¢ A'hilh\t o
NASA MEMO 12-2284

e l:’ A«». ‘

' "V

@ https://ntrs.nasa.gov/search.jsp?R=19980228052 2020-

06-15T22:53:43+00:00Z

2-4-58A

CASE F |I E: NASA MEMO 1

COPY . -

MEMORANDUM

THREE-DIMENSIONAL ORBITS OF EARTH SATELLITES, -
INCLUDING EFFECTS OF EARTH OBLATENESS
AND ATMOSPHERIC ROTATION

By Jack N. Nielsen, Frederick K. Goodwin,
and William A, Mersman

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON
December 1958

—







=

12-L-584

TABLE OF CONTENTS

SUMMARY & v v o & o v o 6 e s v e e e e e e e e e e e e e e
INTRODUCTION & & & + 4 v o o v o e o 4 o o o o o o o o o o« « &
SYMBOLS . . . . . e e e e e e e e e e e e e e e e e e
GENERAL CONSIDERATIONS et ek e e e e e e e e e e e e
Phases of Trajectory « « « o ¢« « v v ¢ o « o « &
Existing Sclutions . . ¢ .« &« ¢ v o e e v e b e e e .
Coordinate Systems . . . . . . . e e e e e e
Properties of the Atmosphere and the Earth . e e .
Air Drag Forces . . e e e e e e
SATELLITE KINEMATICS AND EQUATIONS OF MOTION e v e e e

Equations of Motion in Geographical Coordinates . . . .

Equations of Motion in Orbital Plane; Moticn of Plane .

Equations of Motion in Terms of a Particular Set of Orbital
Elements . . . e e e e e e e e e e

TLLUSTRATIVE EXAMPLES e e e e e e e e e e e e e e e e
First Illustrative Example . . . « ¢« « « « o o « « &
Accuracy of calculations . . . . . . . . . .
Periodic variations . . . . . . . . . . - .
Secular trends; limitations of calculatlon s e e e
Regression of line of nodes and movement of line of ap51des
Second Illustrative Example . . . « .+ « ¢« ¢« « « o o « &
Accuracy of calculations . . e e e
General features of the traJectorles Ve e e e e e
Impact point . . . . .

RELATIVE IMPORTANCE OF VARIOUS TERMB IN EQUATIONS OF MOTION .
COMPARISON OF EQUATORTIAL TRAJECTORY WITH TRAJECTORIES OF
APPROXIMATE TWO-DIMENSIONAL THEORIES . . . . . . . . « . . .
CONCLUDING REMARKS « v v v v v o v v v o o o o o o o o o o o o
APPENDIX A v v v v v v v v o o o o o o o o o o o 4 4 0 e e s
APPENDIX B v v v v v v e e v o v v e e e e e e e e e e e e

APPENDIX C v v v v v v v 6 4 6 o o o o o o o o s o o s o o »
REFERENCES &« v ¢ ¢ v ¢ o v o v v o o & s o o & « o o o « &
TABLES v v & v v e v v e e e e e e e s e e e e e e e e
FIGURES . . & v v v s e s v v 6 e v e o v e o o o o o o 0 .






NATTONAL AERONAUTICS AND SPACE ADMINISTRATION
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THREE-DIMENSIONAL CORBITS OF EARTH SATELLITES,
INCLUDING EFFECTS OF EARTH OBLATENESS
AND ATMOSFHERIC ROTATION

By Jack N. Nielsen, Frederick K. Geodwin,
and William A. Mersman

SUMMARY

The principal purpose of the present paper 1s to present sets of
equations which may be used for calculating complete trajectories of
earth satellites from outer space to the ground under the influence of
air drag and gravity, including oblateness effects, and to apply these
to several examples of entry trajectories starting from a circular orbit.

Equations of motion, based on an "instantaneous ellipse' technique,
with polar angle as independent variable, were found suitable for auto-
matic computation of orbits in which the trajectory consists of a number
of revolutions. This method is suitable as long as the trajectory does
not become nearly vertical. In the terminal phase of the trajectories,
which are nearly vertical, equations of motion in spherical polar coordi-
nates with time as the independent variable were found to be more suitable.

In the first illustrative example the effects of the oblateness
component of the earth's gravitational field and of atmospheric rotation
were studied for equatorial orbits. The satellites were launched into
circular orbits at a height of 120 miles, an altitude sufficiently high
that a number of revolutions could be studied. The importance of the
oblateness component of the earth's gravitational field is shown by the
fact that a satellite launched at circular orbital speed, neglecting
oblateness, has a perigee some 67,000 feet lower when oblateness forces
are included in the equations of motion than when they are not included.
Also, the loss in altitude per revolution is double that of a satellite
following an orbit not subject to oblateness. The effect of atmospheric
rotation on the loss of altitude per revolution was small. As might be
surmised, the regression of the line of nodes as predicted by celestial
mechanics is unchanged when drag is included. It is clear that the
inclination of the orbital plane to the equator will be relatively
unaffected by drag for no atmospheric rotation since the drag lies in
the orbital plane in this case. With the inclusion of atmospheric
rotation it was found that the inclination of the plane changed about
one-millionth of a radian per revolution. Thus the prediction of the



position of the orbital plane of an earth satellite is not complicated
by the introduction of drag. The line of apsices, which without drag
but with oblateness moves slowly in space, tencs to move with the satel-
lite when drag is included in the calculations. As a results, the usual
linearized solutions baced on oblateness alone must be basically altered
when drag is included tc take into account the rapid movement of the line
of apsides.

In the second illustrative example the final revolution was calculated
to impact for a number of trajectories in an orbital plane inclined at 65°
to the equator. Of particular interest is the large effect the oblateness
gravitational field and atmcspheric rotation cién have on the impact point.
For a value cf CDA/m of unity, and for an initial downward angle at
80 miles altitude of 0.0l radian, such as migh'. be utilized for manned
re-entry, oblateness had an influence of about 300 miles in the impact
point, and atmospheric rotation had about a 150-mile influence.

It was found that two-dimensicnal solutions neglecting atmospheric
rotation can be used to approximate three-dimersional solutions including
atmospheric rotation. In this connection two-cimensional theories must
be interpreted as peing viewed by an cbserver on a rotating earth.

The importance of various terms in the equations of radial and
tangential motion is examined for variocus calculated trajectories. The
validity of the principal assumption in the aphroximate equation of motion
of TN 4276 was thus confirmed for a satellite speed less than about
99-percent circular satellite velocity. Certain gaps in our theoretical
and experimental knowledge are pointed out insofar as they influence our
ability to calculate complete trajectories fron lsunch to impact.

INTRODUCTION

Much interest exists in the dynamics of esrth satellites, and a
number of papers (e.g., refs. 1 to 6) in the f:eld have recently appeared.
These papers consider only parts of the total =rajectory; they are also
usually limited to two-dimensional trajectories, or they neglect air
drag. The principal purpose of this paper is .0 present sets of equations
which may be used for the calculations of compl.ete trajectories from outer
space to the ground under the influences of air drag and gravity, including
oblateness effects, and to apply these to seve:al illustrative examples of
entry trajectories starting from a circular orbit. This purpose cannot be
achieved at present on the basis of analytical solutions except possibly
by patching together such solutions. Therefor:, automatic computing
machinery was used in the study. Forms of the equations of motion suit-
able for automatic computation are presented, ¢nd a number of calculative
examples are carried out. The calculative exaiples are chosen to illustrate
the relative importance of various physical fo:ices acting on earth
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satellites. Some of the essential physical features of the calculated
solutions are discussed in the hope that the resulting insight will lead
to more inclusive analytical solutions. In connection with the numerical
ecalculations the authors wish te acknowledge the contributions of Miss
Marcelline Chartz in programing the equations for the digital computing
machines and in supervising the computations.

SYMBOLS
a equatorial radius of earth
a8 ,8y componen?s of acceleration vector along *r’;x’ and 1W
directions
A reference area of satellite
K acceleration vector of satellite
b polar radius of earth
Cp drag ccefficient
D drag force

T’ K’DW’}- components of drag along 1.,1y,1y,1,, and 1@ directions

e eccentricity of earth

. . : 12 - :2\"'?
E eccentricity of instantaneous ellipse, ——{E——
B total energy of satellite
F vector force acting on satellite
FroPoFy ts of B al > T T 17 airecti

c
F@,F@ components o ong ip,I,ly,1g, an ig irections
g component of gravity acceleration at earth's surface; no
oblateness

E vector force per unit mass acting on satellite because of

gravity of earth

GI"GA’GIII’} - - > > >

G@,G components of G along 1r,13,iy,1gp, and 1OL directions
@

(VIPRV N R
atmosphere
Oblateness 3 Yes Yes No within range 2
of oblate-
ness forces

Circulari- l | During circu-
- B . o -

E T S BT R ks



5 vector angular velocity of .;r,;j,gw system in inertial
framework

e angular velocity of earth about polar axis

Aa change in angular velocity due to notion of orbital plane

Qe angular velocity for fixed orbital plane

10

The angle B is the bearing angle of the orbital plane in the r, A, V¥
system. The bearing angle for an earth cobserver is different from 8
because of earth rotation.

The relationships among the various angles can be readily established.
The following six relationships are useful

sin ¥ = sin ¢ sin «
sin(h -0) = sin ¢ cos a
cos ¥
cos
cos(A-0) = cos \

sin o cos @ = cos ¥ cos B

cos o = cos ¥ sin B
tan ¥

t = —

N )

The direction cosines between the r, @, x system and the r, A, ¥
system are

T P a
ri 1 ¢ 0
A 0 sin B -cos B

0 cos B sin B

Properties of the Atmosphere and the Barth

The forces due to air drag depend on the density and rotation of
the atmosphere, and the forces due to gravitation depend on the size,
shape, and density distribution of the earth. The atmospheric properties
that are adcpted for the exact calculations of this report are those con-
tained in reference 9. However, as a result ¢f observation of the satel-
Tite 1957 a-. Soutnik I. the ARDC densities arove about 200 KM appear to
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will be a periodic variation in density for a purely circular orbit, due
to the nonspherical figure of the earth, except for equatorial orbits.
For a polar orbit, for instance, there would be density changes between
the equator and the poles corresponding to a 13-mile change in altitude
for a circular orbit, We consider this density change to be due to the
nonspherical figure of the earth and do not call it an oblateness effect,
a term applying only to the gravitational field.

