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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-912

EFFECTS OF CONTROL-FEEL CONFIGURATION ON ATRPLANE
LONGITUDINAL CONTROL RESPONSE

By Harold L. Crane and Robert W. Sommer
SUMMARY

A general study of longitudinal control feel was made with a tran-
sonic fighter-type airplane equipped with a control-feel system which
was adjustable in flight. The control-feel system provided a feel com-
ponent with individual gain control in proportion to each of five quan-
tities: stick deflection, stick rate, airplane normal acceleration,
pitching acceleration, and pitching velocity. A number of feel con-
figurations were investigated in flight and analytically. These feel
configurations had feel components in various amounts from various com-
binations of these five sources. The results contained herein are all
for an airplane center-of-gravity position at approximately 25 percent
of the mean aerodynamic chord, a Mach number of 0.85, and an altitude
of 28,000 feet.

Results are presented as time histories, as plots of the variation
of peak force per g with input duration, and as frequency-response plots.
A number of frequency-response plots are included to illustrate the
effects of choice of feel sources and gains. The results illustrate the
desirability of balancing a normal-acceleration feel component with a
pitching-acceleration feel component. Pitching-velocity feel is shown
to be useful for shaping control-system frequency response. The results
suggest the desirability of designing a control-feel system to a large
extent by means of frequency-response analysls in order to keep the
shapes of the frequency-response curves within desirable limits.

INTRODUCTION

With irreversible power-actuated control systems, the control feel
becomes 1independent of the aerodynamic hinge-moment characteristics of
the control surface. Therefore, the control-feel characteristics can
be tailored to a large extent as desired. A number of investigations
such as were reported in references 1 to 5 have been made to determine
what constitutes desirable longitudinal control-feel characteristics.



This research project at the Langley Research Center of the National
Aeronautics and Space Administration has been concerned with a more
general investigation of longitudinal control-feel characteristics.

Reference 6 describes a variable longitudinal control-feel system
which was installed in a fighter-type airplane at the Langley Research

Center.

With this system it was possible to have components of control

feel proportional to normal acceleration, pitching acceleration, pitching
velocity, stick position, and stick rate. Presented herein are the
results of measurements of varied control-feel characteristics obtained
with this variable control-feel system. Comparative analytical results
are also presented.

SYMBOLS

stick force, 1lb

stick deflection, in.

stick rate, in./sec

stick acceleration, in./sec?®
stabilizer incidence, deg

airplane pitching velocity, radians/sec

airplane pitching acceleration, radians/sec2

normal acceleration, g units

circular frequency, radians/sec

gain factor

phase angle, deg
input time interval, sec

standard level of feel component proportional to normal
acceleration, 1b

standard level of feel component proportional to pitching
velocity, 1b
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Fg(jw) standard level of feel component proportional to pitching
acceleration, 1b

F5(jw) standard level of feel component proportional to stick
deflection, 1b

Fé(jw) standard level of feel component proportional to stick
rate, 1b

DESCRIPTION OF APPARATUS

Airplane and Longitudinal Control System

This investigation of control-feel characteristics was conducted
with the use of a transonic fighter airplane which had an irreversible
power-actuated control system. Figure 1 is a photograph of the test
airplane. The production control system and control-feel system for
this airplane are described in detail in references 6 and T, and some
of the aerodynamic characteristics of the test airplane are given in
reference 8. The production longitudinal control-feel system consisted
of dual bob weights mounted ahead of the control stick and in the tail
section, an eddy-current damper attached to the stick, and a cam-driven
centering spring with a steep nonlinear gradient through neutral. For
most of this flight-test program the devices which normally produced the
longitudinal feel were removed except for the centering spring. This
centering spring was retained with a modified cam which provided a force

gradient of 53 pounds per inch of the stick deflection as shown in fig-
ure 2. The modified centering spring was used to provide longitudinal

control feel during take-off and landing and to serve in general as a
reversion system for the variable electrohydraulic control-feel system.

