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NATIONALAERONAUTICSANDSPACEADMINISTRATION

MEMORANDUM 12-4-58A

THREE-DIMENSIONAL ORBITS OF EARTH SATELLITES,

INCLUDING EFFECTS OF EARTH OBLATENESS

AND ATMOSPHERIC ROTATION

By Jack N. Nielsen, Frederick K. Goodwin,
and William A. Mersman

SUMMARY

The principal purpose of the present paper is to present sets of

equations which may be used for calculating complete trajectories of

earth satellites from outer space to the ground under the influence of

air drag and gravity, including oblateness effects, and to apply these

to several examples of entry trajectories starting from a circular orbit.

Equations of motion, based on an "instantaneous ellipse" technique,

with polar angle as independent variable, were found suitable for auto-

matic computation of orbits in which the trajectory consists of a number

of revolutions. This method is suitable as long as the trajectory does

not become nearly vertical. In the terminal phase of the trajectories,

which are nearly vertical, equations of motion in spherical polar coordi-

nates with time as the independent variable were found to be more suitable.

In the first illustrative example the effects of the oblateness

component of the earth's gravitational field and of atmospheric rotation

were studied for equatorial orbits. The satellites were launched into

circular orbits at a height of 120 miles, an altitude sufficiently high

that a number of revolutions could be studied. The importance of the

oblateness component of the earth's gravitational field is shown by the

fact that a satellite launched at circular orbital speed, neglecting

oblateness, has a perigee some 67,000 feet lower when oblateness forces

are included in the equations of motion than when they are not included.

Also, the loss in altitude per revolution is double that of a satellite

following an orbit not subject to oblateness. The effect of atmospheric

rotation on the loss of altitude per revolution was small. As might be

surmised, the regression of the line of nodes as predicted by celestial

mechanics is unchanged when drag is included. It is clear that the

inclination of the orbital plane to the equator will be relatively

unaffected by drag for no atmospheric rotation since the drag lies in

the orbital plane in this case. With the inclusion of atmospheric

rotation it was found that the inclination of the plane changed about

one-millionth of a radian per revolution. Thus the prediction of the
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position of the orbital plane of an earth satelilite is not complicated
by the introduction of drag. The line of apsic1es, which without drag
but with oblateness moves_lowly in space, tents to movewith the satel-
lite whendrag is included in the calculations As a results, the usual
linearized solutions based on oblateness alone must be basically altered
when drag is included to take into account the rapid movementof the line
of apsides.

In the second illustrative example the final revolution was calculated
to impact for a numberof trajectories in an orbital plane inclined at 6_°
to the equator. Of particular interest is the large effect the oblateness
gravitational field and atmospheric rotation c_.nhave on the impact point.
For a value of CDA/m of unity, and for an in_itial downwardangle at
80 miles altitude of 0.01 radian, such as migh_ be utilized for manned
re-entry, oblateness had an influence of _oout 300 miles in the impact
point, and atmospheric rotation had about a 150-mile influence.

It was found that two-dimensional solutions neglecting atmospheric
rotation can be used to approximate three-dime_sional solutions including
atmospheric rotation. In this connection two-cimensional theories must
be interpreted as being viewed by an observer (_na rotating earth.

The importance of various terms in the e_Lations of radial and
tangential motion is examined for various calciLlated trajectories. The
validity of the principal assumption in the ap_)roximateequation of motion
of TN 4276 was thus confirmed for a satellite :;peed less than about
99-percent circular satellite velocity. Certain gaps in our theoretical
and experimental knowledge are pointed out insc_far as they influence our
ability to calculate complete trajectories froll launch to impact.

INTRODUCTION

Much interest exists in the dynamics of e_rth satellites, and a
numberof papers (e.g., refs. i to 6) in the f_eld have recently appeared.
These papers consider only parts of the total _rajectory; they are also
usually limited to two-dimensional trajectorie_, or they neglect air
drag. The principal purpose of this paper is _o present sets of equations
which maybe used for the calculations of comp[ete trajectories from outer
space to the ground under the influences of ai_" drag and gravity, including
oblateness effects, and to apply these to seve_'al illustrative ex_nples of
entry trajectories starting from a circular o_,it. This purpose cannot be
achieved at present on the basis of analytical solutions except possibly
by patching together such solutions. Therefor_, automatic computing
machinery was used in the study. Forms of the equations of motion suit-
able for automatic computation are presented, _nd a numberof calcu!ative
examplesare carried out. The calculative examplesare chosen to illustrate
the relative importance of various physical fo_'ces acting on earth



satellites. Someof the essential physical features of the calculated
solutions are discussed in the hope that the resulting insight _rill lead
to more inclusive analytical solutions. In connection with the numerical
calculations the authors wish to acknowledge the contributions of Miss
Harce!line Chartz in programing the equations for the digital computing
machines and in supervising the computations.

SYMBOLS

a

ar,a_,a _

A

Z

b

CD

13

equatorial radius of earth

components of acceleration vector along

directions

reference area of satellite

acceleration vector of satellite

polar radius of earth

drag coefficient

drag force

Dr'D_'DT'_ _ components of drag along

D_,D_ J

e

E

E total energy of satellite

F vector force acting on satellite

Y r_ and Y@

ir,i_,m_,i_, and " directions

eccentricity of earth

LZ2- k2h 1/2

eccentricity of instantaneous ellipse_ k" _" "J

Fr,F_,F_, } components of _ along _r_Y_Y_Yq0_ and i_ directions
Fop,F_

g component of gravity acceleration at earth's surface; no
oblatene ss

vector force per unit mass acting on satellite because of

gravity of earth

Gr,G_,G_ _ _ _ _ _.

Gq0,G_ j components of _ along ir,i_,l_,z_, and i_ directions

Oblate ne s s

Circulari-

Yes Yes

atmosphere

No within range

of oblate-

ness forces

During circu-
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vector angular velocity of

f rsm_ework
ir,iX,m @ system in inertial

angular velocity of earth about pol_r axis

change in angular velocity due to motion of orbital plane

angular velocity for fixed orbital plane

l0

The angle _ is the bearing angle of the orbisal plane in the r, h,

system. The bearing angle for an earth observer is different from

because of earth rotation.

The relationships among the various angle;3 can be readily established.

The following six relationships are useful

sin T = sin _ sin

sin _ cos
sin(_ -8) =

COS

COScos(_ -e) :
COS

sin _ cos _ = cos _ cos

cos _ = cos _ sin

tan

tan m - sin(h-8)

The direction cosines between the r_ 9, <_ system and the r, h,

system are

r

r i

0

0

0 0

sin _ -cos

cos _ sin

Properties of the Atmosphere and the Earth

The forces due to air drag depend on the density and rotation of

the atmosphere, and the forces due to gravita?ion depend on the size,

shape_ and density distribution of the earth. The atmospheric properties

that are adopted for the exact calculations ol this report are those con-

tained in reference 9. However, as a result cf observation of the satel-
lite 1957 _. S_utnik I. the ARDC densities a_ove about 200 KM appear to
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will be a periodic variation in density for a purely circular orbit, due
to the nonspherical figure of the earth, except for equatorial orbits.
For a polar orbit_ for instance, there would be density changesbetween
the equator and the poles corresponding to a !3-mile change in altitude
for a circular orbit. Weconsider this density change to be due to the
nonspherical figure of the earth and do not call it an oblateness effect_
a term applying only to the gravitational field.

In the calculations it is necessary to know the size and shape of
the earth. It is assumedthat the earth is an ellipsoid (oblate spheroid)
with the dimensions adopted at the International Geodetic and Geophysical
Union of 1924, as given in reference 8. The equator is assuinedto be a
perfect circle of radius a, and the polar radius is b.

a = 6,378,388 ±18 meters
= 3963.3386 statute miles
= 20,926,428 feet

b = 6,3_6,911.946 meters
= 3949.9941 statute miles
= 20,855,969 feet

(4)

a-b i _ 0.0033670034 (5)
a - 297

a2 _ b 2
es - = 0.0067226700 (6)

a2

(i meter = 3.28083333 feet)

It is also necessary to specify a value of the earth's gravitational

field strength for the purposes of the calculations. If F is the gravi-

tation attraction between two masses M and m a distance r apart_ then

the universal gravitational constant K is given by

F=K Mm
r2

If g is the force on a unit mass due to the earth's gravitational field

at the surface of the earth, M the mass of the earth, and r is equal

to R 3 the "mean" radius of the earth_ then

KM = gR2

It turns out that we shall have use of the quantity KM which is given

in reference ii as
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KM : (i + 8XlO -5) (3.986329Xi02° cmS/sec 2)

KM = 0.14077500xi017 ftS/sec 2

(7)

Another quantity of the earth's gravitational field with which we

will be concerned is its quadripole moment. I!ecause of the nonspherical

+

+

._ Gr

Sketch (a)

mass distribution of the earth_ its gravita-

tional field is not spherically symmetric,

but has a quadripole moment. The potential

is that due to a quadripole formed as shown

in the sketch. A quartet of sources and

sinks with strengths of equal magnitude are

placed on the polar axis of the earth near
its center. The sources are located at the

center with the sinks equally spaced above

and below the center. The sinks are permit-

ted to approach the sources while the pro-

duct of strength and spacing remains constant.

The net result it a quadripole of the present

sort which resemYles a dipole pair with mirror

symmetry. Also thown in the sketch are the

radial and tangertial components of the

gravitational fi_!d due to oblateness. The

gravitational potential including the non-

spherical component is usually taken as

I _a2 I
¢ = KM i (1- 3 cot 2_) (8)

r r 2

The force per unit mass in any direction is t_e gradient of ¢. The

value @ is the geocentric latitude and _ _s a dimensionless constant

given in reference 2 as

6_ : (1.637 +O.O04)xl( '-3

From reference ii_ a value of 6_ calcult ted for the international

ellipsoid is

6_ : 1.638xi0 -s

We will use this value in the calculations.

