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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D- 882

STRESS CONCENTRATIONS IN FILAMENTARY STRUCTURES

By John M. Hedgepeth

SUMMARY

Theoretical analyses are made of the stress distributions in a

sheet of parallel filaments which carry normal loads and are imbedded

in a matrix which carries only shear. In all cases, uniform loading at

infinity is assumed and small-deflection elasticity theory is used.

Static and dynamic stress-concentration factors due to one or more fila-

ments being broken are determined. Particular attention is paid the

dynamic overshoot resulting when the filaments are suddenly broken. The

dynamic-response factor increases from 1.15 to 1.27 as the number of

broken filaments is increased from one to infinity. A somewhat lower

dynamic-response factor is obtained when a hole is suddenly caused in

the filament sheet.

INTRODUCTION

Structures fabricated from fine filaments that are wound, woven,

or plied are becoming prevalent in flight applications. Many solid-

propellant rocket-motor cases, for instance, are being constructed by

winding resin-coated glass filaments on a mandrel. The high-strength

glass filaments carry the pressurization loads and the resin forms a

matrix which produces a unitized efficient material. Other applica-

tions make use of the good foldability of coated fabrics to package

large, low-density structures into small volumes until their erection

by mechanical means or inflation is desired.

One of the necessary factors in the rational design of any struc-

ture is a knowledge of the behavior of stresses in the neighborhood of

discontinuities such as holes and reinforcements. Whereas much infor-

mation is available about stress concentration in materials which can

be considered as continuums, little is known about such stress behavior

of filamentary configurations.

Whenever one or more fibers is suddenly broken in a fabric under

stress, the load in the broken fiber or fibers must be transferred

through the matrix to the adjacent fibers in order to restore equilib-

rium. Of interest is not only the resulting static stress state but
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also the dynamic overshoot which occurs during the transient phase. Both
of these results are obtained in this paper for several types of "cutouts"
in the simple case of an infinite flat sheet of parallel filaments
stressed in uniform tension along the direction of the filaments.

The model treated is that which is commonin shear-lag analyses;
that is, it is composedof tension-carrying elements connected by purely
shear-carrying material. The static problem is solved first and the
details of the dynamic analysis are relegated to the appendix. The
results are essentially exact within the framework of small-deflection
elasticity theory.

SYMBOLS

a,b

d

EA

Gh

Kc

Ke

m

n_m

P

Pn

Pn

r

R( )

major and minor axes of ellipse

filament spacing

extensional stiffness of a filament

shear stiffness of the matrix

stress-concentration factor for a circular hole

stress-concentration factor for an elliptical hole

stress-concentration factor for r broken filaments

load in nth filament for influence-function solution

mass per unit length associated with a filament

indexes

applied force on each filament at infinity

load in nth filament

dimensionless load in nth filament

number of broken filaments

real part of variable
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cp,_
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Laplace transform variable

time

displacement of nth filament

dimensionless displacement

dimensionless displacement of nth filament

displacement of nth filament for influence-function solution

coordinate parallel to filaments

coordinate normal to filaments

complex variable

dynamic-response factor for a circular hole

dynamic-response factor for r broken filaments

transform variable

dimensionless coordinate parallel to filaments

dimensionless stress

dimensionless time

elliptical coordinates

)

8y2

an asterisk denotes Laplace transform in time
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ANALYSIS

The configuration under consideration is shown in figure i together

with the coordinate and notation systems. The filaments are separated
by a constant distance and are numbered from -_ to _ from the bottom

upward. The coordinate along the filaments is denoted by x and the

" . . i'
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displacement of the nth filament at location x and time t is given

by Un(X,t). Similarly, the force in the nth filament (positive in ten-

sion) is called Pn(X,t) and is given in terms of u n by

Bun
Pn = EA- (I)

ax

where EA is the extensional stiffness of the filament. The shear

force per unit length in the bay between the nth and (n + l)st fila-

ment is Gh(un+ I - Un)/d where Gh is the shear stiffness of the

matrix. Equilibrium of an element of the nth filament then requires

EA a2un + Gh a2un
ax-- + = m at2 (2)

where the assumption has been made that the mass per unit length m

associated with the nth filament is concentrated at that filament.

remainder are shown intact. In general, for
0_n <= r - i denote the broken filaments.

conditions are:

In figure i, filaments 0 and i are shown broken at x = 0 and the

r broken filaments, let

The appropriate boundary

h

Pn(O,t) = 0 (0 _ n _ r - I) f

fun(0, t) = 0 (n < 0 or n _ r)

