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OF CALCULATING CHEMICAL-EQUILIBRIUM COMPOSITIONS

By Frank J. Zeleznik and Sanford Gordon

SUMMARY

The Brinkley, Huff_ and WY_ite methods for chemical-equilibri_n

calculations were modified and extended in order to permit an anal_<ical

comparison. The extended forms of these methods permit condensed species

as reaction products, include temperature as a variable in the iteration_

and permit arbitrary estimates for the variables.

!
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It is analytically shown that the three extended methods can be

placed in a form that is independent of components. In this form the

Brinkley iteration is identical computationally to the White method_

while the modified Huff method differs only slightly from these two.

The convergence rates of the modified Brinkley and White methods are

identical; and, further_ all three methods are guaranteed to converge

and will ultimately converge quadratically.

It is concluded that no one of the three methods offers any sig-

nificant computational advantages over the other two.

INTRODUCTION

The determination of equilibrium compositions for systems of many

constituents is generally difficult because the equations to be solved

are not simultaneously linear. Since a direct solution is usually not

feasible_ some iterative technique must be used to obtain the solution.

In the past few years there have appeared in the literature many articles

dealing with chemical-equilibrium calculations of complex systems and

describing various systematic iterative techniques (see list of refer-

ences in ref. i). These articles present methods of solution applicable

to specific chemical systems as well as general methods applicable to

most chemical systems. Of the general methods available, those of

Bri_kley (ref. 2), Huff et al. (ref. 3), and White et al. (ref. _) are

perhaps the most widely used. Because of their wide use, these three

methods were investigated to determine whether any one of the three

offers significant computational advantages.



The numberof iterations and the amoun_of computation per iter-
ation maybe taken as the criteria of computational advantage. Since
the amountof computation per iteration is essentially the samefor the
three methods, the only remaining criterion is the numberof iterations.
However, for any of the three methods invesnigated; the numberof iter-
ations is strongly dependent upon the initial estimates. Very poor
estimates will generally require considerably more iterations than a
good set of estimates.

In order to makean analytical compari;on_ it is essential that
all three methodsbegin with the sameiniti_l estimates. The Brinkley
and White methods cannot start with the sameestimates. The reason for
this is that the Brinkley method requires the estimates to satisfy
equilibrium conditions, whereas the White method requires them to satisfy
massbalance. If a unique, real, and positive solution exists, these
requirements are mutually exclusive except at the solution point. To
permit identical estimates, these methods w_re modified to remove un-
necessary restrictions on the estimates.

In addition to these necessary modifications, someother modifica-
tions were made. These include simplifying the iteration equations of
the Huff and Brinkley methods and treating _ondensedproducts in a man-
ner different from that originally proposed for the Brinkley method
(ref. 2) and White method (ref. 5). The Brinkley and White methods were
also extended to permit using temperature a_ a variable.

It will be shownthat the three modified and extended methods are
essentially equivalent computationally.
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SYMBOLS

total mass of reactant

converged value of A

formula numbers giving gram-atoms of ith element in jth specie

gram-atoms of ith element per unit mass of mixture (eq. (3))

assigned value for gram-atoms of ith element per unit mass of

reactant

heat capacity per mole at constant pressure divided by R

1 T
for jth specie : _[_]p : __]p
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Tj
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ho
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hj
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hj
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Z

m

n

P

Po

Pj

qi

R

r

formula numbers of components giving gram-atoms of ith element

in jth component

total free energy of mixture divided by RT (eq. (7))

standard-state free energy per mole of jth specie :

free energy per mole divided by RT for jth specie (eq. (8))

defined by eq. (68)

defined by eq. (25)

defined by eq. (48)

enthalpy per mole of jth specie

 /RT

o/RT

(_) j/RT

defined by eq. (68)

enthalpy per unit mass of reactant (eq. (15))

assigned enthalpy per unit mass of reactant

number of different chemical elements

number of gaseous reaction products

total number of reaction products

static pressure; arm

assigned static pressure_ atm

partial pressure of jth specie_ atm

defined by eq. (44)

universal gas constant

number of reduced iteration equations
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sj

S o

sj

T

To

Uk

uk

W i

X

xj

yJ

Yj

Z i

_j

_j

xj

Vjk

aj

entropy per mole of jth specie in _tandard state

entropy per unit mass of mixture divided by R (eq. (16))

entropy per mole of the jth specie divided by R (eq. (17))

assigned entropy per unit mass of mixture divided by R

defined by eq. (27)

absolute temperature

assigned absolute temperature

kth component of solution vector of modified Huff iteration

equation

k th component of solution vector o_ modified Brinkley iter-

ation equations

ith component

total moles of gaseous products (e L. (41))

moles of jth specie in a mixture

moles of jth specie in a unit mass of mixture

jth specie

moles of jth specie in a mixture st equilibrium

ith element

activity of jth specie

Kronecker delta

defined by eq. (54)

defined by eq. (68)

defined by eq. (81a)

moles of jth component in k th specie [see eq. (3G)]

ith Lagrangian multiplier

defined by eq. (34)
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GENERAL DESCRIPTION OF ORIGINAL METHODS

The three general methods all use an iterative technique to obtain

equilibrium compositions. Initial estimates are made for the variables,

and corrections to these estimates are obtained. The process is con-

tinued until some arbitrarily selected criterion for convergence has
been reached.