The longitudinal control system was linked by push-pull rods and
had a negligible amount of lost motion. The control friction was

approximately l% pounds measured at the stick grip. This value was

increased to just under 2 pounds with the electrohydraulic feel system
installed. The gearing between stick and stabilizer was 0.9 inch per

degree for the normal flight range. The moment of inertia of that part
of the control system located ahead of the servo valve, taken about the

stick pivot, was found to be 0.8 slug—foot2 with the bob weights
installed and 0.5 slug—f‘oot2 with the bob weights removed.



Variable Control-Feel System

An electrohydraulic longitudinal control-feel system was installed
in the test airplane which made it possible for the pilot to vary in
flight the amount of control force from five component sources. The
five sources were stick position, stick rate, airplane normal accelera-
tion, pitching acceleration, and pitching velocity. A block diagram of
the variable control-feel system is presented in figure 3. It should
be noted that zero spring feel was obtained by electronic canceling of

the 5§—pound—per-inch mechanical spring. This variable-feel system is

described in more detail in reference 6.

The maximum feel-servo outputs measured at the stick grip are
listed in the following table:

Servo output proportiocnal to - Maximum magnitude of output
Normal acceleration 8 1b/g
Pitching acceleration 50 lb/radian/sec2
Pitching velocity +120 1b/radian/sec
Stick deflection +10 1b/in.
Stick rate +2.5 1b/in./sec

For this investigation, the variable control-feel system provided
17 test feel configurations, designated feel configurations A to Q.
The combination of feel components is given for each of these 17 con-
figurations in table I. In this table the amounts of feel from the
various components are given in percent of the standard level. Thus,

stick centering of 55 pounds per inch, stick-rate damping of 1.0 pound

per inch per second, normal-acceleration feel of 3 pounds per g, and
pitching-acceleration feel of T pounds per radlan per second per second
were the 100-percent levels. The 100-percent level for pitch-rate feel
was selected as 20 pounds per radian per second to make this component
approximately equal to the pltching-acceleration component at a circu-
lar frequency of 3 radians per second. This frequency was the short-
period resonant frequency for the test airplane for the test operating
conditions (altitude of 28,000 feet at a Mach nmumber of 0.85).

INSTRUMENTS

The set of standard NASA recording instruments used in this investi-
gation had been installed in the test airplane for other purposes; as &
result, the sensitivity of the force and deflection recorders was lower
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than would be desired. There follows a tabulation of the quantities
recorded and the approximate instrument sensitivities:

. Approximate sensitivit er inch
Recorded quantity i of trace deflectgoﬁ
Stick force 60 1b
Stick position 9.5 in.
Stabilizer deflection 12 deg
Normal acceleration 1.5¢g
Pitching acceleration 0.8 radian/sec2
Pitching velocity 0.5 radian/sec
Alrspeed 100 knots
Altitude 6,000 feet

The response of these instruments was essentially flat over twice the
frequency range of interest in this investigation (0 to 10 cps).

PRESENTATION OF RESULTS

The measured and calculated longitudinal control characteristics
of the test airplane with various control-feel configurations are pre-
sented by means of three types of Plots. These plots include maneuver
time histories, variation of peak force per g with input duration, and
frequency-response plots of transfer functions related to control feel.
The standard test conditions were a Mach number of 0.85 at an altitude
of 28,000 feet, and the airplane center of gravity at 25 percent of the
mean aerodynamic chord. Figure 4 presents time histories of pull-up
and hold maneuvers for a number of feel configurations. Figure 5 pre-
sents time histories of turns, in which the pilot attempted to increase

the normal acceleration in steps of l-g, with the same feel configura-

tions. All but three of the pairs of maneuvers in figures 4 and 5 were
Performed by the same pilot.

The variation of peak force Per g with input duration was deter-
mined from triangular manual control force inputs of varying duration.
These results are presented for the more significant feel configurations
in figure 6. The effect of various feel configurations on the dynamic
characteristics of the test airplane is presented in terms of frequency
response in figures 7 to 19. The frequency-response data were obtained
from triangular control inputs with a duration of 1 second or less by
the methods of references 9 and 10. The calculated points on figure 6
were also obtained from procedures described in references 9 and 10.

