention has been given to the problem of the
inviseid flow about blunt shapes, particularly about bodies of revolu-
tion and cylinders. The theories proposed range from those that con-
sider the shock layer to be of constant density to exact numerical inte-
grations of the compressible flow equations. (A summary of these tech-
niques and an extensive list of references are given in ref. 1.) The
inviscid flow about general blunt shapes (finite bodies with unequal
principal curvatures) has, however, received very little attention.
Hayes (ref. 2) has derived an expression for the shock standoff distance
ahead of a general stagnation point for a constant-density shock layer.
This expression includes centrifugal corrections to the pressure and
velocity distributions. It was, however, not evaluated in reference 2,
perhaps because the centrifugal effects depended on shock shape away
from the stagnation point and a representative three-dimensional shock
or body shape is difficult to choose.



The present analysis retreats from that of Hayes (ref. 2) in that
centrifugal effects are neglected. 1In this respect it is the three-
dimensional analog of an earlier analysis by Hayes (ref. 3). The shock
location is a function only of the density retio across the shock and
the ratio of the principal radii of curvature of the shock. It is inde-
pendent of whether the body is, for example, an ellipsoid or a toroid.

Because of the many assumptions and simplifications that are made
in the present analysis, it is not reasonable to expect the theory to
yield precise absolute values for the shock standoff distance ahead of a
general stagnation point. It will be shown, however, to give reasonably
good results for the ratioc of this standoff distance to that for an
axially symmetric body. Then, this ratio together with exact solutions
for axially symmetric bodies such as those of Van Dyke and Gordon (ref.
4) mey give reasonably good results for general bodies.

The main analysis is preceded by a very approximate calculation
(OVERSIMPLIFIED METHOD) which, in spite of its crudity, yields a result
that is in general agreement with the main aralysis. The present re-
sults are also compared with the experimental data of Zakkay and Visich
(ref. 5).

SYMBOLS

C shock-layer velocity gradient, eq. (1)

Cx,Cy, shock-layer velocity gradients in principal directions

K ratio of smaller to larger principal radius of shock wave,
Rs,x/Rs,z

k ratio of free-stream density to that behind a normal shock,
Co/ Py

M, free-stream Mach number

P static pressure

R radius of curvature

RysR, principal radii of curvature

U,V,w velocities in %, ¥y, and z directions, respectively

X g/x

8L2T-d



b 4 coordinate in shock layer identified with smaller principal
radius of curvature of shock

Yy direction normal to body

Z coordinate in shock layer identified with larger principal ra-
dius of curvature of shock

J2k/(1 - 2K)

o

Y ratio of specific heats

A shock standoff distance

¢ dummy variable in shock surface in z direction
E dummy variable in shock surface in x direction
o) density

Subscripts:

ax sym axially symmetric

b body

s shock

1 conditions in shock layer
2D two-dimensional

3D three-dimensional

00 free-stream conditions

OVERSIMPLIFIED METHOD

In this approximation the constant-density shock layer is of uni-
form thickness in the neighborhood of the stagnation point, which is the
region under consideration. The free-stream Mach number is very large,

. . (A By
the shock layer is very thin 5 <1, o ~ 1}, and the pressure distri-
S S
bution is assumed to be Newtonian and constant along a normal to the
body. The velocity in the shock layer is also assumed constant along a
normal to the body and equal to the velocity adjacent to the body.



Within these assumptions the shock-layer vel ocity may be expressed

=~ Cx. For -gp =~ ] and BY‘— l)Mg] - », the velocity gradient is
S

Yo 1 . o Po v -1 +
C = ﬁ; 7 But in this limit k = EI YT or Y =y SO
the shock-layer velocity gradient can be written
Us 2k
C‘R_S 1+ k (1)

Three cases are now considered:

Case I: Axially Symmetric Flow

Shock
Body
- 7/&
—_ I
Peo
_____ - R ’

From continuity considerations (see sketch),

2 -
PoleX™ = pUy2nX A sym

Using equation (1), the shock-layer thickness becomes

kRg 1+ k
fax sym ~ —5~ Y —

Case II: Two-Dimensiocnal Flow

The continuity equation per unit span 1is

PollX = P1Uy App

~rmee



E-127o

gso that the shock-layer thickness becomes

1+ k

Agp ~ Ks 2K

which is Jjust twice that for the axially symmetric case.