Brinkley (ref. 2) was the first to treat the problem of the numer-

ical solution of the nonlinear chemical-equilibrium equations for a gen-

eral chemical system. In his calculation method the thermodynamic state

of the system is specified by assigning the temperature and static pres-

sure of the reaction products. The chemical-equilibrium relations are

written in terms of components. Components are defined to be those in-

dependent constituents of the mixture that can be used to express the

overall composition. The number of components usually equals the number
of different chemical elements in the mixture but under some rare cir-

cumstances can be less (e.g., if some elements appear in constant ratio

in all the reaction products). The choice of components is not unique.

The nonlinear set of equations defining the problem is approximated by

a linear set of correction equations obtained by a Taylor series ex-

pansion of the nonlinear equations neglecting terms higher than first

order. In Brinkley's method any condensed reaction products that appear

are treated as components.

The method of Huff_ Gordon_ and Morrell was described in reference 3

and subsequently presented in slightly modified form in reference i.

This method differs from Brinkley's in the following respects:

(i) The gaseous atoms are arbitrarily selected as components.

(2) Condensed reaction products are not considered to be components.

(3) The thermodynamic state of the system may be specified by

assigning the pressure and either the temperature 3 the enthalpy_ or the

entropy.

(4) The linear set of equations is obtained from a Taylor series

expansion involving both logarithmic and linear variables.

(5) Corrections are applied to all constituents.

The most recent of the three methods is that due to White 3 Johnson_

and Dantzig (ref. 4). It is based on the criterion for equilibrium

(dF)T_p = 0. The thermodynamic state of the system is specified by

assigning the temperature and pressure. As originally presented, the

method could only treat problems involving gaseous reaction products.



It was later extended to include condensedreaction products (ref. S)
by redefinition of one of the variables in the iterations equations.

EQUATIONSFORDETERMININGEQUILIBRIT_COMPOSITIONS

The formation of amyone of n chemical _pecies from _ elements
maybe written in the form

Z
E aijZi = Yj (I S j < n) (i)
i=l

J

where Z i is the symbol for the ith chemical element, and YJ is the

symbol for the jth chemical species. Thus, aij represents the number

of gram-atoms of element Z i in one formula w,_ight of the chemical

compound designated YJ; that is, the first s_)script on aij indicates

the chemical element and the second subscript i_ives the chemical com-

pound. The range of any index such as k will usually be associated

with specific chemical species:

1SkS gaseous elements

+ i _ k _ m gaseous compounds

m + i _ k _ n condensed species (compounds and elements)

where, for any particular problem, Z, m, and il are to be considered

as fixed integers giving the number of element_j the number of gaseous

products_ and the total number of all products, respectively. For the

chemical elements (i _ j _ _),

aij = 5ij (2)

where 8ij is the Kronecker delta.

The overall composition of a mixture of _l chemical species may

be expressed in terms of bi_ the number of gr_-atoms of the ith ele-

ment per unit mass of mixture:

n

j=l

' gives the number of moles of the jt_ product in a unit masswhere xj

of the mixture. In some cases it is a_vantage_us to alter the magnitudes

!
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of the x''j_and therefore, if equation (3) is multiplied by the total

mass A, one obtains

Ab i = _ aijx j (I ! i ! %) (4)

j=l

where xj is the total number of moles of the jth product in the mix-

ture, and is given by

In the calculation of the equilibrium composition of a mixture_ the

number of gram-atoms of the ith chemical element per unit mass of mix-

ture is specified to be some assigned value b_. The co_dition for con-
servation of mass then takes the form

biO _ bi = _b i = 0 (z S i i z) (5)

If yj are the values of xj that satisfy equation (S), then

n

Ab° : Z_ ai_% = 0 (1 < __<_Z)
j=l

(G)

The condition for chemical equilibrium in a system at a tempera-

ture T and a pressure P may be stated in two equivalent forms. The

first says that the total free energy of the system divided by RT

n

F(xj,T) = _ fjxj

j=l

(7)

is a minimum at a constant temperature and pressure, vSere

fJ _ :o).%.j+ z_ _j (1 <-; <-n) (8)
RT

The values of xj that minimize equation (7) at T,P are then the
equilibrium values. In equation (7) and in all the following equations

it is assumed that the standard state for gases is taken to be the

ideal gas at i atmosphere, while for solids and liquids it is the pure

solid or liquid at i atmosphere. It is assumed that the gas mixture
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behaves as an ideal solution and that, if conlensed species occur_ they
will occur as the pure solids or liquids whos_ activities are independent
of pressure; therefore,

I pj (i __j < m)= (9)
i (m < j 2 n)

An alternative but equivalent way of stating the condition of chem-

ical equilibrium is that the free-energy chanTe across a reaction is

zero:

Afj = 0 (i __ j __ n)

The free-energy change across the reactions (i) is

1

_fJ = fJ - E aijfi (i <_ j __ n)

i=l

(io)

(Ii)

Nonequilibrium values of the composition variables will not minimize F

and will not make all Z_fj equal zero.

The thermodynamic state of the system is specified by assigning the

temperature and pressure. 9_e static pressure of a mixture of gases is_

by Dalton's law_
m

P = Pi (12)

i=i

The condition that at equilibrium the static pressure of the system is

Po is

P : Po (13)

The specification of the thermodynamic state may be completed by re-

quiring that_ at equilibrium_

= T o (14)

Equilibrium compositions are usually ob-;ained for a specified pres-

sure and temperature. For a number of probl_ms_ it is desired to obtain

temperature and other system properties corr_sponding to an assigned

pressure and some other assigned thermodynam:.c property such as enthalpy

or entropy (e.g., determining flame temperat_Jres or conditions following

an isentropic expansion). This is generally accomplished by calculating

!



data at several assigned temperatures followed by interpolation. How-

ever, temperature can be determined directly during the iterative process

for assigned values of enthalpy or entropy. This is accomplished by

permitting temperature to be a variable and including an additional

equation involving enthalpy or entropy. The choice of which technique

is used - that is, fixed temperature for several points and then inter-

polation, or temperature as a variable during iteration - is largely

a matter of personal preference.

