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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NCTE D-473

AN ANALYTICAL INVESTIGATION OF THREE GENERAL METHODS
OF CALCULATING CHEMICAL-EQUILIBRIUM COMPOSITIONS

By Frank J. Zeleznik and Sanford Gordon

SUMMARY

The Brinkley, Huff, and White methods for chemical-equilibrium
calculations were modified and extended in order to permlt an analytical
comparison. The extended forms of these methods permit condensed species
as reaction products, include temperature as a variable in the iteration,
and permit arbitrary estimates for the variables.

It is analytically shown that the three extended methods can be
placed in a form that is independent of components. In this form the
Brinkley iteration is identical computationally toc the White method,
while the modified Huff method differs only slightly from these two.
The convergence rates of the modified Brinkley and White methods are
ldentical; and, further, all three methods are guaranteed to converge
and will ultimately converge quadratically.

It is concluded that no one of the three methods offers any sig-
nificant computational advantages over the other two.

INTRODUCTION

The determination of equilibrium compositions for systems of many
constituents is generally difficult because the equations to be solved
are not simultaneously linear. Since a direct solution is usually not
feasible, scme iterative technique must be used to obtain the solution.
In the past few years there have appeared in the literature many articles
dealing with chemical-eguilibrium calculations of complex systems and
describing various systematic iterative techniques (see list of refer-
ences in ref. 1). These articles present methods of solution applicable
to specific chemical systems as well as general methods applicable to
most chemical systems. Of the general methods available, those of
Brinkley (ref. 2), Huff et al. (ref. 3), and White et al. (ref. 4) are
perhaps the most widely used. Because of their wide use, these three
methods were investigated to determine whether any one of the three
offers significant computational advantages.



The number of iterations and the amoun:; of computation per iter- -
ation may be taken as the criteria of compuational advantage. Since
the amount of computation per iteration is essentially the same for the
three methods, the only remaining criterion is the number of iterations.
However, for any of the three methods inveszigated, the number of iter-
ations is strongly dependent upon the initinl estimates. Very poor
estimates will generally require considerably more iterations than a
gocd set of estimates.

In order to make an analytical comparison, it is essential that
all three methods begin with the same initinl estimates. The Brinkley
and White methods cannot start with the same estimates. The reason for
this is that the Brinkley method requires the estimates to satisfy
equilibrium conditions, whereas the White method requires them to satisfy
mass balance. If a unique, real, and positive solution exists, these
requirements are mutually exclusive except at the solution point. To
permit identical estimates, these methods wire modified to remove un-
necessary restrictions on the estimates.

In addition to these necessary modificaitions, some other modifica-
tions were made. These include simplifying the iteration equations of
the Huff and Brinkley methods and treating :ondensed products in a man-
ner different from that originally proposed for the Brinkley method
(ref. 2) and White method (ref. 5). The Brinkley and White methods were
also extended to permit using temperature as a varilable.

It will be shown that the three modifi=d and extended methods are
essentially equivalent computationally.
SYMBOLS
A total mass of reactant

converged value of A

o]

a4 j formula numbers giving gram-atoms of 1th element in jth specle

by gram-atoms of i'® element per unit mass of mixture (eq. (3))

bg assigned value for gram-atoms of 1*h element per unit mass of
reactant

c? heat capacity per mole at constant pressure divided by R

J S(E9) . 9).
for it specie = %[—?T—)AJP = %F%—g-)i]l: i

NT N ealT
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formula numbers of components giving gram-atoms of ith

th

element
in j component
total free energy of mixture divided by RT (eq. (7))

standard-state free energy per mole of jth specie =
0 o
(HT>j - T(ST)j

free energy per mole divided by RT for j' specie (eq. (8))
defined by eq. (68)

defined by eq. (25)

defined by eq. (48)

enthalpy per mole of jth specie

4 /RT

4 o/RT

(H%)j/RT

defined by eq. (68)

enthalpy per unit mass of reactant (eq. (15))
assigned enthalpy per unit mass of reactant
number of different chemical elements

number of gaseous reaction products

total number of reaction products

static pressure, atm

assigned static pressure, atm

partial pressure of jth specie, atm

defined by eq. (44)

universal gas constant

number of reduced iteration equations
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entropy per mole of jth specie in standard state
entropy per unit mass of mixture divided by R (eq. (18))

entropy per mole of the jeh

specie divided by R (eq. (17))
assigned entropy per unit mass of mixture divided by R
defined by eq. (27)

absolute temperature

assigned absolute temperature

kU component of solution vector of modified Huff iteration
equation

kth component of solution vector of modified Brinkley iter-
ation equations

1th component

total moles of gaseous products (eg. (41))
moles of jth specie in a mixture

moles of jth specie In a unit mass of mixture
jth specie

moles of jth specie in a mixture zt equilibrium
1th element

activity of jth specie

Kronecker delta

defined by eq. (54)

defined by eq. (68)

defined by eq. (8la)

th oomponent in k™ specie [see eq. (36)]

moles of
1th Lagrangian multiplier

defined by eq. (34)

9Te-H
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GENERAL DESCRIPTION OF ORIGINAIL METHODS

The three general methods all use an iterative technique to obtain
equilibrium compositions. Initial estimates are made for the varilables,
and corrections to these estimates are obtalned. The process is con-
tinued until some arbitrarily selected criterion for convergence has
been reached.

