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SUMMARY

Heat-transfer rates have been measured in free flight along the

stagnation line of an unswept cylinder mounted transversely on an axial

cylinder so that the shock wave from the hemispherical nose of the axial

cylinder intersected the bow shock of the unswept transverse cylinder.

Data were obtained at Mach numbers from 2.53 to 5.50 and at Reynolds

numbers based on the transverse cylinder diameter from 1. O0 X l06 to

1.87 x 106.

Shadowgraph pictures made in a wind tunnel showed that the flow

field was influenced by boundary-layer separation on the axial cylinder

and by end effects on the transverse cylinder as well as by the inter-

secting shocks. Under these conditions, the measured heat-transfer rates

had inconsistent variations both in magnitude and distribution which

precluded separating the effects of these disturbances. The general

magnitude of the measured heating rates at Mach numbers up to 3 was from

O. 1 to 0.5 of the theoretical laminar heating rates along the stagnation

line for an infinite unswept cylinder in undisturbed flow. At Mach

numbers above 4 the measured heating rates were from 1.5 to 2 times the

theoretical rates.

INTRODUCTION

Along with the increasing speed of high-performance aircraft has

come_ necessarily# an increasing emphasis on the problem of aerodynamic
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heating. In recent years research has been d_voted to determining the

heat transfer to blunt bodies, such as cylind_rs_ and wing leading edges

subjected to uniform high-speed flow in order to obtain information use-

ful in design. The problem of determining the heat transfer to wings or

bodies subjected to a nonuniform flow field, as in the case where a wing

or body is subjected to shocks and other distarbances originating from

another body, has more recently come under scrutiny with the advent of

such vehicles as the X-15 and Dyna-Soar.

To investigate the influence of a nonuniflorm flow field on heating

rate to an unswept cylinder, a two-stage rocket model system was designed

and launched from the NASA Wallops Station. the cruciform-shaped test

configuration, which was mounted on the nose of the second stage 3 con-

sisted of two cylinders having nearly equal diameters and instrumented

to measure skin temperatures along the stagnation line of the transverse

cylinder. The shock wave from the hemispherical nose of the axial cyl-

inder impinged on the bow shock of the unswept transverse cylinder. Also_

the upstream axial cylinder and its boundary layer caused other disturb-

ances in the flow on the transverse cylinder. Aerodynamic heating rates

were obtained along the stagnation line of the unswept transverse cylin-

der for Mach numbers up to 5.50 and Reynolds numbers based on the trans-

verse cylinder diameter from 1.00 × 106 to 1.87 × 106 • Results from

this test and some concluding remarks are presented herein.
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SYMBOLS

D

d

h

h L

k

Z

M

P

Q

diameter of transverse cylinder, 0.0625 ft

diameter of hemispherical-tipped axial cylinder, 0.0734 ft

measured heat-transfer coefficiert 3 Btu/see-ft2-°R

theoretical heat-transfer coefficient for laminar flow_

Btu/ft2-sec-°R

coefficient of thermal conductivity, Btu-ft/sec-ft2-°R

length along stagnation line between thermocouple

stations_ ft

Mach number

pressure, lb/sq ft

spanwise conduction at station _, Btu/sec-ft 2
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q

R_

RD

r &

T

TC

t

V

X

Y

e

P

T

Subs cript s:

i

n

O

t

w

heating rate, Btu/sec-ft 2

free-stream Reynolds number per foot

free-stream Reynolds number based on transverse cylinder
diameter

radius of transverse cylinder, ft

temperature, OR

abbreviation for thermocouple in figures 3 and i0

time, sec

velocity, ft/sec

distance along transverse cylinder from model center

line, ft

distance along axial cylinder from hemispherical nose

tip; ft

circumferential angle, radian

density 3 slugs/cu ft

skin thickness, ft

inner surface

nth term in numerical series (i, 2_ 3_ •

outer surface

stagnation

wall

•, n)

free stream



MODEL,INSTRUMENTATION,AN]ITEST

Model

The model consisted of a flare-stabilized JAT0, 1.52-KS-33,550,
SMI9 (Recruit) rocket motor with the test nos_ and instrument section
mounted on the forward end of the motor. The test nose which was a
cruciform configuration consisted of a hemispherical-tipped cylinder to
serve as a shock producerj and a transverse cylinder with zero sweepon
which the heat-transfer measurementswere mad_:_.The transverse cylinder
was located so that at high speeds the shock from the hemispherical tip
would intersect the shock wave of the transverse cylinder. Photographs
of the model and the test nose are shownin f;!gures i and 2, respectively.
The shock producing tip of the test nose and _he transverse cylinder were
madeof Inconel. The remaining part of the cruciform test nose was made
of mild carbon steel (SAE1018). In order to obtain a fast temperature
response through the wall of the transverse cylinder, a nominal wall
thickness of 0.032 inch was used. As predicted by use of reference i,
this thickness would be sufficient to withstand the heating through the
peak Machnumberof the test. This predictio_ did not include effects
due to a nonuniform flow field.
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Instrumentation