The enthalpy of a mixture is

n

j=l J

(15)

where it is assumed that the enthalpy of the constituents is independent

of the pressure and that reference values consistent with heats of

formation have been assigned to all n species. In like fashion the

entropy of a mixture is

n

As = E sjxj (16)

j=l

where

O

(ST)j in _j (i < j < n) (17)
s_ = R -- --

The temperature of the equilibrium mixture may now be specified either

by equation (14) or by (18) or (19):

S = S 0

where 6 o is an assigned enthalpy per unit mass, and so

signed entropy per unit mass divided by the gas constant.

(18)

(19)

is an as-

The problem of chemical equilibrium is completely determined by

either the set of conditions (5), (i0), (IS), and one of the three (14),

(18), (19), or by the set of conditions (5), (13), one of the three

(14), (18), (19), and the minimization of (7). Except for the simplest

of cases_ the set of equations selected cannot be solved in closed form

and must be solved by iteration. Further_ the equations are not all in

the same composition variable; some are written in terms of the mole

numbers xj, others in terms of partial pressures pj, and still others

in terms of both xj and pj. The selection of the appropriate set of



i0

equations_ the choice of the iteration metho_ito be used in their solu-
tion, and the relation between xj and pj that is used constitute the
important differences in the three methods t_ be discussed.

MODIFTEDMETHODOFHUFFET AL.

The iteration schemeof the Huff method is based on replacing
the nonlinear set of equations by a set of l:.near correction equa-
tions obtained by a Taylor series expansion _eglecting terms higher
than first order. The equations selected arc (5) for massbalance,
(I0) for equilibrium, (13) for assigning the pressure, and either (18)
or (19) for assigning the enthalpy or entropy. Although Z + n + 2
equations appear in this set, only n + 2 of these are independent,
because with the use of (2) it is easily shownthat the first
equations of (i0) are merely identities.

If A is considered to be a constant, -.here are n + ? equations

in the m + n + i unknowns pj, xj, and T. However, if A is treated

as a variable, there are then m + n + 2 ur_mowns_ and it is possible

to adjoin to the previous set of equations ii additional equations re-

lating pj to xj. In particular, the set selected is

pj = _j (l S J S:_) (2o)

These m equations may now be used to elimi_late pj from the previous

set of equations_ resulting in n + 2 indepmdent nonlinear algebraic

equations in the n + 2 variables xj_ A_ _id T. If these are ex-

panded in a Taylor series about an estimate for the solution using

in xj(j _ m), xj(m < j _ n), in A, and In T as the variables, one ob-

tains the following equations linear in the _orrection variables

A in xj, Axj_ a in A, A in T from the set of nonlinear equations

(s),(10),(13),and (18):

A(b° bi) = A abi

m n n

aijxjA in xj + E aijAxj - E

j=l j=m+l j=l

aijxjA in A

(lS i ___) (21)

9+

-Afj = A In xj - E

k=l

akjAin xk - (lS j S m)

(22a)

!

F-J
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k=l

akjh in xk - Z_ inT- akjh °

k=l

(m < j <__)(_2b)

m

Po - P = Z:::,.P= E xjZh in xj

j=l

(23)

A(h o-h) =Am_

m D..

j=i j=m+l

E h_xjA in A

j=l

n

j=l

(24)

where

. RT

fj = _

RT

"h

+ in xj (1 S j < m) I

[(m < j i n)

l" (251

(l < j < n)
i=l

(l i j i n)

Zkfj = fj - E aijfi

o
hj = RT

If yj, Ao, and T o are the equilibrium values of x j, A, and T; then

Zk in xj = in yj - in xj (I _ j <_m)

Zkxj = yj - xj (m < j <_ n)

h in A = in A o - in A

A in T = in T o - in T

For xj, A, and T sufficiently close to the equilibrium values, these

linear equations will give the equilibrium values. In general, however,

the values obtained will only be better estimates for the equilibrium

values than xj, A, and T.



If the sameprocedure is followed for (19) and if equation (E3) is
then added to the result_ the following equstion is obtained:

k(s o - s) +AP = A as +AP

m n n

j=l j=m+l

E sjxj A in A

j=l

n

+ E c xjA InT
j=l

where

xj (i _ j S m)

(m < j S n)

(27)

Equations (El), (EE), (E3), and either (2%) or (26) can readily be

reduced to the following Z + (n - m) + 2 linear equations by using

(22a) to eliminate A in xj, and (25) to eliminate fkfj:

n n

E rik_k + E aik SXk + E aikXk(-h in \)

k=l k=m+l k=l

+
0 *

aikhkX k - rikh A in T = A Ab i + aikXkf k
k=l k=l k=l

k=l

(liii )

E . _-_ . <akja k + - akjh ° A in T = fj - i._ akj fk (m < j _ n)

k=l = k :i
(89)

I
_£

OZ.
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k=l --1

= AP + fjxj

j=l k=l(j=l akjXj) fk

(3o)

k=l j =l k= 1 j=l

h_x_(-AIn A)

o o+ + hj°hjxj - h A in T

=l j=z k=l\j=Z

=AZ_+ £o.±I£o).hjfjxj- akjhjx, fk

j=l k=lLi=l

(51)

+ s._ + sj_xj(-m in i)
k= l\,i =Z j =m+l j =_.

