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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 3-5-59A

STABILITY AND CONTROL CHARACTERISTICS AT SUBSONIC SPEEDS

OF A FIAT-TOP ARROWHEAD WING-BODY COMBINATION

By Donald A. Buell and Norman S. Johnson

SUMMARY

A wind-tunnel investigation was made to determine the longitudinal-

and lateral-stability derivatives of a flat-top wing-body configuration

at Mach numbers from 0.22 to 0.90 and Reynolds numbers of _.5 and
17 million. The wing had a leading-edge sweepback of 78.9 and a cathe-

dral of 45 ° on the outer panels. The tests included the determination of

the effectiveness of elevon and rudder controls and also an investigation

of ground effects. The model was tested at angles of attack up to 28 ° and

angles of sideslip up to 18 °.

The dynamic response of this configuration has been determined from

the wind-tunnel data for a simulated airplane having a wing loading of

17.7 pounds per square foot. The longitudinal data show a forward shift

in aerodynamic center of lO percent of the mean aerodynamic chord as the

lift coefficient is increased above O.1. Although flown in the lift range

of decreasing stability, the simulated airplane did not encounter pitch-up

in maneuvers initiated from steady level flight with zero static margin

unless a load factor of 2.2 was exceeded. This maneuver margin was pro-

vided by a large value of pitching moment due to pitching velocity. The

number of cycles to damp the Dutch roll mode to half amplitude, the time

constants of the roll subsidence and spiral divergence modes, and control

effectiveness in roll are computed. The lateral stability is shown to be

positive but is marginal in meeting the military specifications for today's

aircraft.

An analog computer study has been made in five degrees of freedom

(constant velocity) which illustrates that the handling characteristics

are satisfactory. Several programed rolling maneuvers and coordinated

turns also illustrate the handling qualities of the airplane.



INTRODUCTION

Tests reported in references i and 2 have demonstrated the potentiali-
ties of a configuration having a flat-top arrowhead wing for achieving
efficient flight at high supersonic speeds. However, the practicality
of such a configuration may depend upon the ease with which it is brought
to rest at its destination. It was, therefore, desired to establish the
stability and control characteristics of the configuration at subsonic
speeds and, particularly, at landing speeds. To this end, a model similar
to one of reference 2 was tested in the Ames12-foot pressure wind tunnel.
The results were used in an analog computer study to simulate a repre-
sentative airplane flying at low speeds. The computer study was partic-
ularly useful since the dynamics of such an unusual configuration are not
readily interpreted from wind-tunnel data. The investigation included
the determination of the control effectiveness of "wing-tip elevons" and
of a rudder mounted on a ventral fin. Ground effects on the static sta-
bility characteristics were also measured.

NOTATION

In this report the lift and drag data are referred to the usual wind
axes. All other forces and momentsare referred to body axes. The longi-
tudinal axis of this reference system passes through the momentcenter
and is parallel to the lower surface of the wing. The coefficients are
defined as follows:

dra_

CD drag coefficient, (p/2)VaS

C Z rolling-moment coefficient, rollin_ moment

CL
lift

lift coefficient, (p/2)V2S

Cm pitching-moment coefficient, _itching moment

Cn
yawing moment

yawing-moment coefficient, (p/2)V2S b

Cy
side force

side-force coefficient, (p/2)V2S



%

Cm_, Cmq

CZp'Cnp' t

C_r'Cnr ]

base-pressure coefficient,
(p/2)V 2

derivatives with respect to subscript times 2-_

b
derivatives with respect to subscript times 2-_

(pit chin_ moment_
\ Iyy /

/pit chin_ moment_
Mq _q \ Iyy ,/

Z_

The dynamic derivatives were measured and are presented in combinations

which represent the total moment about the appropriate axis when the model

was oscillated about the moment center. Other symbols used are defined as

developed wing span

wing mean aerodynamic chord

cycles to damp to one-half amplitude

acceleration due to gravity

height of moment center above ground plate

moments of inertia about the X,Y, and Z body axes

product of inertia about X and Z axes

Mach number

follows :

b

CI/2

g

h

IXX,Iyy;

