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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-I142

POINT RETURN FROM A LUNAR MISSION FOR A VEHICLE THAT

MA_ WITHIN THE EARTH'S ATMOSPHERE

By Simon C. Sommer and Barbara J. Short

SUMMARY

An investigation has been made of point return of a vehicle with a

lift-to-drag ratio of i/2_ returning from a lunar mission. It was found

that the available longitudinal and lateral range allowed considerable

tolerances in entry conditions for a point return. Longitudinal range

capability for a vehicle that was allowed to skip to an altitude not

exceeding 400 miles was about 3-1/2 times greater than the range capabil-

ity of a vehicle that was restricted to remain in the atmosphere after

entry. Longitudinal range is very sensitive to changes in both velocity

and flight-path angle at the bottom of the first pull-out and at exit.

An investigation showed that after a skip a vehicle could be placed in a

circular orbit for a relatively modest weight penalty. A skip maneuver

was found to have no effect on lateral range when the roll was initiated

at a velocity near satellite speed after the vehicle had re-entered the

atmosphere. However_ when the roll was initiated at the earliest possible

time along the undershoot boundary_ lateral range was increased by a factor

of about 2-1/2. The tolerable errors in time of arrival and in inclination

of the orbital plane at point of entry were greater for the skip trajectory

than for the no-skip trajectory.

INTRODUCTION

It is desirable that a vehicle entering the earth's atmosphere on

return from a lunar mission be able to land at a predetermined site. The

ability to land at a desired destination, for the purpose of the present

paperj is termed "point return." The point return of a vehicle critically

depends on the inclination of the orbital plane, the flight-path angle_

velocity 3 and time of entry into the atmosphere. Point return is possible

for any vehicle if the desired entry trajectory parameters can be attained

by midcourse guidance. In practice, these parameters can be expected to

be in error. Errors in time of arrival and/or orbital-plane orientation

must be adjusted by maneuvering the vehicle within the earth's atmosphere.

Conversely_ maneuvering of a vehicle allows guidance errors in the entry

trajectory parameters (ref. i).



Limited studies of the lateral and longitudinal ranges of vehicles
have been reported. An approximate analytical method for determining the
lateral range of a vehicle is reported in reference 2. The range of a
vehicle with a lift-to-drag ratio of 1/2 that is restricted to remain in
the atmosphere after entry is reported in re_erence 3- A logical way to
achieve greater range would be to consider t_e range madepossible by a
single skip maneuver. A further extension oI the skip maneuverwould be
to place the vehicle in a near-earth orbit i_ which it could wait for the
desired location to move into range before beginning the final descent.

It is the purpose of the present paper _o determine the point return
of a vehicle with a lift-to-drag ratio of i/2_ and also to examine briefly
the effect on range of increasing the L/D _;o 2. The point return of a
vehicle restricted to remain in the atmosphere after entry will be compared
to that of a vehicle allowed to skip to an _,ogee altitude of 400 miles.
Fuel requirements for placing a vehicle in a circular near-earth orbit
will be studied. The consequenceof the man_uvering capability of a
vehicle on the entry trajectory parameters will be investigated.
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NOTATION

a

A

CD

g

i

Isp

L

D

m

mf

%

r

R

deceleration_ g

reference area of vehicle_ ft 2

drag coefficient

earth's gravitational accelerationj J't/sec 2

inclination of orbital plane with respect to earth's equatorial

plane_ deg

specific impulse, sec

lift-drag ratio

mass of vehiclej slugs

mass of fuelj slugs

free-stream dynamic pressure, lb/ft m

radius from center of earthj ft

longitudinal rangej statute miles

t time_ sec
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V

Vs

W

wf

Y
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a

E

o

x

velocity of vehicle, ft/sec

local satellite velocity, ft/sec

weight of vehicle, ib

weight of fuel, ib

altitude, ft or miles

flight-path angle, deg

roll angle, deg

Subscripts

conditions at apogee of skip

conditions at entry, 4003000 ft

conditions at surface of earth, along the equator

conditions at exit, 400,000 ft

RANGE CAPABILITY

Trajectory Analysis

The equations of motion used to calculate the trajectories discussed

in this report are given in the appendix. Results were obtained for the

simplified case of a norarotating earth. Entry was assumed to occur at an

altitude of 400_000 feet and a velocity of 36,068 feet per second with

the vehicle heading along the equator. The W/CDA for the vehicle was

assumed constant at a value of 50 pounds per square foot. The atmosphere

model used was that proposed by ARDC in 1959 (ref. 4).