sjhjxj akjSjX h A _In T

=l j =1 k=l\j =l

= A As + AP + sjfjxj - akjsjx, zk

k=Z\j=l

m

j=l

Ehere

m

rik = rki : E aijakjXj (i S i S Z, i i k _ Z) (55)

j=l

°k : a m xk (z <_k < _) (5,_)

The set of Z + (n - m) + 2 linear equations (28) to (50) and

either (Sl) or (52), which can be solved to give directly the corrections

to the estimates for yj (I _ j _ Z, m < j _ n), Ao, and To, is pre-

sented in figure i. These corrections can also be used to obtain the
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corrections for the other gaseous species from equation (22a) rewritten
using (S4) and (25):

aj = -fj + akj(f _ + ak) + - akjh A in T

= k=l

(1SOSm)

(s5)

The equations for (i _ j _ Z) in (35) are identities for the gaseous

atoms but are included for the purpose of later comparisons.

When the temperature is assigned directly by (14)_ temperature is

no longer a variable_ and the appropriate set of iteration equations is

(28) to (30) with the A in T terms deleted. The A in T term is also

deleted from (35).

!
tO
P
O_

MODIFIEDMETHOD OF BRIEKLEY

In the previous section the equations for conservation of mass and

for chemical equilibrium were written in terms of the gaseous atoms. The

corresponding relations in the Brinkley method are written in terms of

components. A set of iteration equations in terms of components is pre-

sented first. These equations are then converted to an equivalent set

of equations in terms of gaseous atoms.

Iteration Equations in Terms cf Components

If the jth component is designated as wJ_ then all of the chemical

species in an _-element system can usually be written as a linear com-

bination of Z components as follows:

j = yk (l k S n) (3e)
j=l

where Wjk gives the number of moles of the jth component in the k th

species; W j may be expressed in terms of the elements as

W j : _ cijZ i (i <__j <___) (37)

i=l

where cij gives the number of gram-atoms o_ the ith element in the

jth component. Substituting (37) into (36) snd comparing coefficients
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I

of Z i with those in (i),

E cijvjk = aik

j=l

l<_k<_n) (3s)

To simplify the discussion, the last Z chemical species

(n - Z + i _ k _ n) will be selected as components; that is, the jth

component is the (j + n - z)th species, or

wJ = yj+n-% (1 S j S _) (39)

This selection includes the condensed species as components as required

by the Brinkley method. This particular choice of components will in

no way restrict the discussion, since it will subsequently be show_ that

the choice of components does not affect the corrections obtained during

the iteration procedure. Because of the particular choice of components

(39),

cij = ai,j+n- Z (i < i < _, i < j < _) (¢o)

The Vjk can be obtained from (38) if the matrix cij is nonsingul_r

and possesses an inverse c-I The requirement that cij be non-ki"

singular restricts the possible choices of components. In the previous

section, because the atoms were used as components, cij = 8ij and thus

was always nonsingular.

In the previous section, it was found convenient to treat A as

variable in order to introduce a simple relation between the moles and

partial pressures (20). In this section, A is regarded as an arbitrary

constant A', and a new variable 7 is introduced. The variable _ is

equal to the total moles of gaseous products:

m

j=Z

The partial pressures are then related to the moles by

Po

pj - _ xj (1 i J i m) (42)

The equations for conservation of species are readily obtained.

Substituting (38) into (4), multiplying the resulting equation by CkiI,

and summing on i from i to _ give

n

A'qk = _ VkjXj (i < k <_ Z) (43)
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where

i=l

The conservation equations corresponding to (5) are

qk =aqk = 0

The condition for equilibrium is again taken to be (i0)_ however,

the free-energy change across the reactions (38) with the choice of com-

ponents (39) is

Afk = fk - _ wjkfj+n-Z (! __ k __ n) (46)

j=l

Since the last _ species were selected as components,

Wjk = _j+n-Z,k (i S j _ Z, n - Z < k S n) (47)

and thus the last Z equations of (4G) are id_ntically zero.

In his original presentation, Brinkley el Lminated the variable

from his equations by imposing the condition

A' _ q_=l
k=l

For comparison with the other methods_ the var hable x is retained.

The use of equation (42) ensures that (13) is satisfied for any choice

of xj. Equation (13) is replaced by the relation

m

G= _
j=l

If equation (41) is satisfied (i.e., if duuring the iteration the esti-

mate for _ is obtained from the sum of xj(l _ j _ m)), then

a --o (49)
m

If, however, an independent estimate is made for x_ then G will be

zero only when the iteration converges.

!
_o
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The equations that must be satisfied by the system in equilibrium

are (45), (i0), (49), and either (14), (18), or (19). Using (42) in (i0),

expanding the resulting equations together with (45), (49), and (18) in a

Taylor series as in the previous section, and treating (xj/_)(l _ j _ m),

xj(m < j _ n), _, and T as variables give

©

A'(qi - qi) --A, m_i

m n m £_

k=l k=m+l k=l

(_<_±_< _)

(5o)

-_k-- gk -
Z+m-n

E Wjk_j+n_ Z

j--i
- h - Vj +n- -T-

(l -<k <m)

(51a)

+m -Yl

-Afk = -

j=l

Vjk{j+n-Z k - Vjkhj+n- -T-

j=l

(m<k_<n)

(_ib)

m m

x-Z x_=E x_
j=l k=l

(s2)