The model was equipped with a telemetering system which transmitted

the data to a ground receiving station. Three channels were used to

transmit the accelerations (longitudinal, transverse, and normal) expe-

rienced by the model, and two channels were u_ed to transmit the temper-

atures measured along the cylinder semispan as the thermocouple locations.

Figure 3 shows the seven evenly spaced thermo_ouples mounted along the

stagnation line on the inside surface of the transverse cylinder. Tem-

perature data from thermocouples i, 2, 3, 5, _, and 7 were commutated

and transmitted on one of these temperature caannels so that each thermo-

couple recorded about every 0. i second. Temperature data from thermo-

couple 4 were transmitted continuously on the other temperature channel.

The maximum probable error of the temperature measurement was _ percent

of the calibrated full-scale value, or, in thLs case, ±40 ° .

In addition to the internally carried instrumentation, the model

was tracked by a CW Doppler velocimeter to provide the velocity-tlme

history, and by two different radar sets, a N_SA modified SCR-584

tracking radar and an AN/FPS-16 radar set. E_ch provided flight-path

data for the test. Atmospheric and wind conditions were determined by

means of a radiosonde launched near the time of flight and tracked by

a Rawin set AN/GMD-IA.
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Te st

The model was launched at an elevation angle of 60 °. The booster,

a fin-stabilized M5 JATO rocket motor (Nike), accelerated the model to

a Mach number of about 3.0. A picture of the model and booster on the

launcher is shown in figure 4. After a short coast period, the sus-

tainer rocket ignited, effected separation from the spent booster, and

accelerated the model to its peak Mach number of 7.4.

At a Mach number of 5.91, which occurred 1.14 seconds after ignition

of the sustainer, the telemeter signal was lost. However, radar tracking

indicated that the model continued accelerating along its anticipated

flight path until after sustainer burnout. The telemetered data showed

that at the time of signal failure the temperatures on the stagnation

line of the transverse cylinder were rising very rapidly and were

approaching the structural thermal limit of Inconel. (It may be noted

that if boundary-layer transition occurred on the transverse cylinder,

the stagnation line would not necessarily be the hottest location.)

At sustainer ignition the model experienced an oscillation in pitch

which had damped to essentially zero degrees at the time of signal fail-

ure 1.14 seconds later. The high temperatures and air loads encountered

probably caused a breakup of the model nose and loss of telemeter signal

without completely destroying the vehicle.

Heating data presented in this report are for the time of flight

up to 5.34 seconds (M_ = 5.50), during which time telemeter signals

were received. This Mach number was reached at an altitude of 10,500 feet

with a corresponding Reynolds number of 1.87 × 106 based on the trans-

verse cylinder diameter.

DATA REDUCTION

Trajectory Data

Time histories of model velocity, Mach number, Reynolds number per

foot, and altitude are presented in figure 5. Variations of the free-

stream air properties (temperature, density, and pressure) with flight

time are given in figure 6. The model velocity was obtained by inte-

gration of the longitudinal acceleration up to the time of telemeter

failure and thereafter from the CW Doppler velocimeter data. The other

data of figures 5 and 6 were obtained from ground radar and radiosonde

measurements.



Heating Rates

Faired curves showing the variation of s_in temperatures with time
are plotted in figure 7- The curves for different stations end at
different times because the thermocouples3 except for the one at sta-
tion 4, were commutatedon a single channel. The faired curves of meas-
ured inside wall temperature were used to computethe outside surface
temperature. The outside surface temperatures were then used to compute
one-dimensional heating rates. The computaticnal methods used were those
of reference 2, which considers a thermally t_ick wall without curvature
and with no heat flow parallel to the wall ant! no plate curvature. Effect
of wall curvature was not included but would increase the heating rates
less than 5 percent. Faired curves of the experimental one-dlmensional
heating rates for two representative stations are shownin figure 8.