For x large, of course, the force in each filament approaches the

uniform applied force which is denoted as p. Thus

(3)

pn(±_,t) = p (4)

For the time-dependent problem, the following initial conditions

are required:

Pn(X'O) = P 1aUn-(x,O): o
at

J

(_)
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Nondimensionalization

In order to obtain a convenient form for the problem, let

Pn = PPn

un =P_U n

x = _

t=m 1"

(6)

From these equations the following partial-differential--difference equa-

tion is obtained:

_2U n _2U n

--b_2 + Un+ I - 2U n + Un_ I bT2

(7)

with boundary conditions

Un(O,_): 0

Pn(O, T) = 0

Pn(_+% T) = 1

(n < 0 or n _ r)

(0 <: n <= r - i) (8)

and initial conditions

A

Pn(_,O) = i I

Jbun
b-C (_,o) : o

The dimensionless forces and displacements are related by

(9)

(lO)
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Solution of Static Problem

The boundary-value problem for static loading is constituted by

equation (7) with the right.hand side set equal to zero and boundary

conditions (8). The solution is complicated by the fact that the bound-

ary conditions at x = 0 are mixed; that is, they apply to neither Un

nor Pn solely. The following approach is convenient for overcoming

this difficulty.

Influence-function technique.- Consider a filament sheet which has

no applied edge load and in which all filaments but the zeroeth one are

intact. Displace the end of the zeroeth filament a unit amount, main-

tain zero displacement at x = 0 of all the other filaments, and denote

the resulting forces and displacements by Ln(_) and Vn(_). This set

of influence functions can then be superposed to obtain the actual prob-

lem in the following manner:

OO

Pn(_) = 1 + _ Ln_m(_) Um(O )

/,
m _ -- oo

L

I

5
0

2

O0

Un(_) : _ + _ Vn-m(_) Um(O)

m__ _ _

But boundary conditions (8) yield first

r-1

m=O

r-1

Un(_) = _ + /___ Vn-m(_) Um(O)

m=O

since Um(O) = 0

J

for other values of m, and second

r-i -

0 = 1 + , Ln_m(O) Urn(O) (0 <= n <r= - i)

/,
m=O

which is the specification of the boundary conditions on the loads.

(11)

(12)
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Equations (12) constitute a set of r equations for the r unknowns

Um(0). They can be solved and substituted back in equations (ll) to yield

the entire solution. First, however, the L n values must be determined.

Determination of the influence functions Ln.- The problem can be

stated for _ > 0 as

+ vn+l- 2Vn+ Vn_l= 0 (13)

with the conditions

Vn(O) : 1

Vn(O) : 0

dVn
dq- (_)--0

(n = 0)

(n / O) (14)

In order to solve this problem, let

OO

V(_,8) = _ Vn(_) e-in8/.
n=- oo

(15)

or, inversely,

Vn(_ ) _ 1 V(_,e) einede (16)
2x

Then, multiplying equation (13) by e-in8 and summing over all n gives

eV=o
4 sin 2 (17)

Similar treatment of the boundary conditions (14) yields

V(o,e) = 1 7

(_,e): o
(18)
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The solution satisfying equations (17) and (18) is

_ -21sin--_ I_
V=e

Thus, from equation (16)

/0 _ -2_sin_Vn (_) = i cos n0 e de (19)

which can be expressed in terms of Bessel and Weber functions of imagi-

nary argument. For the present purposes_ however_ the reduction is not

necessary since attention will be centered on Ln(O ) - dVn (0) which
d_

is given simply by

Ln(O ) = 4 (20)

(4n2 -

Stress-concentration factors.- Inspection of the problem indicates

that the maximum force occurs at _ = 0 in the first intact filament

adjacent to the broken ones. Thus_ the stress-concentration factor K r

for r broken filaments is given by Pr(O) which equals P_I(O) by

virtue of symmetry. Now,

r-i

Pr(O) = i + _ Lr_m(O) Um(O) (21)

m=O

Solution of equations (12) for the Um(O) and substitution into

equation (21) yields the stress-concentration factor. This process has

been carried out for an r of i to 6 and the results are given in the

following table

r K r

i

2

3
4

5
6

4/3
8/5

64/35
128/63
512/231

1,o24/429

.L

1

5
¢
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Inspection of these values show that they can be written as

K r =

4 6 8 (2r + 2)

3 • 5 • 7 (2r + i)

(22)

Although this result has not been established in general, its correct-

ness for the first six values lends credence to its validity for all

values of r.