The transfer functions shown in the figures are: the control-system



response 1i/F(jw), and the airplane response functions 8/F(jw) and
an/F(jw). The frequency range of the data usually extends to 15 or

20 radians per second, values which exceed the short-period frequency

of the airplane and also exceed the effective frequency range of the
human pilot. The results with the spring feel alone (configuration G)
extend above a frequency of 30 radians per second and indicate a control-
system resonance at a frequency of 30 radians per second (fig. 13).

Presented in table I is an index to the figures, where for each
feel configuration the figures containing results for that feel con-
figuration are listed. Because the test program was terminated during
a redirection of the research effort, the test configurations covered
were somewhat random and do not represent a systematic coverage of
possible combinations. However, enough data were obtained to give exam-
ples of the dynamic effects of feel from the five sources investigated.

DISCUSSION OF RESULTS

Previous flying-qualities measurements on the test airplane per-
mitted evaluation of the production feel configuration by several pilots.
The production feel characteristics were considered by the pilots to be
very satisfactory. The airplane was characterized as being easy to get
used to. However, the control forces were classed as being heavier than
the optimum for a fighter-type airplane. The flight-test program was too
brief to obtain detailed assessment by the pilots of the various feel
configurations. However, regardless of the force level involved, the
pilots always downrated the feel characteristics when any of the four
feel sources in the production feel configuration were omitted. But
none of the feel combinations tested were considered to be intolerable.

The longitudinal control-feel configuration which was designated as
"standard feel" for the present investigation was equivalent to the pro-

duction feel configuration, with a linearized 52-pound-per—inch stick

M

centering gradient and a slightly reduced control-system moment of
inertia. It was determined analytically that variation of the control-

system moment of inertia from 0 to 1.6 slug—feetg, twice the normal
value, did not appreciably affect the response of the control system at
frequencies up to 3 cycles per second.

Maneuver Time Histories

The maneuver time histories of stabilizer deflection and normal
acceleration (figs. 4 and 5) indicate that with standard feel
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(configuration A) the pilot maneuvered confidently and, as a result,
consistently overshot moderately when attempting to induce step incre-
ments of acceleration. Within approximately 2 seconds from the start

of the control input, the normal acceleration was stabilized at approxi-
mately the desired higher level. These maneuvers were prerformed with
similar results for either pull-up or turn for several of the other test
feel configurations, namely, 50 percent feel (configuration K), standard
feel with the spring centering eliminated (configuration D), and standard
feel with the force per g eliminated (configuration C). For three feel
combinations in which the stick damping and/or the response feel were
reduced (configurations F, G, and L), hunting about the desired accelera-
tion level persisted for a full cycle longer during the pull-up maneuvers.

When normal-acceleration feel was used in the absence of pitching-
acceleration feel (configuration B) the time histories show a cautious
gradual buildup of acceleration without the requested step increments.

By means of this cautious technique the pilot maintained close control
of acceleration for a feel configuration which is shown by the frequency-
response data to have low damping.

The time history for configuration O shows another example of a
feel configuration with low damping (flown by a less experienced pilot)
(fig. 5). 1In this case, negative pitching-velocity feel component was
the destabilizing element. The turn maneuver exhibited continual hunting
about the desired acceleration level. 1In contrast, configuration N,
which includes a strong positive pitching-velocity feel component, was
flown with more confident inputs and less oscillatory response.

Variation of Peak Force Per g With Input Duration

A military handling-qualities requirement which was set up in the
late 1940's specified that the ratio of peak force to peak acceleration
in sudden pull-ups should never be less than the steady force per g.

The purpose of this requirement was largely to avoid control-feel char-
acteristics which permitted a delay in control force buildup after con-
trol deflection. This delay in buildup can occur, for example, when

the component of force due to normal acceleration is the predominant
one. The data of figure 6 indicate that the standard feel system (con-
figuration A), the spring and damper feel (configuration F), or the cen-
tering spring feel alone (configuration G) all produced a progressive
adequate buildup of peak force per g with the abruptness of a triangular
control input for input durations of 1 second or less.