A'(h 0 - h) = A'_

m n m n

2 2 ° 2° _+2 ° _= h_Xk{ k + hk ZMxk + hkX k _ CkX k _-
k=l k--_m+l k=l x k=l

(53)

where

(ykl_)- (xk/_)
{k = XkF

_Xk = Yk - Xk

AT=T o -T

(i i k S m)

(m < k <__n) (54)
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Treating (19) in similar fashion and adding Ii + in _) times (52) to
the result give

A'As + + in - x = OkXk_k + sk _x k

j=i k=l k=m+l

+ SkX k - x in -- + CkX k _ (55)
=z x k=l

Assuming that equation (41) is used to obta:.n an estimate for _, the

left side of (52) and the corresponding tem:i on the left side of (55)

are zero. These terms will therefore be dropped from further considera-

tion. However; it is possible to treat [ in a manner identical to the

other variables and to alter the estimate for x as called for by the

iteration equations, so that (41) need not be satisfied until equilibrium

is reached. Equations (50), (51), (52), amL either (53) or (55) can be

reduced to Z + 2 independent equations by using (51a) to eliminate _k

from the other equations and (46) to elimin_te Zkfk as follows:

j_l VikVjk _j+n-_ + E"= k=l k=m+l

V:.k AXk + _ VikXk
x

k=l

° j_=_iI\_l VikV jkXkl hJ +n- Z]-T-+ [k=_1 VikhkX k _ O AT

= A'Z_li +
m EI£ Xk1

E vikfkXk- VikVjk fj+n-Z

k=l j::l\k=l

(1 _<i _<

Z+m-n + lhk _ £ h O hATE Wjk_j +n-Z Vjk j+n-_)'_-: fk - vjkfj+n-Zj=l j=l j=m

(m<k!n) (57)

m _I£ xk1
= E fkXk - Vjk fj+n-_

k=l j=l _k=l

(58)
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o

_9
I

O

h_VjkX _j+n-_ + i

j=l \k=l k=m+l

m
o o

hk _Xk + Z hkXk _-

k=l

±c o+ CkX k + h_hkX k - hkVjk x hj+n- _-

tk=l k=l j:l\k=l

=A'Ah +
h_VjkX fj+n-_

k=l j 1
E (59)

* * * xln
SkVjk _j+n-t + Sk ZiXk + kXk - x

j=l \k=l k=m+l k=l

+ CkXk + o * o ZkT

=I k=l j=i \k=l

= A'As + SkfkX k - SkVjkX f j+n- I*

k=l j=l\k=l

(60)

Equations (57) are identically satisfied and are included only for

later use. The I + 2 linear equations (56), (58), and either (59) or

(60) can be solved to give directly the corrections to Yk(n - _ <k _n)

and T. The corrections to the estimates for Yk(l _ k _ n - _) are

obtained from (51a). Equation (51a) can be written in a form similar

to (35) as follows:

Po l+m-n I

E E_k + in -----= -fk + Vjk_j+n-Z + vjkfj+n-Ix

j=l j=l

o o _T
+ k- Vjkhj+n- -_- (Z<k<m) (61)

The equations for the gaseous components (n - Z < k S m) in (61) are

identities.

When the temperature is assigned directly by (14), temperature is no

longer a variabl% and the appropriate set of iteration equations is (56)

to (58) with the AT/T terms deleted. The AT/T term is also deleted

from (61).
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Iteration Equations in Terms of Atoms

The set of _ + 2 independent equations (56), (58), (59), plus the

n - m identities (57), or the same set of equations with (59) replaced

by (60), can be converted to Z + (n - m) + i:: independent linear equa-

tions very similar in form to equations (28) to (52) used in the Huff

method as follows:

First, the Vjk may be obtained from (38) as

VJk = E c_aik

i=l

(62)

Next, equations (62) and (44) are used in (5{.) to (60) and the equations

resulting from (56) are also multiplied by (ji and summed on i. The

resulting system of equations is:

n

k=l k=m+l

aik Ax k + £ x ik kiTk=l l:=l k=l

= A'Ab i +

k=l k=l
E aikXk< f_ + in - E rikf--k

_ -o AT .

akJ_k + - an_ T = fj - a< 7k
k=l = =

(m < j S n) (64)

_I£ J] [£ _ 'm j) ]
x x ._-

k:l \j=l j=l k:l .j:±

m -- P° £I£ Jl
j=l k=l \j=l

(65)

!

Ob
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a h°x _k + o ZkXk + okj j hk hjxj x

k=l\j=l k= i j:l

+ cjxj+ _ _h_x:- akjhjxh T
j=l j=l k=l\j--i

= A'ZLh +

j=l k=lkj=Z

(66)

akjsjx. + sk Ax k + SkX k - x in

k=l\j=l k=m+l k=l x

+ Cjxj + sjhjxj - akjsjx h -_

j=l j=l k=l\j=l

--A'_+ sjxj + in - a_js_x7k
j=l k=l\j=l

(67)

where

l+m-n

L = _ cjI _j+n-_

j=l

h-_ r. c_ o= hj+n_ z
j=l

Z Po _+m-n c-I
= fj+n-_ _ jk j x

j=l j=l j=i

<ZSkSt) (68)

In similar fashion, equation (61) becomes

PO

_j +in_=
X

k=l k=l

(i <_ j S m)

(69)
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The set of equations (63), (64), (65), anff (66) or (67) represents

a more useful form of the iteration equations for automatic computation

than the set (56), (58), and (59) or (60). Although the latter contain

n - m fewer equations if condensed products are present, it is necessary

to obtain a new set of Wjk for each new choice of components, and the

calculation can be rather lengthy when many species are under considera-

tion. However_ using the former set it is only necessary to calculate

an inverse matrix for each new choice of compoaents and from it the fk

and _. In a subsequent section it will be shown that it is possible

to obtain a set of iteration equations that do not contain _k and _,

and hence it is unnecessary to obtain the matrix c7_.
10

!