The aerodynamic heat-transfer rate at a measurementstation is con-
sidered to be equal to the one-dimensional heating rate plus the rates
of heat loss at the station due to conduction and radiation. Sample
computations of radiation showedit to be alwE_s less than 2 percent of
the one-dimensional heating rate and it was therefore disregarded. Like-
wise, conduction along the skin normal to the stagnation line was dis-

estimates showedit to be always less than 3_2percent ofregarded since

the one-dimensional heating rates. The estin_tes were madeby use of
temperature distributions derived from the laminar heat-transfer dis-
tributions on an unswept cylinder in reference 3. The rate of heat
accumulation at a station due to spanwise con(i_ction along the stagnation
line was computedby a finite-difference meth<,dby use of the measured

temperatures and the following equation:

Q = k( Tn-I - Tn)T(r'd@ )

ll(r'de)

k(T n - Tn+l)T(r'de)

(r'de)
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MT
= _Tn_ 1 - Tn)- (Tn - Tn+l)

The one-dimensional heating rates were correc_;ed by this spanwise con-

duction term to determine aerodynamic heating rate.
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Shock Position

An estimation was made of the location of the intersection of the

shock wave from the hemispherical nose and the bow shock of the trans-

verse cylinder since it was expected that this location would have a

strong influence on the distribution of heating along the transverse

cylinder. In estimating the position of these shocks_ use was made of

unpublished results from tests of a similar nose configuration made in

the preflight jet at NASA Wallops Station at a Mach number of 2 and in

the Langley Unitary Plan wind tunnel at Mach numbers of 2.65 and 4.44.

In those tests the transverse cylinder was about 2 diameters longer in

span than in the present flight test. Figure 9 presents a shadowgraph

from each of these tests. In each, a dark line extends from the inter-

section of the two strong shocks towards the surface of the transverse

cylinder. Since the flow in this region near the stagnation line of the

transverse cylinder is subsonic, this dark line does not indicate a

shock wave but may be a slip plane or the three-dimensional photographic

effects of the shock intersection.

Separation of the boundary layer on the axial cylinder in front of

the transverse cylinder is also apparent in the shadowgraphs. The pres-

ence of spanwise flow and the general complexity of the flow field around

the configuration are indicated by the spanwise curvature of the bow

shock outboard of the shock intersection and the irregularity of the

shock inboard of the intersection.

Measurements of the shock shape from these shadowgraphs are shown

in figure i0 along with shock shapes for several Mach numbers which were

predicted by the method of reference 4. A comparison of the measured

shock shapes shows very close agreement with the predicted shapes. The

approximate spanwise location of the intersection of the nose shock wave

and the bow shock wave is shown in figure ii as a function of Mach number.

The location is given in terms of either the nose diameter or the diam-

eter of the transverse cylinder. Both plots are included since the shape

of the nose shock (and thus the location of the intersection) is dependent

on nose diameter; whereas_ in subsequent figures spanwise location on the

transverse cylinder is presented in terms of the diameter of the trans-

verse cylinder.

Heat Transfer

The spanwise distributions of the experimental heating rates on the

transverse cylinder are presented in figure 12 for several times during

the flight test over the Mach number range from 2.25 to 5.50. Both the
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one-dimensional and the aerodynamic heating r_tes are shown, their dif-

ference being the correction for spanwise conduction. The outside wall

temperatures at the thermocouple locations ar_ shown, connected by straight

lines which indicate the spanwise temperature distributions assumed in

the computation of the conduction corrections_ Also shown on each dis-

tribution is the spanwise location of the intersection of the nose shock

and the bow shock of the transverse cylinder as determined from figure ii.

The theoretical laminar heating-rate distributions were determined

from the following relation:

q = hL(T t - Two)

with the use of the plotted experimental values of Two and theoretical

values of hL for the stagnation line of an unyawed infinite cylinder

(i.e., no variation in h L with spanwise location) as determined from

equation (B5) of reference 3. This theory wa_ shown in reference 3 to

agree within 8 percent with wind-tunnel resul_s at M = 4.15 over the

Reynolds number range of the present test.

The theoretical turbulent distributions _hown in figure 12 were

determined by use of theory presented in refe?ence 5 and are for a loca-

tion 5° chordwise from the stagnation line on an unyawed infinite cyl-

inder at the flight test conditions. They are shown primarily for com-

parison with the theoretical laminar rates to indicate the predicted

increase in heating rate for turbulent flow n_ar the stagnation line.