In the calculations it is necessary to know the size and shape of
the earth. It is assumed that the earth is an ellipsoid (oblate spheroid)
with the dimensions adopted at the International Geodetic and Geophysical
Union of 1924, as given in reference 8. The equator is assumed to be a
perfect circle of radius a, and the polar radius is b,

-

6,378,388 £18 meters
3963.3386 statute miles
20,926,428 feet
6,356,911.9&6 meters > (h)
3949,9941 statute miles
20,855,969 feet

a

o3
il n 1l [ 1]

a;f3 §%7 = 0.0033670034 2

il

e2 = 252593 = 0.0067226700 (6)

(1L meter = 3.28083333 feet)

It is also necessary to specify a value of the earth's gravitational
field strength for the purposes of the calculations. If F 1is the gravi-
tation attraction between two masses M and m a distance r apart, then
the universal gravitational constant K 1is given by

If g is the force on a unit mass due to the earth's gravitational field
at the surface of the earth, M the mass of the earth, and r is equal
to R, the "mean" radius of the earth, then

KM = gR®

It turns out that we shall have use of the quantity KM which 1s given
in reference 11 as
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KM

(1 £8x107°5)(3.986329x10°° cm3/sec?)

(7)
KM

0.14077500x1017 £t3/sec?

Another quantity of the earth's gravitational field with which we
will be concerned is its quadripole moment. EFecause of the nonspherical
- mass distribution of the earth, its gravita-
N
. ~

[
By

tional field 1s ncot spherically symmetric,
but has a gquadripole moment. The potential
is that due to a quadripole formed as shown
in the sketch. £& quartet of sources and
sinks with strengths of equal magnitude are
placed on the polar axis of the earth near
its center, The sources are located at the
center with the sinks equally spaced above
and below the center. The sinks are permit-
ted tc approach the sources while the pro-
duct of strength and spacing remains constant.
The net result ic a quadripole of the present
sort which resentles a dipole pair with mirror
symmetry. Also chown in the sketch are the
radial and tangertial components of the

m
\

* Equator | gravitational field due to oblateness. The
- gravitational potential including the non-
Sketch (a) spherical component is usually taken as
KM pa
¢ ="-11-"% (1 -3 cos 2V) (8)

The force per unit mass in any direction is tie gradient of ¢@. The
value V¥ 1is the geocentric latitude and u is a dimensionless constant
given in reference 2 as

6u = (1.637 £0.00k)x1¢ ™2

From reference 11, a value of 6 calculsted for the international
ellipsoid is

6 = 1.638x10™°
We will use this value in the calculations.

It is probably interesting to note that ithe surfaces for which ¢
is a constant are not oblate spheroids nor does one coincide with the
assumed geometric figure of the earth. The surfaces, & equal to a
constant, in principle are everywhere normal 1o the earth's gravitational
field. If the vector gravitational field 1s corrected for the accelera-
tion due to rotation of the earth, then the resultant vector field should
be normal to the "mean" surface of the oceans to prevent their flowing
toward the equator.

D =RaA

h Ke!
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LI we des1gnate the gravitational force per unit mass in the
ip, 1}, 1¢, iy, and 1y directions by Gp/m, GA/m, Gy/m, G@/m, and Gg/m,

we have in the r, A, ¥ system
%f - %% = - ;E 3u§Ma (1 -3 cos 2y)
250 5 )
%=%%=-ﬂjsin2ﬂ!

In the r, ¢, a system we have
%f = - %g - éﬁ%%ﬁi (1 -3 sin2p sin2a)
%? = - EE%%EEE sin ¢ cos @ sin®a g (10)
Ca = - }§E¥Eii sin @ cos o sin «
m T /

The equations are obtained by noting that and Gy can easily be
obtained from Gy and Gy by a rotation involving B (see fig. 1(a))
The quantities V and B8 are then eliminated in favor of ¢ and «
through relationships derivable on the basis of spherical trigonometry.

Alr Drag Forces

Besides the forces on the satellite due to the gravitational field
of the earth, we will also be concerned with the air drag on the satel-
lite with the atmosphere rotating with the earth., In the r, A, V¥
system the velocity of the satellite relative to the rotating atmosphere,
Vg, is

Vh = ;r£-+31r cos w(i-ﬂe)-+3¢r¢ (11)

where Qe 1is the rotational speed of the earth. Since the drag is in

opposition to the motion
D 1 > (CpA
m= " 3°R <T (12)
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The components of the drag in the r, A, ¥ sy:tem are thus

Dy 1 . (CpA A
m 2 PVRT \ T
Dy 1 . ‘CpA
-3 pVRr cOS w(x-—ae)(fzr- > (13)
D 1 . /CpA
2 F et ()
P
In the 1, @, a system the velocity Vg 1s (:.s we will show)
- - ., - -
VR = irI‘+ i(chp = i‘)\I‘QeCOS Il.r
- —_ - —
= 1pr+1gVp ~ rlecos V(ipsin B - igcos B)
= irf-+;¢(v@- rQecos a)-+;gr9“sin @ cos © (14)
where we have made use of the relationships
sin B cos ¥ = cos a
(15)
cos B cos ¥ = sin a cos @
The drag components per unit mass in the r, 9. o system are thus
D, 1 . /CpA A
= Tz PR
?% =-3 pVR (Vg - rQecos a)( - > P (16)
Do 1 . CpA
-3 PpVRI{e8in o cos @ Y
J

SATELLITE KINEMATICS AND EQUATIONS OF MOTION
Equations of Motion in Geographica.. Coordinates
The geographical coordinates r, A, ¥ ar: a special set of spherical

polar coordinates useful for certain problems »f trajectory calculations.
They are related to the inertial coordinates X, Y, Z as follows:
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X =1r cos ¥ cos A
Y = 1r cos ¥ sin A
Z =71 sin V¥

The linear velocities in the r, A, ¥ directions (fig. 1(a)) are

V% = ri cos V¥
VIII = vy

and the corresponding components of the angular velocity of the
iy, i), iy coordinate system are

Qpr = A sin V¥
Q% = '& (17)
QW = A cos s

Ehe ingugar velocities referred to here concern ro'ations of the
in, 1y, iW system in the inertial framework. The acceleration components
are

2 A
a, =T - riP-rAZcos®y
|\ T T cis i g% (rzcos2¢ﬂ) > (18)
ay = rﬁi—Ef@%—rﬂasin ¥ cos ¥ J

The forces per unit mass in r, A, and ¥ directions are equal to
the accelerations in those directions, so that the equations of motion
are:

] 3
£ o Y- r® - riPeosSy

m

F 1 d :

= - T o5y @ (FPeos®iA) f =
FW . . 2,

o = rv+ery+rAsin ¥ cos ¥ J

Under the actions of gravity, including oblateness, and of air drag the
forces per unit mass are
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%E = - %g + §E§¥§— (1-3 cos 2W)-£ PVRT <T—_> W
. C
%% = - % pVRT cos W(X-—Qe)<}%é > (20)
F 6KMpa? 1 CpA
7} = - ——;%E— sin 2y - pVRTW I
J

Equations of Motion in Orbital Plane; Motion of Plane

For certain kinds of calculations the equations_of motion in terms
of r, ¢, and @ are convenient. The unit vectors 1ir, igp, and iy form
a right-handed system in that order. Because the r, @, a coordinate
system is not an inertial system, account must be taken of its rotation
in establishing the equations of motion. It is clear that r, ¢, a,
and @ are necessary to describe the position of the satellite, so
that 6 will also enter the equations of motion. Let us first establish
the kinematic relationships of the.system. Since there are four coordi-
nates specifying the satellite position, rather than the usual three, we
can anticipate an extra kinematic relationship involving r, ¢, a, and 0.

A convenient methodafor deriving certain kinematic relationships is
to obtain the quantity Oxr by two methods_anil then to equate its com-
ponents. One convenient way to establish {Xr is to consider the follow-
ing vector transformation between any vector, -, and its time rate of
change

-

dr + OxT (21)

at -~

oqcu
o=y

as discussed, for instance in reference 1l2. 1Ia this equation d?/dt is
the total rate of change of the vector, T including both changes in the
magnitudes and directions of its components. [he quantity OT/dt refers
to the rate of change of 7 due solely to the changes in the magnitudes
of its components but with no changes in their directions. The angular
velocity, ¢, is that of the axis system in whith the components are
expressed. (The ability to hold the direction of the compgnents fixed
presupposes the knowledge of an inertial systemn to which @ can be
referred. )

Leg us now take 1 to be the radius vector of the satellite so
that dr/dt is the satellite velocity V. From the definition of the
orbital plane, we have in the r, 9, o systen

ar . 2
= E% = lrr-+l¢V¢ (22)
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- - -
The quantity Or/dt is the satellite velocity if the ip, i@, and iy
directions are fixed.