_o

o_

MODIFIED METHOD OF WHITE ET AL.

The methods of Huff and Brinkley are Newton-Raphson iterations

where the conditions for chemical equilibrium are given in terms of free-

energy changes across reactions (equilibrium constants). The White

method uses the alternative but equivalent method of specifying equilib-

rium conditions as the minimum of the total free energy of the mixture.

With (42), equation (7) becomes

n Po

F(xi_T) = E *fixi+ m (7o)
X

i=l

If (Yi,To) represents a neighboring point to (xi,T) with Yi satisfying

equation (6) with A = A', then the Taylor series approximation for the

free energy at (Yi,To), expanded about (xi,T) _nd neglecting terms higher

than second order, is

Q(Yi,To): F(xi,T)+ + in _x i + N_ _x i

i=l i-_+l

m- hixi -T + [ E .__ _ 1 2_XkE o 2_T 1 i

.i=l i=l _---i\

n
AT i o o 2_T 2

k=l k=l

(7l)
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_0

O_
I

because

and

eo

_F = rf_+in-- (l< i<m)
_xi [f* (m < i <_ n)

0
_F hixi

i=l

fh_

_2F = __i

i

x
(i <_ i <_m, i <_k <_m)

(m < i <_ n, m < k <_ n)

O

_2 F h i

_xiZy : - -_ (i <_i _<n)

r_ (2_o o
_2F _ - Ci)xi

_T 2 T 2
i=l

The function Q is to be minimized as a function of Yi subject
to the restriction

n

A'Abi - Z aiJ(YJ - xj) = 0 (i <_ i <_ Z) (72)

j=l

obtained by the subtraction of equations (6) and (4) with A = A'. Thus,

it is necessary to minimize the function

U = Q + _i 'Z_bi - aij (yj - xj

i=l j=I

(73)

where the _i are Lagrangian multipliers.
lowing conditions be satisfied:

_u : _Q _ _. o
_ _ _iaik =

i=l

This requires that the fol-

(i ! k S n) (74)
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From equation (71),

---+_ - -hE_-

ATT

(i <k <m)

(m<k<_n)

Thus, equation (74) becomes

f_ + in _ +
X

l

o_- hk T - _iaik = 0 (i <_ k <_m) (75a)

i=l

f* oat _ --o (_<k<n) (TSb)k - hk T - __ giaik -
i=2

Equations similar in form to the correctLon equations in the Huff

method [(28), (29), (30), and (31) or (32)] a_d the Brinkley method

[(63), (64), (6S), and (66) or (67)] may now )e obtained as follows.

Rewriting equation (72) in the form

m n

Z ajk(Yk - xk) + E ajk A_ k = A'Abj

k=l k=m+l

and eliminating Yk (I S k S m) with equation (75a) give

n

E rik_k + E aik AXk +

m

Em _ + )- aikhkXk TaikXk x
k=l k=m+l k=l k=L

= A'Ab i + aikx k _ + in

k=l

(iSi<_l) (7_)

Solving equation (75a) for Yk and summing o rer k(l S k S m),

akjx _k + hkXk T =

k=l_j=l k=l k=:_

* -- Po
fkXk + x in ---_

X

(77)

I
tO

Ou
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The remaining iteration equation can be obtained from either (i8)

or (19). Expanding (18) in a Taylor series about (xj,T) gives

n n

o o fkT
= CkX k ( 7 8 )

k=l k=l

Eliminating Yk (1 S k S m) from (78) using (75a) gives

o _k + hE ZkXk + o ZX_akjh jxj hkX k

k=l\j=l k=m+l k=l

( oo+ hkhkX k + CkX -_-= A + hkX k + in

k=l k=l k=l

(79)

Proceeding in an identical fashion with (19) and adding in Po times

(77) to the result give x

_ £ akjSjX" _k + i Sk fkXk + i skxk - x In x

k=l =i k=m+l k=l

(i.o io<+ SkhkX k + C_ T

k=l k=l
m--A,As+_ s,_x_(f_+ in (8o)

k=l

Equations (76), (75b), (77), and either (79) or (80) are the

iteration equations of the extended White method in the variables

_k (i _ k _ l), Ax k (m < k ! n), ZX_/_, and ZXT/T. The new values for

the xj (i _ j _ m) are obtained from (75a) with the use of the solution

to the preceding set of equations. Equation (75a) can be written in a

form similar to (55) and (61) as follows:

Po = Z
_j + in_ * E o ATx -fJ + akj _k + hj _- (i S J S m) (81)

k=l

where

% =?- _x (Sla)
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COMPARISON OF M O D I F l E D  METHODS 

Differences in Presentation from Original Reports 

Before making a comparison of the three extended methods, it is 
appropriate to point out how the methods presented here differ from the 
original presentation. The Huff et al. method as presented here is sub- 
stantially the same as that in reference 1, differing primarily in 
notation, a modified entropy equation, and the use of alternative ex- 
pressions for the elements of the last two columns of the augmented 
matrix. 

M 
I 

CD 

G 
Brinkley expressed his correction equations in terms of &&' In 

this paper the correction equations are in terms of 
equations lead to the identical corrections. The use of (k permits 
a direct comparison with the other methods as well as offering some 
computational advantages, as was pointed out in a previous section. 