IZZ

IXZ

M

m mas s
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nz

P

Pb

q

r

R

S

t

v e

V

X

_x

C

c_

B

6a

_e

8
r

P

Po

ratio of normal force to weight

rolling velocity

static pressure at base

static pressure in free stream

pitching velocity

yawing velocity

Reynolds number based on

wing area of developed plan form, including area over fuselage

ahead of Juncture between wing trailing edge and fuselage

time

v6 JO/Po, ft/sec

free-stream velocity

distance frc_ nose of model parallel to longitudinal axls

center-of-gravity shift In forward direction, in chord lengths

angle of attack of longitudinal axis

angle of sideslip

aileron deflection, difference between elevon deflections;

positive to increase rolling moment

elevon deflection, positive to increase elevon lift (indicates

one-half of total elevon deflection if subscript "left" or

"right" is not added)

rudder deflection, positive to increase side force

increment of ( )

ratio of damping to critical damping

free-stream density

density of alr at sea level
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IVel
0_n

(')

time constant, time to accomplish approximately 63 percent of

commanded change

angle of roll

ratio of roll angle in degrees to equivalent sideslip velocity

natural frequency

derivative with respect to time

MODEL AND APPARATUS

Figure l(a) is a drawing of the model and figure l(b) shows the model

mounted in the wind tunnel over a ground plate (to be described). The

wing of the model was an aluminum plate, flat on the lower surface and

increasing in thickness away from the leading edge with a blunt trailing

edge. The thickness to chord ratio was about 0.02. The wing had a

leading-edge sweepback of 78.9 °, a cathedral of 45 ° on the outer panels,

an area of 3.448 square feet, and an aspect ratio of 1.03. The wing

surface corresponding to these dimensions includes all of the fuselage

area which lies forward of the wing trailing-edge and fuselage

intersection.

The elevons (control surfaces at the wing tips) were attached with

flush brackets bent to the desired angle. The rudder was the rear part

of the ventral fin, and deflections were obtained by bending the soft

steel fins to the desired angles. The fuselage consisted of sheet alumi-

num in the form of a half-body of revolution with its axis inclined 1°

to the wing lower surface.

Static forces and moments on the model were measured on a six-component

strain-gage balance inside the fuselage. The balance was supported by a

sting which had a diameter of 2.9 inches Just aft of the fuselage but

which increased to 4 inches aft of the wing trailing edge. Another sting

used less extensively had a constant diameter of 2 inches.

The dynamic derivatives of the model were evaluated by means of an

oscillation apparatus similar to that described in reference 3. For such

measurements the model was mounted on crossed flexure pivots enclosed by

the fuselage. In this particular investigation the flexure pivots were

so oriented that the model rotation consisted of pure pitching, yawing,

or rolling about body axes. The oscillations were excited and maintained

by a push rod passing down the center of the sting to an electromagnetic

shaker downstream of the model. The shaker was controlled by an electronic

feedback network which maintained a preset oscillation amplitude at the

natural frequency of the model and support system. The deflection and
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aerodynamic moments were measured by means of strain gages and processed

through an analog computing system in order to evaluate the derivatives.

The sting for the oscillation tests had a diameter of 2-1/4 inches aft

of the fuselage and a diameter of 3 inches aft of the wing trailing edge.

The presence of the ground was simulated by a plate which spanned the

wind tunnel. This plate is the one described in reference 4. The model

was situated in the wind tunnel such that the moment center was about

68 inches behind the leading edge of the plate. A slot exists in the

rear of the plate to accommodate the sting at high angles of attack.

For the present investigation the slot was sealed back to a point aft

of the trailing edge of the model at low or moderate angles of attack

and to a point even with the elevon hinge line at the highest angles of

attack.