%% = i1 (23)
From equations (21), (22), and (23), we thus obtain
Oxr = TV (k)

The second method used to ogtain ﬁk¥ is to construct 5 and then
to take its cross product with r. To establish the angular velocity we
note that of the independent variables, r, ¢, o, 6, changes in all
quantities except r cause angular velocity of the moving axes. If we
hold the orbital plane fixed in space, we get an angular velocity vector

along ig due to §.
- -, —»V
M = 1 = 1a<ﬁ?>f (25)

Now, because of motion of the orbital plane specified by 9 and d, we
have the additiocnal angular velocity AQ which is clearly

-

AQ = 1,60+1,4 (26)

—
The vector AQ can easily be transferred to the r, ¢, o system by
means of the following table of direction cosines

r 0] a

X! cos @ -sin ¢ 0

Y' | sin @ cos awjcos ® cos a | -sin a

Z sin @ sin a fcos ¢ sin a | cos a

— —> . . - . . g .
AQ = 1,.(8 sin @ sin a+a cos @)-+i@(9 cos @ sin a~-a sin @)+ 1y (6 cos a)
(27)
The total angular velocity is now
Q = AQp +AQ = ;r(é sin ¢ sin a+a cos @) +
i¢(é cos ¢ sin a-a sin m)-+3g(¢-+é cos a) (28)

If we take the vector product Oxr from equation (28), we get

- >

Oxr = -;@r(é cos ¢ sin a-a sin @)-+z¢r(¢-+é cos a) (29)
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Comparison of equations (24) and (29) yields a pair of relationships

o cos ¢ sin @-a sin ¢ =0

. Vo (30)
P+6 cos a = -
The angular velocity of the satellite is thus
- - . sin a - ¢
Q= 1.0 sin + 1 3
- a AL
- i — 4+ 12
r Sos ) * %Jir/f , (31)

The acceleration in r, ¢, o coordinates is derived from a vector

transformation equation similar to equation (1)

BV

The quantity, dV/3t, with 1., 1o, and 1, fired is

%% = 1 r-+1@V@

—_
since the rotation of the moving coordinates do not contribute to aV/at.
The vector product XV is

lr lq) :LCL
- - A\
Qv = | Qp 0 —IEE

T Vo 0

- V - I"V -»
-ip CP + g S+ LV

Thus the acceleration is

ol VR (e LV o
= 1‘< - —?’2'>+i(0<ch+r '?(P'>+iO,V(PQI’ (32)

The equation of motion then can be written



19

2 )
L
m
F . . Vi
§=<V<p+f—§2> ( (33)
Fg
subject to the kinematic equations
. Vv
®+06 cos a = ?g
(3%)
_ o 6 sin a
Q, = = p
cos @ sin o
The components of the forces due to gravity including oblateness and
drag in equation (33) are
5 3
Fr KM 6uKMa
o - -r—2——r——(l 351ncp=31nc1,)-—pVRr
F 12KMuaz 1
;? = - ——3;— sin ¢ cos ¢ sin®a - 5 DVR(Vm rQecos a) >(35)
Fo 12KMua® 1 CpA
- T T g2 singcosa sin a ~ = pVR(rQegln a cos @) —

J

It is noted that equations (33) and (34%) are the equivalent of a set of
six first-order differential equations which fully determine the history
of six orvpital elements for given initial conditions.

Equations of Motion in Terms of a Particular
Set of Orbital Elements

There are many sets of six orbital elements, the history of which
in space and time specify the path of the satellite. The set to be used
depends on the problem to be studied. For instance, during circulariza-
tion of the elliptical orbit, it would be reasonable to use among the
orbital elements those physical quantities such as eccentricity or length
of the major axis which describes the ellipse. In fact, the concept of
the instantaneous ellipse to fit the trajectory at every point has been
used for a long time in celestial mechanics. We will now consider the



20

equation; of motion for a special
set of orbital elements based on
an instantaneous-ellipse technigue.
This set of equations is used for
certain :rajectories presented
herein.

Trojectory

Xl

The instantaneous ellipse
lying in the plane of the orbit is
shown in sketch (b). The ellipse
is characterized by the angle ©,
the eccentricity E, and the semi-
major axis 1. The equation of
the instantaneous ellipse in polar
Sketeh (b) coordinaces is

1 1+E cos(p-5)

r 1(1-E2) (36)

One of the parameters of interest 1s the rate at which the radius
vector of the elliptical path is sweeping out irea. Since the rate is
constant for a central force field, it should »e a slowly changing func-
tion of time when drag or oblateness is includ:d. The rate at which area
is swept out is §/2, where E 1s given by

Let us now introduce two new variables specifying the value of ¢ and E
for the instantanecus ellipse which is to have the same value of £ as
the trajectory

- 2
. (37)
q = pE

Here £, 1is some reference value of €. Let us also introduce another
constant

2
£o

Lo = == (38)

We now wish to relate p and g9 to the coastants of the instantanecus
ellipse so that we can express r 1in terms of p and gq. In "fitting" the
instantaneous ellipse we have taken the trajec:iory and the ellipse at
point P to have_ the same values of the radius vector, r, and of the
velocity vector, V. Since the vectors T and ¥ totally determine the
dynamical state of a particle, the dynamical states are matched precisely.
It follows, therefore, that the momentum and energy are also matched.

The rate of sweeping for the ellipse §/2 is constant and its value is
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fixed by conditions on the trajectory at P. Also, the same can be said
for the sum of the potential and kinetic energies. Now the rate of
sweeping out of area by the ellipse is

= (39)

MO Juwe
i

where k 1s the semiminor axis and T is the period. The period depends
only on the length of the major axis

7= 2% 302 (40)

KM

The relationship of p to the parameters of the instantanecus ellipse
from equations (37), (38), (39), and (40) is

P ___ 1
Lo, 1(1-E®) (k1)

It is clear that equation (36) can now be expressed

ol N

+q cos
_P QL 1 (42)
0

These preceding remarks are adequate for establishing the set of
variables that will now be used in the six equations of first order to
describe the motion of the satellite. First we must decide on the
independent variable. The variable ¢ 1is convenient if we are concerned
with how guantities vary per revolution. Time as the independent variable
is convenient for many other problems. With ¢ as the independent
variable, the dependent variables are taken to be

p = £,°/¢7
- Parameters of
4=0r instantaneous ellipse
8 =9-n
o2 Parameters specifying
orientation of orbital
e plane



22

Equations (33) and (34) consist of a system equivalent to six first-order
equations. In terms of the six preceding variables, the equations of
motion given here without proof are

a1 )
do W
de __ _ep E@>
dp ~ Ewu \ | m
da _ _dp cos n+S5 sin 7
do do
(43)
dd de d

1

q 3 = -q 3o cos a - a% sin 1 =i cos 7
da _ Fé> cos @
dp WV
gg sin _sing
dp - wV sin a y

where the quantities w, Vp, u, 5, and 5 follov from the variables and
from the reference quantities £, and Lg:

<%§> sin @ cos a £12 3
w:gu =
tu sin « 1+ (d6/dp)cos a
£
2 _ 20
£” = b
_ 1 _Dp*dcosn
=T " Lo
= @] b Zea) [
=—-——q51n + —_— +—COSG.
2p dg LR dg
n=9-5
£
v, ==
¢ r
J

Certain other identities arising in the develormnent are also useful,
especially in specifying the initial conditions:
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__ESp(L-ER) g2 )
2Lo” 2Ll
;o fasing

C ) (45)

Ve = i§§ (p®+ 2pq cos n+g2)

Lo
l:—_
p(1 - E%) J

During the course of the present work there appeared an English
translation of a Russian paper by Taratynova, reference 1, containing
equations of motion equivalent to the foregoing set. Taratynova's equa-
tions were taken from an astronomy text in Russian of 1936 vintage. His
equations differ from the present ones in several particulars. First,
the latus rectum and the eccentricity of the instantanecus ellipse are
used instead of p and g as dependent variables. As independent variables
both 1t and n are used. The independent variable 1 can be changed to
¢, as in the above set of equations, simply by multiplication by w.

It is important to inspect equation (43) for singularities arising
from zeros in the denominators. Inspection shows that such zeros can
concelvably arise through w, Vg, @, or g. From equation (4k) let us
write

Vo
- r[1 + (a8/dp)cos a] (46)

It is clear that w and V@ both approach zero together if de/dm 1ls
small, the only case that need concern us. If the path of the satellite
is vertical in the orbital plane, w and V,, are zero. Equation (k3) is
then ill-conditioned, in the large changes in the dependent variables
are accompanied by small or zerc changes in the independent variable.

In this instance it becomes necessary to change to a new independent
variable such as the time. When o approaches zeroc, the orbital plane
is approaching an equatorial plane. However, the zero in the denominator
of the equation for de/dw is only apparent. This is the case because
Fy in the numerator, which is due to drag or the gravitational field,
is proportional to sin o as shown by egquations (10) and (16).

The zero in the denominator of da/dw due to g 1is of importance
for circular orbits, as can be seen by the following expression for the
eccentricity

V22
E = % St T (47)

£o®
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Tt is clear that q will be zero for circular orbits (E = 0) since Vg
and r are not zero. To avoid this difficulty, consider two new dependent
variables to replace g

v =q cos B
(48)
w =4q sin ®
Then we have
g cos =g cos(p=-8) =v cos p+Ww sin @ (49)

The differential equation for g is then replazed by the following set

dv de dp .
T =W S cos @ - 55 cos ®+5 sin @
(50)
dw de dp . -
I - -V S cos o - T sin @-3 cos @

with

1 /a4 Lo [Fr e
S = — (;E (v sin @ -w cos @)-&[EEEE ;§>-Fp] (é + i cos a ) (51)

It is noted that the zerc in the denominator of dd/dg has now been
eliminated.

The equations of Taratynova also contain a singularity. How the
singularity was handled in obtaining the tabulated results given in the
paper for circular orbits is not discussed.

It is clear that the system of six equalities included in equa-
tion (43) can readily be converted from ¢ as the independent variable
to t as the independent variable. It is sufficient to invert the first
equality and to multiply the next five equalities by w.

It is possible to write the equations of notion in a form which is
linear in the applied forces., In this case we also introduce the
eccentricity, E, rather than q as dependent variable.



25

at Es

dp 21.p3/2 <Fq)> \

a  sin @ ctn o __) L EE sin n > Ef)
dt "I
cos Tl I:Lo <Fr> + pgu :,
dE 2 E sin®n F
a%' = - g pllzr{“_?—— - COsS it "'EJ <—I:IR> +
sin Lo /F
G- Pﬁug]
deo B YQ sin sin @ cos o
at ~ r " tu sin o y

The guantity in the square brackets represents the applied radial force
less the spherical compecnent of the gravitational field. The foregoing
form of the equations of motion is convenient for deducing secular
trends.

(52)

ILLUSTRATIVE EXAMPLES

The equations of motion as developed in terms of orbital elements
and in geographical coordinates have their own particular uses. Two
such uses will be illustrated in the present paper. 1In the first example
we will examine the effect of the earth's oblateness and of the air drag,
including atmospheric rotation, on the orbits of satellites in the equa-
torial plane. Such an example will use the equations of motion in terms
of orbital elements. The second example in terms of geographic coordi-
nates is concerned with the effect on the impact point of the earth's
oblateness and of atmospheric rotation for nonequatorial orbits.