Brinkley (ref. 2) was the first to treat the problem of the numer-
ical solution of the nonlinear chemical-equilibrium equations for a gen-
eral chemical system. In his calculation method the thermodynamic state
of the system is specified by assigning the temperature and static pres-
sure of the reaction products. The chemical-equilibrium relations are
written in terms of components. Components are defined to be those in-
dependent constituents of the mixture that can be used to express the
overall composition. The number of components usually equals the number
of different chemical elements in the mixture but under some rare cir-
cumstances can be less (e.g., if some elements appear in constant ratio
in all the reaction products). The choice of components is not unique.
The nonlinear set of equations defining the problem is approximated by
a linear set of correctlon equations obtained by a Taylor series ex-
pansion of the nonlinear equations neglecting terms higher than first
order. In Brinkley's method any condensed reaction products that appear
are treated as components.

The method of Huff, Gordon, and Morrell was described in reference 3
and subsequently presented in slightly modified form in reference 1.
This method differs from Brinkley's in the following respects:

(1) The gaseous atoms are arbitrarily selected as components.
(2) Condensed reaction products are not considered to be components.

(3) The thermodynamic state of the system may be specified by
assigning the pressure and either the temperature, the enthalpy, or the
entropy.

(4) The linear set of equations is obtained from a Taylor series
expansion involving both logarithmic and linear variables.

(5) Corrections are applied to all constituents.

The most recent of the three methods i1s that due to White, Johnson,
and Dantzig (ref. 4). It is based on the criterion for equilibrium
(dF)T,P = 0. The thermodynamic state of the system is specified by

assigning the temperature and pressure. As origlrally presented, the
method could only treat problems involving gaseous reactlon products.



It was later extended to include condensed reaction products (ref. 5)
by redefinition of one of the variables in the iterations equations.

EQUATIONS FOR DETERMINING EQUILIBRIUM COMPOSITIONS

The formation of any one of n chemical ispecies from 1 elements
may be written in the form

<al
) L < . A
3 ay 2 = YJ (L=3<n) (1) e
b J >
i=1
. ’
where 2> is the symbol for the 1th chemical element, and Y3 1is the
symbol for the jth chemical species. Thus, a4 represents the number
of gram-atoms of element 71 in one formula weight of the chemical
compound designated YJ; that is, the first subscript on ajj Indicates
the chemical element and the second subscript ;;ives the chemical com-
pound. The range of any index such as k wil. usually be assoclated
with specific chemical species:
1<x<1 gaseous elements .

k <m gaseous compounds

-
+
-

IA

m+ 1 <k<n condensed species (componds and elements)

where, for any particular problem, 1, m, and 1 are to be considered
as Tixed integers giving the number of element:, the number of gaseous
products, and the total number of all products, respectively. For the
chemical elements (1 < j < 1),

a.ij = 6ij (2)
where Bij is the Kronecker delta.

The overall composition of a mixture of 1 chemical species may
be expressed in terms of by, the number of gram-atoms of the ith eje-

ment per unit mass of mixture:
n
bi== E aijxj (lSlSZ) (3)
j=1

where XB gives the number of moles of the jt1 product in a unit mass

of the mixture. In some cases it 1s advantagedsus to alter the magnitudes
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of the xﬁ; and therefore, if eqguation (3) is multiplied by the total

mass A, one obtains

n
J:

where X5 is the total number of mcles of the jth product in the mix-

ture, and is given by

In the calculation of the equilibrium composition of a mixture, the
number of gram-atoms of the ith chemical element per unit mass of mix-
ture 1s specified to be some assigned value bg. The condition for con-
servation of mass then takes the form

b$ - by = Aby = 0 (15127) (5)

Ir b are the values of x; that satisfy equation (5), then

J

n
Abg = E: 8y:y; = 0 (1S4 27) (6)
J=1

The condition for chemical equilibrium in a system at a tempera-
ture T and a pressure P may be stated in two equivalent forms. The
first says that the total free energy of the system divided by RT