It is probably interesting to note that Jhe surfaces for which ¢

is a constant are not oblate spheroids nor do(s one coincide with the

assumed geometric figure of the earth. The surfaces_ ¢ equal to a

constant_ in principle are everywhere normal io the earth's gravitational

field. If the vector gravitational field is c:orrected for the accelera-

tion due to rotation of the earth_ then the resultant vector field should

be normal to the "mean" surface of the oceans to prevent their flowing

toward the equator.

u

c
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If we designate the gravitational force per unit mass in the

_r, _h, is, i_, and is directions by Gr/m , G_/m, G$/m, Gq0/m , and G_/m,

we have in the r, h, _ system

Gr _ _¢ KM 3_KMae (i-3 cos 2_)
m _r re + r4

G_ i _¢

m r cos @ _ 0

G__@_ i _¢ _ 6K_a 2

m r _@ r4
sin 2@

(9)

In the r, _, _ system we have

Gr KM

m r2
6_KMa2 (i - 3 sin2_ sin2_)

r_

GM = 12KM_ ae
m r4

sin _ cos _ sin2_

G_ 12KM_a 2

m r4
sin _ cos _ sin

(io)

The equations are obtained by noting that G_ and G_ can easily be

obtained from Gh and G@ by a rotation involving _ (see fig. l(a)).

The quantities @ and _ are then eliminated in favor of @ and

through relationships derivable on the basis of spherical trigonometry.

Air Drag Forces

Besides the forces on the satellite due to the gravitational field

of the earth_ we will also be concerned with the air drag on the satel-

lite with the atmosphere rotating with the earth. In the r, _

_ystem the velocity of the satellite relative to the rotating atmosphere_

VR, is

V_R = _r r+_r cos _(h-_e) +_@r$ (il)

where _e is the rotational speed of the earth. Since the drag is in

opposition to the motion

.... PVR am 2
(i2)
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The components of the drag in the r_ _, _ sy_ tern are thus

]
D-_hm_ 21 pVRr cos _(_- _e)"C<_)

m = - _ pVRr_

In the r, _, _ system the velocity _R is 0.s we will show)

(13)

: _r r + iq0V<p- i_r_eCOS @

= _r r +_q_V_- rgecos @(_gsin 9- '_cos _)

: "_rr + - r_eCOS _) + i_r_,sin c_ cos 9 (14)

where we have made use of the relationships

sin _ cos ? = cos

cos _ cos 9 = sin _ cos

The drag components per unit mass in the r_ _ _ system are thus

Dr lm - 2 PVRr

m : - 2 DVR(Vq)- r_ec°s a')\'cD
m/

Dc_

m 12 PVRr_esin _ cos 9 <C__

(15)

(16)

SATELLITE KINEMATICS AND EQUATIONS OF MOTION

Equations of Motion in Geographicm_ Coordinates

The geographical coordinates r, h, _ are a special set of spherical

polar coordinates useful for certain problems of trajectory calculations.

They are related to the inertial coordinates X, Y, Z as follows:
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X = r cos _ cos

Y : r cos 9 sin

Z = r sin

The linear velocities in the r, _, _ directions (fig. l(a)) are

Vr:

V h : ri cos

Vj/ = r}

and the corresponding components of the angular velocity of the

ir, i_, ijl coordinate system are

_r : k sin

ir, ih, i9
are

% : i cos ,

The angular velocities referred to here concern ro_ _tions of the

system in the inertial framework. The acceleration components

ar : _ -r}2-r_2cos2,

i d (r2oo_2,i)
ah : r cos _ dt

a_ : r_+ 2r}+ ri2sin , cos

]
j (18)

The forces per unit mass in r_ h, and 9 directions are equal to

the accelerations in those directions, so that the equations of motion
are:

Fr _ _ _ r_2 _ r_2cos2¢
m

Fh _ 1 d (r2cos29i)
m r cos _ dt

F__ : r_+2r}+rh2sin , cos ,
m

(19)

Under the actions of gravity, including oblateness, and of air drag the
forces per unit mass are
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Fr KM 3_KMa 2

m r2 + r4 (1-3 cos 2_)-i pVRi

m 12 pVRr cos @(i-_e) C<_

F@ 6KM_a 2

m r4 sin 2@ - _ PVRr@ \ m /

(20)

Equations of Motion in Orbital Plane; Motion of Plane

For certain kinds of calculations the equations of _otion i_ terms

of r, _, and _ are convenient. The unit vectors ir, i_, and is form

a right-handed system in that order. Because the r, _, _ coordinate

system is not an inertial system, account must be taken of its rotation

in establishing the equations of motion. It i:_ clear that r, _, _,

and e are necessary to describe the position ,)f the satellite, so

that e will also enter the equations of moti, m. Let us first establish

the kinematic rela*ionships of the system. Since there are four coordi-

nates specifying the satellite position, rather than the usual three, we

can anticipate an extra kinematic relationship involving r, _, _, and e.

A convenient method for deriving certain kinematic relationships is

to obtain the quantity gD<r by two methods an_ then to equate its com-

ponents. One convenient way to establish _×r, is to consider the follow-

ing vector transformation between any vector, r_ and its time rate of

change

(21)
dt - 8t +

I_ this equation d_/dt is

incLuding both changes in the
as discussed, for instance in reference 12.

the total rate of change of the vector, r

magnitudes and directions of its components. _ne quantity 8_/_t refers

to the rate of change of _ due solely to the changes in the magnitudes

of its components but with no changes in their directions. The angular
velocity, _, is that of the axis system in whizh the components are

expressed. (The ability to hold the direction of the components fixed

presupposes the knowledge of an inertial systen to which g can be

referred.)

Let us now take _ to be the radius vector of the satellite so

that d_/dt is the satellite velocity _. F_om the definition of the

orbital plane, we have in the r, _ _ syste_

-" (22)V=d--_ + q_
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The quantity _r/_t

directions are fixed.

is the satellite velocity if the ir, i_, and

_-_= irr (23)

From equations (21), (22), and (23) , we thus obtain

The second method used to obtain _x_ is to construct _ and then

to take its cross product with r. To establish the angular velocity we

note that of the independent variables, r, _, _, 8, changes in all

quantities except r cause angular velocity of the moving axes. If we

hold th_ orbital plane fixed in space, we get an angular velocity vector
along i_ due to _.

(2_)

Now, because of motion of the orbital p_ane specified by 8 and _, we

have the additional angular velocity A_ which is clearly

A_ = _, _,a (26)

The vector ZS_ can easily be transferred to the r, _, _ system by

means of the following table of direction cosines

X !

y'

Z

r _

cos _ -sin _ 0

sin @ cos _ cos _ cos _ -sin

sin @ sin _ cos 9 sin _ cos

A_ : 7r(& sin _ sin c_+_ cos fl_)+_fl_(8 cos 9 sin c_-_ sin q0)+ "_c_(8 cos c_)

(27)

The total angular velocity is now

: +_ : 7r(_s±n_ sin_+a cos_)+

7_(_cos_ sin_-a sin_)+7_(_+_ cos_) (28)

If we %ake the vector product _X_ from equation (28), we get

_xr = -_r(8 cos _ sin _-_ sin 9) +_9r(_+8 cos _) (29)
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Comparison of equations (24) and (29) yields a pair of relationships

cos _ sin _-_ sin _ = 0

+8 cos _ = __V_r 1

The angular velocity of the satellite is thus

(3o)

-. & -./v \
: ir -- + i_ __-__ (31)

COS

The acceleration in r, 9, _ coordinates is derived from a vector

transformation equation similar to equation (21)

" L "The quantity_ _ _t_ with ir_ _ and i_ fi}ed is

_'_ r r

since the rotation of the moving coordinates do not contribute to $_/_t.
The vector product _x_ is

• . °

i r l_ 1CL

_r o v_
r

vm 0

V92 - }V_ -,
: -ir --9--+ i_ --_- + 2_rV _

Thus the acceleration is

A- dt- i - +i _+r +7_Vmnr (32)

The equation of motion then can be written
J
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Fr r
m r

(33)

subject to the kinematic equations

+ @ cos _ V?
r

_r -

8 sin

cos 9 sin

} (34)

The components of the forces due to gravity including oblateness and

drag in equation (33) are

F r KM 6_KMa s

m r2 r4 (i-3 sin2_ sin2_)-_ pVs}

F@ 12K_a 2

m r4 sin q0 cos <p sin2c_ - _ pVR(Vcp- r_eCOS c_)

F_ 12KM_a 2

m - r4 sin _ cos _ sin _ - _ PVR(r_esin _ cos _) CDA

(39)

It is noted that equations (33) and (34) are the equivalent of a set of

six first-order differential equations which fully determine the history
of six orbital elements for given initial conditions.

Equations of Motion in Terms of a Particular

Set of Orbital Elements

There are many sets of six orbital elements, the history of which
in space and time specify the path of the satellite. The set to be used

depends on the problem to be studied. For instance_ during circulariza-

tion of the elliptical orbit_ it would be reasonable to use among the

orbital elements those physical quantities such as eccentricity or length

of the major axis which describes the ellipse. In fact_ the concept of

the instantaneous ellipse to fit the trajectory at every point has been

used for a long time in celestial mechanics. We will now consider the
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Sketch (b)

equation_ of motion for a special
set of o_ital elements based on

an instantaneous-ellipse technique.

This set of equations is used for

certain _rajectories presented

herein.