TESTS

Static-force tests of the model were made with the 4-inch-diameter

sting and no ground plate. The longitudinal characteristics of the model

were determined for angles of attack up to 22 °. In order to determine the

lateral and directional characteristics, the sideslip angle was varied

up to 18 ° at angles of attack of 3-1/2 °, 6-3/4 °, 9-3/4 °, and 12-i/2 °.

In addition, lateral-force measurements were made at sideslip angles of

0° and 6° with varying angle of attack. To evaluate control effectiveness

the elevons were deflected to angles as great as ±20 ° and the rudder to

angles as great as 30 ° in both variable sideslip and variable angle-of-

attack tests. Other static-force tests were made to determine the longi-

tudinal and lateral characteristics with the 2-inch-diameter sting at

angles of attack up to 14 ° . The longitudinal characteristics and the

elevon effectiveness of the model on the 4-inch sting were also measured

in the presence of the ground plate at angles of attack to 28 °. The

ventral fin was taken off the model for the ground-plate tests to allow

the model to be brought near the plate.

The dynamic derivatives of the model were evaluated at an average side-

slip angle of 0° through an angle-of-attack range up to 16 ° . The angle of

oscillation was approximately ±1.6 ° for all measurements except damping in

pitch, where only half this amplitude could be achieved at some angles of

attack. Other measurements at smaller amplitudes showed little effect of

amplitude. The reduced frequency of the oscillation (_/2V or wb/2V)

varied from 0.18 to 0.04. In these parameters only V, the free-stream

velocity of the test, varied to any extent.

All configurations of the model were tested at a Mach number of 0.22,

and selected configurations were also tested at 0.80 and 0.90. All tests

except one were made at a Reynolds number of about 3.5 million based on

the mean aerodynsmic chord. The exception was a test to measure static

longitudinal characteristics at a Reynolds number of 17.5 million.
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CORRECTIONS TO DATA

The data were corrected for the constriction effects of the tunnel

walls by the method of reference 5. This correction amounted to slightly

more than 1/2 percent of the Mach number and dynamic pressure at the

highest test Mach number.

Calculations of the induced effects of the tunnel walls made by the

method of reference 6 indicated that such corrections were small enough

to be ignored. In these calculations the trailing edges of the plan form

were assumed to be straight. The maximum indicated error from this source

was 0.2 ° in the angle of attack, 0.002 in drag coefficient, and 0.001 in

pitching-moment coefficient° The induced effects of the tunnel walls with

the ground plate installed were calculated by the method outlined in

reference 4. For this case the corrections were even smaller than those

quoted above and were also ignored.

No corrections were applied to the data for sting interference. It

was presumed that the vehicle represented by the model would normally glide

without power in the subsonic speed range. Therefore, the base pressures

which would be experienced by the vehicle were considered to be more

closely approximated by the actual base pressure on the model than by the

free-stream static pressure to which drag data are sometimes adjusted.

However, the base pressures were measured and are presented.

Simulation of the ground by a plate is imperfect because of the

presence of a boundary layer on the plate. The pressure measurements

showed little difference between the boundary layer for this investigation

and that for the tests in reference 4. The displacement thickness was

about 1/8 inch at the station of the moment center of the model. It was

concluded that the flow angle induced by the plate was of the same order

of magnitude as that caused by tunnel walls and was negligible.

Moment tares representing the nonaerodynamic damping of the oscillation

mechanism were subtracted from the dynamic data. These tares were deter-

mined by oscillating the model with no free-stream velocity at various

static pressures and extrapolating to a pressure of zero. The tares were

typically less than lO percent of the aerodynamic moments except in the

case of the roll derivatives. The tares due to rolling were equivalent

to values of and C_ of about O.O1.
CZp

AIRPLANE SIMULATION

Geometric and mass characteristics for the representative airplane

which were used to determine the dynamic characteristics from the wind-

tunnel data are given below:



S 1,075 sq ft

W 19,000 ib

40 ft

IX3(

Iyy

IZZ

IXZ

24,900 slug-ft 2

192,000 slug-ft 2

216,900 slug-ft 2

-1,600 slug-ft 2

b 32.5 ft

Vertical c.g. location is 0.76 ft below wing lower surface.