Examination of calculated and measured time histories showed that
the buildup of normal acceleration was too slow to influence the peak
force in these maneuvers until the input duration exceeded 1 second.
For the more abrupt maneuvers, lag in airplane response and in the



control system caused the pitching acceleration to peak at about the
same time as the peak in stick deflection. However, even without this
lag, the contribution of pitching-acceleration feel would be only about
1 or 2 pounds per g for input durations of less than 1 second. There-
fore, as shown by comparison of figures 6(b) and 6(c), it is evident
that reasonable amounts of response feel will not contribute effectively
to the desired buildup of longitudinal control force for abrupt control
inputs.

It should be noted that usually this military control-feel require-
ment is not strictly satisfied. There is usually a slight dip in the
curve of peak force per g at a time interval which is apparently related
to the airplane short-period mode. Such a dip is not very apparent in
the data of figure 6, but was more so for similar data obtained for the
production alirplane, which covered input intervals up to 8 seconds. 1In
that case the minimum value of peak force per g occurred at an input
interval of about 2 seconds. The value at 2 seconds was about 15 per-
cent lower than the value at 8 seconds. This slight dip in peak force
per g is related to the short-period pitching mode of the airplane.

This characteristic is illustrated much more adequately by a frequency-
response plot.

Frequency Response as Influenced
by Control-Feel Configuration

Frequency-response plots such as those of figures 7 to 19 further
illustrate the difference in dynamic characteristics of the test air-
plane and its control system with various feel configurations. The
response characteristics of the control system in terms of the function
i/F(jw) are markedly different for the several feel configurations.

The overall significance of the differences in the response of the air-
frame with various feel configurations is shown by the airplane response
functions 6/F(jw) or ap/F(jw). The discussion will be concerned pri-
marily with the shape of the frequency-response curves. Adjustment in
force level, which might be desirable in some cases, could be made by
changing all the feel-component gains in the same proportion.

Consider first the control-system characteristics as indicated by
the response function i/F(jw). Feel configurations which result in
excessive peak magnification of i/F because of coupling with the air-
plane response in the short-period mode are undesirable or intolerable.
The peak magnification of i/F with the acceptable standard feel (fig. 7)
was only about 30 percent greater than the steady value. The frequency
response of a simple spring-and-dashpot feel system is also shown to be
acceptable by the data of figure 12. The frequency-response plots of
i/F, such as those of configurations D and E (figs. 10 and 11), indicate
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that the peak amplitude magnification was increased moderately by
removing either the spring centering or the stick-rate damping from the
standard feel configuration. It is interesting to note the calculated
frequency response of the standard feel configuration with the stick-
rate damping removed. The characteristics of this configuration

(fig. 11) may be acceptable over the calculated frequency range. The
peak magnification of i/F is only 1.6 in response to the airplane
short-period mode. However, with this arrangement the feel component
proportional to pitching acceleration could possibly stimulate the
control-system mode (at w = 30 radians per second) .

Excessive peaking occurred as the preponderance of normal-
acceleration feel component over pitching-acceleration feel component
was increased progressively in configurations B, J, and P (figs. 8, 16,
and 18, respectively). For example, the calculated peak magnification
of i/F for configuration P, which had the force per g component
doubled with the force per 8 cut in half, was about 30 compared with
a value of about 1.3 for the standard feel configuration. The cor-
responding stabilizing effect of removing normal-acceleration feel from
the standard feel configuration is shown in figure 9. Comparison of
the data of figures 9 and 12 shows that pitching-acceleration feel
attenuates the response between w = 1.5 and 9 radians per second.

Addition of a force component due to pitching velocity to the stand-
ard feel system, as in the calculated results for configuration M
(fig. 17), replaced the peak at = % radians per second with a dip
for i/F and reduced the peak magnification of ap/F. A measurement

of the stabilizing influence of pitching-velocity feel at the frequency
of the short-period mode can be obtained by comparing the data for con-
figuration I in figure 15 with the data of configuration @, figure 19,
which does not include pitching-velocity feel.