First Illustrative Example

As a first illustrative example, consider a satellite of given
CpA/m launched horizontally eastward on an equatorial orbit. Let the
initial height about the earth be given, and let the velocity be that
for a circular orbit without consideration of oblateness effects
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(Vo) = (Ve), = Joo ;5 &, =0 (53)

We will let the drag parameter CDA/m take on values of 1 and 10. The
equations of motion are then solved for four cises:

Case 1 pu=0; fle =0 spherical gravitational field;
nonrotating atmosphere

Case 2 L#0; Q=0 nonspherical gravitational field;
ncnrotating itmosphere

Case 3 p = 0; &e % 0 spherical gravitational field;
rotating atmoisphere

Case 4 T8 % 0; Qe # 0 nonspherical gravitational field;
rotating atmosphere

These cases permit study of the effects of oblateness and atmospheric
rotation, at least for the above initial conditions.

Accuracy of calculations.- The principal factors influencing the
accuracy of the calculated results are the intsrval size and the number
of significant figures carried in the calculations. Eight significant
figures are carried throughout. The density was obtained by exponential
interpolation in the ARDC density table and is not accurate to eight
significant figures, although the density calculations repeat consistently
to eight figures. With respect to interval size, the results of interval
sizes in Ap of =/8 and n/32 are shown in the following list. This list
gives certain guantities as calculated at ¢ = 13=x for CpA/m = 1, case 1,
initial altitude 120 miles:

A9 = 1/8 radians Ap = n/32 radians
£, £t%/sec 55.084587x101° 55.084366x10*°
v 0.21953070x10™ " 0.23739280x10™ "
W -0.12332460x10™ % -0.12347577x10™*
t, sec 3452, 4o 3k452,110
r, ft 21554337 21554164
T, ft/sec -0.32462706 -0.32502373
A\, radians 40, 840698 40.840779
E 0.12702521x10™* 0.12717994x10*
Vg, ft/sec 25556.150 25556.253
¥, f£t/sec? -0.68629226x10"° -0.71082937x10" °
h, ft 627909.00 627736.00

go) 0.97086900 0.97087600
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The gquantities are sufficiently close for most engineering purposes.
Note that the altitude difference is 173 feet, which represents about a
0.03-percent error. Similar calculations were performed for case 2 with
the same general results. On the basis of these results, it was decided
to use 1/8 as the basic intervael for the calculations.

Periodic variations.- In figure 3(a) are plotted the altitude and
eccentricity variations for one period for CDA/m =1, cases 1 and 3.
The loss in altitude with atmospheric rotation is slightly less than
without rotation because the dynamic pressure and hence drag is decreased
about 12 percent by rotation for eastward launchings. The path is a
spiral for which the eccentricity, although small, has a strong periodic
component,

The principal effects of oblateness during a revolution are illus-
trated by comparison of figures 3(a) and 3(c). The differences in the
scales of the ordinates should be noted during the comparison. Thus the
effect of atmospheric rotation is evident in figure 3{a) »ut not in 3(c).
It is of interest that the altitude difference during one revolution is
about 66,000 feet with oblateness, compared to about 800 feet without it.
To explain this oblateness effect, we make use of the full gravitational
field for an equatorial orbit as given by equation (10)

Gr _ X _ai>
oSS (54)

m

The gravitational field is increased by 6, or about 0.16 percent. Since
the satellite was initially in anequilibrium circular orbit with u = O,
suddenly "turning on" the cblateness at the initial altitude leaves the
satellite with a velocity deficiency, Jjust as if a tangential retrorocket
had been fired. Since 1o = 0, the satellite location immediately turns
into an apogee point; and, neglecting drag, the path becomes elliptical.
From an energy consideration, neglecting drag, it is shown in appendix C
that the altitude difference between perigee and apogee is

Ty - Tp = 2ra€ ; € = 6u %5 (55)

We find that cblateness for equatorial orbits thus causes a difference
in altitude between apogee and perigee of 14 -Tp = 66,700 feet. With-
out oblateness but with drag figure 3(a) shows an altitude loss for half
a revolution of about 400 feet. The difference in altitude between
perigee and apogee 1s almost exclusively due to oblateness for the pres-
ent value of CDA/m. In fact the calculated value from equation (55) of
66,700 feet for oblateness alone is in very good accord with the value
from the complete calculations of 67,081 feet for the combined effects of
cblateness and drag. It is also clear that the approximate figure of
67,000 feet is not sensitive to initial altitude since drag is not
significant and the oblateness effect as calculated from equation (55)
is insensitive to changes in altitude for near satellites., With regard
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to the net loss of altitude per revolution, oblateness has the effect in
the present case of doubling this loss. This specific result applies to
the altitude range for which d(log p)/dh is the same as for the present
example.

For CDA/m of 10, the altitude changes anl the eccentricity are about
10 times those for CpA/m = 1, but there are n> qualitative differences.
The effect of the rotation of the atmosphere his a small effect in all
cases.

Secular trends; limitations of calculation.- The manner in which the
altitude and eccentricity vary from revolution to revclution, the secular
trends, is illustrated in figure 4. For the range of figure L(a) the
decrease in altitude per revolution is a nearly linear function of the
number of revolutions. However, for CpA/m of 10, figure 4(b), the rate
of decrease of altitude becomes greater at lowsr altitudes since large
density increases occur. While the altitude variations are as we would

expect, the secular variations in eccentricity are of particular importance.

For CpA/m of 1, figure 4(a) shows the eccentricity variation for 2 cycles,
and then continues the envelope for 10 cycles, the limit of the calcula-
tion. However, for CDA/m of 10, the eccentricity shows a divergence in
the range of calculations, and the calculations in fact break down.

To see how the calculations break down, l2t us examine the variation
of eccentricity with ¢ as shown in figure 5. (For the equatorial orbit
being considered @ and A differ only slightly.) Actually the oscilla-
tory variation in E is no longer significant, as in figure 4(b), but E
has what appears to be a nearly vertical tangeat. The instantaneocus
ellipse is therefore undergoing very rapid changes in eccentricity. The
interval size is too coarse to follow the rapiily changing curvature. By
reducing the interval size, and increasing the number of figures carried
in the calculation, the range of the calculations can be increased. How-
ever, this method is inherently unsuited to calculation of the terminal
phase of the trajectory fcor the following reasons: In the terminal phase
of the trajectory the satellite descends verti:ally or nearly vertically
along a radius vector. For such motion there is little or no change
in ¢, the independent variable. Therefore, a better-conditioned indepen-
dent variable, such as time, should be used.

Regression of line of nodes and movement >f line of apsides.- The
solutions for the movement of the line of nodes and the motion of the
line of apsides for the case of oblateness but no drag are known. The
variation in these quantities per revolution cain be obtained by integrat-
ing the equations for d6/dp and d®/dp from p = O to 2x on the basis
that departures from the basic ellipse are small. The following results
are taken from reference 13.

12_h _sRa
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2 4
N8 = —lEau(%) (;%) cos o
S (56)
DD = 6ﬂu<§> <¥% (4 -5 sin®a)

where Ve 1s the circular orbital speed at radius r for no oblateness
(eq. (53)). It is to be noted that the first equation, strictly speaking,
applies to the secular change for one nodal period,* that is, for the time
to go from one ascending node to the next. It happens that drag forces,
being in the plane of the orbit, have only a very small influence on the
regression of the line of nodes, as shown by the following list.

6, radians
é% gﬁé = 1; case 2 ggé = 10; case 2 | Equation (56)
1 -0.009689 -0.009695 -0.009696
2 -.01938 -.01941 -.01939
3 -.02907 -.0291k -.02909
i -.03876 -.03892 -.03878

The movement of the line of apsides (the major axis of the instantane-
ous ellipse) is vitally influenced by the drag. It is first desirable to
ncte what happens in the absence of drag for an equatorial orbit. The line
of nodes, which can be visualized only for orbital planes away from the
equatorial plane, moves backward against the motion of the satellite at
0.5550 per revolution. The corresponding rate for the moon is about
1.5° per revolution. The line of apsides moves forward in the direction
of the satellite at twice this rate. As a result, the line of apsides
moves around the equator with respect to an inertial framework at precisely
the same rate that the line of nodes moves backward.

With the introduction of drag the line of apsides tends to move
around the orbit with variable lag, at the average speed of the satellite.
To show clearly the motion of the line of apsides consider the angle B
given by equation (48)

-1 w
d = tan T 3 (57)
The angle & gilves the position of perigee5 measured from the line of
nodes. A plot of w versus v shown in figure 6(a) illustrates how &

starts out at = for ¢ = O for the case shown and increases steadily
thereafter. If © 1leads or lags ¢ by a constant amount at all times,

4The nodal period is sometimes referred to as the synodic period.
5The position of perigee is sometimes referred to as the minor apsis.
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then a curve of (& -¢) versus ¢ would be a straight line. The parameter
(8 -p)/2n 1is shown versus @/2n in figure 6(b) for the present case.

The variable lead of 8 over ¢ approaches n/2 after several revolu-
tions. The principal conclusion to be drawn from these results is that
the very small motions of the line of apsides due to oblateness alone are
completely masked when drag is included because the line of apsides moves
with average speed of the satellite., The concept of the line of apsides
becomes useful now as a measure of lead or lag of the angular position of
the major axis of the instantaneous ellipse frcm the angular pesition of
the satellite.

Second Illustrative Examrle

As a second illustrative example, consider a satellite launched from
the equator in an orbital plane inclined at 650 to the equatorial plane.
The initial height above the equator is taken s 80 miles, and the satel-
lite is launched at circular orbital speed., Tre initial altitude was
chosen low enough to obtain impact in about a revolution or less. The
launching velocity was not always horizontal as in the previous example,
but radial velocities were introduced as follows: To/(Vyp), = 0, -0.01,
-0.05, -0.10. Values of CDA/m of 1 and 10 are included. The equations
of motion were integrated numerically for the four cases considered in
the first illustrative example. An attempt was made to carry all cases
to impact. Impact altitude is taken to corresiond to 1000 feet altitude.
The calculations have been made using geographic coordinates, but were
checked against calculations in one case using the elliptic orbital
elements method.