The instantaneous ellipse

lying in the plane of the orbit is

shown in sketch (b). The ellipse

is characterized by the angle $_

the eccentricity E, and the semi-

major axis Z. The equation of

the inst_hutaneous ellipse in polar

coordinates is

i I+E cos(_- $)
- : (36)
r Z(I - E2)

One of the parameters of interest is the rate at which the radius

vector of the elliptical path is sweeping out _rea. Since the rate is

constant for a central force field, it should >e a slowly changing func-

tion of time when drag or oblateness is included. The rate at which area

is swept out is _/2, where _ is given by

Let us now introduce two new variables specifying the value of

for the instantaneous ellipse which is to have the same value of

the trajectory

_o2

P - _2

q = pE

and E

as

(37)

Here to is some reference value of _.
constant

Let us also introduce another

_0 2

Lo = -_ (38)

We now wish to relate p and q to the constants of the instantaneous

ellipse so that we can express r in terms of p and q. In "fitting" the

instantaneous ellipse we have taken the trajectory and the ellipse at

point P to have the same values of the radiu_ vector, r, and of the
velocity vector, V. Since the vectors r and V totally determine the

dynamical state of a particle, the dynamical states are _tched precisely.

It follows, therefore, that the momentum and energy are also matched.

The rate of sweeping for the ellipse _/2 is constant and its value is
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fixed by conditions on the trajectory at P. Also, the samecan be said
for the sumof the potential and kinetic energies. Nowthe rate of
sweeping out of area by the ellipse is

_kZ

2 T (39)

where k is the semiminor axis and T is the period. The period depends

only on the length of the major axis

2= Z3/2 (40)

The relationship of p to the parameters of the instantaneous ellipse

from equations (37), (38), (39), and (40) is

p i

Lo
(41)

It is clear that equation (36) can now be expressed

1 p+q cos q (42)
r L o

These preceding remarks are adequate for establishing the set of

variables that will now be used in the six equations of first order to

describe the motion of the satellite. First we must decide on the

independent variable. The variable _ is convenient if we are concerned

with how quantities vary per revolution. Time as the independent variable

is convenient for many other problems. With _ as the independent
variable, the dependent variables are taken to be

p : 2 }

q = pE

= _ -

Parameters of

instantaneous ellipse

C_

e

Parameters specifying

orientation of orbital

plane

t
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Equations (33) and (34) consist of a system equivalent to six first-order
equations. In terms of the six preceding variables, the equations of
motion given here without proof are

dt i
d_

dp 2p _F___
\m/d_ _u

dq = _ dp cos N+S sin
dm dm

d5 de dp

q d_ - -q _ cos _ - _ sin _ -;_ cos

d__ = [F_ cos

de /F_ sin

> (43)

where the quantities _, V_, u, S, and N follo_ from the variables and

from the reference quantities _o and Lo:

_SF_ sin _ cos
_u2

\m/ _u sin

_2 _ _o2
P

_ 12

1 + (de/din)cos

i p + q cos
U --

r Lo

S - 2p d9 q sin N + +p i\ +--d_ cos

_=_-5

Certain other identities arising in the develo_nent are also useful,

especially in specifying the initial conditions:
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gh

!

!

_o2P(l -E2) _o2

2Lo 2 2LoZ

_ _q sin

L o

V 2 _ _2

Lo s (p2+2pq cos _+q2)

no
=

(45)

During the course of the present work there appeared an English

translation of a Russian paper by Taratynova_ reference i, containing

equations of motion equivalent to the foregoing set. Taratynova's equa-

tions were taken from an astronomy text in Russian of 1936 vintage. His

equations differ from the present ones in several particulars. First,

the latus rectum and the eccentricity of the instantaneous ellipse are

used instead of p and q as dependent variables. As independent variables

both t and _ are used. The independent variable t can be changed to

_, as in the above set of equations, simply by multiplication by w.

It is important to inspect equation (43) for singularities arising

from zeros in the denominators. Inspection shows that such zeros can

conceivably arise through w, V_ _, or q. From equation (44) let us
write

v_

= r[l+ (deld_)cos _] (46)

It is clear that u and Vq both approach zero together if de/d_ is

small_ the only case that need concern us. If the path of the satellite

is vertical in the orbital plane, u and Vq are zero. Equation (43) is
then ill-conditioned_ in the large changes in the dependent variables

are accompanied by small or zero changes in the independent variable.

In this instance it becomes necessary to change to a new independent

variable such as the time. When @ approaches zero_ the orbital plane

is approaching an equatorial plane. However, the zero in the denominator

of the equation for de/d_ is only apparent. This is the case because

F_ in the numerator, which is due to drag or the gravitational field,

is proportional to sin _ as shown by equations (i0) and (16).

The zero in the denominator of d$/d_ due to q is of importance

for circular orbits, as can be seen by the following expression for the

eccentricity

q qv l
E - - (47)

p _o2
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It is clear that q will be zero for circular _rbits (E = O) since V_

and r are not zero. To avoid this difficulty, consider two new dependent

variables to replace q

v = q cos 5

w=qsin5

(48)

Then we have

q cos _ = q cos(_-5) = v cos _+w sin (49)

The differential equation for

dv da dp

d-_ = w _ cos _ - _ cos _+S sin

dw de dp

d--4= -v cos -d--6sin 3 cos
with

q

}
is then replazed by the following set

(50)

S : _SP (v sin qD-w cos qD)+ \m/+P + _ cos (51)

It is noted that the zero in the denominator of dS/d9 has now been

eliminated.

The equations of Taratynova also contain a singularity. How the

singularity was handled in obtaining the tabulated results given in the

paper for circular orbits is not discussed.

It is clear that the system of six equalities included in equa-

tion (43) can readily be converted from 9 as the independent variable

to t as the independent variable. It is sufficient to invert the first

equality and to multiply the next five equalities by _.

It is possible to write the equations of notion in a form which is

linear in the applied forces. In this case we also introduce the

eccentricity, E, rather than q as dependent variable.
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dp_ 2rp 3/2 /Fq)_

\mJdt _o

de sin q0 /F_

dt - v_T_"k \T/

d_ _ cos _<_)dt Vq

d5 sin

dt V_
ctncL  )+ + or)sin -

dE

dt 2 [E sin2q_o pl/2 r 2 cos q-El <_m)+

d m V_ sin _ cos _SF_

_= r - _u sin \m/

(_2)

The quantity in the square brackets represents the applied radial force

less the spherical component of the gravitational field. The foregoing

form of the equations of motion is convenient for deducing secular
trends.

ILLUSTRATIVE EXAMPLES

The equations of motion as developed in terms of orbital elements

and in geographical coordinates have their own particular uses. Two

such uses will be illustrated in the present paper. In the first example

we will examine the effect of the earth's oblateness and of the air drag,

including atmospheric rotation, on the orbits of satellites in the equa-

torial plane. Such an example will use the equations of motion in terms

of orbital elements. The second example in terms of geographic coordi-

nates is concerned with the effect on the impact point of the earth's

oblateness and of atmospheric rotation for nonequatorial orbits.

First lllustrative Example

As a first illustrative example, consider a satellite of given

CDA/m launched horizontally eastward on an equatorial orbit. Let the

initial height about the earth be given, and let the velocity be that

for a circular orbit without consideration of oblateness effects
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(vm)° = (Vc)° = ; _,_ = 0 (53)

We will let the drag parameter CDA/m take on values of i and i0. The

equations of motion are then solved for four c_ses:

Case i _ = O; ge = 0

Case 2 _ _ O; ge = 0

Case 3 _ : 0; _e _ 0

Case 4 _ _ O; _e _ 0

spherical gravLtational field;

nonrotating _tmosphere

nonspherical g_avitational field;

nonrotating itmosphere

spherical gravLtational field;

rotating atmosphere

nonspherical gravitational field;

rotating atmosphere

These cases per_it study of the effects of oblateness and atmospheric

rotation, at least for the above initial conditions.

Accuracy of calculations.- The principal factors influencing the

accuracy of the calculated results are the interval size and the number

of significant figures carried in the calculations. Eight significant

figures are carried throughout. The density was obtained by exponential

interpolation in the ARDC density table and is not accurate to eight

significant figures_ although the density calculations repeat consistently

to eight figures. With respect to interval size, the results of inter_al

sizes in _ of _/8 and _/32 are shown in the following list. This list

gives certain quantities as calculated at _ = 13_ for CDA/m = i, case I,

initial altitude 120 miles:

_ = _/8 radians Z_ = _/32 radians

_, ft2/sec 55.084587xi0 z° 55.084366xi0 z°

v 0.21953070xi0-7 0.23739280xi O- 7

w -0.12332460xi0 -4 -0.12347577Xi0 -4

t, sec 34452.440 34452.110

r, ft 21554337 21554164

_, ft/sec -0.32462706 -0.32502373

_, radians 40.840698 40.840779

E 0.12702521xi0 -4 0.12717994xi0 -4

V_, ft/sec 25556.150 25556.253

_, ft/sec 2 -0.68629226xi0 -6 -0.71082937Xi0 -6

h, ft 627909.00 627736.00

p 0.97086900 0.97087600
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The quantities are sufficiently close for most engineering purposes.

Note that the altitude difference is 173 feet, which represents about a

0.03-percent error. Similar calculations were performed for case 2 with

the same general results. On the basis of these results, it was decided

to use _/8 as the basic interval for the calculations.

Periodic variations.- In figure 3(a) are plotted the altitude and

eccentricity variations for one period for CDA/m = i, cases i and 3.

