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SUMMARY

The solar sensor described herein may be used for a variety of space

operations requiring solar orientation. The use of silicon solar cells

as the sensing elements provides the sensor with sufficient capability to

withstand the hazards of a space environment. A method of arranging the

cells in a sensor consists simply of mounting them at a large angle to

the base. The use of an opaque shield placed between the cells and per-

pendicular to the base enhances the small-angle sensitivity while adding

slightly to the bulk of the sensor. The difference in illumination of

these cells as the result of an oblique incidence of the light rays from

the reference source causes an electrical error signal which, when used

in a battery-bridge circuit, requires a minimum of electrical processing

for use in a space-vehicle orientation control system. An error which

could occur after prolonged operation of the sensor is that resulting

from asymmetrical aging of opposite cells. This could be periodically

corrected with a balance potentiometer. A more routine error in the

sensor is that produced by reflected earth radiation. This error may

be eliminated over a large portion of the operation time by restricting

the field of view and, consequently, the capture capability. A more

sophisticated method of eliminating this error is to use separate sen-

sors, for capture and fine pointing, along with a switching device.

An experimental model has been constructed and tested to yield an

output sensitivity of 1.2 millivolts per second of arc with a load

resistance of 1,000 ohms and a reference light source of approximately

1,200 foot-candles delivered at the sensor.

INTRODUCTION

The wide range of space missions requiring solar orientation may

be placed in the two broad categories of solar applications and solar
re se arch.



The applications include such solar energy converters as parabolic
reflecting concentrators and solar-cell batt,_ries which maypower either
an entire space vehicle or a certain portion of one. In addition to pro-
viding an economical and accessible source of energy for long-time space
operations, the solar disk is a convenient beacon for space navigation.
Still another solar property which may somedaybe used is the radiation
pressure for which solar sails have been proposed as low-thrust devices.

The solar research projects which are o_ immediate concern include

a study of the solar energy spectrum in band_ that are inaccessible below

the earth's atmosphere. In addition to sateJ_ite insolation measurement

and control, a solar-oriented satellite could monitor the solar constant

to furnish invaluable data for terrestrial heat-balance studies. A solar-

oriented telescope could yield information on sunspots, flares, or other

aspects of the solar atmosphere.

A few sensors have been designed prior _o the present investigation

and although these existing designs are adequate for some types of experi-

ments, more stringent demands must be met in regard to prolonged relia-

bility and pointing sensitivity. The solar _3ensor proposed in this paper

is offered as an attempt to meet these demands. In addition to relia-

bility and pointing sensitivity, consideration was given to other require-

ments such as initial acquisition of the solar disk, endurance, weight,

power consumption, and economy and ease of fabrication.

It is the purpose of this paper to describe an approach toward

satisfying the existing requirement for a hi Khly accurate, "work-horse"

solar sensor with no delicate or moving parts.

SYMBOLS

A

A'

a

C

F

area of sunlit portion of projected earth

special case of A

semimajor axis of ellipse formed by projecting sunlit region

ofearth

semiminor axis of ellipse formed by projecting sunlit region

of earth

illumination perunit area on flst surface located in vicinity

of cell and normal to illuminating source, watts/sq in.

fractional decrease of sunlit area



H length of opaque shield

h height of satellite above surface of earth

I illumination of solar cell for arbitrary inclination to
illuminating source_ ft-candles

difference in illumination between opposite cells

k = RE/(R E + h)

AI

N

0

q

RE

S

W

X

(I

_d

_r

?

5

¢

length of solar cell

surface normal

center of reflected sunlight

amount of cell's length shaded by opaque shield

radius of earth

area of cell under illumination

width of solar cell

distance from center of illumination of earth-reflected sun-

light to line from center of earth to satellite

angle between solar cell and base of solar sensor

angle of incidence

angle of incidence of direct sunlight on cell

angle of incidence of reflected sunlight on cell

half of total capture angle of solar sensor

angle formed by line from center of earth to satellite and

earth tangent passing through satellite

angle of solar sensor error caused by reflected sunlight

angle between solar sensor base normal and direction of

solar radiation

angle between lines from satellite to center of earth and

to center of reflected sunlight
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Subscripts:

i

2

b

crit

E

S

angle formed by line from center of earth to satellite and

earth-sun line of centers

angle between earth-sun line of .:enters and line from

satellite to center of reflected sunlight

cell 1

cell 2

base of sensor

value of independent variable for which functional relation-

ship changes

earth

maximum value

sun
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DESCRIPTION

The purpose of any solar sensor is to provide a space-vehicle

control system with an electrical signal that is proportional to the

angle of incidence between the sun and a reference axis on the space

vehicle to be oriented, The control system may then amplify this slg-

nal to obtain the magnitude and sense of reaction torque required for

vehicle alinement.

An angular detection device llke the solar sensor must be capable

of performing two separate functions: It should be able to capture

the reference source of radiation and, once acquired, it should hold

this source within a narrow confine. The capture phase may be accom-

plished by a coarse sensor, while the second phase requires a fine

sensor. These may be either separate units or combined as is the

sensor presented herein.

To simplify the discussion presented iLa this report, only single-

degree-of-freedom orientation is considered. To obtain another degree

of freedom, all that is necessary is to introduce a second set of cells

on the same base but rotated orthogonally to the first set.

J



Figure 1 shows part of the photometrical principle of operation

for the sensor described in this report. The basic operating principle

is that the illumination of a flat surface is directly proportional to

the cosine of the angle of incidence.

For the condition

0 < e < 90° -._

the illumination of cell I is given by

I1 = Ima x cos _i

and likewise for cell 2

(_i = = + e)

I2 = Zmax cos _2 (132 = c_- e)

where Imax is the illumination of cell 2 when

e ---(_

It may be seen that for the case when the incident solar radiation Is

parallel to NB (the case when e = o) the cells are equally illumi-

nated and produce equal potentials if their electrical characteristics

are matched. Mismatched cells may be used by placing a resistor in

series wlth the stronger cell. Thls resistor may also be adjusted to

point the sensor at any desired angle to the sun. The cells are con-

nected in a battery-bridge circuit shown in figure 2. When the solar

sensor is alined toward the center of the solar disk, there will be no

current through the center of the bridge, which Is actually the control

system. If_ however, the incident radiation forms an angle e with

the sensor normal NB, then the more illuminated cell will produce an

electrical signal through the center of the bridge. This signal will

increase in intensity with increasing error angle, e, and will reach

a maxlmumwhen the incident radiation becomes perpendicular to the more

illuminated cell. It should be noted that when e reverses in sense,

the signal to the control system similarly reverses polarity.

The sensor of figure 1 could be used as a coarse sensor for some-

what uncritical types of orientation applications. If it is assumed

that the output of a solar cell Is linear, the electrical output would



be directly proportional to the difference in cell illumination, and
the output of this type of coarse sensor would be that shownon fig-
ure 5. The linearity assumption is correct only up to certain error

angles as will be shown later in this report. Figure 3 also shows the

effect of varying _, the angle of inclinaticn of the solar cell with

respect to the sensor base. The complete equations for the curves

shown are

when both cells are illuminated:

AT = Imax[COS(C_ - 0) - cos(c_ 4 8)]
(0 < e < 90° - _)

when one cell is illuminated:

f_I = Imax cos(_ - e) (90° - _< e < 90° + =)
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and when neither cell is illuminated:

AI = 0 (e > 90° + ¢)

With a slight increase in bulk, a significant gain in precision

for the previously described sensor can be realized through the addi-

tion of an opaque shield at the apex as is shown in figure 4. It may

be seen, qualitatively at least, that the shadow cast by the shield

on cell 1 will cause a greater change in sensor output for small error

angles. For most applications, the angle made by the solar cells with

the base should be large. An inclination angle _ of 80 ° was chosen

for the graph in figure 5. This angle produ:ed both a steep slope and

a wide linear range. Figure 5 shows quantitatively the advantage

gained by the addition of a reasonable size shield (5 inch). If the

shield is made reflecting, a slight increase over the output shown is

realized. It should be noted that there is uo loss of wide-angle cap-

ture capability by the addition of a shield, thus providing a sensor

which has both wide-angle capture capability and a high sensitivity

for small angles. The method of obtaining figure 5 is presented in

appendix A. The effect of changing the length of the opaque shield

for small error angles is seen in equation (A1). From the linear

relationship of H and AI, it is seen that the optimum length of the

shield is a more or less arbitrary parameter which can be decided upon

only after consideration is given to structural factors, mission require-

ments, and space available for the sensor. A 5-inch shield was used in

the calculations as a reasonable balance between compactness and

sensitivity.
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Still another quantity subject to change is the geometric shape of