Case III: Three-Dimensional Flow

~—- Body surface

Shock surface

Let Rg,x be the smaller of the principal shock radii and let
K = Rs,x/Rs,z' For this case, the continuity equation in each quadrant

can be written
PolloaX? = P2 S3p + 017X Ogpy
or

p()O.LlOO

Azp = ey (C, + c,)

1+ k
2k
1 + 1
Rs,x  Rs,z

k

In terms of Rg,x and K,




Note that in all cases the standoff distances are of the form
(A/RS,X) ~ W/E, which is not appropriate to rounded bodies. This incor-
rect form results from assuming that at a given x and z the veloc-
ities in the interior of the shock layer are equal to those at the body
surface, so that in effect all the fluid in the shock layer entered
through the normal portion of the shock wave as did that fluid at the
body surface. Nevertheless, the ratio of thre preceding results for a
given density ratioc k, namely,

()
Rs,x 3D 2
+

&)

ax sym

2 (2)

will turn out to well represent the results of the following analysis.

ANALYSIS

The analysis for the three~dimensional case will now be somewhat
improved. In particular, the variation of velocities u;  and vy

across the shock layer will be tzken into account.

Consider the flow in a quadrant of the constant-density shock layer
ahead of a three-dimensional stagnation point. The coordinate system is
considered locally Cartesian.

Shock
surface

Bcdy surface

RS,Z

Rg

M7 T =T
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The pressurc disiribution s taken +o be Newtonian. It is ~oncidered o
function of ¥ and z  only, thus independent of the n rmol coordinabe

y. In the nelghborhood o0 thc stognation point it may Lo wrliten 00T
M, >> 1, ka1

y 2 2
Py A <J - £>wmu2 1 = — + . o -=—. .

1 > 0 2 2
R, x Rg,z
.2 Lo
~ (l - g)p%ué] - ; - — + ... (3)
© e RA RZ
5, 5,2

With the aid of Bernoulli's relation, the velocities at = point in the
shock layer can be estimated. Consider the streamline that wvnsse
through the shock at the point (e,6). Bernoulli's relation chate

L
o

w

6]

2, .2 2, .2
. u, + T ml . u1 + vl + Jl /L)
S| 2 ] 5 \=
50 Ky 7

Frem the obligue shock relaticng in the limit M, >> 1, k << 1

2 2 2
6,11 + V1 + Wl>[; .

L2 2
5 Lo - (1 ¥4 (1 - 2 - ; oo £
U Rs,x Rs,z

Upon substituting relations (3) and (5) into equation (4),

2 . 2 . .2
(ul + I + M1>K i ; z ¢ 2 2 - = L2 _ ¢2 .
5 "“:(R’ +<R + 2k ‘2 = +“2 | + O(x°)
S,X S,7
Hoo ’ ’ Rs,>: B3,z

For the portion of the shock layer being considered, the principol
shock radii are assumed constant. From equation (%), the pressure gra-
dient in a given principal direction is then independent of the other
principal coordinate so that uy = up(x,8) and wy = wy(z,0). Since,
in addition. the normal velocity v/u, is of order k (this can be ver-
ified a postericri), the shock-layer velocities in the x and =z direc-
tions are, respectively,



2 >
W < a 2
¢ -
%“(3})* aeFm— ) + 00<%) (8)
u, S, 7 RS,Z
|
! X
For the stagnation streamline ({ = £ = 0), — = -/2k and !
U  Bs,x
wl — Z o P - . . .
w g -/ck. These are the velocities ohtained upon assuming as in

the aforepresented OVERSIMPLIFIED METHOD thit all the flow enters the
shock layer through the normal portion of tlie bow shock wave. Currently,

however, the shock-layer velocity wu; at 2 depends also on the height
© ol which the streamline in question traversed the curved bow shock .
wave.  The velocity wy at 2z  depends sim'larly on (.