From the wind-tunnel data it was determined that the following equa-
tions approximate the momentand lift curves for the center of gravity
located at 0.55_:

Cm = 0.0127 - 0.05528e + 0.379(_-0.13348e )2 , 8e < 5° (i)

Cm= 0.00795 - 0.0818(_e-0.0873) +
0"379[_-0"0116-0"220(8e-0"0873)]2 ' 8e > 5o (2)

= 0o < _ < 4°CL -0.020 + 0.i146_ e + 1.173_ , (3)

= 4° < _ < 8° (4)cL o.o62 + 0.11468 e + 1.722(_-0.070) ,

C L = 0.182 + 0.11465 e + 2.235(_-0.140) , 8o < _ (5)

For the above equations, positive elevon deflection is down; computations

show that 5e is larger than 5° for all trim angles of attack considered.

The angles _ and 5e are measured in radians to evaluate Cm and C L as
indicated above. The term "elevator deflection" is used to indicate

deflection of the elevons so as to provide a pitching moment and no

rolling moment.

The lateral coefficients were taken to be linear functions of side-

slip angle within ±4 ° of sideslip. The term "aileron deflection" is

used to indicate deflection of the elevons so as to produce a rolling
moment.
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The following equations were used to simulate the airplane in five

degrees of freedom. The equations are written as though the derivatives

are linear; however, the appropriate variation of the derivative and

control effectiveness with angle of attack or sideslip as indicated by

the wind-tunnel data was incorporated into the simulation:

= q - _p - cT.(p/2)svm + 5v cos _ (6)

4 --% (p/21v%_÷ %qq (p/4)sv__ _-Izzh Ixz
Iyy I' Iyy rp q- _ _- (p2-r2) -- (7)Iyy

= _p - r + [Cy66 + Cy(Sa,Sr)] (p/2)SVm +_v sin

: (9+pq) IXZ IZZ-IYY
- qr IXX + (C Zpp+C Zrr)

(_/2)sv%
[C_6 B+e_(Sa'Sr)] IXX

+

(8)

(9)

- pq \ IZZ / + (Cnrr+CnpP)
+

(_/2)sv%
[CnB_+Cn(Sr'Sa) ] Izz (i0)

The damping derivative % + Cm_ as measured in the wind tunnel

was assumed equal to Cm_ in the simulation, and Cm_ was assumed zero.

Derivatives with respect_to _ were similarly neglected. All calculations

were made for sea-level density.

RESULTS AND DISCUSSION

Longitudinal Characteristics

The static longitudinal characteristics of the model with all control

surfaces neutral are presented in figure 2. The pitching-m_nent data for

low speeds show large losses in stability with increasing lift. Forward

shifts in the aerodynamic center were as much as O.1S as the llft coeffi-

cient increased from O.1. Below thls lift coefficient the stability was
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about neutral. Data from reference 2 show that forward positions of the
center of gravity would be detrimental to the trim drag at hypersonic
speeds. Consequently, the maximumlift coefficient obtainable at low
speeds with a positive static margin is quite limited whenthe center
of gravity is located to achieve high lift-drag ratios at hypersonic
speeds.

The drag due to lift shownin figure 2 varies from CL tan _ by an
amountwhich is within the experimental scatter. This characteristic
shows that there was little leading-edge suction and indicates the
presence of flow separation at the leading edge. The increase in the
lift curve slope near 4° angle of attack is thought to identify the start
of the leading-edge separation and the establishment of a leading-edge
"vortex" such as is discussed in reference 7. On this model, unlike a
delta wing, the center of lift movedforward after the leading-edge
separation commenced. An example of the linear stability characteristics
of a low-aspect-ratio delta wing is given in reference 8. This reference
also presents results of low-speed tests on configurations similar to the
present model and shows the effects of various plan-form modifications.