the cell which may be used to a limited extent to control the slope of

the curve for small angles. For most purposes a smooth maximum slope

is desired, which led to the use of rectangular cells in this discussion.

The calculations showing the effect of various sensor parameters

have some slight error since they do not take account of the penumbra

due to the finite angle (about i/2 °) subtended by the solar disk.
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An important requirement for the solar sensor is that It be capable

of reliable, long-time operation in the environment of space. Among the

hazards likely to be encountered are severe particle and electromagnetic

radiation, vacuum, and micrometeor bombardment.

An investigation of photosensitive devices leads to the selection

of silicon solar cells as the photosensitors that would provide sustained

reliable operation in a space environment. There are several reasons for

preferring these over other photosensitive devices, the most significant

of which is the high ratio of electrical power output to incident solar

power. This conversion efficiency of ll percent is better by a factor

of lO than that of other converting devices (ref. 1). Furthermore, the

silicon spectral-response curve compares very favorably with respect to

the solar output as may be seen in figure 6 (ref. 1). This relatively

high conversion ability minimizes the equipment required to process the

electrical signal. This equipment would introduce additional weight and

failure possibility.

Silicon solar cells have proven capable of reliable operation in a

space environment. This was accomplished by the first successful Vanguard

satellite, 1958 Beta, whose cells have been operating for an extended

period. By the same experiment their ruggedness has proven satisfactory.

In addition to this satellite experiment, some laboratory tests on

the effects of radiation upon silicon solar cells were performed (ref. 2).

The test cells were subjected to ultraviolet light, X-rays, gamma rays,

electrons, protons, and alpha particles, both in air and in vacuum.

Based on knowledge of space radiation prior to the discovery of the

Van Allen belt, expected lifetimes (7_ percent original output) were

estimated at 1.4 × 105 years. Depending upon the composition of this

belt, this figure may have to be reduced by as much as four orders of

magnitude. More reliable radiation-damage predictions must await more

complete data concerning the nature of the Van Allen belt and other

deleterious phenomena such as solar proton streams.
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Another hazard to the solar sensor is the damage which might be

caused by micrometeorlte erosion and puncture. However, present data

indicate that this problem is less serious than is radiation damage

(ref. 3). In order to protect the silicon cells from the sandblasting

effects of micrometeorites, windows of highly resistant fused silica

may be provided. Although these have favorabl_, _ mechanical properties,

up to 20 percent of the transmitted energy may still be lost by the

sandblasting effects (ref. 4).

If a satellite experiment using the sensor requires prolonged

pointing with reasonable accuracy, there must be provided a means to

correct for aging, which is the decrease in voltage that occurs with
time. This decrease would result in a drift of the zero position of

the sensor, if the aging did not occur symmetrically for the cells.

An approach toward compensating for the drift, when this becomes

necessary, is seen schematically in figure 7. A bright a-c operated

light, mounted on the forward end of the sensor, is flashed on the

silicon solar cells at widely separated time intervals by reflecting

the beam from a half-silvered mirror mounted in front of the flashing

lamp. The a-c component due to auy unbalance of the cell output, can

then be separated, amplified, and used to control servomechanlcally

a potentiometer which would change the balance of the bridge to its

original zero position.

Although this method introduces moving parts which invite system

failure, should the compensator fail it would remain on its last setting,

thereby causing no greater total error than wolld result from asymmetri-

cal aging after failure of the compensator.

If one sensor is to be used for the dual purpose of initial capture

and fine sensing, then a significant error which must be taken into con-

sideration is that due to sunlight reflected from the earth. Since the

solar sensor has an extremely wide field of view, it is capable of

viewing two light sources simultaneously. When this occurs, the sensor

would tend to point the control system away from the reference source

in the direction of the interfering source, the angular error being

related to the angular separation of the two sources and their relative

intensities.