According to the theory of reference 5, turbulent rates for a given

chordwise location are a multiple of the laminar rates for that location 3

with the multiplier being a function only of _he local Reynolds number

based on surface length from the stagnation line. Local Reynolds numbers

at a 5° location for the flight conditions we?e determined by use of

Newtonian pressure distribution and the compressible-flow relations of

reference 6. An error of about i percent was introduced by basing the

theoretical turbulent rates on laminar theory for the stagnation line

rather than on laminar theory for the 5° loca_ion.

The shadowgraph pictures of figure 9 sho_ that the flow field was

influenced by boundary-layer separation and b/ end effects from the

transverse cylinder as well as by the intersecting shocks. (To deter-

mine the effect of these intersecting shocks cas the original intention

of the test.) Figure 12 shows that under these conditions, the measured

heat-transfer rates had inconsistent variatio_s both in magnitude and

distribution which precluded separating the e_fects of these flow dis-

turbances. For example 3 no consistent effect of the shock intersection

on heat transfer was apparent.
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The relatively high heating rates at the two inboard stations at

times prior to 3.66 seconds, which caused the temperatures at these two

stations to rise rapidly (see fig. 7(a)), are apparently not associated

with Mach number and Reynolds number since they persisted only part way

through the period of relatively constant flight conditions between 3.0

and 4.5 seconds. The heating rates at the outboard station are, except

at the two highest Mach numbers, higher than at the neighboring inboard

stations; this may be due to end effects on the transverse cylinder.

At Mach numbers up to 3.23 (figs. 12(a) to 12(_)) the experimental

heating rates were generally much less than laminar theory for an infi-

nite cylinder, except at the two inboard stations where the previously

noted high heating rates were sometimes as high as the turbulent theory

for the 5° chordwise location. At Mach numbers above 3.23 the measured

rates generally exceeded the laminar theory at all measurement stations.

For convenient comparison of the experimental data with the laminar

infinite-cylinder theory, the experimental heating rates divided by the

corresponding laminar theoretical rates, as obtained from figure 123 are

plotted in figure 13. (Note that the measured heating rate divided by

the theoretical laminar heating rate is identical to the measured heat-

transfer coefficient divided by the theoretical laminar heat-transfer

coefficient since the experimental values of Tt - Two were used to

compute the theoretical laminar heating rate.) Except at the two inboard

stations, the general level of h/h L along the transverse cylinder was

between O. 1 and 0.5 at Mach numbers up to 3.23. As the Mach number

increased from 3.23 to 5.50, the general level of h/h L increased to

values between 1.5 and 2.0, with considerable spanwise variation of the
ratio in most cases.

At times from 3.84 seconds to 5.16 seconds the magnitude of h/h L

is high near the shock-intersection location relative to values at

neighboring locations. However, this condition is not evident after

5.16 seconds, nor before 3.84 seconds, even though Mach number and

Reynolds number were approximately constant from about 3.0 seconds to

4.5 seconds.

Results of the present free-flight test show a considerably lower

level of heat transfer along the stagnation line of an unswept cylinder

in a flow field disturbed by an upstream body than did data obtained

recently in the Langley Unitary Plan wind tunnel. (See ref. 7.) Also,

the present flight test did not show an increase in heat transfer near

the shock intersection as did the wind-tunnel tests. There were some

differences between the flight test and the wind-tunnel tests, both in

geometry and test conditions, which precluded a good comparison of the
results.
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CONCLUDINGREMARKS

Heat-transfer rates have been measuredin free flight along the
stagnation line of an unswept cylinder mountedtransversely on an axial
cylinder so that the shock wave from the hemispherical nose of the axial
cylinder intersected the bow shock of the unswept transverse cylinder.
Data were obtained at Machnumbersfrom 2.53 to 5.50 and Reynolds numbers
based on the transverse-cylinder diameter from 1. O0 X lO6 to 1.87 X lO6.

Shadowgraphpictures madein a wind tunne[ showedthat the flow
field was influenced by boundary-layer separatLon on the axial cylinder
and by end effects on the transverse cylinder _s well as by the inter-
secting shocks. Under these conditions, the measuredheat-transfer
rates had inconsistent variations both in magnitude and distribution
which precluded separating the effects of these disturbances. The gen-
eral magnitude of the measuredheating rates at Machnumbersup to 3 was
from 0. i to 0.5 of theoretical laminar heating rates along the stagnation
llne for an infinite unswept cylinder in undisturbed flow. At Machnum-
bers above 4 the general magnitude of the measuredheating rates was
from 1.5 to 2 times the theoretical rates.
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Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., June 22, 1961.
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cal laminar heat-transfer coefficient for various flight conditions.

Arrow indicates approximate location of shock intersection.
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