&. Both sets of - 

Brinkley's original method was an iteration for assigned tempera- 
ture and pressure where composition estimates were made only for the 
components, the remaining composition variables being determined from 
the equilibrium constants. As presented here, the method may be used 
for variable-temperature iteration, and the estimates for all the com- 
position variables may be made independently. If, by choice, independ- 
ent estimates are made only for components, then the free-energy terms 
on the right side of the iteration equations vanish identically, and 
only the mass-balance and enthalpy or entropy errors remain. However, 
this latter procedure may lead to unnecessary difficulties, as for ex- 
ample when some of the components are not major species. In this case 
small errors in the trace components are magnified to such proportions 
that convergence may be slow if not impossible. 

The extended White method permits variable-temperature iteration, 
inclusion of condensed reaction products, and the use of estimates that 
need not satisfy mass-balance restriction. When the temperature of the 
system is assigned directly (14), only gaseous products are considered, 
and the estimates satisfy the mass-balance equations, then these equa- 
tions reduce to those of reference 4. For the case of variable tem- 
perature, the minimization procedure has been combined with a Newton- 
Raphson iteration for temperature. 

Comparison of Modified Iteration Equations 

The equations for the three modified methods are presented - in fig- 
ure 1. In this comparison the set of equations for the ck variables P 
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. 

will be used for the Brinkley iteration, since these equations charac- 
terize the Brinkley iteration as adequately as the equations for the Ck 
variables. A comparison of the corresponding Huff and Brinkley equa- 
tions discloses a great similarity; the coefficient matrices are identi- 
cal, except for the last two columns. The second-last columns differ 
only in that in the Huff equations the summation extends from 1 to 
while in the Brinkley equations the summation is only to This is 
directly attributable to the different roles played by the variables A 
and x. The former is associated with all the species, while the latter 
refers specifically to the gaseous reaction products. The last columns 
of the coefficient matrices are both formed in part from linear combina- 
tions of the first 2 columns, differing only in the fact that constants 
of combination differ. The Constants of combination are hg in one 
case and hi in the other. The right sides also differ by the use of 
different constants of combination in forming linear combinations of 
columns of the coefficient matrix. 

n, 
m. 

- 

FINAL MODLFICATIONS 

Derivation of Component-Independent Forms 
of Huff and Brinkley Equations 

The elimination of the linear combination terms from the Huff 
and Brinkley equations in figure 1 would make these equations in- 
dependent of components. To eliminate these terms, it is necessary 
to establish a relation between the solution vector of a set of 
equations with linear combination terms and the solution vector of 
a new set of linear equations with these linear combination terms 
removed. 

To accomplish this objective, consider two sets of r linear 
e quat i on s : 

I 
where the relations between the matrices Mij and Nij and between 
the vectors di and ei are 
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ei = d i - p___ Nip Yp
(8Sb )

The constants _p and yp are defined to le zero for p greater than

and nonzero for (i <_ p <_ _). The equations (82b) are analogous to

the Huff or Brinkley equations of figure i, while (82a) represents these

equations with the linear combination terms deleted from the last column

of the coefficient matrix and the right side.

To obtain the relation between uk an_ Vk, both (82a) and (82b)

are multiplied by the inverse matrix N_I _d summed on i. Using the

identities (83a) and (83b), one obtains

uk = _ Nkildi

i=l

Vk - Vr _k =

i=l

and therefore

Vk = Uk + Vr_k - _k (i <-- k <-- r) (84)

From (84) and the definition of the constants of combination there

follows

f

Vk : uk + Vr k - Yk

[Uk

(likit)

(Z <k<_r)

(85)

Equations (85) is the desired relation. It shows that the linear com-

bination terms affect only the first Z con@onents of the solution

vector, leaving unaltered the remaining comlonents of the solution vec-

tor. The following table indicates the correspondence between the

variables in (85) and the variables of the modified Huff and Brinkley

equations of figure I:

!
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vk (l<_k<__)

V r

_k (l<_k <__)

rk (l<_k <__)

Modified IModifiedHuff Brinkley

0

hk

fk

AT

T

With the correspondence of the table and the use of uk = uk with

the Brinkley variables, (8S) for (i <_ k < Z) gives the two transformation

equations

O

°k + fk = Uk + hk A in T (1 ! k S z) (86)

_k + f% --u-_+ _ _ (i <-k <-_) (87)
T

Eliminating ok from the modified Huff equations (Z8),_(29), (50), (51),

and (52) with the transformation (86) and eliminating [k from the

modified Brinkley equations (63), (64), (65), (66), and _67) with the

transformation (87) give a new set of iteration equations for these two

iteration methods. These are presented in figure 2_ together with the

modified White iteration equations from figure I.

All three sets of iteration equations in figure 2 now give directly

the corrections to the condensed species_ temperature and either 7 or

A; however_ none of the iteration equations give the corrections to the

gaseous species directly. The corrections to the gaseous species in
the modified White iteration are obtained from (81). Corrections to

the gaseous species for the Huff and Brinkley equations of figure i are

obtained from (55) and (69), respectively. These two equations can be

transformed to correspond to the variables of the Huff and Brinkley

equations of figure 2 by substituting (86) into (55) and (87) into (69):

* E O -- --oj : -fj + akju k + hj A in T (i < j < m) (88)

k=l

Po . I

- o_ (l< <_j + in _ : -fj + akju k + hj _- -- j --m) (89)
X

k=l
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Comparisonof Final Equations

An examination of figure 2 discloses that in this form all three
sets of iteration equations are independent of components. Further_ in
this form the Brinkley and White equations are computationally identical,
while the Huff equations differ only slightly from these two. The Huff
equations have additional terms in the second-last column of the coef-
ficient matrix, while the other two have additional terms on the right
side. Whenonly gaseousproducts are considered, the three coefficient
matrices are identical except for one term in the entropy row.