Accuracy of calculations.- The accuracy of the calculated results in
this example can be assessed by several means. First, we can compare
calculations on the basis of geographic coordirates with those on the
basis of elliptic orbital elements. We can al:so vary the time interval
used in the calculations based on geographic ccordinates. Pursuing the
first comparison, consider a satellite with Cr&/m =1, fo/(V@)O = 0,
case 1, for @ = 6.037 radians. The orbital quentities for these condi-
tions are compared in the following list.
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Orbital elements,
Ap = n/64 radians

Geographic coordinates,
At = 30 seconds

12-4 -5

9, radians 6.0377500 6.0377582

v -0.0038107764 -0.0038172179
0.003098281h 0.0031003921

t, sec 5010.6056 5010.6056

r, £t 2.1258168%x107 2,1258139x107

r, ft/sec -54,238659 -54 ., 265940

N\, radians 6.1777185 6.1777180

E 0.004966759k4 0.0049733320

Vg, Tt/sec 2.5675599x10% 2.5675529x10%

¥, ft/sec® -0.13947319

h, £t 0.335174%10% 0.335146x108

9] 0.98883584

Vv, radians -0.22203323 -0.22202809

w, radians 1.13446L40 1.1344641

It is noted that the two sets of calculations are in good agreement,
indicating that no gross mistakes have occurred either in analysis or
calculation. The interval size for the orbital elements is the 128th
part of a revolution, while that for the geographic coordinates is
essentially the 180th part of a revolution.

The foregoing comparison is made for a satellite descending from
80 miles altitude to about 63 miles altitude in one revolution. When
the calculations were performed with the 30-second interval, it became
clear on numerical grounds after some point in time that the interval
size was too large. All calculative cases using a 30-second interval
exhibited this behavior before impact. Thus while an interval size of
30 seconds 1s satisfactory for the initial phase of the trajectory, it
is not adequate for the terminal phase. Some time before the calcula-
tions exhibited inaccuracies with the 30-second interval, the interval was
switched to 3 seconds. The calculations were then continued to impact.

Let us now compare the trajectories calculated using the foregoing
method based on two interval sizes with the trajectory calculated using
a 3-second interval size all the way. Since we are principally interested
in the point of impact, the following comparison yields a good idea of
how accurate the point of impact is. The example considered for this
comparison corresponds to CDA/m =1, case 1, fo/(V@)o = 0. In the left-
hand column a 3-second interval was used to compute the trajectory all
the way to the point of impact. In the right-hand column, the 30-second
interval was used to t = 5760 seconds and the 3-second interveal from
then until impact at 5991 seconds.
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Interval size, sec 3 only 30 and 3
t, sec 5991 5991

cos @ 0.8621.7703 0.86456735
t, ft/sec 166.43243 167.09205
A, radians 6.5265953 6.5241574
Ve ft/sec 0 0

h, ft 327 592

¥, radians 0.47702802 0.47302309

In this case the satellite travels slightly morz than a complete revolu-
tion around the world. The difference in latitade at the end of 5991 sec-
onds is 15.87 miles and the difference in longitude is 8.58 miles. Since
the range is over 25,000 miles, these accuracies for the impact point
were considered satisfactory. Hence most of the calculations were made

on the basis of a 30-second interval followed by a 3-second interval in
the terminal phase.

General features of the trajectories.- To show the general features
of the trajectories, consider figures 7(a), 7(b), and 7(c) constructed
for CpA/m = 1, #o/(Vg)o = O. The altitude variations with time shown
in figure 7(a) exhibit several important effects. The general waviness
is due to the nonspherical figure of the earth. At t = O the satellite
starts at the equator, and at about 1200 seconds the satellite reaches
its maximum north latitude for which the earth radius is least for the
orbit and the altitude is correspondingly greatzr. Subsequent passes
over the equator through meximum and minimum letitude cause further
bumps. In the cases including the gravitational effects of oblateness,
the time of flight is significantly shorter than without oblateness
effects. The basic reason for this behavicr has already been discussed
in connection with the equatorial orbits. Oblateness causes the satel-
lite to descend lower into the atmosphere. The resulting higher drag
thus reduces the flight time as shown.

The latitude-longitude variations of the satellite for the four cases
are given in figure 7(b). The paths for the fcur cases are essentially
the same until the time atmospheric drag initistes entry. At this time
the latitude and longitude are essentially frozen. What this means
generally is that at a given time the satellite for the four different
cases has nearly the latitude and longitude given by the Keplerian solu-
tion, but the altitudes differ significantly. As a result, for the four
different cases the satellite enters the final constant longitude-latitude
phase at different times.

During the first part of the trajectory the satellite not only
follows the same latitude-longitude path for all four cases, but it also
appears at a given longitude and latitude at the same time. However,
near the very end of the trajectory the satellite decelerates rapidly
Just prior to turning down into the atmosphere. During this phase the
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satellite appears at a given latitude and longitude somewhat later than

for those cases for which the satellite has a greater altitude. Included

on the curves of figure Y(a) are ticks which indicate where the eccen-
tricity nearly reaches unity. These ticks correlate closely with the
position where the latitude and longitude become constant.

The eccentricity variations of figure 7(c) shed some light on the
motion. The eccentricity started at zero because of the particular
initial conditions taken in the present calculation; namely, those cor-
responding to a circular satellite orbit (see eq. (B1l)). The eccen-
tricity remains small for the first part of the trajectory and shows
characteristic waviness because cf the nonspherical figure of the earth.
During the final half of the trajectory the eccentricity rapidly rises
nearly to unity and remains there during the terminal phase. The value
of unity is associated with a vertical path as shown by eguation (B7).
For cases 1 and 2 the eccentricity remains essentially unity until impact,
in most instances. In other instances, however, the machine calculation
of’ eccentricity becomes erratic. Actually, for a vertical path the
eccentricity is a derived quantity which has no particular significance,
so that the erratic behavior of E does not reflect on the accuracy of
the trajectory calculations.

Impact point.- The calculations of this illustrative example also
shed some light on how the oblateness component of gravitational field
influences the impact peint, as well as how atmospheric rotation influences
it. Let Wy, Ay Vo, Aps Vg, Ags Uy, Ay, be the impact coordinates for
cases 1, 2, 3, and ﬁ, respectively. Then the effects of oblateness on
the impact point with no atmospheric rotation are VYo =¥y, As = Ay and
with atmospheric rotation are VY, - Vg5, Ay - Ag. These quantities are
tabulated in table I as a decimal part of the total range from the
assumed initial point to impact. The coordinates %4, V¥, of the impact
point are also tabulated together with the great circle distance, s,
between 0, O and A,, V4. These latter quantities as calculated in
radians were multiplied by a, the equatorial radius, to convert to
miles. The ranges are as measured in the inertial system XYZ and are
not those for an observer on the earth. The earth ranges can be deter-
mined with the help of the tabulated flight times. The first important
point is that oblateness causes large percentage errors in range for
re-entry at zero or very small angles, These errors are simply the
calculated differences in impact point between those for u equal to
zero and for u not equal to zero. As previously mentioned, the initial
velocity is tco low to launch the satellite into a circular orbit when p
is not zero.

In the foregoing discussion the effects of oblateness have been
taken as differences in the calculated results due to neglecting the
oblateness gravitational terms in the equations of motion for the same
initial conditions. It appears desirable to take some account of oblate-
ness in the initial conditions. For equatorial orbits this is easily
accomplished by making V¢ equal to that for a circular orbit. Without
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cblateness the value of Vg, 1o achieve a circular orbit is V., but
with oblateness the initiaf VCP should be

KM 6ua >
o = veo = [2 (14 827)

Let us now differentiate the following three examples:

£ in
Example Initial V@ equatioas of motion
A Vo = Ve Not included
B V@ = Ve Tacluded
C Vo = Veo Iacluded

For these three examples trajectories were computed to impact for the
following initial conditicns:

ag = 0% hy = 80 miles; CpA/m = 1;
f0=0;9027\o=\[fo=30

The following results were obtained:

Example A Exampl= B Example C
h, ft 151 270 193
t, sec L 058 2,7ke 4017
Vg, ft/sec 107 107 107%°
r, ft/sec 165.883 166.310 166.121
A, radians 4 L4820 2.9011 4,4338
A or s, miles 17,750 11,4¢8 17,570

The foregoing results are as one might articipate. For Vo = Ve
the range is reduced 6,252 miles by including oblateness in the equations
of motion, but with Vg = Voo the range is reduced only 180 miles.

If the inclination of the orbital plane tc the equator is changed
from zero, a purely circular orbit with oblateness is not possible. As
a matter of curicsity the value of V@ for a nonequatorial orbit was
changed from V. tc Voo %o see how the range was affected. The case
investigated corresponds to ag = 650, CpA/m = 1, To = 0, and hg = 80 miles.
The ranges are tabulated for the same conditicns as examples A, B, and C.
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26,987 miles
18,736 miles

Example A; s

|

Example B; s

Example C; s = 38,126 miles

The ranges are great circle ranges. It is noted that including u
in the equations of motion but not adjusting the initial value of V,
reduces the range by about 30 percent. If the initial value of V@ is
boosted to Ve, the range is greatly increased for the present orbit
even though u 1s included in the equations of motion.

It is clear that for the present initial conditions increasing
CDA/m from 1 to 10 diminishes the effect of oblateness on impact point.
This result is in accordance with the fact that increasing CDA/m
decreases the importance of gravitational forces compared to drag forces.
Increasing the initial downward velocity also decreases the proportionate
error in impact point. This effect is similar to decrease in miss dis-
tance due to errors in launching speed as the downward launch angle is
increased.

For manned re-entry for which CDA/m is of the order unity and the
entry angle is of the order of a degree or less (f/V@ < -0.02) to limit
normal accleration, cblateness has an influence of several hundred miles
in latitude and longitude on the point of impact. Including or neglect-
ing atmospheric rotation does not significantly influence this result.

The influence of atmospheric rotation on the impact point is gener-
ally not so large as that of oblateness. The influence of atmospheric
rotation 1s represented by V5-V¥;, Ag~Ay, or ¥, =V,, Ny ~A,. These
quantities are tabulated in table II in the same manner as table I.