If a complete spherical field of view is assumed, solar cells being

back to back, then the error caused by reflected earth radiation is seen

in figure 8, which is for the orbit passing through the earth-sun line

of centers. The problem geometry and calculations appear in appendix B

for a 360 ° capture angle, this angle being defined as the maximum total

angle through which the sensor may be rotated while being continuously
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illuminated by a point light source. For a smaller capture angle the

error Is somewhat less as is seen In figure 93 and a method of elimi-

nating thls error for a large portion of the tlme suggests itself. The

extremely wide capture angle may be reduced by adding an opaque cone to

the sensor as is shown in figure lO. The geometry of this figure may

be applied to determine the value of _ for which the sensor can no

longer view the earth. Since

sin 8 - RE_

RE+h

and since

+ 5 + _ = 180 °

then

= 180 ° - sin-i
RE

RE+h

This last equation was used to establish In figure 9 the values for which

the reflected sunlight causes no error, when the solar sensor is at an

altitude of 300 miles.

Figure ll shows a technique which may be used to eliminate rather

than restrict the reflected-sunlight error. Thls consists of placing

a concentric sensor within a larger hollow sensor wlth a solar cell to

switch off the coarse sensor only when the solar constant is received

by the silicon cell switch. Initial capture Is attained in the same

manner already mentioned; but when the silicon cell switch is actuated

by the solar radiatlon, the inner sensor solely operates the control

system and has no reflected-sunlight error due to Its restricted field

of view. The anticipated drawback of this method is that the switching

Is done by a switching transistor or a relay, both of which appear to

have drawbacks.

The switching transistor has a cut-off current that would approach

in magnitude the level of the sensor output signal for very flne pointing.

The relay, on the other hand 3 would introduce a moving part, tending to

defeat the major advantage of this sensor - reliability of sustained

operation. Should neither of these two methods prove feasible, then it

would be desirable to decrease the sensitivity of the external sensor
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of figure ii and connect the sensors in parallel. Oncecapture is
attained the interior sensor exerts a greater influence on the signal
so that the reflected-sunlight error is at least diminished.

It is believed that other extraneous light sources will be of a
much lesser magnitude than will reflected sunlight. For example, the
moonproduces five or six orders of magnitude less than the solar con-
stant due to Its lower albedo and, even more :Important, due to Its
small angular size. The effects of starlight will be negligible to
the sensor.

APPARATUS,MEASUREMENTS,ANDRESULTS

The experimental solar sensor presented in figure 12 was constructed
for use on a single-degree-of-freedom platform which is mountedon an alr
bearing and oriented toward a bright light source which simulates the sun.
The large-angle calibration curve of figure 13 was obtained by rotating
the sensor at various angles to a collimated beamemitted by the aircraft
landing lamp shownin figure l_. This photograph also showsthe colli-
mating tube used in conjunction with the lamp. The reason for the knee
appearing In figure 13 is that the solar cells used attained rapid sat-
uration as maybe seen from the saturation curve of figure 15.

By using the samelight source, the small-angle calibration curve
of figure 16 was obtained with the ald of the equipment shownin flg-
ure 14. Very small changes in incidence anglc_could be obtained with
this equipment which consists of a sturdy I-b_am supported on one end
by a vertical torsion bar wlth a micrometer drive screw on the unsup-
ported end. Very small displacements of the _ovable end produce a
minute rotation of the supported end about the vertical torsion bar.
These small displacements were read on a microscope reticle attached
to the movable end. Due to the extremely high ratio of I-beam flexural
rigidity to support-bar torsional rigidity, the flexural rigidity intro-
duces virtually no error. Any lateral motion_ of the supported end
which mayhave occurred could not be detected with a microscope, which
indicated that no significant error occurred In that respect. The
microscope reticle consisting of lO0 lines per millimeter could be read
to the nearest 1/2 line_ an accuracy which would correspond to about
1 second of arc rotation of the sensor.