Additional conditions and definitions are as follows:

(a) The undershoot boundary was limited to the largest flight-path

angle at entry such that the deceleration would not exceed i0 g.

(b) The overshoot boundary was limited to the smallest flight-path

angle at entry such that the vehicle was "captured" by the earth's

atmosphere while maximum L/D was applied in a downward direction.
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(c) For some trajectories_ a single skip maneuver was permitted in

which the skip was limited to an altitude of 400 miles.

(d) Instantaneous modulations of L/D were applied at discrete

points along the trajectories.

(e) The vehicle was considered to be at its destination when the

velocity had decreased to i000 ft/sec.

Longitudinal Range, L/D = 1/2

For the above conditions with L/D of i/2_ the flight-path angles

at entry for overshoot and undershoot boundaries were found to be -4.62 °

and -_'.48°_ respectively. The minimum and maximum ranges along both

boundaries are shown in figure i. The difference between the maximum

range along the undershoot boundary and the minimum range along the over-

shoot boundary can be considered the available range from any entry in

the corridor. No attempt was made to find the optimum modulation tech-

nique_ so that the values of range at the extremes of both boundaries

cannot be considered as truly maximum or mininum.

Values of range as large as 15_500 miles on the undershoot boundary

and 26_800 miles on the overshoot boundary ca_ be obtained if the vehicle

is allowed to skip to an altitude not exceeding 400 miles. This altitude

was considered to be a conservative estimate _f the lower limit of the

Van Allen radiation belt. For a vehicle restricted to the sensible

atmosphere (below 400,000 ft) after entry, th_ maximum range on the

boundaries is 6300 miles.

The trajectories used to obtain the extreme values of range shown in

figure i are presented in figure 2. The trajectory parameters are plotted

as a function of time. Figures 2(a), (h), anl (c) show the trajectories

along the undershoot boundary, and figures 2(_)_ (e)_ and (f) show the

trajectories along the overshoot boundary. Ti_e minimum- and maximum-range

trajectories for a vehicle restricted to the _ensible atmosphere after

entry are shown in figtu_es 2(a), (b), (d), an_ (e). The maximum-range

trajectories for a vehicle that is allowed to skip are plotted in

figures 2(c) and (f).

For a vehicle that is allowed to skip_ tile apogee altitude and the

range outside the atmosphere can be computed _n closed form from Newton's

equations for a two-body drag-free trajectory, and are as follows:

A
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D
3
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ra - gxrx gxrx/ " (i)

rx Vx 2
2

gxrx

A

5

3

Vx _
sin 7xCOS 7x

R = 2rosin- l gxrx (2)

Jl
gxrx gxrx /

Figure 3 shows the longitudinal range available outside the earth's

atmosphere as a function of exit conditions_ computed from equation (2).

The limiting line to the right of the figure was obtained by setting

ra = r o + 400 miles in equation (i). It is apparent from figure 3 that

range is extremely dependent on changes in exit velocity_ particularly

in the vicinity of local satellite velocity. The effects on range of

changes in velocity and flight-path angle have been evaluated and are

discussed below.

Effects of V and 7 on Longitudinal Range

The dependence of range outside the atmosphere on changes in exit

flight-path angle or exit velocity is shown more explicitly in figure 4

and has been evaluated by partial differentiation of equation (2), to

obtain equations (3) and (4).

and

SR 2r ° Vx2 __ (3)
V 2

_Tx gxrx Vx" r2 x_'_ cos2.x_
gxrx _ _x"x/ _J

gxrx gxrx/
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Figure 4 shows that for a trajectory that is intended to exit the

atmosphere, small errors in exit flight-path angle or exit velocity can

have a considerable effect on the longitudinal range of the vehicle.