Solution of Dynamic Problem

If a Laplace transform is taken of the time-dependent differential

equation (eq. (7)) and boundary conditions (eq. (8)), the resulting equa-

tions are similar in form to the static equations and the same type of

approach can be used for their solution. The details of the solutions

are considerably more complicated and are contained in appendix A. The

resulting timewise variation of the stress-concentration factor is shown

in figure 2 for I, 2, and 3 broken filaments. Solutions for greater

numbers of broken filaments were not obtained because of the increasing

difficulty of calculation and because of the existence of an apparent

upper limit on the dynamic overshoot. This upper limit is discussed in

the next section.

DISCUSSION OF RESULTS

As can be seen from figure 2, the stress-concentration factor

exhibits an oscillation that decays in a few cycles to the steady-state

value, as the energy is carried away to infinity by wave motion. The

oscillations for r = i and r = 2 are fairly simple and are similar

to those of a one-degree-of-freedom system. For r = 3, the oscillatio:_

is more complex, an apparent second-mode component appearing in the time

history. In all cases, the first peak is the largest one; the value of

the stress at this peak determines the dynamic overshoot and is the

principal result to be extracted from the dynamic analysis.

Dynamic-Response Factor

The dynamic_response factor _r is defined as the ratio between

the maximum stress and the static stress. Values for i_ 2, and 3 broken

filaments are given in the following table:
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r

1

2

3

_r

1.15

1.19
i. 20

The dynamic overshoot thus apparently increases with increasing number

of broken filaments. The overshoot can therefore be reasonably expected

to be the highest in the limit as the number of broken filaments approaches

infinity.

Results for an infinite number of broken filaments.- As has been

noted, the greater the number of broken filaments, the greater the dif-

ficulty of solution; but the limiting case itself is readily amenable

to analysis and is treated in appendix B.

The analysis in appendix B deals with the so-called continuous

stringer sheet which is an orthotropic mediumwith finite extensional

stiffness in the longitudinal direction, infinite extensional stiffness

in the transverse direction, and finite shear stiffness. Its behavior

is governed by the nondimensionalized differential equation

v2U _ (23)
_.r 2

which is obtained either by direct derivation or by replacing the second-

order difference in equation (7) with its appropriate derivative

equivalent.

The breaking of an infinite number of filaments is accomplished by

placing a finite-length slit in the sheet. As is well-known_ this pro-

cedure leads to an infinite stress-concentration factor in the static

problem, the stress varying as the inverse one-half power of the dis-

tance from the end of the slit. The stress behaves similarly in the

dynamic problem. Thus_ the dynamic behavior can be studied by finding

the variation of the strength or magnitude of the stress singularity

with time. This central result of appendix B is shown in figure 3- As

can be seen, the strength C exhibits discontinuities in slope. These

discontinuities arise from the reflection of waves issuing from the ends

of the slit. Only the first two regimes are shown in figure 3 together

with the eventual static value. Results for subsequent regimes are very

difficult to obtain and apparently would not contribute any greater

stresses. The resulting dynamic-response factor is

_ = 1.27

which should be an upper limit on mr-
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Hole in a stringer sheet.- In the foregoing sections, only slits

have been treated. Of interest also is the case in which a hole is

punched out of the material. Because of the usefulness of conformal

mapping techniques, the static problem is easily analyzed for a large

variety of hole shapes for a stringer sheet. In particular, for ellip-

tical shapes, the stress-concentration factor is derived in appendix C
to be

Ke = 1 + e (24)

where e is the ratio between the transverse and longitudinal dimen-

sions of the elliptical hole in the nondimensional coordinate system

pertaining to equation (23). For example, a stringer sheet with an

elliptical hole that transforms into a circle in the nondimensional

coordinate system has a static stress-concentration factor of 2.

In this latter case of a circular boundary, the dynamic problem is

also tractable. The analysis is given in appendix C and the variation

of K c with time is shown in figure 4. The resulting dynamic-response

factor is

_c = 1.08

which is considerably less than that for the slit.

CONCLUDING REMARKS

The results derived in this paper lead to the apparent conclusion

that the highest dynamic-response factor applicable to the stresses

acting in the neighborhood of suddenly induced discontinuities is 1.27.