A fivefold increase in Reynolds numberwas slightly adverse to the
low-lift static stability, while an increase in Machnumberto 0.90
greatly improved the high-lift stability. Data taken with the smaller
sting, although not shown, almost duplicated the data of figure 2. The
chief differences caused by the reduction in sting diameter were an
increase in zero-lift drag of 0.001 to 0.002, and an increase in lift
at the higher Machnumbersof about 3 percent.

The longitudinal characteristics of the model near the ground are
shown in figure 3. An improvement in stability resulted from decreasing
the ground height, but it should be pointed out that the lowest ground
height is an extreme, inasmuch as the ventral fin would strike the ground
at a very small angle of attack.

The longitudinal characteristics of the model with various deflec-
tions of the elevons are presented in figure 4. Most of the data pertain
to the model with only the left elevon deflected. However, the pitching
momentsdue to i0 ° deflection of both elevons are just twice those due
to i0 ° deflection of one elevon within the experimental accuracy. The
only noticeable nonlinearity in the variation of pitching momentwith
elevon deflection occurred at negative deflections and angles of attack
less than 12° . Except for this range, the elevon effectiveness increased
with angle of attack. Figure 5 presents the increments of pitching-moment
coefficient due to elevon deflection and shows that there was no effect
of Machnumber on elevon effectiveness.

Figure 5 also shows typical values of the pressure coefficient at
the base of the model. If free-stream static pressure were to be the
base pressure instead of that shownin the figure, the drag coefficients
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of the model would be decreased by 0.007 to 0.013. In tests with the
2-inch-diameter sting the base-pressure coefficients were slightly more
negative. The maximumdifferences were 15 to 20 percent at angles of
attack near i0 °.

The effects of sideslip angle on the pitching momentsare shownin
figure 6. A mild loss of static longitudinal stability due to sideslip
is indicated by the fact that Cm increases more with angle of attack
at the higher sideslip angles than at 0°. The effect is more pronounced
at the higher Machnumbers.

Figure 7 presents pitch-damping data for the model and shows that
the damping was positive under all test conditions. At the higher Mach
numbersdata were obtained only at elevon deflections which brought the
static momentson the model approximately into balance. This kept the
model deflections within the physical limits of the model support system.
Little effect of elevon deflection was apparent where comparative data
were available.

The foregoing data have been applied to the calculation of several
stability parameters for the representative airplane. With a certain
amount of data smoothing, the static margin has been computed as a
function of landing speed and is given in figure 8. Neutral static sta-
bility at a landing speed of 300 feet per second and a lift coefficient
of 0.165 can be achieved by shifting the center of gravity forward approx-
imately 4 percent of _. This speed and center-of-gravity location were
selected as a basis for analyzing the dynamic behavior of the airplane.
It is recognized that this forward shift in center of gravity would
increase the trim drag at hypersonic speeds, but the increase is estimated
to be less than 5 percent.

Pitch-up is of primary concern since the momentderivative Y_
becomespositive as angle of attack increases. For accelerated flight
an added restoring momentis supplied by the pitching momentdue to
pitching velocity. The simulated airplane is then stable as long as
the restoring moment-M_ + (Z_/V)Mq > 0. This criterion is plotted in
figure 9 as a function of angle of attack at a velocity of 300 feet per
second and a center-of-gravity location of 0.51-6. The criterion for
static stability, -Ms, is also shownso that the effect of damping can be
readily noted. Figure 9 also shows that for armies of attack larger than
6° the airplane is at least critically damped(_ = i).

The existence of this added stability in pitch-up was verified by a
simulation study in which the response of the airplane to elevator steps
was recorded. The maneuverwas initiated from trim angle of attack at 300

feet per second. Location of the center of gravity was found at which the
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commandednormal acceleration could Just be achieved without pitch-up
instability. The results are plotted in figure lO. It can be seen that
with zero static margin the airplane may approach a load factor of 2.2
without encountering pitch-up.