The dependence of range on errors in flight-path angle and velocity

at exit leads to further consideration of the effect of comparable errors

in flight-path angle or velocity at earlier t_mes in the trajectory. To

investigate this point, two undershoot trajeclories were taken for compar-

ison, maximum range with no skip (fig. 2(b)), and maximum range with skip

(fig. 2(c)). Errors in flight-path angle or velocity were introduced at

a time when the dynamic pressure was a maxim_ (first pull-out, flight-

path angle near zero), and the L/D modulations were maintained independ-

ent of the errors introduced in either 7 or V. The results are shown in

figure 5, where the change or error in longitldimal range, _, is plotted

as a function of the error in flight-path angle, _7, and the error in

velocity, mV. Figure 5(a) (maximum range, no-skip trajectory) shows that

any positive increment in either 7 or V cha_@es the trajectory into one

that exits the atmosphere. The maximum altit_de exceeds 400 miles at

m7 = 0.5 °. In figure 5(b) (maximum range, skip trajectory), small positive

increments in 7 or V result in an apogee altitude above 400 miles, since

the maximum altitude originally was designed to approach 400 miles.

Comparison of figures 5 and 4 shows that errors in 7 or V at the time

of maximum dynamic pressure can result in char_es of longitudinal range

of the same order of magnitude as comparable errors in 7 or V at exit.

It is also evident by comparison of figures 5(a) and 5(b) that errors of

a comparable magnitude in 7 or V early in t_e entry are as significant

for a nonskipping trajectory as for a skippir_ trajectory.
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Near-Earth Holding 0r_it

It has been shown that the skip maneuver can be used to increase

longitudinal range by a substantial amount co_pared to the no-skip maneuver.

A ftu_ther extension of the skip maneuver is tke near-earth holding orbit.

In this case, the longitudinal range becomes _mlimited. As a result of

rotation of the earth, the choice of landing _oint is particularly flexible

for orbits of large inclination to the equator. However, the holding

orbit requires an expenditure of fuel to give an increment of velocity
to establish the orbit.

For simplicity, the circular near-earth holding orbit will be

discussed. The holding-orbit maneuver will be executed at the apogee of

the skip, and the increment of velocity needed to establish the orbit will

be calculated at this point.

The following equation relates the increment of velocity to the

weight of fuel required to achieve a holding crbit.
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dV dim
Thrust = m dt -Isp g°

Vs _(m-mf)dm
dV = -Ispgo j -_-

Va m

n_f Wf

m W

 s-V_a 
- i - e

Apogee velocity was calculated from equation (6),

rx - ra
Va a = 2goro 2 + Vx 2

rx ra
(6)

Figure 6 shows the ratio of fuel weight to total weight of the

entry vehicle that is required for circular orbit at exit velocities
from 24,000 to 26,000 ft/sec. The ratios Wf/W were evaluated for

three apogee altitudes, 400, 300, and 200 miles_ and for two values of

specific impulse, 400 and 300 seconds. The results of the calculations

shown in the figure indicate that at the higher exit velocity_ circular

orbit can be achieved for a relatively modest weight penalty, the order

of 200 pounds of fuel for an entry vehicle weighing 5000 pounds.

Lateral Range, L/D = i/2

For the purpose of the present study, only roll maneuvers 3 with roll

angle, _, held constant from the time of initiation of roll to touchdown,

were considered for the determination of lateral range.

If roll is initiated at a time when the velocity is near the local

satellite speed, after the vehicle re-enters the atmosphere_ the magnitude

of the lateral range is about ±200 miles. This is shown in figure 7,

where lateral range is plotted as a function of longitudinal range for

three undershoot trajectories. Since trajectories along the corridor

boundaries are the most critical, the undershoot boundary has been chosen

for study of lateral-range capability. A skip maneuver has no effect on

lateral range if the roll is initiated at a velocity near satellite speed

after the vehicle has re-entered the atmosphere. In effectj a rectangular

print is obtained which extends from about 1500 to 15,000 miles with a
total width of 400 miles.

Since all available lift is used to keep from exceeding a deceleration

of i0 g during the initial part of the entry on the undershoot trajectory_

lift for lateral range is not available until after the time of maximum

deceleration. If the roll is initiated at the first possible moment
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(immediately after maximum deceleration), the lateral range is increased

to about ±500 miles. This is shown in figure 8, where lateral range is

plotted as a function of longitudinal range. This print was obtained by

initiation of various roll angles immediately subsequent to maximum decel-

eration along the undershoot boundary with thc_ resultant L/D held

constant at +1/2. Because of the positive L/D, the apogee altitude

exceeded 400 miles for roll angles less than 15 ° • Included in figure $

is the envelope of lateral range with roll initiated near satellite

velocity from figure 7. The initiation of roll at the earlier time,

before the vehicle exited the atmosphere, res_ited in substantial increase

in lateral range.