The results of this small-angle calibration of the solar sensor
with a load resistance of 1,000 ohmsand with an illumination of
1,200 foot-candles are presented in figure 16. The linearity of the
calibration curve for very small angles is in agreementwith the theory,
and is very desirable for processing the electrical signal. The sen-
sitivity obtained is shownon the curve as a sensor output of
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1.2 millivolts for I second arc. With moderate amplification this

signal should be sufficient to operate a control system to a high degree

of accuracy.

CONCLUSIONS AND RECOMMENDATIONS

Although further developmental work should be performed on the solar

sensor presented herein, the following conclusions may be drawn from this

study:

1. A passive sensor is feasible with reasonable dimensions, no power

consumption, broad-angle capture capability# and high sensitivity.

2. The use of an opaque shield enhances the sensitivity of the sensor.

3- Silicon solar cells are recommended because of their high con-

version efficiency.

4. It will be desirable to reduce the effects of reflected sunlight

from a nearby planetary body either by shielding the sensor or by incor-

porating a two-level sensor.

_. A sensor was constructed and ground-tested to yield a sensitivity

of 1.2 millivolts per second of arc.

6. In order to design a method of correcting long-term drift in the

solar sensor, more data should be obtained on the extent of silicon cell

output decrease after prolonged exposure to the space environment.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., March 21, 1961.
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THEORETICAL FERFOEMANCE OF SOLAR SENSOR _ITH OPAQUE SHIELD

The discussion presented In thls appendix refers to figure 4.

The illumination of either cell may be expressed as

: =_(_- q) cos

where

C illuminatlonperunit area on a flat surface located in the vicinity
of the cell and normal to the illuminating source

w width of cell

length of cell

q amount of cell's length shaded by shield

angle of incidence

The area of cell 1 under illumination is

Sl = w(_ - q)

From the geometry of figure 4

so that

Hsln8

cos(_+ e)

Sl=w[_- E__ine .]
[ cos(_+ e)I

Since the illumination of cell 1 diminishes as the cosine of the angle

of incidence, this illumination is
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_ E sin 8 111 =_cos(_+e) z oos(_+e)'

Similarly for cell 2

Subtraction yields

12 = Cwl cos(=- 8)

13

z2 - Zl =AT: Cw[Zcos(,_- e) - Z cos(,_+ e) + _ s_ e] (,,u_)

for the condition

where 8crit

shaded and is given by

0 < 8 < 8= = crit

is the value of 8 for which cell 1 becomes completely

8crit = tan -1 cos
H + sin

For larger values of 8

AT = Cw_ cos(_- e) (A2)

It may be noted that the special case of equation (A1) which occurs when

H = 0 is used to obtain the coarse sensor performance shown in figure 3.
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APFEND IX B

ERROR CAUSED BY EARTH-REFLECTI_ SUNLIGHT

The problem geometries of figures 17 to 20 will be used to deter-

mine the error angle _ which will be introduced in a solar sensor

as a result of viewing reflected earth radiation as an unwanted source

of illumination. For a given satellite altitude, this error angle shall

be described as a function of $, the angle between the llne from the

satellite to the center of the earth and the earth-sun llne of centers.

This may be done because the earth-sun llne of centers provides an axis

of symmetry for the problem.

If the solar disk were the only source of illumination supplied to

the sensor, it could be considered as a point source located in the center

of the disk and having an intensity equal to the extended source. When

the sensor is illuminated by two such sources_ in general, it will not

point toward the center of either, but will point to a location somewhere

between the sources determined by the relatlw _ source intensities and

their angular separation.

From figure 17 is seen the condition which establishes the balance

of solar and reflected-earth radiation on the sensor when two point

sources are assumed. It is also assumed that _ is close enough to

90 ° so that one cell views only the sun and the other views only the
earth.

Is cos _d = IE cos Hr (BI)

where

IS cell illumination from point source sun

IE cell illumination from point source reflection of sunlight from
the earth

_d angle of incidence of direct sunlight on cell

_r angle of incidence of reflected sunlight on cell

From the geometry of figure 17

_d =a-
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and

8r = _ + _' + _ - 180°

Substituting these equations in equation (BI) gives
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which may be expanded by suitable trigonometric identities to yield

= tan- 1 IE cos(_ + _') + IS cos
IE sin(e + @') - IS sin

(B2)

When total spherical capture capability is obtained e = 90 ° and equa-

tion (B2) becomes

= tan- 1 IE sin _'
IS - IE cos _'

(B2a)

This is the case shown in figure 8.