This value was obtained for the case of a long slit in a sheet of closely

packed filaments. Either reducing the number of broken filaments or

opening the slit into a hole can be expected to decrease the dynamic-
response factor.

The analysis was based on elastic, small-deflection theory of a

two-dimensional medium. In actuality, filamentary sheets usually have

a large number of filaments through the thickness and, whereas the fila-

ments themselves may follow Hooke's law very well; the matrix or the

weave introduces large nonlinear effects in the form of plastic defor-

mations, large deflections, and fiber straightening. These factors

should act to reduce the stress concentrations and, at least, not

increase the dynamic overshoot. In view of the smallness of the dynamic

overshoot relative to the possible effects of these other factors, future
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theoretical work on this subject would seem to be best devoted to ana-

lyzing better models of various types of filamentary construction.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., March 20, 1961.
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APPENDIX A

DYNAMIC BEHAVIOR OF SHEET WITH SUDDENLY BROKEN FILAMENTS

Let the Laplace transform in time of Un(_,T) be denoted by

U_(_,s) where s is the transform variable. Then, taking transforms

of equations (7) and (8) yields

--+Un+ I- (2+ +Un_ i =-s_ (_)

U*(O,s) = 0

s)=o

_ s

(n < 0 or n >= r)

(O<=n<=r - i) (Ae)

where in initial conditions (9) the condition on Pn has been converted

to the condition Un(_,O) = _.

Again, use can be made of the unit solution to write the solution

for transformed loads and displacements in the form

r-1

P_(_,s) = _ + Ln_m(_,s) U_n(O,s)

m=O

r-i

U_(_,s) = _ + Vn_m(_,s ) I_(O,s)

m=O

(A3)

from which the following equations are obtained

r-i

1 L*_m(O, s ) Urn(O, s )0=_+

m=0

(0 <= n <= r - i) (A4)
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and from which the unknown _(0, S) can be determined.

formed load in the first intact filament is

r-i

P*(0, s) = F + Lr_m(0, s) U*(0, s)

m=0

The transform of the stress-concentration factor

filaments is set equal to this transformed load.

As before, L_(_,s) -_n (_,s) where V*(_,s)

_2 + %+1 - (2+ s2)v_+ N__ = o

and the conditions

v_(o,s) = 1

Vn(O , s) = 0

_n (_,s)= 0

In order to solve these equations, let

or, inversely,

(n = 0)

(n _ O)

0O

_(_,s,e) = I Vn(_'s) e-ine

n=-

v_(_,s)= ! /_ v-'_(_,,s,e) einede
2=

-/[

Also, the trans-

for r broken

satisfies

(A6)

(A7)

(AS)

(Ag)

Then equations (A6) and (A7) become, after multiplying by

summing,

e-in8 and

,,: '/ _i̧ '. .< :•
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The solution for

_2V*

_2
(4 sin 2 e + s2)_-_ = o

%'_(0, s, e) = l

_v (oo,s,e) = o

_>0 is

-_4sin 2 e+s2 _
2V*=e

(_o)

(All)

which yields

_i/4sin2 8 s2

Vn( 1 70 cos nee ' _ +
: - de (AZ2)_,s)

or, finally

fo_ ILn(O,s ) 1 cos ne 4 2 e s2- x sin _ + de (AI3)

Solving equations (A4) and substituting into equation (A5) gives

the transform of the stress-concentration factor. For l, 2, and 3 broken

stringers, this procedure yields

* l Lq[

K_(s)= ; \Lo + L1/

1...._(s) : _ -_ -_
L0 + LoL 2 - 2LI

(A_4b)

where, for brevity, the functional dependence indicated in equation (AI3)
is omitted.
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The task remains to evaluate L_(0, s) as a function of s and to

take the inverse transform of each of equations (AI4). This inversion

requires integration in the complex s-plane; a study of the behavior of

Ln and, therefore, of as functions of the complex variable s is

necessary. Such a study shows that L_ has branch points at s = ±2i,0.

(Actually, _ can be written in terms of complete elliptic integrals

with modulus

k= 1+ 4

These elliptic integrals have branch points at k = ±i. The form of the

modulus also guided the choice of conformal mapping used in the sequel.)

But the square root in equation (AI3) can be thought of as behaving

essentially as s for large values of s. Therefore, the branch cuts

need not extend to infinity and L_ can be made single valued by placing

a branch cut along the imaginary axis between -2i and 2i.