OBTAININGANDAPPLYINGCORRECTIONS

A distinction should be madebetween the solution of the equations
to obtain corrections and the application of these corrections to ob-
tain new estimates.

!
_o
P

Obtaining Correctioms

As was pointed out previously, all three modified methods give the

corrections to the condensed species, temperature and either _ or A

directly. The corrections to the gaseous species are obtained from the

auxiliary relations (81), (88), or (89). For the Huff iteration, (88)

gives the correction variable aj, which may be regarded as either

axj
or _ and applied accordingly. Bowever, (81) and (89) give

A in xj xj

the variables _j and _j, respectively.

The corrections _ In xj or _-_ may b_ related directly to _j
xo az

if use is made of the approximate rel_tion _ in z = _:
zor _j

I _ (modified White)

_j +

A in xj : = (90)

{j + { (modified Bri Zey)
x

Since the Brir_kley and White iteration equations in figume 2 and also

the corresponding auxiliary relations (89) anl (81) are identicalj it

follows that the modified Brinkley and White equations provide identical

corrections. These corrections will in general differ from those given

by the Huff iteration.
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Applying Corrections

Once the corrections have been obtained from one of the three iter-

ation procedures, there still remains the question of how to use these

corrections. Some of the possible variations are

(i) Using the corrections for the gaseous species and temperature

_x k

linearly or logarithmically, for example, Xk or _ In xk

(2) Using the entire correction or some fraction of the correction

(3) Using some or all of the composition corrections:

(a) Applying only _ of the comDosition corrections and de-

termining the remaining n Z composition variables from

the equilibrium constants

(b) Applying n - Z of the composition corrections_ deter-

mining the remaining Z composition variables from the
mass-balance relations

(c) Applying all n composition corrections

(4) Using some combination of the above three.

In the original papers Huff et al. advocate the use of logarithmic

corrections while Brinkley and White use linear corrections. Further,

Brinkley makes use of variation (3a), and White (3b), while Huff uses

(3c). In addition_ White suggests the use of fractional corrections

and reference i indicates that fractional corrections may also be used

with the Huff method.

CONVERGENCE OF TEE THREE MODIFIED ITERATION METHODS

Because of the experience factors involved in the use of correc-

tions, no completely analytical discussion can be given to the problem

of convergence rate. It is possible, however_ to draw some conclusions

concerning the relative convergence rates of the three modified methods

if it is assumed that all three methods use the corrections in an equiv-

alent manner. The modified Brinkley and Huff methods are Newton-Raphson

iterations, which are known ultimately to converge quadratically (ref.

6). Since the modified Brinkley and White methods are identical, all

three methods must ultimately converge quadratically. Further_ Gleyzal

(ref. 7) has demonstrated that the Newton-Raphson iterations are guar-

anteed to converge if an appropriate use of the corrections is made;

thus, all three methods are mathematically guaranteed to converge.
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The remaining small differences between the modified Huff and the
other two modified methods is due to the use cf the variable A in one
case and the variable _ in the other. It would therefore seemreason-
able to expect that the rate of convergencewould be about the samefor
all three. This is somewhatsubstantiated by the fact that, for the
particular problem used as an example in reference _3 both the Huff and
White methods required six iterations to converge to the samedegree of
accuracy. This was so even though logarithmic corrections were used in
the Huff iteration and fractional linear corrections were used in the
White iteration. While one example cannot be considered conclusive_ it
is indicative of the fact that none of the methods can be expected to
offer a marked advantage.

Experience has shownthat by the proper use of the corrections it
is possible to accelerate the convergence. Thus_ if one is in a situa-
tion where the errors are primarily in equilibrium_ the use of loga-
rithmic corrections will reduce the error most rapidly. This is true
because the equilibrium equations are linear ia the logarithmic variables.
However_where the error is primarily in the _ass balance3 the linear
corrections are best because the mass-balance equations are linear in
the variables. Linear corrections permit negative values of xjj whereas
logarithmic corrections do not. While negative xj for condensedre-
action products are significant since they indicat@ that the particular
condensedproduct is absent_ for gaseousproducts the xj should be
greater than or equal to zero.

Several years of experience (ref. i) have shownthat the use of
logarith_lic corrections for the gaseous products and linear corrections
for condensedproducts permits rapid convergence for a wide variety of
problems even with poor first estimates.

!
_O

SUMMARY OF RESULTS

Three widely used methods of equilibrium calculations were analyt-

ically compared. To permit the comparison_ the methods were modified

and extended. The Brinkley method was extendel to allow variable tem-

peratures and to permit estimates that do not satisfy the equilibrium

constants. The White method was extended to accommodate condensed

species and variable temperatures and also to permit estimates that do

not satisfy mass-balance requirements. The cc_parison of the methods

showed the following results:

i. The modified methods are computationally equivalent.

2. The modified Brinkley and White iterations give identical

corrections.
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3. Alternative sets of iteration equations for the Brinkley and

Huff iterations were obtained that offer computational advantages over

the original set.

4. Neither the concept of components nor the particular set of

components selected plays a role in obtaining corrections to the

estimates.

S. All three methods are guaranteed to converge and will ultimately

converge quadratically.

6. No one of the methods offers any significant advantage over the

other two.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, July 7, 1960
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Figure 2. - Comparison of modified iteration equations with linear combination terms deleted (W, White; B, Brinkley;

H, Huff).
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