The loss in altitude with atmospheric rotation is slightly less than

without rotation because the dynamic pressure and hence drag is decreased

about 12 percent by rotation for eastward launchings. The path is a

spiral for which the eccentricity, although small, has a strong periodic

component.

The principal effects of oblateness during a revolution are illus-

trated by comparison of figures 3(a) and 3(c). The differences in the

scales of the ordinates should be noted during the comparison. Thus the

effect of atmospheric rotation is evident in figure 3(a) but not in 3(c).

It is of interest that the altitude difference during one revolution is

about 66,000 feet with oblateness, compared to about 800 feet without it.

To explain this oblateness effect, we make use of the full gravitational

field for an equatorial orbit as given by equation (i0)

m r2 + 6_ (54)

The gravitational field is increased by 6_, or about 0.16 percent. Since

the satellite was initially in an equilibrium circular orbit with _ = 0,

suddenly "turning on" the oblateness at the initial altitude leaves the

satellite with a velocity deficiency, just as if a tangential retrorocket

had been fired. Since ro = 0, the satellite location immediately turns

into an apogee point; and, neglecting drag, the path becomes elliptical.

From an energy consideration, neglecting drag, it is shown in appendix C

that the altitude difference between perigee and apogee is

ra-rp = 2raC ;
a2

c = (55)

We find that oblateness for equatorial orbits thus causes a difference

in altitude between apogee and perigee of ra - rp = 66,700 feet. With-
out oblateness but with drag figure 3(a) shows an altitude loss for half

a revolution of about 400 feet. The difference in altitude between

perigee and apogee is almost exclusively due to oblateness for the pres-

ent value of CDA/m. In fact the calculated value from equation (55) of

66,700 feet for oblateness alone is in very good accord with the value

from the complete calculations of 67_081 feet for the combined effects of

oblateness and drag. It is also clear that the approximate figure of

67,000 feet is not sensitive to initial altitude since drag is not

significant and the oblateness effect as calculated from equation (55)

is insensitive to changes in altitude for near satellites° With regard
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to the net loss of altitude per revolution_ oblateness has the effect in

the present case of doubling this loss. This specific result applies to

the altitude range for which d(log p)/dh is the same as for the present

example.

For CDA/m of i0, the altitude changes anl the eccentricity are about

i0 times those for CDA/m = i, but there are nD qualitative differences.

The effect of the rotation of the atmosphere h_s a small effect in all

cases.

Secular trends; limitations of calculatiom.- The manner in which the

altitude and eccentricity vary from revolution to revolution, the secular

trends, is illustrated in figure 4. For the range of figure 4(a) the

decrease in altitude per revolution is a nearly linear function of the

number of revolutions. However, for CDA/m of i0, figure 4(b), the rate

of decrease of altitude becomes greater at low_r altitudes since large

density increases occur. While the altitude v_riations are as we would

expect, the secular variations in eccentricity are of particular importance.

For CDA/m of i, figure 4(a) shows the eccentricity variation for 2 cycles,

and then continues the envelope for i0 cycles, the limit of the calcula-

tion. However, for CDA/m of i0, the eccentricity shows a divergence in

the range of calculations, and the calculations in fact break down.

To see how the calculations break down, l_t us examine the variation

of eccentricity with _ as shown in figure 5. (For the equatorial orbit

being considered _ and _ differ only slightlf.) Actually the oscilla-

tory variation in E is no longer significant, as in figure 4(b), but E

has what appears to be a nearly vertical tangeut. The instantaneous

ellipse is therefore undergoing very rapid ch_uges in eccentricity. The

interval size is too coarse to follow the rapiily changing curvature. By

reducing the interval size, and increasing the number of figures carried

in the calculation, the range of the calculatiDns can be increased. How-

ever, this method is inherently unsuited to calculation of the terminal

phase of the trajectory for the following reasons: In the terminal phase

of the trajectory the satellite descends verti2ally or nearly vertically

along a radius vector. For such motion there :s little or no change

in _, the independent variable. Therefore, a better-conditioned indepen-

dent variable, such as time, should be used.

Regression of line of nodes and movement Df line of apsides.- The
solutions for the movement of the line of node3 and the motion of the

line of apsides for the case of oblateness but no drag are known. The

variation in these quantities per revolution c{n be obtained by integrat-

ing the equations for de/d9 and d$/d_ from p = 0 to 2_ on the basis

that departures from the basic ellipse are sma[l. The following results

are taken from reference 13.

i

l
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Z_9 = -12X<r_<_)a2 Vc 4co s c_ I

A5 = 6_/a\e/Vc\4(4- 5 sin2_)

(56)

where Vc is the circular orbital speed at radius r for no oblateness

(eq. (53)). It is to be noted that the first equation, strictly speaking,

applies to the secular change for one nodal period, 4 that is, for the time

to go from one ascending node to the next. It happens that drag forces,

being in the plane of the orbit, have only a very small influence on the

regression of the line of nodes, as shown by the following list.

2_

i

2

3

4

CDA
- i; case 2

m

-0.009689

-.01938

-.02907

-.03876

e, radians

CDA
- i0; case 2

m

-0.009695

-.01941

-.02914

-.03892

Equation (56)

-0.009696

-.01939

-.02909

-.03878

The movement of the line of apsides (the major axis of the instantane-

ous ellipse) is vitally influenced by the drag. It is first desirable to

note what happens in the absence of drag for an equatorial orbit. The line

of nodes, which can be visualized only for orbital planes away from the

equatorial plane, moves backward against the motion of the satellite at

0.555 ° per revolution. The corresponding rate for the moon is about

1.5 ° per revolution. The line of apsides moves forward in the direction

of the satellite at twice this rate. As a resultj the line of apsides

moves around the equator with respect to an inertial framework at precisely

the same rate that the line of nodes moves backward.

With the introduction of drag the line of apsides tends to move

around the orbit with variable lag, at the average speed of the satellite.

To show clearly the motion of the line of apsides consider the angle 5

given by equation (48)

= tan 1 wv (57)

The angle 5 gives the position of perigee 5 measured from the line of

nodes. A plot of w versus v shown in figure 6(a) illustrates how 5

starts out at x for _ = 0 for the case shown and increases steadily

thereafter. If 5 leads or lags _ by a constant amount at all times,

4The nodal period is sometimes referred to as the synodic period.

5The position of perigee is sometimes referred to as the minor apsis.
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then a curve of (_ - _) versus _ would be a straight line. The parameter
(_ - _)/2_ is shownversus _/2_ in figure 6(b) for the present case.
The variable lead of _ over _ approaches _/2 after several revolu-
tions. The principal conclusion to be drawn flom these results is that
the very small motions of the line of apsides d_e to oblateness alone are
completely maskedwhendrag is included because the line of apsides moves
with average speed of the satellite. The concept of the line of apsides
becomesuseful now as a measure of lead or lag of the angular position of
the major axis of the instantaneous ellipse frcm the angular position of
the satellite.

Secondlllustrative Exam_!e

As a second illustrative example, consider a satellite launched from
the equator in an orbital plane inclined at 65° to the equatorial plane.
The initial height above the equator is taken ss 80 miles, and the satel-
lite is launched at circular orbital speed. T_e initial altitude was
chosen low enough to obtain impact in about a _evolution or less. The
launching velocity was not always horizontal as in the previous example,
but radial velocities were introduced as follo_s: _o/(V_)o = O, -0.01,
-0.05, -0.i0. Values of CDA/mof i and I0 arc included_ -The equations
of motion were integrated numerically for the four cases considered in
the first illustrative example. An attempt was madeto carry all cases
to impact. Impact altitude is taken to correslond to i000 feet altitude.
The calculations have been madeusing geographic coordinates, but were
checked against calculations in one case using the elliptic orbital
elements method.

Accuracy of calculations.- The accuracy ol the calculated results in

this example can be assessed by several means. First, we can compare

calculations on the basis of geographic coordirates with those on the

basis of elliptic orbital elements. We can also vary the time interval

used in the calculations based on geographic c(ordinates. Pursuing the

first comparison, consider a satellite with CIIA/m = l, ro/(V_)o = 0,
case I, for _ = 6.037 radians. The orbital quantities for these condi-

tions are compared in the following list.
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Orbital elements, Geographic coordinates,

_ = _/64 radians At = 30 seconds

9, radians 6.0377500 6.0377582

v -0.0038107764 -0.0038172179

w 0.0030982814 0.0031003921

t, sec 5010.6056 5010.6056

r, ft 2.1258!68xi0 7 2.1258139xi07

_, ft/sec -54.238659 -54.265940

_, radians 6.1777185 6.1777180

E 0.0049667594 0.0049733320

V_, ft/sec 2.5675599xi04 2.5675529xi04

_, ft/sec 2 -0.13947319

h, ft 0.335174×106 0.335146xi06

p 0.98883584

_, radians -0.22203323 -0.22202809

_, radians 1.1344640 1.1344641

It is noted that the two sets of calculations are in good agreement,

indicating that no gross mistakes have occurred either in analysis or
calculation. The interval size for the orbital elements is the !28th

part of a revolution, while that for the geographic coordinates is

essentially the 180th part of a revolution.

The foregoing comparison is made for a satellite descending from

80 miles altitude to about 63 miles altitude in one revolution. When

the calculations were performed with the 30-second interval, it became

clear on numerical grounds after some point in time that the interval

size was too large. All calculative cases using a 30-second interval

exhibited this behavior before impact. Thus while an interval size of

30 seconds is satisfactory for the initial phase of the trajectory, it

is not adequate for the te_mina! phase. Some time before the calcula-

tions exhibited inaccuracies with the 30-second interval_ the interval was

switched to 3 seconds. The calculations were then continued to impact.