F(xj,T) = E £ix, (7)
j=1

is a minimum at a constant temperature and pressure, where

f-—%er@. (135 Sn) (8)
J 7 RT J -

The values of x; that minimize equation (7) at T,P are then the
equilibrium values. In equation (7) and in all the following equations
it is assumed that the standard state for gases is taken to be the
ideal gas at 1 atmosphere, while for solids and liquids it is the pure
solid or liquid at 1 atmosphere. It is assumed that the gas mixture



behaves as an ideal solution and that, if conlensed species occur, they

will occur as the pure solids or liquids whos: activities are independent

of pressure; therefore,

1/

D. (1S3 Sm)
s = (9)
1 (m < j Xn)

An alternative but equivalent way of stating the condition of chem-
ical equilibrium is that the free-energy chanze across a reaction is
zero:

(WA

Af. =0 (1 £35<n) (10)

The free-energy change across the reactions (1) is

1
i=1

Nonequilibrium values of the composition variables will not minimize F
and will not make all Afj equal zeroc.

The thermodynamic state of the system is specified by assigning the
temperature and pressure. The static pressure of a mixture of gases is,
by Dalton's law,

m
b= Z Py (12)
i=1
The condition that at equilibrium the static pressure of the system is
P, 1is
P =P, (13)

The specification of the thermodynamic state may be completed by re-
gquiring that, at equilibrium,

T = T, (14)

Equilibrium compositions are usually obained for a specified pres-
sure and temperature. For a number of problems, it is desired to obtain
temperature and other system properties corresponding to an assigned
pressure and some other assigned thermodynam:.c property such as enthalpy
or entropy (e.g., determining flame temperatures or conditions following
an isentropic expansion). This is generally accomplished by calculating

9Te-d
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data at several assigned temperatures followed by interpolation. How-
ever, temperature can be determined directly during the iterative process
for assigned values of enthalpy or entropy. This is accomplished by
permitting temperature to be a variable and including an additional
equation involving enthalpy or entropy. The choice of which technique

is used - that is, fixed temperature for several points and then inter-
polation, or temperature as a variable during iteration - is largely

a matter of personal preference.

The enthalpy of a mixture is

A<—;l> = i (?)j x5 (15)

J=1

where it i1s assumed that the enthalpy of the constituents is independent
of the pressure and that reference values consistent with heats of
formation have been assigned to all n species. In like fashion the
entropy of a mixture is

n
As = 2: S 5% 3 (16)
J=1 |
where
o
(ST)J < s <

The temperature of the equilibrium mixture may now be specified either
by egquation (14) or by (18) or (19):

£

il

A

(e}

5 = s, (19)

where 4 is an assigned enthalpy per unit mass, and s is an as-
o ’ o}

signed entropy per unilt mass divided by the gas constant.

The problem of chemical equilibrium is completely determined by
either the set of conditions (5), (10), (13), and one of the three (14),
(18), (19), or by the set of conditions (5), (13), one of the three
(14), (18), (19), and the minimization of (7). Except for the simplest
of cases, the set of equations selected cannot be solved in closed form
and must be solved by iteration. Further, the equations are not all in
the same composition variable; some are written in terms of the mole
numbers Xj, others in terms of partial pressures pj, and still others

in terms of both Xj and pj. The selection of the appropriate set of
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equations, the choice of the iteration methoc to be used in their solu-

tion, and the relation between xj; and pj that is used constitute the

important differences in the threé methods tc¢ be discussed.

MODIFIED METHOD OF HUFF ET AL.

The iteration scheme of the Huff method is based on replacing
the nonlinear set of eqguations by a set of l .near correction equa-
tions obtained by a Taylor series expansion neglecting terms higher
than first order. The equations selected are (5) for mass balance,
(10) for equilibrium, (13) for assigning the pressure, and either (18)
or (19) for assigning the enthalpy or entropy. Although 1 +n + 2
equations appear in this set, only n + 2 o these are independent,
because with the use of (2) it is easily shown that the first 1
equations of (10) are merely identities.

If A is considered to be a constant, -here are n + 2 equations

in the m +n + 1 unknowns pj, Xj, and T. However, if A 1is treated

as a variable, there are then m + n + 2 uninowns, and it 1s possible
to adjoin to the previous set of equations 11 additional equations re-

lating Pj to xj. In particular, the set selected 1s

Dy = X; (125 Sn) (20)

These m equations may now be used to eliminate p. from the previous

set of equations, resulting in n + 2 indep:ndent nonlinear algebraic
equations in the n + 2 variables X3, A, aad T. If these are ex-

panded in a Taylor series about an estimate Tor the solution using

in xj(j < m), xj(m <jSn), InA, and 1In T as the variables, one ob-
tains the following equations linear in the :orrection variables