The inversion integral is

Kr(m ) = 1 p/7+i_ K*(s)eSmds

_7-i_°

Since the integrand satisfies Jordan's lemma and the denominators of

K r have no zeros except possibly on the branch cut, the integral path

can be closed around infinity on the left-hand side and shrunk to the

contour C around the branch cut. Thus,

Kr(m)
= 1 _ *

F_

2-_ _C Kr(s)eSmds

A closed-form evaluation of this integral is probably impossible

so that a series evaluation is desirable. One method which is very

suitable is as follows:

Let

1S = Z -
Z

This maps the entire s-plane outside the branch cut into the interior

of the unit circle. The counterclockwise contour around the branch



2A

L

1

5

cut maps into a clockwise contour just inside the unit circle.

Furthermore,

. i _ _l - 2z2cos e + z4

Ln(0, z) - _ J0 cos n0 z d0

which is expandable in a power series in z that is convergent inside

the unit circle. Thus,

17

where

.... z2)
Z + n

k=O

is the binomial number.

Making the change of variable gives

Kr(T ) = 1 K _+ 1 dzy 7 e -7 (A_8)

_ i i _

The integrand has no singularities within the path of integration except

at the origin which i_' an essential singularity. The value of Kr(_)

is therefore given simply by the residue of the integrand at z = 0.

The determination of this residue involves finding the coefficient of

the zeroeth power of z in the expansion of

_Sg] Z2 __ i e

The series for the bracketed part can be determined from equations (A17)

and (A14). It involves only positive even powers of z. So only the

negative even po_ers in the expansion of the other part must be sought.

If

Z - i) T eo

z2+lz2 - i e = Cn zn (AI9)

n=-oo
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there results

CO= -i

Cn = J0(2T)+ 2J2(2T)+ • • • + 2Jn_2(2T) + Jn(2T) - i (n = 2,4,6, .)

m

where Jn is the Bessel function of the first kind.

Proper manipulation and evaluation of the series gives the results

plotted in figure 2. Good convergence is obtained and the results are

quite accurate.

L

i

5
0

2
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APPENDIX B

DYNAMIC BEHAVIOR OF A SUDDENLY SLI_I_ED STRINGER SHEET

The required stress distribution can be written

_U

= 1 + 8x (B1)

where u satisfies the following dimensionless boundary-value problem

V2u- 82u (B2)
8T 2

u(x,y,O)= _u (x,y,o)= o
_T

_--_(o,y,T)=-i (-i< y < i)
_x

J

Also, u is regular everywhere in the x,y plane except on the slit

running from y = -i to y = 1 and approaches zero at infinity.

(BS)

Rather than solve this boundary-value problem directly, the use of
an analogy to obtain the stress behavior near the ends of the sllt is more

convenient. The problem as stated is in exactly the same mathematical

form as the problem of determining the perturbation velocity potential

in steady supersonic flow (with Math number of _) over a thin rectan-

gular wing (of span 2) with a very long chord. The time coordinate T

corresponds to the coordinate in the stream direction and the x and

y coordinates correspond to the coordinates in the crossflow plane.

Zero time is equivalent to the leading edge of the wing which has a

constant slope of -1 in the stream direction. Finally, the stresses

along the y-axis are the same as the upwash velocities in the tip
regions in the plane of the wing.

The existence of this analogy allows the use of the well developed

methods of supersonic wing theory; that of Eward in reference i is

particularly applicable. This method obtains the upwash velocities in

terms of explicit quadratures which are expressible in terms of tabu-

lated functions for the regions close to the leading edge.
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The actual detailed analysis by Eward's method is somewhat tedious

and only the resulting formulas of interest are given here. The analysis

shows that the stress at the y-axis in the neighborhood of the tip y = i

is of the form

_ c(T__)+ o(1) (s4)

where C(T)

2
C(T) =:

c(_) _2 K

is the strength of the singularity and is given by

(o < I- < 2)

(2 < i- < 4)

(BS)

where K and E are complete elliptic integrals of the first and sec-

ond kind with modulus

and the primes refer to functions of the comodulus

The quantity v is determined from the equation

IT+ 2snv = 2T

where snv is Jacobi's elliptic sine. Finally, Z(v) is Jacobi's

zeta function. (See ref. 2.)