As the downward launch angle is increased, the percentage effect of
atmospheric rotation on range generally increases. Such an effect is
due to the fact that the satellite spends more of its time in the lower
atmosphere where the air density is higher. Also, as CDA/m is increased,
the drag due to atmospheric rotation assumes more importance and increases
the effect of atmospheric rotation on impact point. As the satellite
approaches its impact point, its vertical velociiy usually is small
compared to the rotatiocnal speed of the atmosphere. The atmosphere thus
drags the satellite around with it at constant V¥ and increasing A. As
seen by the obsecrver on the earth, the satellite would descend vertically
except for a small slippage between the satellite and the atmosphere.
For a value of CpA/m of 1 and for fo/(V@)o of ~0.01, such as might
be used for manned entry, a 150-mile change in impact point is due to
atmospheric rotation for the present initial conditions.
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RELATIVE IMPORTANCE OF VARICJS TERMS
IN EQUATIONS OF MOTION

From the complete trajectories presented in the previous calculated
examples, it is possible to examine the order »f magnitude of the various
terms occurring in the equations of radial and tangential motion. The
resulting information will show what physical terms are important for
various phases of the trajectory and, hence, will suggest simplifications
permissible for analytical work in particular. Also, the information will
show where in the trajectory the assumption stated in equation (3) becomes
valid; that is, where the entry or terminal phise begins and hence where
the solution of Chapman (ref. 4) is valid.

The parameter which has particular signiflicance for dividing the
trajectory into various phases is the ratio of tangential velocity V
to circular satellite velocity Ve. To obtain a number whose logarithm
is not -« when Vg = O, let us use l-V@/VC as the parameter. 1In fig-
ure 8(a) the variations with 1 -Vgp/Ve are shoun of the terms in the
tangential equation of motion

D G
Ww——=$+% (58)

The term iVQ/r is less than 10 percent of ﬁ@ when Vg 1s less than
about 99-percent Ve. This result gives a quantitative measure of when
the assumption of equation (3) is met. Figure 8(b) was constructed to
show that the figure of 99 percent does not chinge when the drag parameter
CpA/m 1is increased from unity to 10.

Figure 8(b) exhibits phenomena not manifest in the range of fig-
ure 8(a). First it is seen that Keplerian motion characterized by
V@ = —fVQ/r is never realized for this exampl:. The sequence of events
is interesting to examine. At time zero the drag is in equilibrium with
the tangential acceleration force and the satellite slows down. However,
although drag initially makes V@ negative, tie satellite tends to speed
up as it drops in altitude until Vg 1s zero. At this point the drag is
in equilibrium with the acceleration force due to fVQ/r. The satellite
speeds up as it drops in altitude until a maximum value of Vg 1is
reached, when Vg 1is again zero. Thereafter the satellite decelerates
tangentially at an increasing rate, and the motion is in accord with the
solution of Chapman. For CpA/m = 1 figure 8(:) shows that setting
To = -O.l(ch)O does not alter the range of apolicability of Chapman's
assumption,

With regard to the equation of radial motion

r- =t (59)
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the magnitudes of the four terms are shown in figure 9(a) for CpA/m of
unity and 15 of zero. It is interesting to note that the gravitational
and centrifugal forces are in balance until Vg 1s about 0.9 V.. There
is then an interval where four terms are important. For V, near ZzZero,
the drag and gravitational terms are nearly in balance. However, the
radial acceleration term ¥ cannot be ignored if accurate terminal
velocities are desired, since it is about 30 percent of the other two
terms. If CpA/m is increased to 10 from unity (fig. 9(b)), or if the
initial launch angle is 0.1 radian downward (fig. 9(c)), the radial
acceleration still cannot be neglected except for rough calculations.

A patching technique is useful to establish a rough complete trajec-
tory. For Vg above about 0.99 Ve the trajectory can be approximated
by the method of appendix A. For Vp equal to about 0.99 Ve the solu-
tion can be Jjoined to that of Chapman, as described in reference 4, and
continued down to the pecint where the flight path is nearly vertical.
Although the equation of Chapman is still valid for vertical flight, the
numerical solution of his equation loses accuracy because of a singularity.
A solution for the vertical part of the trajectory is given in
reference 1k.

Let us examine the contribution of atmospheric rotation to the drag
term since this has important implications concerning the adequacy of
approximate two-dimensional theories which usually neglect atmospheric
rotation. This question assumes significance in the terminal phase of
the trajectory. Let us examine the flight path angles as seen by an
observer in an inertial framework and by an observer on the earth. The
flight path angle in the inertial framework is simply given by

T
tan y;, = —=—
For an earth observer, r 1is unchanged but V, is decreased for eastward
motion by the component of the earth's rotational speed in the orbital
plane. This component of speed is 1r cos YQesin B or rflecos a. The
flight path angle, 7., as seen by an earth observer is simply given by

T

tan =
7e V@ - rlecos

To illustrate the influence of earth rotation and observational position
on flight path angle, figure 10 has been prepared. The initial conditions
are taken to be

—~~
—6<
O\_/

|

(Vc)oi o = 0; hg = 80 miles;

_l; 9027\021[!O=OO

Q

e

~
2
i

The first curve to which attention is called is the plot of y; for
case 1, p = 0, and Q¢ = O. As the satellite approaches impact for this
case, the flight path approaches a nearly vertical condition as seen by
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an observer in the inertial framework. If we now include atmospheric
rotation, (and oblateness), the variation of y; for case 4 is obtained
as shown. The behavior of i 1in this case is distinctly different since
it now reaches a maximum near 300 and rapidly d=creases thereafter. What
has occurred in the terminal phase is that the radial speed has been
reduced to several hundred miles per hour by air drag, but the horizontal
speed Vp has been increased to a much greater value by atmospheric rota-
tion. The atmospheric rotation causes the trajzctory to curve almost
directly eastward at constant latitude V¥ with a horizontal speed equal
very nearly to rflecos V. At the equator this speed is about 6 percent
circular orbital speed for near earth satellites. Thus, approaching
impact, the satellite has a nearly constant value of VQ/VC less than 0.06.

The distinctly different characteristics cf the trajectory in the
terminal phase with and without atmospheric rotation raise the important
point whether two-dimensicnal theories neglecting atmospheric rotation
are really applicable to the terminal phase. The question can be
answered in the affirmative. provided the correct interpretation is given
to the two-dimensional theories. In this connection the flight path
angle as seen by an earth observer has been plctted in figure 10 for
case 4 which includes oblateness and rotation. Not unexpectedly, it
turns out to be in close accord with 74 for case 1, no oblateness or
rotation. The following interpretation is given to this result: Two-
dimensional theories neglecting atuospheric rotation (but including drag)
yield trajectories which tend to be nearly vertical in the terminal phase
provided CDA/m is not tco small compared to unity. These theories can
be applied with good accuracy to three-dimensicnal trajectories including
atmospheric rotation if the results are interprzted to apply to the
motion as seen by an earth observer. In fact, w~ith this interpretation
it would be a mistake to include atmospheric rctation in the two-
dimensional theory.

COMPARISON OF EQUATORIAIL TRAJECTORY WITH TRAJECTORIES
OF APPROXIMATE TWO-DIMENSIONAL THEQORIES

It is of interest to compare approximate two-dimensional analytical
results with an equatorial trajectory as calculated numerically by the
present method. For this reason a special equatorial trajectory was
computed neglecting atmospheric rotation and oblateness effects, factors
not usually considered in two-dimensicnal theories. The initial condi-
tions for the trajectory are

hy = 80 miles; (ch)O = (VC)O; ro = O;
90=7\OZ¢O=CLO=OO

The trajectory was calculated for a l-second interval using geographic
coordinates. The values of various quantities Juring re-entry are
listed in table III.
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The approximate theories compared with the present method include
that of appendix A, the method of Chapman (ref. 4), and an extension of
the results of Linnell (ref. 14). These theories are applied, respec-
tively, to the initial part of the flight, the middle part of the flight,
and the terminal phase of the flight.

Let us first consider that part of the flight from V¢/VC from
about 1.000 to about 0.995, during which most of the range occurs. The
small variations in Vo and r permit the simple approximate solution of
appendix A. The variations of h and T with t obtained by this method
are compared in figure 11 with those given in the foregoing table. Solu-
ticns are given for two time intervals in the calculation, a short interval
and a long interval as described in appendix A. For the short time
interval the values of * and h are in fair accord with the tabulated
values cut to larger values of t than for the longer time interval.

Consider now the phase of the trajectory with Vo less than
99.5-percent circular orbital speed. This is the region where the

fV@/r force is negligible and the solution of Chapman applies. This
solution is expressed in the form of a parameter Z +tabulated as a

function of U
Z_l CpA\ _ r A
"z \ /) F

2t = -fBT siny + 2 ) (60)

g0
Ve J

The Chapman solution considered here is that for U = 0.995 and y = —0.50,
and is the available one most nearly approximating the present calcula-
tions. For the initial values of U and 7y, the solution of Chapman gives
a value for Z. From this initial value of Z and the value of CDA/m
of unity, the initial value of the density can be calculated from equa-
tion (80). The values of h, ¥, Vg, and A are compared in figure 12(a)
and the value of ¥ 1is compared in figure 12(b). The initial altitude
obtained from the Chapman solution is slightly less than that obtained
from the present solution. Some of this difference is due to the slight
differences in 7y exhibited in figure 12(b). Generally speaking, the
solutions are in good accord. The tendency of the solutions for v, Vo,
and h 1o interlace is probably due to slight differences in the atmos-
pheric altitude-density relationships assumed in the two methods.

Chapman has used an exponential atmosphere in his work, while the present
work is based on the ARDC atmosphere.

In the terminal phase, the present tabulated soclutions of Chapman do
not continue entirely to impact but stop at a value of T = 0.025. For

u = 0, vertical flight, the solution of Linnell, reference 14, is
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available. In an unpublished investigation Elliott D. Katzen of Ames
Laboratory has adapted the solution of Linnell to slight departures from
vertical flight. His calculated values for U less than 0.025 agree
well with the present values.

CONCLUDING REMARKS

The principal purpose of this paper has besn accomplished; namely,
to present equations for calculating complete trajectories of earth satel-
lites from outer space to the ground under the influence of air drag and
gravity, including oblateness® and to apply these to several cases of
entry from circuilar orbits.

Equations of motion based on an "instantareous ellipse" technique,
with polar angle as the independent variable, vwere found suitable for
automatic computation of orbits in which the trajectory consists of a
number of revolutions. This method is suitable as long as the satellite
does not enter the terminal phase. In the terminal phase of the trajec-
tory, equations of motion in spherical polar coordinates with time as the
independent variable were found to be suitable.