Time histories showing the longitudinal oscillatory characteristics
for the airplane as simulated on the analog computer are shownin figure ll.
These runs were madefor a landing speed of 300 feet per second with the
center of gravity at 0.51_, the point of zero static margin for this speed.
Responsesare shownfor both an elevator step and pulse. Note that the
elevator step maneuver is controllable up to a maneuverof nz = 2 even
though the slope of the momentcurve becomespositive with increasing
angle of attack.

Lateral Characteristics

The effect of elevon deflection on the lateral force and moment
coefficients for the model at low speeds is shownin figure 12(a). The
configuration is such that elevon deflections provide substantial moments
about all three axes. As in the case of pitch, the roll and yaw effective-
ness of the elevons increased somewhatwith angle of attack except for
negative deflections at small angles of attack. In the latter case, the
yawing momentsdeparted considerably from the approximately linear varia-
tion with deflection angle that existed elsewhere.

Although an airplane similar to this model could conceivably be con-
trolled with elevon deflections only, the possibility of directional
control with less rolling momentby either a rudder or a split-flap type
elevon was the basis for further model tests. The results are shownin
figures 12(b) and 12(c) with a ±5e identifying the angle of the split-
flap surfaces above and below the neutral position. The figures show
that the rudder effectiveness was approximately constant with varying
angle of attack. The effectiveness of the split flap decreased at the
larger deflections while that of the rudder increased. It can be seen
that the rudder created a rolling momentwhich was approximately half as
muchas the elevon produced for the sameyawing moments.

The effects of Machnumberon the control effectiveness are shownin
figure 13 in the form of incremental force or momentcoefficients due to
elevon deflection. An increase in Machnumberdecreased the effectiveness
of the split-flap type elevon as a directional control (fig. 13(b)).

Tests in the presence of the ground plate included tests with one
elevon deflected. Results of these tests showedthere were no ground
effects on elevon effectiveness.



13

The static lateral-dlrectional characteristics of the model with

control surfaces neutral are presented in figures 14 and l_. Figure 14

shows that the variations of the coefficients with sideslip angles from

0° to -6 ° are approximately linear except in the case of Cn at angles

of attack above 6-1/2 °. With thls exception the data of figure l_ are

considered to be representative of the variation of static stability with

angle of attack. Figure 12 shows that there is a small rolling moment

at 0° sideslip at the higher angles of attack, evidently as a result of

model asymmetry. Though not shown, this rolling-moment coefficient was

the same for all Mach numbers and would slightly change the apparent

rolling moments due to sideslip indicated in figure 15.

The variation of Cn with 6 was approximately linear at sideslip

angles less than ±4° . Values of Cn_ in this small sideslip region

varied by as much as _0 percent as the angle of attack was increased from

0° to 12-1/2 °. The maximum values of Cn6 occurred near 9-1/2 °. Tests

were also made of the model at an angle of attack near 12-1/2 ° on the

2-inch-diameter sting. These data (not shown) demonstrated that the sting

had a large effect on the directional stability at sideslip angles greater

than ±4 °. In this region, reducing the sting diameter changed Cn by as

much as 0.00_. The yawing-moment coefficients at large angles of attack

and sideslip are therefore not considered representative of a flying

vehicle. The sting diameter had no other noticeable effects on the

lateral characteristics of the model.

Some static lateral characteristics with various control surface

deflections are shown in figure 16. Positive deflections of the elevons

had little effect on the stability, but the large negative deflections

generally increased the directional stability. The most extensive sta-

bility changes were caused by a negative deflection of the elevon on the

leading wing. The geometry of this configuration is such that the local

angle of attack of the leading wing at its outer panel decreases with

sideslip angle. A negative elevon deflection will also be likely to

make the local angle of attack more negative at the outer panel. Thus,

the largest change in stability due to control deflection occurs when

the angle of attack is small or negative and is probably associated with

the elimination of the leading-edge vortex over part of the wing. Non-

linearities in control effectiveness have also been noted, at negative

elevon deflections and small angles of attack, which may be also expected

to arise from changes in the leading-edge vortex on the outer wing panel.