Let us now compare the trajectories calculated using the foregoing

method based on two interval sizes with the trajectory calculated using

a 3-second interval size all the way. Since we are principally interested

in the point of impact, the following comparison yields a good idea of

how accurate the point of impact is. The example considered for this

comparison corresponds to CDA/m = i, case i, _o/(Vq)o = 0. In the left-
hand column a 3-second interval was used to compute the trajectory all

the way to the point of impact° In the right-hand column_ the 30-second

interval was used to t = 5760 seconds and the 3-second interval from

then until impact at 5991 seconds.
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Interval size, sec 3 only 30 and 3

t, sec 5991 5991
cos _ 0.86217703 0.86456735
_, ft/sec 166.43243 167.09205
h, radians 6.5265953 6.5241574

V_, ft/sec 0 0
h, ft 327 592
_, radians 0.47702802 0.47302309

In this case the satellite travels slightly mor_ than a complete revolu-
tion around the world. The difference in latitade at the end of 599! sec-
onds is 15.87 miles and the difference in longitude is 8.58 miles. Since
the range is over 25,000 miles, these accuracies for the impact point
were considered satisfactory. Hencemost of the calculations were made
on the basis of a 30-second interval followed by a 3-second inte_al in
the te_uinal phase.

General features of the trajectories.- To show the general features

of the trajectories, consider figures 7(a), 7(b), and 7(c) constructed

for CDA/m = i, _o/(V_) o = 0. The altitude variations with time shown

in figure 7(a) exhibit several important effects. The general waviness

is due to the nonspherical figure of the earth. At t = 0 the satellite

starts at the equator, and at about 1200 seconds the satellite reaches

its maximum north latitude for which the earth radius is least for the

orbit and the altitude is correspondingly greater. Subsequent passes

over the equator through maximum and minimum lstitude cause further

bumps. In the cases including the gravitational effects of oblateness,

the time of flight is significantly shorter than without oblateness

effects. The basic reason for this behavior has already been discussed

in connection with the equatorial orbits. 0blsteness causes the satel-

lite to descend lower into the atmosphere. The resulting higher drag

thus reduces the flight time as shown.

The latitude-longitude variations of the satellite for the four cases

are given in figure 7(b). The paths for the fcur cases are essentially

the same until the time atmospheric drag initiates entry. At this time

the latitude and longitude are essentially frozen. What this means

generally is that at a given time the satellite for the four different

cases Has nearly the latitude and longitude given by the Keplerian solu-

tion, but the altitudes differ significantly. As a result, for the four

different cases the satellite enters the final constant longitude-latitude

phase at different times.

During the first part of the trajectory the satellite not only

follows the same latitude-longitude path for all four cases, but it also

appears at a given longitude and latitude at the same time. However,

near the very end of the trajectol7 the satellite decelerates rapidly

just prior to turning down into the atmosphere. During this phase the
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satellite appears at a given latitude and longitude somewhat later than

for those cases for which the satellite has a greater altitude. Included

on the curves of figure 7(a) are ticks which indicate where the eccen-

tricity nearly reaches unity. These ticks correlate closely with the

position where the latitude and longitude become constant.

The eccentricity variations of figure 7(c) shed some light on the

motion. The eccentricity started at zero because of the particular

initial conditions taken in the present calculation; namely, those cor-

responding to a circular satellite orbit (see eq. (BII)). The eccen-

tricity remains small for the first part of the trajectory and shows

characteristic waviness because of the nonspherical figure of the earth.

During the final half of the trajectory the eccentricity rapidly rises

nearly to unity and remains there during the terminal phase. The value

of unity is associated with a vertical path as shown by equation (B7).

For cases i and 2 the eccentricity remains essentially unity until impact,

in most instances. In other instances, however, the machine calculation

of eccentricity becomes erratic. Actually, for a vertical path the

eccentricity is a derived quantity which has no particular significance,

so that the erratic behavior of E does not reflect on the accuracy of

the trajectory calculations.

Impact point.- The calculations of this illustrative example also

shed some light on how the oblateness component of gravitational field

influences the impact point, as well as how atmospheric rotation influences

it. Let 41, _i; 4_, h2; 43, h3; 44, _4 be the impact coordinates for
cases I, 2, 3, and 4, respectively. Then the effects of oblateness on

the impact point with no atmospheric rotation are 4e - _l, h2 - hl and

with atmospheric rotation are 44 - _33 _4- h3- These quantities are

tabulated in table I as a decimal part of the total range from the

assumed initial point to impact. The coordinates _4, 44 of the impact

point are also tabulated together with the great circle distance, s,

between O, 0 and h4, T4. These latter quantities as calculated in

radians were multiplied by a, the equatorial radius_ to convert to

miles. The ranges are as measured in the inertial system XYZ and are

not those for an observer on the earth. The earth ranges can be deter-

mined with the help of the tabulated flight times. The first important

point is that oblateness causes large percentage errors in range for

re-entry at zero or very small angles. These errors are simply the

calculated differences in impact point between those for _ equal to

zero and for _ not equal to zero. As previously mentioned, the initial

velocity is too low to launch the satellite into a circular orbit when
is not zero.

In the foregoing discussion the effects of oblateness have been

taken as differences in the calculated results due to neglecting the

oblateness gravitational terms in the equations of motion for the same

initial conditions. It appears desirable to take some account of oblate-

ness in the initial conditions. For equatorial orbits this is easily

accomplished by making V_ equal to that for a circular orbit. Without
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oblateness the value of V_ to achieve a circular orbit is

with oblateness the initial Vq_ should be

J O-Vq_ = Vco = + r2-/

Vc , but

Let us now differentiate the following three examples:

in

Example Initial V_ equations of motion

A V9 = V c Not included

B V_ = Vc l_cluded

C V_ = Vco l_cluded

For these three examples trajectories were computed to impact for the

following initial conditions:

so = 0°; ho = 80 miles; CDA/m = i;

_o = 0; @o = ho = ?o = 0°

The following results were obtained:

Example A Example B Example C

h, ft 151 270 193

t, sec 4,058 2,742 4,017

Vg, ft/sec i0 -ll i0 -l° i0 -l°

}, ft/sec 165.883 166.]i0 166.121

h, radians 4.4820 2.9011 4.4338

or s, miles 17,750 ii,4_8 17,570

_e foregoing results are as one might articipate. For V_ = Vc
the range is reduced 6,252 miles by including oblateness in the equations

of motion, but with V@ = Vco the range is reduced only 180 miles.

If the inclination of the orbital plane ±o the equator is changed

from zero, a purely circular orbit with oblateness is not possible. As

a matter of curiosity the value of V9 for a nonequatorial orbit was
changed from Vc to Vco to see how the range _as affected. The case

investigated corresponds to _o = 65 ° , CDA/m = i, ro = O, and ho = 80 miles.

The ranges are tabulated for the same conditions as examples A, B, and C.
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Example A; s = 26,987 miles

Example B; s = 18,736 miles

Exs_ple C; s = 38,126 miles

The ranges are great circle ranges. It is noted that including

in the equations of motion but not adjusting the initial value of V_

reduces the range by about 30 percent. If the initial value of V_ is
boosted to Vco, the range is greatly increased for the present orbit

even though _ is included in the equations of motion.

It is clear that for the present initial conditions increasing

CDA/m from i to i0 diminishes the effect of oblateness on impact point.

This result is in accordance with the fact that increasing CDA/m

decreases the importance of gravitational forces compared to drag forces.

Increasing the initial downward velocity also decreases the proportionate

error in impact point. This effect is similar to decrease in miss dis-

tance due to errors in launching speed as the downward launch angle is

increased.

For manned re-entry for which CDA/m is of the order unity and the

entry angle is of the order of a degree or less (_/V_ _ -0.02) to limit
normal accleration_ oblateness has an influence of several hundred miles

in latitude and longitude on the point of impact. Including or neglect-

ing atmospheric rotation does not significantly influence this result.

The influence of atmospheric rotation on the impact point is gener-

ally not so large as that of oblateness. The influence of atmospheric

rotation is represented by 43-41, h3-hx, or 44- 42, h4 -h2. These
quantities are tabulated in table II in the same manner as table I.

As the downward launch angle is increased, the percentage effect of

atmospheric rotation on range generally increases. Such an effect is

due to the fact that the satellite spends more of its time in the lower

atmosphere where the air density is higher. Also, as CDA/m is increased,

the drag due to atmospheric rotation assumes more importance and increases

the effect of atmospheric rotation on impact point. As the satellite

approaches its impact point_ its vertical velocity usually is small

co_ared to the rotational speed of the atmosphere. The atmosphere thus

drags the satellite around with it at constant 4 and increasing _. As

seen by the observer on the earth_ the satellite would descend vertically

except for a small slippage between the satellite and the atmosphere.

For a value of CDA/m of i and for _o/(V_)o of -0.01, such as might
be used for manned entry_ a 150-mile change in impact point is due to

atmospheric rotation for the present initial conditions.
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RELATIVE IMPORTANCE OF VARIOUB TERMS

IN EQUATIONS OF MOTIO]{

From the complete trajectories presented Ln the previous calculated

examples, it is possible to examine the order )f magnitude of the various

terms occurring in the equations of radial and tangential motion. The

resulting information will show what physical terms are important for

various phases of the trajectory and, hence, will suggest simplifications

permissible for analytical work in particular. Also, the information will

show where in the trajectory the assumption stilted in equation (3) becomes

valid; that is_ where the entry or terminal ph:_se begins and hence where

the solution of Chapman (ref. 4) is valid.