For two of the feel configurations shown, that is, for configura-
tion G (spring feel alone) and configuration H (three-way response feel),
the response gquantity i/F continues to increase with increasing fre-
quency instead of becoming attenuated at frequencies above the short-
period mode. (See figs. 1% and 14.) However, the airplane response
quantity an/i decreases rapidly enough with increasing frequency to

tend to keep the variation of an/F with frequency acceptable. This

type of control-system characteristic, which makes the stick force
lighter the faster the stick is cycled, 1is undesirable because it not
only does not satisfy the handling-gqualities requirements but also may
endanger the control-system structure.

The significance of the frequency-response data can be further
{llustrated by constructing vector or phase diagrams at frequencies of
particular interest such as at the frequency of the short-period
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airplane mode. Figure 20(a) is such a diagram obtained from the
frequency-response data of figure 7 for the standard feel configura-
tion. The diagram shows the required pilot force input vector F, the
several feel-component vectors, and the phasing of &, i, and & at
a frequency of 3 radians per second.

The influence of the response-feel components on the dynamic
behavior of the control system can be deduced from the phase diagram.
Pitching acceleration tends to be in phase with stick rate at the fre-
quency of the airplane short-period mode. Therefore pitching-
acceleration feel supplies damping to the control system at this fre-
quency. Normal-acceleration feel is feeding a maximum amount of energy
into the oscillation of the control system at or near this frequency.

At this frequency, & 1is still approximately in phase with stabilizer
deflection. At or near w = 3 radians per second, addition of a
pitching-velocity feel component is equivalent to increasing the spring
centering, or stick-deflection feel component. As was shown in the
frequency-response data of figures 15 and 17, addition of pitching-
velocity feel gradually attenuates the control-system response as the
frequency approaches w = 3 radians per second and thereby reduces,

or even inverts, the peak magnification of the forced oscillation in
pitch of the airplane at the short-period mode.

A second phase diagram, figure 20(b for a somewhat higher fre-
quency (6 radians per second) shows a considerably altered situation.
In this case the pitching-acceleration and normal-acceleration feel
components in line with & are negligible, so that response feel from
these sources no longer has a direct effect on the damping of the con-
trol system. At this frequency the pitching-velocity feel component
becomes fully effective at feeding energy into the oscillation of the
control system, but there is no airplane resonance to be excited by
the increased amplitude of control motion per unit force input. This
effect was apparent on the frequency-response plots of figure 15 for
w from about 5 to 10 radians per second.

CONCLUDING REMARKS

An investigation of longitudinal control-feel characteristics has
been made with a transonic fighter airplane equipped with a variable
control-feel system. Measured and calculated results were presented
to show the effects of using control feel from several sources or com-
binations of sources in various proportions. The component feel sources
considered were stick deflection (spring feel), stick rate, airplane
normal acceleration, pitching acceleration, and pitch rate.

b 4O\
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A1l feel configurations considered approximately satisfied the
military dynamic control-feel requirement which specifies that the peak
force per g encountered during abrupt pitch maneuvers should not fall
below the steady force per g. However, an analysis based on this require-
ment was found to give insufficient indication of lightly damped oscilla-
tory modes such as occur with unbalanced response feel.

The frequency response of each of the control-feel configurations
tested was determined as a supplement to the transient peak force per g
characteristics to define better the oscillatory behavior of the longi-
tudinal control system. Frequency-response plots for a number of
control-feel configurations were presented. These examples give an
indication of how the feel sources used and the gains used influence
the frequency response of the control system and the airplane. These
data show that in a response-feel system normal-acceleration feel has
a strong tendency to destabilize the short-period mode and therefore
must be balanced by another feel component. Pitching-acceleration feel,
which 1is found to produce an inadequate buildup of transient control
force in abrupt meneuvers, is shown to be well suited for dynamic bal-
ancing of the normal-acceleration feel component during an oscillation.
Pitching-velocity feel is also demonstrated to be useful for obtaining
flatter frequency response of the control system.