Longitudinal and Lateral Range, L/D = 2

Up to this point, the paper has been concerned with the range of a

capsule-type vehicle with an L/D = 1/2. It Js of interest to compare

this with the range of a glider with L/D = 2. It was felt that main-

raining constant values of W/CDA _ as was done for the L/D = 1/2 vehicle,

would be unrealistic for a glide vehicle; consequently, CD and L/D were

allowed to vary in the manner suggested in reference 5_ while W/A was

held constant at 30 ib/ft 2. The trajectory c_osen for comparison is shown

in figure 9. No effort was made to achieve ms_ximum range for this trajec-

tory. The vehicle entered along an undershoot boundary with L/D = I/2

in order to avoid the excessive heating that _ould occul _ if it entered

at maxim_n L/D. The L/D was changed to -i/2 after maximum deceleration;

and fina!ly_ when it was assured that the vehicle would not skip out of

the atmosphere, the L/D was changed to 2. qhese modulations resulted

in a trajectory for which the longitudinal rarge was about one-half an
earth circumference.

The lateral range achieved when roll was initiated near satellite

velocity, is shown in figure i0. Included in the figure is the envelope

of lateral range for a vehicle with L/D = 1/2. The advantage of the

L/D = 2 vehicle is apparent.
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TOLERANCES ON ENTRY CONDHTIONS

The preceding sections were concerned primarily with the range of

a vehicle entering the earth's atmosphere at larabolic speed. It was

shown that longitudinal range can be extended by a skip maneuver and that

lateral range can be extended by initiation ol roll at the earliest

possible time. The consequence of these exter_sions of longitudinal and

lateral range is reflected in a relaxation of midcourse guidance require-

ments. The extent to which these requirements could be relaxed was

evaluated by applying the present results to the analysis presented in



reference i. For a vehicle with a given range capability, we wish to
evaluate the maximumallowable error in time of arrival at entry, At,
and the maximumallowable error in inclination of the orbital plane, iki,
that will permit the vehicle to land at a predetermined destination.

As an exampleproblem let us assumethat the landing site is located
at 35° N latitude. Since it was shownin reference i that the relation
between the latitude of the target and that of the entry point has a strong
influence on the allowable errors at entry, results will be presented for
entry at two latitudes, the equator and 30° N latitude. For all cases
under consideration, it was assumedthat touchdown could not be achieved
in less than 2500 miles from the point of entry (minimumrange, overshoot
trajectory). For the vehicle with L/D = i/2 under study, the following
cases were investigated.

(a) The vehicle was restricted to the sensible atmosphere after entry,
and roll was initiated at a velocity near local satellite speed.

(b) The vehicle was allowed to skip to an altitude not exceeding
400 miles, and roll was initiated at a velocity near satellite speed after
the vehicle had re-entered the atmosphere.

(c) The vehicle was allowed to skip to an altitude not exceeding
400 miles, and roll was initiated immediately after maximumdeceleration
before the vehicle had exited the atmosphere.

The results are tabulated in the table below.

Case

Entry

latitude,

deg

(a) 0

(b) 0
(o) o
(a) 30
(b) 30 N
(o) 3o N

Longitudinal

range,
miles

6_300

15,000

8,000

6,300

15,000

8,000

Lateral

range,
miles

±2OO

±20O

±500

±2O0

±200

±500

At,
hr

±0.8
±2.4

+3.0

±1.1

±i .i

±2 .i

deg

±5.0

+5.0

±12.0

+2.2

+2.2

+5.9

These results show that a vehicle of the assumed maneuver capability

has substantial tolerance in time of arrival and orbital plane inclination.

For a lateral range of ±200 miles and entry at the equator, the permissible

time-of-arrival error is increased by a factor of three for the skipping

vehicle compared to that for the nonskipping vehicle, whereas there is no

change in the allowable error of the inclination of the orbital plane.

When lateral range is increased to ±500 miles, St and Lki are both

increased over the previous cases.
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For entry at 30° N latitude_ no advantage was realized for the skip-
ping vehicle comparedto the nonskipping vehicle for a lateral range of
±200 miles. Again; increasing the lateral range to ±500 miles increased
both At and Ai.