The shock displacement distance is now to be determined. From con-
tinuity, the mass low into the shock-layer quadrant through face ABCD
mast equal the sum of the flows leaving through the top face BCEF and the
clde l'ace ABFG.

Bod;r surface
i

Shoels

But since the normal velocities through the top and side faces depend on

¢ and €, respectively, the division of outflow between the top and side
faces must be determined to properly carry cut the mass balance. In other
words, the curve BID must be Tound such that the inflow through area BCDH
exits the top Tace of the control volume while the inflow through ABHD
exits the side Tace of the control volume. The line BHD is the inter-
section of the stream surface through the dividing line BF with the shock
wave and is found by tracing streamlines back from line BF, which has the
coordinates (x,z). Once this is done, the shock displacement distance

can be written either as



=L 410

A z
o Ut (£)dt £ £) At
Agp = BHD -k _BHD 77 (9a)
OlXWl(g;Z) X w1
E (¢,2)
0 0
or
X
Ol bprp(E)AE 4 SREILL:
Rl N G il B (o)
11 —U; (&,x)
(6]
The equation of a streamline is
dx dz (10a)

0008 W (20

Upon substitution of the velocities from equations (7) and (8) and
integrating between the prescribed limits

Z

Ry 5 X R, , 4z

s X _
VEE(L - 2x) + 2Kx2 V2 - 2x) + 2k?

(10b)

3 €

the equation of line BHD in the form suitable for equation (9b) is found
to be

Az

¢ = (11)

sinh[El - K)sinh™ta + K sinh™la %]

@ = ‘@féﬁgi (12)

From equations (9b) and (11) the expression for standoff distance

where

is
As KR » o dt
D= ———
Vi - 2k sinhEl - K)sinh Yo + K sinh'lon-}é—c] E2 + ofx?
o

(13)
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By letting X = £/x, equation (13) can be written
kRs,x a dX

+/1 -2k sinhEl - K)sinh™Yq 4 K sinh~t %{]\/x2 + o

0

(14)

Equation (14) is exactly the expression that would be obtained by neg-
lecting centrifugal effects in equation (4.5.7) of Hayes' analysis
(ref. 2).

In general, equation (14) must be integrated numerically. However,
in the special cases of two-dimensional and ¢xially symmetric flow,
closed-form expressions can be obtained. These are:

K = 0, two-dimensional flow:
al
kR kR, .. e
AZD = S,X dX - S,}.._ sinh"l l 2k2k. (15)
/1 - 2k ‘/XZ + o2 1 -2k
K =1, axially symmetric flow:

1

kRs,x kRS,x

o X dX
sym = =
1 -2k ‘[XZ + qf 1+ ~/2k
0

These two special results were cbtained by Heyes (ref. 3).

Equations (15) and (16) are now comparec. with exact solutions. In
figure 1(a), it is seen that equation (16) ag¢rees rather closely with
the calculations of Van Dyke and Gordon (ref. 4) for k < 0.1, while at
higher density ratios (k £ 0.3) it overestimetes the exact solutions by
no more than 10 percent. Equation (15) for {wo-dimensional flow is less
satisfactory in that it overestimates the results of Van Dyke (ref. 6),
Belotserkovskii (ref. 7), and Uchida and Yasthara (ref. 8) by 20 to 50
percent. This poor agreement is reflected also in the ratio of two-
dimensional to axially symmetric standoff dictances as shown in figure
1(b).

8.2T-d
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For the three-dimensional case (0 < K < 1) with density ratio k
greater than zero, equation (14) was numerically integrated on a desk
calculator using Simpson's rule. The results are given in table I and
are also plotted in figure 2. The results shown for k = 0 (table I(b),
fig. 2(b)) were obtained by evaluating the integrand of equation (14)
for a - 0 and then integrating. The result is

Azp 1 1
(kRS,X) =T-x% "% (17)

k-0

The curves of figure 2 are seen to be quite regular, which is per-~
haps not very surprising. However, the resulting ratios of three-
dimensional to axially symmetric standoff distances given in table II
and plotted in figure 3 show a more interesting result, namely, that
most calculated points show surprisingly good agreement with the crudely
derived expression (2) from the OVERSIMPLIFIED METHOD. The exceptions
are for bodies approaching the two-dimensional, for example, for
K < 0.2 at density ratios k < 0.1.