The parazneter which has particular significance for dividing the

trajectory into various phases is the ratio of tangential velocity Vq_
to circular satellite velocity V c. To obtain a number whose logarithm

is not -_ when V@ = 0, let us use i- Vq_/Vc as the parameter. In fig-

ure 8(a) the variations with i-V_/Vc are sho_n of the te_s in the

tangential equation of motion

_ + - + -- (58)
r m m

The term rVg/r is less than i0 percent of V_p when V9 is less than

about 99-percent Vc. This result gives a quantitative measure of when

the assumption of equation (3) is met. Figure 8(b) was constructed to

show that the figure of 99 percent does not chzlnge when the drag parameter

CDA/m is increased from unity to i0.

Figure 8(b) exhibits phenomena not manifest in the range of fig-

ure 8(a). First it is seen that Keplerian motLon characterized by

V_ = -rV_/r is never realized for this exampl_. The sequence of events

is interesting to examine. At time zero the d_ag is in equilibrium with

the tangential acceleration force and the sateLlite slows down. However,

although drag initially m_es V9 .negative, tle satellite tends to speed

up as it drops in altitude until V_ is zero. At this point the drag is

in equilibrium with the acceleration force due to 9V_/r. The satellite

speeds up as it.drops in altitude until a maxinum value of V_ is

reached, when V9 is again zero. Thereafter bhe satellite decelerates
tangentially at an increasing rate, and the mobion is in accord with the

solution of Chapman. For CDA/m = i figure 8(_) shows that setting

ro = -0-1(Vg)o does not alter the range of ap?licability of Chapman's

assumption.

With regard to the equation of radial motLon

V _
r - q0 Dr Gr-- = -- + -- (59)

r m m
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the magnitudes of the four terms are shown in figure 9(a) for CDA/m of

unity and ro of zero. It is interesting to note that the gravitational

and centrifugal forces are in balance until V_ is about 0.9 Vc. There

is then an interval where four terms are important. For V_ near zero_
the drag and gravitational terms are nearly in balance. However, the

radial acceleration term r cannot be ignored if accurate terminal

velocities are desired_ since it is about 30 percent of the other two

terms. If CDA/m is increased to i0 from unity (fig. 9(b)), or if the

initial launch angle is 0.i radian downward (fig. 9(c)), the radial

acceleration still cannot be neglected except for rough calculations.

A patching technique is useful to establish a rough complete trajec-

tory. For V_ above about 0.99 Vc the trajectory can be approximated

by the method of appendix A. For V_ equal to about 0.99 Vc the solu-

tion can be joined to that of Chapman_ as described in reference 4, and

continued down to the point where the flight path is nearly vertical.

Although the equation of Chapman is still valid for vertical flight, the

numerical solution of his equation loses accuracy because of a singularity.

A solution for the vertical part of the trajectory is given in
reference 14.

Let us examine the contribution of atmospheric rotation to the drag

term since this has important implications concerning the adequacy of

approximate %co-dimensional theories which usually neglect atmospheric

rotation. This question assumes significance in the terminal phase of

the trajectory. Let us examine the flight path angles as seen by an

observer in an inertial framework and by an observer on the earth. The

flight path angle in the inertial framework is simply given by

9

tan 7i = V_

For an earth observer_ _ is unchanged but V_ is decreased for eastward
motion by the component of the earth's rotational speed in the orbital

plane. This component of speed is r cos _eSin @ or r_ecos _. The

flight path angle, 7e, as seen by an earth observer is simply given by

tan 7e =
V_ -raecos

To illustrate the influence of earth rotation and observational position

on flight path angle_ figure i0 has been prepared. The initial conditions
are taken to be

So = 65°; (v_)o = (Vc)o; _o = 0; ho = 8O miles;

CDA/m : i; 0o = _o = 4o = 0°

The first curve to which attention is called is the plot of Yi for

case i, _ = 0, and 2e = 0. As the satellite approaches impact for this

case, the flight path approaches a nearly vertical condition as seen by
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an observer in the inertial framework. If we now include atmospheric

rotation, (and oblateness), the variation of 7i for case 4 is obtained

as shown. The behavior of 7i in this case is distinctly different since

it now reaches a maximum near 30 ° and rapidly d_creases thereafter. What

has occurred in the terminal phase is that the radial speed has been

reduced to several hundred miles per hour by air drag, but the horizontal

speed V_ has been increased to a much greater value by atmospheric rota-
tion. The atmospheric rotation causes the traj__ctory to curve almost

directly eastward at constant latitude 1/ with a horizontal speed equal

very nearly to r_eCOS I/. At the equator this speed is about 6 percent

circular orbital speed for near earth satellites. Thus, approaching

impact, the satellite has a nearly constant value of V_/V c less than 0.06.

The distinctly different characteristics cf the trajectory in the

terminal phase with and without atmospheric rotation raise the important

point whether two-dimensional theories neglectiag atmospheric rotation

are really applicable to the terminal phase. _ae question can be

answered in the affirmative provided the correct interpretation is given

to the two-dimensional theories. In this connection the flight path

angle as seen by an earth observer has been plotted in figure i0 for

case 4 which includes oblateness and rotation. Not unexpectedly, it

turns out to be in close accord with 7i for case i, no oblateness or

rotation. The following interpretation is givem to this result: Two-

dimensional theories neglecting atmospheric rotation (but including drag)

yield trajectories which tend to be nearly vertical in the terminal phase

provided CDA/m is not too small compared to uaity. These theories can

be applied with good accuracy to three-dimensicaal trajectories including

atmospheric rotation if the results are interpreted to apply to the

motion as seen by an earth observer. In fact, _ith this interpretation

it would be a mistake to include atmospheric rotation in the two-

dimensional theory.

COMPARISON OF EQUATORIAL TRAJECTORY WIYH TRAJECTORIES

OF APPROXIMATE Td0-DIMENSIONAL I_EORIES

It is of interest to compare approximate t_o-dimensional analytical

results with an equatorial trajectory as calculated numerically by the

present method. For this reason a special equatorial trajectory was

computed neglecting atmospheric rotation and oblateness effects_ factors

not usually considered in two-dimensional theories. The initial condi-

tions for the trajectory are

h O : 80 miles] (Vg) O = (Vc)o; ro = O;

eo = _o = _o : _o : 0°

The trajectory was calculated for a l-second interval using geographic

coordinates. The values of various quantities luring re'entry are
listed in table III.
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The approximate theories compared with the present method include

that of appendix A, the method of Chapman (ref. 4), and an extension of

the results of Linnell (ref. 14). These theories are applied, respec-

tively, to the initial part of the flight, the middle part of the flight,

and the terminal phase of the flight.

Let us first consider that part of the flight from Vg/Vc from
about 1.000 to about 0.995, during which most of the range occurs. The

small variations in V9 and r permit the simple approximate solution of

appendix A. The variations of h and 9 with t obtained by this method

are compared in figure ii with those given in the foregoing table. Solu-

tions are given for two time intervals in the calculation, a short interval

and a long interval as described in appendix A. For the short time
interval the values of 9 and h are in fair accord with the tabulated

values out to larger values of t than for the longer time interval.

Consider now the phase of the trajectory with V9 less than
99.5-percent circular orbital speed. This is the region where the

9Vg/r force is negligible and the solution of Chapman applies. This

solution is expressed in the form of a parameter Z tabulated as a
function of

u r

z : up

Z' = -_-_ sin 7 _ Z
' U

=
Vc

(6o)

The Chapman solution considered here is that for [ = 0.995 and 7 = -0.5 ° ,

and is the available one most nearly approximating the present calcula-

tions. For the initial values of _ and 7, the solution of Chapman gives

a value for Z. From this initial value of Z and the value of CDA/m

of unity, the initial value of the density can be calculated from equa-

tion (60). The values of h, 9, V_, and _ are compared in figure 12(a)

and the value of 7 is compared in figure 12(b). The initial altitude

obtained from the Chapman solution is slightly less than that obtained

from the present solution. Some of this difference is due to the slight

differences in 7 exhibited in figure 12(b). Generally speaking, the

solutions are in good accord. The tendency of the solutions for 7_ V_,
and h to interlace is probably due to slight differences in the atmos-

pheric altitude-density relationships assumed in the two methods.

Chapman has used an exponential atmosphere in his work, while the present

work is based on the ARDC atmosphere.

In the terminal phase, the present tabulated solutions of Chapman do

not continue entirely to impact but stop at a value of _ = 0.025. For

= 0, vertical flight, the solution of Linnell, reference 14_ is
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available. In an unpublished investigation Elliott D. K_tzen of Ames
Laboratory has adapted the solution of Linnell to slight departures from
vertical flight. His calculated values for _ less than 0.025 agree
well with the present values.

CONCLUDINGEEM_

The principal purpose of this paper has be_n accomplished; namely,
to present equations for calculating complete trajectories of earth satel-
lites from outer space to the ground under the influence of air drag and
gravity, including oblateness 6 and to apply these to several cases of
entry from circular orbits.

Equations of motion based on an "instantareous ellipse" technique,
with polar angle as the independent variable, _ere found suitable for
automatic computation of orbits in which the t_ajectory consists of a
number of revolutions. This method is suitable as long as the satellite
does not enter the terminal phase. In the terminal phase of the trajec-
tory, equations of motion in spherical polar coordinates with time as the
independent variable were found to be suitable.