CONCLUDINGR_c_dKKS

The point return of a vehicle, with a lift-to-drag ratio of 1/2,
returning from a lunar mission has been investigated. It was found that
the available longitudinal and lateral ranges allowed considerable
tolerances in time of entry and inclination of the orbital plane.

It was found that if the vehicle is allowed to skip to an altitude
not exceeding 400 miles_ a longitudinal-range _ariation in excess of
13,000 miles can be achieved on any entry in tke corridor; whereas, if
the vehicle is restricted to the sensible atmosphere after entry; the
longitudinal-range variation is about 4,000 miles.

Longitudinal range for a skip trajectory is very sensitive to errors
in either exit velocity or exit flight-path angle_ particularly for exit
velocities in the vicinity of local satellite _elocity. However; depend-
ence of longitudinal range on errors in either velocity or flight-path
angle appears to be as critical at the bottom cf the first pull-out as
at exit. These errors can transform trajectories that are not intended
to exit the atmosphere into skip trajectories.

Calculations of the weight of fuel required to achieve a near-earth
holding orbit showedthat circular orbit can be achieved under somecondi-
tions for a relatively modestweight penalty.

The lateral range for the case where roll is initiated near local
satellite velocity_ after the vehicle has re-entered the atmosphere, is
about ±200 miles regardless of the type of trajectory (skip or no skip).
For roll initiated immediately subsequent to maximumdeceleration along
the undershoot boundary; before the vehicle exits the atmosphere_lateral
range is increased to about ±500 miles.

The consequenceof increased lateral and _ongitudinal range is
reflected in the relaxation of guidance requirements at entry. For the
examples discussed for the vehicle with L/D = 1/2 required to land at a
predetermined destination, tolerable errors in time of entry and inclina-
tion of the orbital plane are substantially greater for the skip trajectory
than for the no-skip trajectory.
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Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Sept. 8, 1961
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APPENDIX

EQUATIONSOFMOTION

The complete equations of motion (ref. 6) are shownbelow in the
nomenclature of this paper.

d V =
dt m

-- q_ + Grsin 7 + G6cos 7 cos

+ war cos 6(sin 7 cos 5 - cos _ cos _ sin 6)

d7 L CDA Vacos 7
V - q_cos _ +

dt D m r
+ Grcos 7 - Gssin 7 cos

+ 2_V sin @ cos _ + war cos 6(cos 7 cos 5 + sin 7 cos _ sin _)

(12)

V cos 7
dp L CDA V2cos27 sin _ sin

- q sin p + - O_sin
dt D m r cos 8

+ 2_V(cos 7 sin _ - sin 7 cos _ cos 5) + War sin p sin 6 cos 6

(A3)

where the gravitational acceleration components are

Mr/ k

G 5 = -2Jg /r°']asin 8 cos

J = 0.0016232_ oblateness constant

(A4)

For the calculations of" the trajectories discussed in this paper, it was

assumed that the rotation of the earth, _, equaled zero; therfore_ all

terms in equations (A_I) through (A3) which include _ as a factor become

zero.

The bearing of the velocity vector, _, is measured from a northerly

direction; hence, for a vehicle that is heading east, _ = 90 ° • Because

of the earth's oblateness, the equatorial radius, ro, is greater than the
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polar radius_ b. The sketch below_ which represents part of a cross
section of the earth with the oblateness greatly exaggerated_ showsthe
relationship between the declination_ $_ and the latitude_ _.

b

If the position is known in terms of altitude_ y_ and latitude, _

the geocentric distance_ r_ and the declinatio_ _ are computed from

r cos(_ - _) = y +_ro2COS2_ + basLn2_

(to2 - b2)cos _ = rJro2cos2_ + b2sin_ sin(_ - _)
1 (AS)

The following relations can be used to wrLte the equations of motion

in spherical coordinates (see sketch below):

A

5
5
3

df

--: Vsin7
d_

Z !_ = V cos y sin

d_ r cos

Y

d5 V cos 7 cos

d_ r

The equato-ial plane is XOY.

The meridian of Greenwich is XOZ.

The north oole is in the direction OZ.

The longitude, _, is positive east.
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