The reflected sunlight presents separate aspects for the following

conditions:

i. 0 < <= _ = _crit

2. _crit < _ < 180° - _crit

3- 180° - ¢crit _ @ _ 180°

It is not necessary to describe the other two quadrants because of

symmetry. For the first condition, the sunlit portion of the earth is

viewed as a circle of radius a. The second condition, the one appearing

in figure 18, presents the sunlight region as a semicircle of radius a

to the right of JK a semielllpse with semimajor and semiminor axes of

a and b, respectively, to the left of JK where b is considered

positive to the left of JK and negative to the right. When the third

condition exists, the solar sensor receives no reflected sunlight. The

second condition is the most general case, being reducible to the first
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condition when b = a, x = O, and _ = _'. l_ne second case is therefore

the one for which the argument shall be developed.

For the first condition, it was assumed that the earth follows

Lambert's law for a flat diffuse surface and decreases in intensity with

the cosine of the angle of incidence. The radiation viewed as a function

of the angle of incidence becomes

IE = IE,max cos (0 _ _ _ _crit) (B3)

where IE,ma x is the radiation viewed when _ = 0 and is given as

(ref. 5)

IE,max = 2(solar constant)(earth's albedo)_l- (i- k2)I/2]

where k - RE

(RE + h)

If h = 300 miles and 0.36 is the earth's albedo, then IE,ma x be come s

L
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IE,ma x = 0.455 (solar constant) (B4)

From the geometry of figure 18

a - RERE+ h_ RE + h)2 - RE2
(BS)

and

b :RE cos (@ > @crit) (B6a)

b = a

If A is the area of sunlit portion viewed, then

1 _a(a + b)A =

(_ < _crlt) (B6b)
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For the second condition, the one shown in figure 18, IE diminishes

more rapidly than the first condition because both the area viewed and the

cosine of the angle of incidence diminish. For the second condition

IE = IE,max F cos _ (@crit < @ < 180° - @crit) (B7)

L
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where F is the fractional decrease in sunlit area and _ is the angle

of incidence for this second condition. If A' is defined as the area

viewed during the first condition, then

and since

A ' = _a2

then

a + b (BS)F
2a

From the geometry of figure 19

x
sin y =-

RE

and

_=_-_

which may be combined to give

= _ _ sin-i x_-
RE

From figure 18 it is apparent by symmetry that the center of

reflected sunlight 0 is located along the line FG and the further

assumption is made that this center lies midway between F and G to

produce the simple relationship

(B9)

x : ½(a-b) (BIO)
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Rewriting equation (B3) and substituting equations (B8), (B9), and (BlO)

into equation (BT) gives

IE = 0.4_ CS cos

= 0"455 CS a +b c°s(* - sln-i _-_)2a

To determine @' aa a function of

from which may be seen that

(C _- _ _- _crit)

($crit < _ < 180° - _crit)

(ml)

_, reference is made to figure 18

(BZ2)

L
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From figure 20

for the condition

= tan_ I x

_crlt < _ < 180° - _crit

but for the condition

o<_-<,= = crit

_=0 (B13)

as is seen in figure 18 when x approaches zero and b approaches

In summary, the equations used to obtain figure 9 are

equation (B2a) :

= tan_ 1 IE sin #'

IS - IE cos 4'

a,

equation (B3) :

IE = IE,max cos _ (0 _ _ _ $crit)



19

equation (B7) :

IE = IE,ma x F cos
(_crit < @ < 180° - @crit)

equation (B4) :

L
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IE,ma x = 0.455 Is

equation (B8) :

altitude, 300 miles;]

IS, solar constant J

F _a+b
2a

where (eq. (BS))

and (eq. (B6a))

RE
h) 2 RE 2

h I(RE + -RE+

b = RE cos

equation (B9):

x__
= _ - sln-i RE

where (eq. (BlO))

x = -_(a - b)
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