In the first illustrative example, the effects of the oblateness
componentof the earth's gravitational field ard of atmospheric rotation
were studied for equatorial orbits. The satellites were launched into
circular orbits at a height of 120 miles, an sdtitude sufficiently high
that a number of revolutions could be studied. The importance of the
oblateness componentof the earth's gravitatior_al field is shownby the
fact that a satellite launched at circular orbital speed, neglecting
oblateness, has a perigee some67,000 feet lower when oblateness forces
are included in the equations of motion than w_en they are not included.
Also the loss in altitude per revolution is dotble that of a satellite
following an orbit not subject to oblateness. The effect of atmospheric
rotation on the loss of altitude per revolutio_ was small. As might be
surmised, the regression of the line of nodes _s predicted by celestial
mechanics, equation (56), is unchangedwhendr_g is included. It is
clear that the inclination of the orbital plane to the equator will be
relatively unaffected by drag for no atmospheric rotation since the drag
lies in the orbital plane in this case. With ihe inclusion of atmospheric
rotation it was found that the inclination of l he plane changed about
10-6 radians per revolution. Thus the prediction of the position of the
orbital plane of an earth satellite is not com]_icated by the introduction
of drag. The line of apsides, which without drag but with oblateness
movesslowly in space, tends to movewith the _atellite when drag is
included in the calculations. As a result the usual linearized solutions
based on oblateness alone must be basically altered whendrag is included
to take into account the rapid movementof the line of apsides.

SNoattempt was madeherein to take into account gravitational
anomalies or surface cross winds.
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In the second illustrative example, the final revolution was

calculated to impact for a number of trajectories in an orbital plane

inclined at 65 ° to the equator. Of particular interest are the large

effects that the oblateness gravitational field and atmospheric rotation

have on the impact point. For a value of CDA/m of unity, and for an

initial downward angle at 80-miles altitude of 0.01 radian, such as might

be utilized for manned re-entry, oblateness had an influence of about

300 miles in the impact point, and atmospheric rotation had about a

150-mile influence.

From the complete trajectories calculated automatically, it was

possible to examine the relative importance of the various terms in the

equations of motion. For the equation of tangential motion, the tel_n

proportional to 9V_/r is negligible, as long as the local value of V_

is less than 99 percent of V c. This result indicates that for V_ less
than 0.99 Vc the equation of Chapman (ref. 4) can be used. For the equa-

tion of radial motion, the radial component of gravity and the centrifugal

force dominate the motion for values of V_ near Vc. However_ for

V_ << Vc, where the trajectory is nearly vertical, the radial component

of gravity and the drag dominate the radial motion, but the radial

acceleration is not generally negligible.

It was found that two-dimensional solutions neglecting atmospheric

rotation can be used to approximate three-dimensional solutions with

atmospheric rotation. In this connection, two-dimensional theories must

be interpreted as being viewed by an observer on a rotating earth.

Several gaps exist in the solutions available for studying the

dynamics of earth satellites. First, to the authors' knowledge_ no

linearized theory exists for predicting the periodic variation of the

elliptic elements during circularization of the ellipse or during spiral

decay, taking into account drag. This linearized solution would have

to take into account the fact that the line of apsides tends to move with

the satellite. Second, a missing ingredient in the accurate automatic

computation of impact points is precise knowledge of the variation in

atmospheric density with latitude, season, or time of day.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., July 15, 1958
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APPENDIXA

APPROXIMATESOLUTIONFORTW0-DIMENSIONALTRAJECTORIESNEAR

CIRCULARORBITALSPEEDTOGETHERWITH)_UMERICALEXAMPLE

Since a considerable part of the range of a satellite re-entering
the atmosphere is traversed at a tangential speed V_ nearly equal to
circular orbital speed_ it would be helpful to have an approximate solu-
tion for this case. In what follows we assumethat the percentage
changes in V_ and r are small, but the percentage change in air
density p maybe large. Wewill find an approximate solution r = r(t)
subject to the initial conditions r = ro, r = ro at t = O. (The initial
value of _o can be calculated from ro and rD.)

Consider the equations of motion in the f_llowing form:

V 2
_ q) Dr Gr

r m m

v_ + f V_ D_ G_-f-= -_-+ -A-

(Ai)

If we neglect oblateness, then G_ is zero. _iso, the flight path angle
is nearly zero so that Dr can be neglected a_ shown in figure 9. The

equations of motion with no atmospheric rotation are

_ V_ a I<M
r r2

= - _ PVCp 2r
} (A2)

Since the only variable in the tangential equation of motion with any

appreciable percentage change is p, we can integrate the equation as
follows

(rVqo) = (rV_) ° - _ _V_2r t (A3)

The quantity _ is the mean density during the time interval between

t = 0 and t = t_ and (rV_) o is evaluated at t = O. Equation (AS) gives

the time range of change of area sweeping. Since V_ and r are slowly

varying functions of time_ the product rV_ also is.
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To obtain the altitude as a function of time necessitates an

integration of the radial equation of motion

KM (rVq0)2
r __ _ __ _-

r2 r3
(A4)

Equation (A3) together with the relationship

r = ro+rot+O(t 2) (A5)

put equation (A4) into the form

= _o-kt+O(t 2) (A6)

wherein

: _(vCh/ci)A' •
k P_r 7ok--m-/+(r'r_)( 3_0+ _) (A7)

Integration of equation (A6) yields

= _o + _o t kt2
2 + O(t3)

r = ro + 6ot + _o
t2 kt 3

2 6 + O(t 4 )
} (AS)

To obtain the altitude time curve for a particular case_ we first

choose a value of _ for the first step and evaluate k. The value of

r versus t can then be established from equation (AS). The curve of

r versus t also establishes a curve of p versus t for a given atmos-

phere. The time t I for which _ satisfies the following relationship

can easily be found

:/ot:: = _ 0 dt (A9)

Since _ is the average value of p be_¢een t = 0 and t = tl_ the

values of rm, rl, and _m calculated from equations (A6) and (A7) for

t I should be accurate. The values of rm_ rm_ and _m are now used as

initial values in the next step of the calculation. The next step is

started by moving the zero of the time scale to tm, choosing a new value

of _ and calculating a new value of k. Thus the process is continued

step by step.
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As a numerical example of this calculation consider a satellite

launched in an equatorial orbit in an easternly direction with an initial

altitude of 80 miles. The initial conditions necessary to proceed with

the calculations are

to = 0 sec

ro = a+h o = 21,348,828 ft

ro = 0 ft/sec

(V_) o = 25,678.862 ft/sec

CDA
--= 1.0
m

J
(AI0)

At an altitude of 80 miles the density from r¢ference 7 is p = 2.96xi0 -11

slugs per cubic foot. For the first step in the calculation of the

trajectory let us choose a value of _ slightly greater than the initial

density, as follows,

= 3.0!9xi0 -ll slugs/ft 3 (All)

and evaluate equation (A7) for k.

k : (3.019X10 -11)
(25,678.862) s

(21,348,828)
(i.o)+o

: 2.3945xi0 -5 (Al2)

The considerations in selecting _ are discussed subsequently.

With the value of k determined_ equati(n (AS) is now used to

establish a curve of r versus t. For t eqtal to O, 400, 800, and

1200 seconds the respective values of r are found to be

t = 0 sec r : 21,348,828 - 1"3945×i0-5(0)s
6

= 21,348,828 ft

t = 400 see r : 21,348,573 ft

t : 800 sec r : 21,346,785 ft

t = 1200 sec r = 21,341,932 ft
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These points also establish a curve of p versus t by the use of refer-

ence 9 to obtain p for a given altitude above the earth's surface. The

corresponding values are

t = 0 sec p = 2.96xi0 -11 slugs/ft 3

t = 400 sec 0 = 2.98xI0-11 slugs/ft3

t = 800 sec p = 3.18Xi0 -11 slugs/ft s

t = 1200 sec p = 3.78xi0 -11 slugs/ft 3

From this curve of p versus t the

value of t I which satisfies equa-

tion (A9) can be easily found, as

is shown in the accompanying sketch,

by making the two shaded areas

under the curve equal. Perforating

this integration for this numerical p

example one finds that

tl = 821 see (_3)

Now, using the values from

equations (_0), (_2), and (_3)

and inserting them in equa-

tions (AS) and (AS) yields the

quantities

rl = 21,348,828 -

o

t

Sketch (c)

@.3945xlo-_)(821) a

6.0

= 21,346,619 ft

(2.3945X10-5)(821) 2

2.0

= -8.06996 ft/sec

_l = -(2"3945xi0-5)(821)

= -0.01966 ft/sec 2

Therefore, at t I = 821 seconds the quantities specifying the satellite's

position and motion are
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rl = 21,346,619 ft

rl = -8.06996 ft/sec

_l = -0.01966 ft/sec 2

(V_) I = 25,678.862 ft/sec

(Al_)

_ese values are now used as initial value_ in the next step of the

calculation. The zero of the time scale is shi:'ted to correspond to tl,

and a new value of _ must be chosen. The val_e of rI corresponds to

an altitude above the earth's surface of 420,191 feet for which the

density (ref. 7) is 3.205Xi0 -ll slugs per cubic foot. As the average

density for the next step_ let us, therefore, choose a new value of

= 4.30xi0 -ll slugs/ft s (Al_)

With this value and equations (A14) the calculaJ_ion of k (eq. (A7)) is

repeated and is found to be

k = 2.2452xi0 -5

Now the curve of r versus t is determined from equation (A8) and the

corresponding densities are determined from reference 9. These are

t, sec r, ft p, sLugs/ft s

0 21,346,619 3.2()5Xi0 -11

400 21,341,579 3.8]_0x10 -11

800 21,331,956 5.3!_0Xi0 -II

1200 21,316,314 9.6!i0Xi0 -II

Integrating graphically as before

t2 - tl = 959 sec (_6)

and equations (A6) _d (AS) thus give

r2 = 21,326,540 ft ]

r2 = -37.24824 ft/sec

_2 = -0.04119 ft/sec e

Therefore, at

(AI7)

t2 = 1780 seconds, these quantities plus V_, obtained
from equation (A3) specify the satellite's posilion and motion.
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These quantities thus become the initial conditions for the next

step and the calculation is repeated.