The results presented indicate the value of frequency-response
analysis in the design of a longitudinal control-feel system. From
such analysis the choice of feel components and gains can be made to
shape the frequency-response Curves within safe and desirable limits.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 30, 1961l.
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feel configuration
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Figure 4.- Time histories obtained by tracing the instrument records
from longitudinal pull-up and hold maneuvers with various control-
feel configurations. (Normal acceleration is represented by the
solid line and stabilizer deflection by the dashed line.)
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Feel configuration
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Figure 5.- Time histories of interrupted ramp turns with various control-
feel configurations. (Normal acceleration is the solid line and ste~
bilizer deflection is the dashed line.)
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Figure 10.- Calculated frequency responses with spring feel omitted from
(Configuration D, standard - Fg.)

the standard feel configuration.
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Figure 1lk.- Calculated frequency responses with a response feel system

having feel components proportional to normal acceleration,
acceleration, and pitching velocity.

F, + Fy + Fg.)

pitching

(Configuration H,



28

I-1641 . .

c K
Si— + %=+ 81 + 81 + ®
A _..hm ,ma g o od
‘1 qogwaﬂwnood *gutdurep 918I-}OT4S PuB Jutasqusd Juiads JO squnoms TTews snid 1297
osuodsaa Lem-331yyl Y3Im sasuodssa Lousnbai] pe3eINOTBO PUB PaInsesu Jo uostaeduwo) -'¢T 2anBTJ

295 4ad sueipes ‘n 285 Jad sueiped ‘n 28S Jad suetpes ‘n
02 91 ar 8 v 0 02 91 1A 8 14 0 02 91 a 8 v 0
R ~ < A . . 1] . . 09€~
. 7 T :  09€ [ i ! W | a 1 1
! | ! ” , , , *
o m | : _ | f
| R Y7 _‘ , —0l= b . iL 02~
| ' | i |
\.\f/ i : ﬂ W W |
/ e
- Y ) iy
f g
N )
S— 06—
,_ G\ ! !
| N H H
i | A 0 L
39S 13d sueiped 285 Jad sueipes ‘o 235 Jad sueipes 0
02 91 Al 0 91 24 8 v 0 02 91 4 8 v 0
\,@ 7 0 = § T _ 0
! ” v ,
” , | ~O-_ !
- s e - - ; 20 i SO~ S A
5 _ ! ION -O~
2 | =
| - 2 DO m
: @ w " i . ° g
: c | ~ ' .
. a8 = o & — ey
| g M Pog M | ; 5
| , = | | %, W i | , | !
—— - = — - L i - T ey
W | ” | , | | pajeInofey —-0- - ﬁ | :
| | ; i painseay ﬁ ”
| _[‘ i | ) 80" _ 1 ] IS




29

¢ i
S + 9=
A;ﬁ+ I3

285 Jad sueiped ‘n

- OO'

285 Jad sueipes ‘®

@ 91 4! 8

THOT-1

02—

qy Jad syun b 'j/ue

335 Jod sueipet ‘o
02 91 41 8 v

06—

2as Jad sueiped ™

qioesjueipes "4jo

735 J4ad sueped ®

+ 84 + .mmmv - uoTpBINSIJUOD JoF sasuodsax Kousnbail paanseoW - 9T SINITJ

q) J4ad Bap “4y1

14 om NVM m v 0 96—
| f
, 022~
e
: 87@
i =
: 06—
| /
| , 0
235 J4ad suelpes ‘0
14 91 a 8 hi 0
[ ! I I i 0
| | i |
| |
ey W v
B | 9




1.0 1.0
.8 8
=2
2 g 6
5 2
2 S
- o
L 4 w4
W‘:
.2
q
0 4 8 12 16 0 4 8 12 16
w, radians per sec w, radians per sec
0¢ 0
O0-¢
)
—90 D\\\‘3\\~<a\\\(>\_ —90 CSX
= -180 S 180 x
A e
—210 —270
-3 ) 8 12 16 %0 4 8 12 16
u, radians per sec W, radians per sec

Figure 17.- Calculated frequency responses with a feel component pro-
portional to pitching velocity added to the standard longitudinal
feel configuration. (Configuration M, standard + Fg.)
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