In the first illustrative example, the effects of the oblateness
component of the earth's gravitational field ard of atmospheric rotation
were studied for equatorial orbits. The satellites were launched into
circular orbits at a height of 120 miles, an altitude sufficiently high
that a number of revolutions could be studied. The importance of the
oblateness component of the earth's gravitatioral field is shown by the
fact that a satellite launched at circular orbital speed, neglecting
oblateness, has a perigee some 67,000 feet lower when oblateness forces
are included in the equations of motion than wken they are not included.
Also the loss in altitude per revolution is doivble that of a satellite
following an orbit not subJject to oblateness. The effect of atmospheric
rotation on the loss of altitude per revolutior was smalil. As might be
surmised, the regression of the line of nodes &s predicted by celestial
mechanics, equation (56), is unchanged when dreg is included. It is
clear that the inclination of the orbital plane to the equator will be
relatively unaffected by drag for no atmospheric rotation since the drag
lies in the orbital plane in this case. With the inclusion of atmospheric
rotation it was found that the inclination of 1he plane changed about
107® radians per revolution, Thus the predictzon of the position of the
orbital plane of an earth satellite is not complicated by the introduction
of drag. The line of apsides, which without drag but with oblateness
moves slowly in space, tends to move with the ratellite when drag is
included in the calculations. As a result the usual linearized solutions
based on cblateness alone must be basically altered when drag is included
to take into account the rapid movement of the line of apsides.

8No attempt was made herein to take into &ccount gravitational
anomalies or surface cross winds.
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In the second illustrative example, the final revolution was
calculated to impact for a number of trajectories in an orbital plane
inclined at 650 to the equator. Of particular interest are the large
effects that the oblateness gravitational fileld and atmospheric rotation
have on the impact point. For a value of CDA/m of unity, and for an
initial downward angle at 80-miles altitude of 0.0l radian, such as might
be utilized for manned re-entry, oblateness had an influence of about
300 miles in the impact point, and atmospheric rotation had about a
150-mile influence.

From the complete trajectories calculated automatically, it was
possible to examine the relative importance of the various terms in the
equations of motion. For the equation of tangential motion, the term
proportional to fV¢/r is negligible, as long as the local value of V@
is less than 99 percent of V.. This result indicates that for V@ less
than 0.99 V. the equation of Chapmen (ref. 4) can be used. For the equa-
tion of radial motion, the radial component of gravity and the centrifugal
force dcminate the motion for values of V@ near Vo. However, for
Vo << V¢, where the trajectory is nearly vertical, the radial component
of gravity and the drag dominate the radial motion, but the radial
acceleration is not generally negligible,

It was found that two-dimensional solutions neglecting atmospheric
rotation can be used to approximate three-dimensional solutions with
atmospheric rotation. In this connection, two-dimensional theories must
be interpreted as being viewed by an observer on a rotating earth.

Several gaps exist in the solutions available for studying the
dynamics of earth satellites. First, to the authors' knowledge, no
linearized theory exists for predicting the periodic variation of the
elliptic elements during circularization of the ellipse or during spiral
decay, taking into account drag. This linearized solution would have
to take into account the fact that the line of apsides tends to move with
the satellite. BSecond, a missing ingredient in the accurate autcmatic
computation of impact points is precise knowledge of the variation in
atmospheric density with latitude, seascn, or time of day.

Ames Research Center
National Aercnautics and Space Administration
Moffett Field, Calif., July 15, 1958
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APPENDIX A

APPROXIMATE SOLUTION FOR TWO-DIMENSIONAL TRAJECTORIES NEAR

CIRCULAR ORBITAL SPEED TOGETHER WITH WUMERICAL EXAMPLE

Since a considerable part of the range of a satellite re-entering
the atmosphere is traversed at a tangential speed V¢ nearly equal to
clrcular orbital speed, it would be helpful to have an approximate solu-
tion for this case., 1In what follows we assume that the percentage
changes in Vg and r are small, but the perceatage change in air
density p may ve large. We will find an approximate solution r = r(t)
subject to the initial conditions r = 1y, T = 75 at t = 0. (The initial
value of Tg can be calculated from 7o and r5.)

Consider the eguaticons of motion in the following form:

Voo Dy Gy

¥ - == =4 —
Tr m m
(A1)
. Vi D G
. (D__ _CP
Vo+T —— = 7+ 7

IT we neglect oblateness, then Gep is zero. Also, the flight path angle
is nearly zero so that Dy can be neglected as shown in figure 9. The
equations of motion with no atmospheric rotation are

Vo KM
T o= i L —
r ra
A2
. . 1 - [CpA ( )
V(Pr +I‘VCP = = § pV(P iy —m—

Since the only variable in the tangential equation of motion with any
appreciable percentage change is p, we can integrate the equation as
follows

(rvg) = (V) - % ﬁv@2r<395 t (A3)

m

The quantity P 1s the mean density during thz time interval between

t =0and t =1t, and (rVp), is evaluated at t = 0. Equation (A3) gives
the time range of change of area sweeping. Siace Vo and r are slowly
varying functions of time, the product rV¢ also is.
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To obtain the altitude as a function of time necessitates an
integration of the radial equation of motion

. KM Vo )Z
r:-;§+%ﬁ—)— (Ak)

Equation (A3) together with the relationship
r = 1+ Pot + 0(t%) (a5)
put equation (A4) intc the form

T = Yo -kt +0(t%) (A6)

Voo /CpA r . KM
= o1 (B0 ()50 + T2 (a7)

Integration of eguation (A6) yields

wherein

. 2
r = I"0+I'ot - }—{12;—' + O(ts)
(48)
) - 3
r = ro+ret +1g %; - 5%— + 0(t*)

To obtain the altitude time curve for a particular case, we first
chocse a value of § for the first step and evaluate k. The value of
r versus t can then be established from equation (A8). The curve of
r versus t also establishes a curve of p versus t for a given atmos-
phere. The time t, for which p satisfies the following relationship
can easily be found

tl
'5=;Cl—f o dt (A9)
1v

Since p 1s the average value of p Detween t =0 and t = t,;, the
values of 1y, ry, and ¥; calculated from equations (A6) and (A7) for
t, should be accurate. The values of r,, fl, and ¥, are now used as
initial values in the next step of the calculation. The next step is
started by moving the zero of the time scale to t,, choosing a new value
of 7, and calculating a new value of k. Thus the process is continued
step by step.
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As a numerical example of this calculaticn consider a satellite
launched in an equatorial orbit in an easternly direction with an initial
altitude of 80 miles. The initial conditions necessary to proceed with
the calculations are

tOZOSeC W
ro = a+hg = 21,348,828 ft
To = 0 ft/sec } (A10)
(Vw)o = 25,678.862 ft/sec
CpA
- 1.0 J

At an altitude of 80 miles the density from reference 7 is p = 2.96x10—11

slugs per cubic foot. For the first step in the calculation of the

trajectory let us choose a value of § slightly greater than the initial
density, as follows,

5 = 3.019x10 % slugs/1t3 (A11)

and evaluate equation (A7) for k.

-1 (25,678.862)°
(21,348,828)

b
1]

(3.019x10 (L.0)+0

2.3945x107° (A12)

1

The considerations in selecting p are discusced subseguently.

With the value of k determined, equaticn (A8) is now used to
establish a curve of r versus t. For t equal to 0, 400, 800, and
1200 seconds the respective values of r are found to be

£.3945x107°(0)°

t = 0 sec r = 21,348,828 Z

= 21,348,828 rt

c-*-
1§

Loo sec r = 21,348,573 ft

t = 800 sec r = 21,346,785 ft

o+
1]

1200 sec r = 21,341,932 ft
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These points also establish a curve of p versus t by the use of refer-
ence 9 to obtain p for a given altitude above the earth's surface. The

corresponding values are

t = 0 sec p =
t = 40O sec p =
t = 800 sec o =
t = 1200 sec p =

From this curve of p versus t the
value of t; which satisfies equa-
tion (A9) can be easily found, as

is shown in the accompanying sketch,
by making the two shaded areas
under the curve equal. Performing
this integration for this numerical
example one finds that

t1 = 821 sec (A13)

Now, using the values from

2.96x10"
2.98x10"
3.18x10°

3.78x10°

11

11

11

11

slugs/ft8
slugs/ft°
slugs/ft°

slugs/ft3

equations (A10), (A12), and (Al3) Pl <A

and inserting them in cqua-
tions (A6) and (A8) yields the

quantities

ry

Therefore, at t, =
position and motion

1l

'
Sketch (c)

(2.3945%107° ) (821)°

21,348,828 - Z o

21,346,619 ft

_ (2.3945x107°) (821)7
2.0

-8.06996 ft/sec
-(2.3945x107°)(821)

-0.01966 ft/sec?

821 seconds the gquantities specifying the satellite's
are



L6

r, = 21,346,619 ft

1§

r; = -8.06996 ft/sec
. > (ALL)

ry = -0.01966 ft/sec®

[l

<V@)1 = 25,678.862 fi/sec

J

These values are now used as initial value:s in the next step of the
calculation. The zero of the time scale is shi:'ted to correspond to t,,
and a new value of P must be chosen. The value of 1r; corresponds to
an altitude above the earth's surface of 420,191 feet for which the
density (ref. 7) is 3.205Xlo_ll slugs per cubic foot. As the average
density for the next step, let us, therefore, clhoose a new value of

B = 4.30x207** slugs/rt> (A15)

With this value and equations (AlL) the calculation of k (eq. (A7)) is
repeated and is found to be

x = 2.2450x107°

Now the curve of r versus t is determined from equation (A8) and the
corresponding densities are determined from reference 9. These are

t, sec r, ft ol s:ﬁ.ugs/ft3
0 21,346,619 3.205x10"
400 21,341,579 3.850x10” 1
800 21,331,956 5.300x10" 1
1200 21,316,31k4 9.6:0x10™ 1

Integrating graphically as before
to -ty = 959 sec (n16)

and equations (A6) and (A8) thus give

ro = 21,326,540 ft
ro = -37.24824 ft/sec (AL7)
Tz = -0.04119 ft/sec?

Therefore, at tp = 1780 seconds, these quantit:es plus Vo, obtained
from eguation (A3) specify the satellite's position and motion.
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These quantities thus become the initial conditions for the next
step and the calculation 1s repeated.