Let us now consider the factors entering the choice of _. For

entry from circular orbits, as in the present example, the value of

should be i or 2 percent greater than the initial density, Po" In the

calculation of figure ii for the long time inte_al, it was decided

a priori to go to 3000 seconds in about four steps. The values of _/Po
for each step are shown in the following table:

Time interval _/Po Oz/Po

0-821 sec 1.020 1.083

821 -1780 sec 1.342 2.031

1780 -2425 sec 1.966 3.932

2425 -2875 sec 3.125 9.415

Because the density changes slowly with altitude at first, a large initial

value of _/Po would give a very large time interval. This is to be

avoided since the present method is based on power series in time. Once

the curve of O versus t is established in the first interval, the values

of _/Po for subsequent intervals to obtain given intervals in time can

be estimated by extrapolating the curve.

To study the effects of time interval, the calculation was also made

in about eight steps instead of four. As expected, the calculation with

more steps remains closer to the machine solution at large values of the

time. In any particular case, it is best to do the calculation with two

different time intervals to be sure of the range of accuracy of the
calculations.

It might be mentioned, in conclusion, that the present method can

be applied to an atmosphere of arbitrary density-altitude relationship.
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APPENDIX B

APPROXIMATE EXPRESSION FOR ECCENTRICITY FOR

VALUE OF Vq0 SMALL COMPARED _0 V c

It is possible on the basis of energy considerations to obtain a

simple expression for the eccentricity for values of V_/Vc small

compared to unity. The starting point is equa±ion (41) which relates

the eccentricity to certain quantities as follows

l -E 2 = Lo (Bl)
pI

From the definitions of Lo and p we find

Lo _ _o2 _ __L__ _2 (B2)

The length of the semimajor axis _ is related to the total energy for
a circular force field. The kinetic energy for unit mass is V2/2 and

the potential energy per unit mass is -KM/r. Thus the total energy E

is

v2 KM V2 _ (B3)
E = T - r = T - Vc

Since the total energy depends only on the len_th of the major axis

independent of the eccentricity, we have (ref. 3)

KM V2
- - Vc2 (B4)E - 2_ 2

The expression for Lo/PI thus becomes

L o

---2 _ 1 (B_)

Thus from equation (BI)

I-E 2 : (I-E)(I+E) : 2_i (B6)
2Vc2J \Vc)
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For E near unity

It is clear that E

where c

or

For

kVc/

approaches unity as the path becomes vertical.

At the other limit asstmle that Vq_ is nearly equal to

is a small quantity.

E2 : (V_ 2

kVc 2

(B7)

V c so that

V9
-- : 1 + _ (B8)
Vc

Let us rewrite equation (B7) in the form

+\v_/\vo/ (Bg)

V(p : Ve

E 2 : 2c + + (l+2c+c 2) (BlO)

or very close to it, we thus have
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APPENDIXC

CHANGEIN PERIGEEALTITUDEDUEqO OBLATENESS

GRAVITATIONALFIELDFOREQUATORIALORBITS

The specific question considered here corcerns a satellite in a
circular orbit without oblateness forces at t_me t = 0: Whenthe oblate-
ness gravitational field is suddenly "turned on/' what happens to the
perigee radius, rp? Let r a be the radius o_ the circular orbit without
oblateness forces_ which becomesthe apogee radius as soon as oblateness
forces are turned on. From the previous appendix it is known that the
total energy is related to the length 2Z of the major axis (without
oblateness) by equation (B4).

E : - (Cl)
2Z

A change in energy AE is such that

AE AZ

E z
(C2)

Now for an equatorial orbit the energy balanc( with Vq_ : V c and with
no oblateness is such that the orbit is circular. With oblateness the

energy balance requires that V_ = Vco for a circular orbit. Thus if

V9 = Vc with oblateness_ there is a kinetic (nergy deficiency of

(Vco 2-Vc2)/2 per unit mass for a circular orlit. This energy deficiency

causes a change in length of the major axis £.2Z of ra- rp since the

orbit has the stone apogee radius with or withc,ut oblateness. Thus

ra- rp = 2ZZ_E _ Z Vco2([./ Vc2h (C3)E E _ vT/

with

Vc 2
Z _ - n

2

Vc 2 6_la 2
~i

Vco 2 r 2

} (c4)

equation (C3) becomes

(ra - rp) _ 12 r_ (c5)
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TABLE I.- PERCENTAGE EFFECT OF OBLATENESS GRAVITATIONAL FIELD ON RANGE

CDA/m = i

}o/(V$)o o -o.oi -o.o5 -o.io

44, miles

h4, miles

S4, miles

t, sec

(_2 - %)Is4

(h2 - _i)/S4

(_4- %)/s4

(_4 -_3)/s4

-4406.562

20,060.089

19,279.667

3582.562

2614.743

4201.140

948.577

545.045

i089.919

4355

-.330

-.365

-.366

-.334

1199

-.042

-.067

-.o42

-.070

538

- .003

-.001

- .003

-.001

526.382

335.566

624.226

426

-.001

.000

-.003

-.oo5

CDA/m = i0

44, miles

_4, miles

s4, miles

t, sec

(_2 - %)/_4

(44 -%)/s4

3344.785

10,539.586

8975.380

2801

.090

-.095

.094

-.091

2527.760

1689.927

2974.090

1594

-.023

-.018

-.024

-.019

751.924

640.422

984.494

1158

-.002

-.001

-.002

-.001

427.021

480.512

642.061

io68

-.001

.000

-.001

.000
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TABLE II.- PERCENTAGE EFFECT OF ATMOSP}[BR [C ROTATION ON RANGE

CDA/m = i

ro/(V¢)o___ 0 -O.O1 -0.05 -0.i0

_4, miles

_4, miles

s4, miles

t, sec

-4406.562

20,060.089

19,279.667

4355

3582.562

2614.743

4201.140

1199

948.577

545.045

1089.919

538

526.382

335.566

624.226

426

(_3-¢i)/s4

(h3-hl)/s4

(h4-h2)/s4

•O4O

.033

.OO4

.064

C�i/m =

.006

•034

•oo5

.032

I0

.oo3 .oo4

.087 .148

.OO3 .OO2

.087 .143

_4, miles

_4, miles

s4_ miles

t, sec

(%- _)/$4

(_4 -_2)/s4

3344.785

10,539.586

8975.380

2801

-.017

.045

-.013

.049

2527.760

1689.927

2974.090

1594

.007

.lO3

.oo6

•103

751.924

640•422

984.494

1158

.O03

.291

.OO3

.291

427.021

48o.512

642.061

1068

.OO2

.438

.002

.438
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!

!

t,

sec

0

606

1669

1955

2442

2588

2916

2998

3200

3400

3500

3665

3696

3721

3746

3755

3764

3773

3784

3795

3805

3821

3837

3897

3882

3915

3934

3955

3978

4003

4030

4058

TABLE Ill.- CALCULATED QUANTITIES FOR E(UATORIAL ORBIT

h, V_, -9, _, Vc,
ft ft/sec ft/sec radians ft/sec V�/Vc

422,400 25,678°860 0 0 25,678.86 1.000000

421,753 25,674.298 3.899 .7288 25,679.25 .999807

407,830 25,677.980 24.045 2.0076 25,687.62 .999624

400,009 25,682.181 30.820 2.3519 25,692.33 .999605

381,881 25,689.336 44.438 2.9387 25,703.27 .999458

375,008 25,690.380 49.840 3.1147 25,707.41 .999338

355,947 25,685.460 68.485 3.5104 25,718.92 .998699

350,039 25,680.795 75.852 3.6094 25,722.50 .998378

332,175 25,651.831 104.165 3.8532 25,740.28 .996834

306,036 25,543.$69 167.173 4.0943 25,749.14 .991989

286,112 25,315.656 239.939 4.2142 25,761.21 .982704

220,154 22,022.188 696.182 4.4043 25,801.36 .853528

195,186 19,039.298 923.976 4.4346 25,816.60 .737483

169,602 15,017.852 1,116.853 4.4550 25,832.27 .581361

140,388 9,474.258 1,183.196 4.4696 25,850.16 .366507

129,886 7,368.195 1,144.695 4.4732 25,856.61 .284964

119,859 5,464.839 1,079.841 4.4759 25,862.77 .211301

110,478 3,896.195 1,003.839 4.4779 25,868.54 .150615

99,935 2,479.298 915.170 4.4796 24,875.03 .095818

90,295 1,529.855 840.117 4.4806 25,880.96 .059111

82,195 960.579 781.004 4.4812 25,885.94 .037108

70,436 422.641 688.208 4.4817 25,893.28 .016315

60,268 159.390 580.798 4.4819 25,899.46 .006154

49,986 35.608 452.853 4.4820 25,905.81 .001374

40,103 3.564 347.173 4.4820 25,911.91 .000138

30,011 o058 274.510 4.4820 25,918.16 .000003

25,041 .008 249.848 4.4820 25,921.23 0

20,023 0 228.336 4.4820 25,924.33 0

14,998 0 209.522 4°4820 25,927°44 0

9,973 0 192.983 4.4820 25,930.56 0

4,965 0 178.392 4.4820 25,933.65 0

151 0 165.883 4.4820 25,936.64 0



56



_7

!

!

/
/

!
/

\
\

I
I
I
I



58

/
/

/
\

_" /o

4--

r_9
¢)

o
o ©

•_1 o

@ !

o

6
+J .M

-0
r_

H



(a) Circularization of ellipse
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Spiral decay

(c) Terminal phase

Figure 2.- Phases in trajectory of satellite.
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