The results are plotted in figure 3. As can be seen, the maximum

value of C is reached at T = 2. The asymptotic value for large T

is obtained from the solution of the static problem:

V2u =0

bu
(O,y,T) =-1 (-I < y < l)
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The solution can be seen to be

:
whence the stress is

+l- x)

(x+ iy)2 +

In particular, the stress at the y-axis is

(_(O,y) = 0

so that

_(O,y): Y

c(_):

(lyl< i)

(y>l)

21
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APPENDIX C

STRESS CONCENTRATIONS IN A STRINGER SHEET WITH A HOLE

The stress in an infinite stringer sheet with uniform stress in the

x-direction at infinity and with a suddenly induced hole can be written

_U

- 8x (Cl)

where u satisfies

272u - 82u

and the following initial conditions

u(x,y,O) = x

5u (x,y,O) = 0
8T

1 (c3)

and boundary conditions

at the boundary of the hole:

_u : o (c4a)
_n

and at infinity:

_U

-- -_i (c4b)
5x

These equations are solved in the sequel for two cases: the static

stresses around an elliptical hole and the dynamic stresses around a cir-
cular hole.

i

i

5
0

2

Static Problem

For the first case_ let

x + iy = c cosh(_ + i_)
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2

Iv\

+ (bl = 1 maps into _ = _0

c cosh qD0 = a

c sinh _0 = b

The differential equation and boundary conditions become

82u + 82u 0

_u(_o,_'):o

where

(q_ >=q)o; o < _ < 2_)

(o < _ < 2_)

c e_cos ¢u(m,_)

This problem has the solution

(_ >>q)o; 0 < _ < 2_)

Therefore,

u(_,_)- °
a- b

1

a- b

(a cosh _ - b sinh _)cos

a- b cosh _ sinh.qD_oos_ oos_/

The maximum stress occurs at @ = _,

hole on the y-axis) and is

= _0 (at the boundary of the

=i+ b-
a

As derived, this result is valid only for

tion for a _ b yields the same result.

tration factor is

a > b But a similar deriva-

Therefore, the stress concen-

K e = 1 + e (C5)

where e is the ratio of the transverse and longitudinal axes of the

ellipse.



, t ,

24

Dynamic Problem

For the dynamic problem with a circular hole of unit radius, let

x = r cos @_

Jy = r sin 8

and take the Laplace transform in time. (See appendix A.)

boundary-value problem results

(C6)

The following

_+ +

8r2 T_- r2 8e2
s2u * = -sr cos 8 (c7)

_u_ (1, e,s) = o
_r

u*(r,e,s) ~
r cos @

S
(r >> l)

(c8)

The solution is

u*(r' e' s) - c°s eIrs i Kl(Sr)IsKl(S)'

(C9)

_ere K I is the modified Bessel function of the second kind and the

prime denotes differentiation.

The transform of the stress at x = O, y = i is

_/l__sh = ! _ ! Kl(S)
"/_2 s s2 Ki(s)

(Cl0)

The stress-concentration factor is given by the inverse transform of

equation (ClO). Thus,

1 1 F y+i_ KI(S) eSTds (ell)
Kc(T)

2_iJT-i_ _i(_) s2

The integrand has a branch point at s = 0 and can be made single

valued by placing a branch cut along the negative real axis. The
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integrand also has two poles located symmetrically in the left-hand half-

plane which arise from the zeros of K_. By taking account of the resi-

dues at these poles, the integration path in equation (CII) can be warped

into the path around the branch cut. This latter integral can then be

rewritten in real form to yield after some manipulation

sOT s0 T

Kc(T) = 2- .e e
i + s02 i + _02

_ e- T_d_ (C12 )

+ Jo
_ + o(_) - _ II(_
O3 CO

!

where sO and s0 are the (conjugate) zeros of Kl(S), and

are modified Bessel functions of the first kind.

I 0 and I I

The value of sO was found approximately by interpolation by using

,the zeros of KI/2, K3/2, and 2" The approximate value was then

refined by means of the Newton iteration method by using the series
!

expansion for K I. The result is

sO = -0.64355 + 0.50118i

The integral in equation (C12) was evaluated numerically after

making the substitution

-2m
V --- e

Ten intervals in the range 0 < v < I were used together with Simpson's

rule.

The results are accurate except for the smallest values of T. The

stress-concentration ratios for these small values were obtained by per-

forming a term-by-term inversion of the asymptotic-series expansion of

the right-hand side of equation (CI0). The resulting small-time approxi-

mation is

T2 T3
_c(T) = 1 + T - "4 48 + " (T << l) (ClS)

The results are plotted in figure 4.
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