It is assumed that the stalling of the rudder at the larger angles of

sideslip is responsible for the loss of effectiveness shown in figure 16.

Figure 17 presents the lateral dynamic derivatives of the model.

The damping in roll and yaw was positive at all angles of attack of the

test. The least desirable characteristic at angles of attack up to 16 °

may well be the negative yawing moment due to rolling velocity. Large

roll excitations of a representative airplane would be anticipated
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because of the large dihedral effect and the small damping and inertia

in roll which is inherent in wings of low aspect ratio. When combined

with large roll excitations, the negative yawing moment due to roll might

lead to poor damping characteristics of the short period lateral oscil-

lation. It is to be noted that an airplane of this configuration would

have a principal axis naturally inclined at a positive angle to the

longitudinal axis. Such a weight distribution would tend to counteract

the unfavorable moments considered above. The effect of Mach number on

the dynamic derivatives was small at most angles of attack and confined

mainly to the yawing-moment derivatives.

To illustrate the effects of the aerodynamic characteristics as

presented in figures 14, 15, and 17 on a representative airplane, the

cycles to damp the Dutch roll oscillatory mode to one-half amplitude,

CI/2, have been computed for several angles of attack. The stability,

represented by the inverse of CI/2, is shown in figure 18 versus

l_I/IVel. Also included is a minimum acceptable boundary as specified

by the military in reference 9. The variation in stability results

primarily from the increase in dihedral effect as angle of attack

increases. It should be noted that CZ_ has been reduced from the values
indicated by the wind-tunnel data by moving the center of gravity higher

(from 0.06 b below the wing to 0.02 b below the wing). It can be seen

that the stability characteristics improve at high angles of attack which

is, in part, a result of a reduction in the large negative values of c
A similar plot is given in figure 19 showing the effect of velocity and np"

center-of-gravity position on Dutch roll characteristics for trim angles

of attack. Increasing the landing velocity definitely improves the sta-

bility characteristics, but there are obvious limitations to improvement

due to this effect. When the curves in figures 18 and 19 are compared to

the present flying-qualities specifications, it should be remembered that

landing lateral-stability requirements may be modified considerably for a

high-speed configuration such as this. Time histories for the Dutch roll

oscillation at 300 feet per second velocity with the c.g. at 0.51_ are

given in figure 20.

Two other factors of importance to the dynamic analysis, the inverse

of the time constant for the roll subsidence and spiral divergence modes,

are presented in figure 21. Increasing the effective dihedral increases

the stability of the spiral mode, and this effect is also shown in

figure 21. Here the spiral mode is seen generally to become more stable

with angle of attack, as did the effective dihedral.

The roll-control effectiveness is presented in figure 22. When the

dihedral effect and directional stability combine with the aileron control

in yaw and roll such that

Cn_CZSa < CzBCnsa
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the restoring rolling moment applied by the aileron will be overcome by

the rolling moment induced by the sideslip due to the aileron yawing

moment. The aileron moments therefore produce static instability when

C_Cnga

Cn_ CZBa < 0

This is the quantity which is plotted in figure 22. No instability is

evident.

Analog Simulation of Landing Maneuvers in Five Degrees

of Freedom (Constant Velocity)

To evaluate the handling characteristics of the flat-top arrowhead-

wing configuration_ the following maneuvers were programed into an analog

computer simulation study:

i. Roils from -45 ° to +45 ° roll angle

. Rolls from trim angle of attack and 0 ° roll angle to 45o roll

angle with and without a programed longitudinal coordinated

maneuver

3. A turn consisting of a roll to a given roll angle and an increase

in normal acceleration to maintain level flight

Aileron rolls from -45o to +45 ° roll an_le.- To perform this maneuver

the airplane started from a 1.4g coordinated turn position and rolled 90 °

to a similar position turning in the opposite direction. The maneuver was

commanded with a step aileron input which was held constant for the 90 °

change in roll angle and then returned to zero. The value of the aileron

step was a parameter which was varied to evaluate the effect of roll rate.