Before proceeding to a comparison with experiment, it must be real-
ized that the present analysis yields no information regarding the vari-
ation of shock-layer thickness about the body and leaves the body shape
unspecified. It is therefore not suited to determining the shock stand-
off distance ahead of a given body. Considering some of the results for
a sphere (ref. 2), it is doubtful whether much is gained by considering
centrifugal effects and higher order pressure terms in a constant-density
approach. It seems rather that, if the constant-density soclution is to
be improved on, the compressible flow equations should be solved exactly
as done in references 4, 6, 7, and 8 for axially symmetric and two-
dimensional bodies.

COMPARTSON WITH EXPERIMENT

The only pertinent experiments known to the author are those at
Mo =3 and M, = 8 by Zakkay and Visich (ref. 5). The three-dimensional
body tested was a toroid. The vital statistics of the experiments and the
theoretical comparison are given in the following table (shock radii un-
fortunately had to be measured from the schlieren photographs presented
in ref. 5).



1z

Mc)=3Mw=8
Experiment - (ref. 5)
Rb’}ij)Z 0 255 |[o0.255
K = Rg,x/Rg, 7 45 .34
&/Ry « 408 | .287
ARy 194 | .152
Theory
k 0.259 |0.180
A/RS,X (from fig. 2) . 208 .169
(eq. 18) 187 .157
(eq. 19) 186 .156

The experimental data for A/Rs,x are compaed with three theoretical

estimates. The first 1s that value taken directly from figure 2(a) for
the pertinent density ratio and shock radius ratio. The second calcula~
tion is according to the relatiocn

/ASD)

A%D _ (Zax syﬁ) A Rs,x (18)
R R ‘

S

where the ratio of three-dimensional to axia . ly symmetric standoff dis-
tances for the proper density ratio k 1s token from figure 3. The
third calculation uses equation (2) for the wforementioned ratio:

A Aoy sym - )
= —_ 19
Rs,x ( Rs ‘>Van Dyke(vK + (29)

For both equations (18) and (19) the axially symmetric standoff distance
is taken from Van Dyke and Gordon (ref. 4), vhose data are partially
shown in figure 1.

The theoretical estimates agree well wi.h the experimental standoff
distances; in fact, the agreement is better -han might be expected, con-
sidering the author's ability to measure shock radii from photographs.
The results using equation (18) or (19) are vithin 5 percent of the
measured values. The theoretical estimate f:om figure 2 is somewhat
higher, which indicates primarily that the present constant-density ap-
proximation overestimates the absolute standoff distance for all bedies.
This has already been shown for two-dimensional and axially symmetric
todies in figure 1.

8L2T-d
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CONCLUDING REMARKS

The shock standoff distance ahead of a general rounded stagnation
point hes been estimated under the assumption of a constant-density
shock layer. It is found that many of the present theoretical calcula-
tions as well as the two experimental points of Zakkay and Visich are
well represented by the relation

23D [Pex sym 2

Rs,x B Rq K+ 1
where K 1is the ratio of the smaller to the larger principal shock ra-
dius. The exceptional cases are bodies approaching the two-dimensional
(K < 0.2) with shock layers whose density 1s much larger than that of
the free stream (k € 0.10). In comparing with experiment, the axially
symmetric standoff distance was taken from the exact solutions of Van
Dyke and Gordon.

Unfortunately, a constant-density theory gives no information re-
garding the body shape corresponding to a given shock wave and 1s there-
fore not suited for obtaining the standoff distance shead of a given
body. In fact, from the experience with the two-dimensional and axially
symmetric problems, about the only solutions that adequately relate the
flow field to the body are the exact compressible flow solutions. The
present results may nevertheless serve as a semiguantitative guide to
the phenomencn in the absence of exact sclutions.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 5, 1961
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standoff distances.

Figure 1. - Comparison of exact solutions for two-
dimensional and axially symmetric shock standoff
distances with Hayes' simple theory (ref. 3).
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