Let us now consider the factors entering the choice of P. For
entry from circular orbits, as in the present example, the value of 7
should be 1 or 2 percent greater than the initial density, po+ In the
calculation of figure 11 for the long time interval, it was decided
a pricri to go to 3000 seconds in about four steps. The values of B/po
for each step are shown in the following table:

Time interval E/po pl/po
0 -821 sec 1.020 1.083
821 - 1780 sec 1.342 2.031
1780 - 2425 sec 1.966 3.932
2425 - 2875 sec 3.125 9.415

Because the density changes slowly with altitude at first, a large initial
value of B/po would give a very large time interval. This is to be
avoided since the present method is based on power series in time. Once
the curve of p versus t 1s established in the first interval, the values
of E/pO for subsequent intervals to obtain given intervals in time can
be estimated by extrapolating the curve.

To study the effects of time interval, the calculation was also made
in about eight steps instead of four. As expected, the calculation with
more steps remains closer to the machine solution at large values of the
time. In any particular case, it is best to do the calculation with two
different time intervals to be sure of the range of accuracy of the
calculations,

It might be mentioned, in ccnclusion, that the present method can
be applied to an atmosphere of arbitrary density-altitude relationship.
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APPENDIX B

APPROXIMATE EXPRESSION FOR ECCENTRICITY FOR

VALUE OF VCP SMALL COMPARED IO V.

It is possible on the basis of energy considerations to obtain a
simple expression for the eccentricity for valves of V, /Vc small
compared to unity. The starting point is equation (41) which relates
the eccentricity to certain quantities as follcws

1-82 = —= (B1)

From the definitions of Lg and p we find

L i () (2). 12 -
pl KM \£,2/ \1/ KM

The length of the semimajor axis 1 1is relatec to the total energy for
a circular force field. The kinetic energy for unit mass is VZ/2 and

the potential energy per unit mass is —KM/r. Thus the total energy E
is

E=F-T=% "V (83)

Since the total energy depends only on the length of the major axis
independent of the eccentricity, we have (ref. 3)

E=-5-=—%5 -V (Bk4)

The expression for Lg/pl thus becomes

Lo

pl _Gs.fm%z') <&> V_22' ; ”c2>
)

I

I

Thus from equation (Bl)

1-E2 = (L-E)(L+E) - 2< ; 2;) C%)g (B6)
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For E near unity

V2 \ VoV
.1 - - A
E =1 (1 2Vc2> <Vc (BT)

It is clear that E approaches unity as the path becomes vertical.

At the other 1limit assume that V(P is nearly equal to V. so that
— = 1+e¢ (B8)

where € is a small quantity. Let us rewrite equation (BY) in the form

2 - E\;‘:;z - 1>2+<V—f—®>2@—(5 ) (B9)
EZ = [25(1 + %>J2+<%>2(1+2€+62)2 (B10)

For V@ = Vo or very close to it, we thus have

or

.2
=l +4e®

Vo

EZ =
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APPENDIX C

CHANGE IN PERIGEE ALTITUDE DUE 10 OBLATENESS

GRAVITATIONAL FIELD FOR EQUATORIAL ORBITS

The specific question considered here corcerns a satellite in a
circular orbit without cblateness forces at time t = 0: When the oblate-
" ness gravitational field is suddenly "turned cn," what happens to the
perigee radius, rp? Let 1r5; be the radius of the circular orbit without
oblateness forces, which becomes the apogee radius as soon as oblateness
forces are turned on. From the previous apperdix it is known that the
total energy is related to the length 21 of the major axis (without
oblateness) by equation (BL).

. - X
E=-5 (c1)
A change in energy AE 1s such that
&E. = - A_l (CE)
E 1
Now for an equatorial orbit the energy balance with Vg = V. and with

no oblateness is such that the orbit is circuar. With oblateness the
energy balance requires that Vo = Veo for a circular orbit. Thus if

Ve = Ve with oblateness, there is a kinetic e¢nergy deficiency of

(Veo? -Ve?)/2 per unit mass for a circular ortit. This energy deficicncy
causes a change in length of the major axis £21 of rg -rp since the
orbit has the same apogee radius with or without oblateness. Thus

21AE 1 . Vc2>
I'q = I :--—:-'——V Y C
Ta=Tp E B c02< Vool (c3)
with
V.2
Ez-%
o 5 (ck)
Vo Gua
z %1 - —3
VCo r

equation (C3) becomes

2
(rq, -rp) & lEu(%E T, (c5)
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CpA/m = 1
fo/(Vm)o 0 -0.01 ~0.05 -0.10
V,, miles -LLho6.562 3582.562 9L48.577 526.382
Ay, miles 20,060.089 261k4 . 743 545,045 335.566
sS4, miles 19,279.667 4201.1k40 1089.919 624 . 226
t, sec 4355 1199 538 Lo6
(wg V1)/54 -.330 -.0k2 -.003 -.001
N )/sa -.365 -.067 -.001 .000
(¢4 VEN -.366 -.ok2 -.003 -.003
(A4 - Xs)/s4‘ -.334 -.070 -.001 -.005

CpA/m = 10
V., miles 3344.785 2527.760 751.924 ko7, 021
Ay, miles 10,539.586 1689.927 640 . 422 480.512
S4, miles 8975.380 2974.090 98k . Lok 642,061
t, sec 2801 1594 1158 1068
(Vo= ¥1)/s,4 .090 -.023 -.002 -.001
(N2 =N1)/s4 -.095 -.018 -.001 .000
(Vy - Vg)/s, 094 -.02k -.002 -.001
(Ag -~N3) /54 -.091 -.019 -.001 .000
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TABLE I.- PERCENTAGE EFFECT OF OBLATENESS GRAVITATIONAL FIELD ON RANGE
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TABLE II.- PERCENTAGE EFFECT OF ATMOSPHERLC ROTATION ON RANGE

CpA/m = 1
ro/ (Vo) 0 -0.01 -0.05 -0.10
V,, miles -4406.562 3582.562 9Lk8.577 526.382
Ay, miles 20,060.089 2614, 743 545.045 335.566
sS4, miles 19,279.667 L201.140 1089.919 624,226
t, sec 4355 1199 538 Lo6
Vi)/s, .0kO .006 .003 .00k
(As -N1)/s4 .033 .03k .087 .148
(Vg ~Vs)/s, Nelel .005 .003 .002
(Ag = N2)/54 .06k .032 .087 143
CpA/m = 10
V,, miles 334h4.785 2527.760 751.924 hot.021
Ay, miles 10,539.586 1689.927 640 ka2 480.512
S4, miles 8975.380 2974.090 984 .49k 6L2.061
t, sec 2801 1594 1158 1068
(¢3-¢l)/ -.017 .007 .003 .002
N, )/s4 .0L5 .103 .291 438
(¢4 Vo )/54 -.013 .006 .003 .002
No)/54 .0k .103 .291 438
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TABLE ITT.~ CALCULATED QUANTITIES FOR EQUATORIAL ORBIT

h

Vi

_f’

A,

v

sec f1’; ft/cgéc ft/sec radians ft/géc VCP/VC
0| k22,400 | 25,678.860 0 0 25,678.86 | 1.000000
606 | 421,753 | 25,674.298 3.899 L7288 | 25,679.25 | .999807
1669 | 407,830 | 25,677.980 o, oks5 | 2,0076{ 25,687.62 | .999624
1955 | 400,009 | 25,682.181 30.820 | 2.3519 1] 25,692.33 | .999605
2hh2 | 381,881 | 25,689.336 Li 381 2.9387 ) 25,703.27 | .999458
2588 | 375,008 | 25,690.380 49,840 | 3.1147{25,707.41 1 .999338
2916 | 355,947 | 25,685.460 68.485 | 3.5104 | 25,718.92} .998699
2998 | 350,039 | 25,680.795 75.852 | 3.609k4 | 25,722.50 | .998378
3200 | 332,175 | 25,651.831 104.165 | 3.8532|25,740.28 | .99683k
3400 | 306,036 | 25,543.869 167.173 | 4.0943 | 25,7h9.14 | .991989
3500 | 286,112 | 25,315.656 239.939 | 4.21k2 | 25,761.21 ] .982704
3665 | 220,154 | 22,022.188 696.182 | L.kok3 | 25,801.36( .853528
3696 | 195,186 | 19,039.298 923.976 | L.k346(25,816.60 | .737483
3721 | 169,602 | 15,017.882 | 1,116.853 | L4.4550 | 25,832.27 ] .581361
3746 | 140,388 | 9,474.258 [1,183.196 | L4.L4696 ] 25,850.16 | .366507
3755 | 129,886 | 7,368.195 | 1,14k.695 | k.Lh732]25,856.61 | .28496k
3764 |1 119,859 | 5,464,839 | 1,079.841 | L.k759 | 25,862.77| .211301
3773 110,478 1 3,896.195{1,003.839 | L.hk779{25,868.54 | .150615
3784 | 99,935 2,479.298 915.170 | L.4796 | 2k ,875.03 | .095818
37951 90,295 | 1,529.855 840.117 | %.4806|25,880.96( .059111
3805{ 82,195 960.579 781L.004 | 4.4812 | 25,885.94 | .037108
38211 70,436 Loo, 641 688.208 | L4.48171]25,893.28 | .016315
3837 60,268 159.390 580.798 | L.4819 | 25,899.46 | .006154
3857 | 49,986 35.608 452.853 | 4.4820 | 25,905.81 | .00137h
3882 | 40,103 3.564 37,1731 L.4820 | 25,911.91 | .000138
3915] 30,011 .088 274.510 | L4.4820 ] 25,918.16 | .000003
3934 | 25,041 .008 249,848 | L4.4820 | 25,921.23 1 0
3955 | 20,023 0 228.336 | L.4k820]25,924.33 | 0
39781 14,998 0 209.522 | 4,4820 1} 25,927.44 | 0
Loo3 9,973 0 192,983 | 4.4820 | 25,930.56 | 0
Lo30 L 965 0 178.392 | 4.4820(25,933.65( 0
4058 151 0 165.883 | 4.4820 | 25,936.64 | O
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(a) Circularization of ellipse

{(b) Spiral decay

{(c) Terminal phase

Figure 2,- Phases in trajectory of satellite.
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(a) CpA/m = 1; cases 1 and 3; p = O.

Figure 3.- Periodic variations of altitule and eccentricity for

equatorial orbits; hy = 120 suatute miles.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Concluded.
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Figure 4.- Secular trends in altitude and eccentricity for equatorial
orbits; hp = 120 statute miles.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Concluded.
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Figure 7.- Continued.
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