A typical time history of this maneuver is given in figure 23. As the

command was returned to zero when 9 = 45 ° , an overshoot in roll angle

occurred, and the roll angle continued to change. The yawing moments

which induced sideslip forces during roll are indicated by the angle of

sideslip since no resisting yawing moments are applied through a rudder.

Figure 24(a) shows the maximum allowable roll rate to restrict this angle

of sideslip to i° as a function of the landing approach speed. Also shown

for comparison is the roll rate to obtain pb/2V = 0.05. Figure 24(b)

shows the normal accelerations induced by this maneuver as a function

of the landing speed. A velocity of 300 feet per second shows minimum

longitudinal coupling.
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Aileron rolls from 0° to 4_ ° roll an_le.- Aileron rolls were made
from 0o to 45 ° roll with and without an increase in normal acceleration

to develop a constant rate horizontal turn. A typical time history of

this maneuver is given in figure 25. Figure 26(a), which presents induced

sideslip as a function of aileron deflection, illustrates that increase

of normal acceleration during roll has no effect on sideslip. Figure 26(b)

gives the change in normal acceleration as a function of aileron deflection

and shows that the initial normal acceleration induced by roll is unchanged

by coordination of the rolling maneuver, but in this case the final value

is chsm_ed. The command was an aileron step input which returned to zero

after the airplane had rolled 45 ° . The magnitude of the aileron step was

varied to evaluate the effect of roll rate.

Level fli6ht turn.- Figure 27 shows the time history of'a turn in

which a 1.3g maneuver is initiated by an aileron step command, and the

elevator is coordinated so that the result is a level turn. No rudder

control or stability augmentation is used for the maneuver. It can be

seen that the build-up in sideslip is negligible so that a rudder is

unnecessary. The time to complete the maneuver, that is, to reach a

steady-roll angle, is quite long since the inherently low damping in the

Dutch roll oscillatory mode required small aileron input. Increasing the

aileron input increases both the magnitude of the Dutch roll oscillation

and the overshoot in roll angle.

Figure 27 also shows that the response time can be decreased con-

siderably if stability augmentation in the form of a yaw damper is used.

The angle of sideslip has increased but is still less than 1°. The

damping gain was 4.36 radians per radian per second giving a maximum

rudder deflection on the ventral fin of 17 °.

CONCLUDING REMARKS

Longitudinal and lateral stability and control characteristics at

subsonic speeds of a flat-top arrowhead wing-body combination have been

determined from wind-tunnel tests and an analog computer study. It was

found that the aerodynamic center moved forward by l0 percent of the mean

aerodynamic chord as the llft coefficient was increased above O.1.

Although flown in the lift range of decreasing stability, the simulated

airplane did not encounter pitch-up in maneuvers initiated from steady

level flight with zero static margin unless a load factor of 2.2 was

exceeded. This maneuver margin was provided by a large value of the

pitching moment due to pitching velocity. To obtain zero static margin

at trim llft, however, it was necessary to shift the center of gravity

somewhat forward of the optimum location for maximum lift-drag ratio at
hypersonic speeds. In the wind-tunnel tests the elevons and rudder main-

tained effectiveness at all angles of attack up to 22 °.
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The simulated airplane was stable in the Dutch roll mode but marginal

in meeting military specifications for present-day aircraft. An analog

study of the rolling maneuvers indicated that the simulated airplane was

controllable with little lateral-longitudinal coupling even when unaug-

mented. With the addition of yaw damping, fairly rapid maneuvers could
be executed with no serious overshoots or instabilities.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Dec. 5, 1958
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