A 1n Xy, ij, Aln A, AInT from the set o nonlinear equations

(5), (10), (13), and (18):

o
A(DS - by) = A Oby

m n n
= D, Ak anwg + ) aggg - D argeh dn A
J=1 J=m+1 j=1
(L£1251) (21)
i 1
* . - . o) .
-MJ = A 1ln XJ Z akJA In Xk - hJ - E kaJh}o:A in T (l S J S—m)
k=1 k=1

916-d
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1 1
SAfy = - Z apsA In xp - (hJ - Z athlC;)A In T (m < 3 Sn)(22b)
k=1 k=1
m
Po - P =4P = ) x4 In x; (23)
J=1
A(hy - h) = A Ah
m n n
= Ox. . ©Q - °©
= Y h9xA In x; + S omS e - 3 nfxiadna
J=1 J=m+1 j=1
n
0}
+ Ecjxja In T (24)
j=
where
(Fp) ; h
ST x (12 5<m
N RT J
fj =
(F8) 5
RT (m < j < n)
. e 3 ’ (25)
A\i’j:fJ—Zalin (1<3<n)
i=1
Q
o By <. <
j = TRT 1=y =n) )
If yj, Ay, and T, are the equilibrium values of L A, and T, then
Alnxj=1ny; - ln x; (125 <m)
ij = ¥j - Xj (m < j £ n)

AlnA=1nAg - In A
AlnT=1nT, - 1nT

For X3, A, and T sufficiently clcse to the equilibrium values, these
linear equations will give the equilibrium values. In general, however,
the values cobtained will only be better estimates for the equilibrium

values than X3, A, and T.



If the same procedure is followed for (19) and if equation (23) is
then added to the result, the following equstion is obtained:

A(sy = s) + AP = A As + AP
m x n N I %
=ZijjAlnxj+E S,jAXj'ZS,ijAlnA
J=1 J=m+1 j=1
2 o
+ 2 Cjxy A ln T (26)
J=1
where
(89 )
—'—R—‘J‘ - An X (125 Sm)
*
—Rl (m < E n)

BEquations (21), (22), (23), and either (24) or (26) can readily be
reduced to the following 1 + (n - m) + 2 linear equagions by using
(22a) to eliminate A 1n X3, and (25) to elimninate Af::

J
1 n n
Z riy0 + Z gy Axyp + Z aipXg(-A 1n 1)
k=1 k=m+1 k=1
m 1 m
HPIEEDY rikhﬁ) A1nT = A Soy 4 ), apoufy
=1 = =
1 -
- Z i (1S1 1) (28)
=1
! e} ! [e) * ‘L\ * <
k=1 k=1 k-1

(29)

ATR-W
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k=1 \J=1 j=1 k=1 \j=1
jid} M 1 m ¥
J=1 k=1\j=1
1 m n n
o}
Z Z ak’thX_j O + Z hy Axye + Z h-,X](—A in A)
=1\ j=1 k=m+1 J=1
n ° m o 1 m o
PohYx. - 5 h9x .
* Z Ci%; + E nngx; Z &g jhix | e fA 0 T
J=1 J=1 k=1\]J=1
m N 1 m
=AM+ E STy - 3D axghdxg )Ty (31)
J=1 k=1\j=1
1 n n N n N
22 mssix) o+ 3 ST Ay + ) sPey(-a1n )
k=1\j=1 J=m+1 Jj=1
g m X 1 m N
O Q _ @)
+ Z x5 + Z s h5x; E Z sy 5 %;) g4 1n T
T:l J:l K:l "}I:l
= *_ % ! u * *
J=1 k=1\Jj=1
Jhere
m
Tig = Tei T ) 8 ja X (1<1<1,15x<71) (33)
J=1
0 = A ln x (1 Sx <m) (34)

The set of 1 + (n - m) + 2 linear equations (28) %o (30) and
either (31) or (32), which can be solved to give directly the corrections

to the estimates for (12321, m<j<n), A, and T,, is pre-

sented in figure 1. These corrections can alsc be used to obtain the
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corrections for the other gaseous specles frcm equation (22a) rewritten
using (34) and (25):

1
* * .
°J='fj+2;akj(fk+0k)+h3'E:akjhﬁAlnT (125 %m)
k=1 k=l

(35)

The equations for (1 < j S 1) in (35) are identities for the gaseous
atoms but are Included for the purpcse of later comparisons.

When the temperature is assigned directly by (14), temperature 1is
no longer a variable, and the appropriate set of iteration equations is
(28) to (30) with the A 1In T terms deleted. The A In T term is also
deleted from (35).

MODIFIED METHOD OF BRINKLEY

In the previous section the equations for conservation of mass and
for chemical equilibrium were written in terms of the gaseous atoms. The
corresponding relations in the Brinkley methcod are written 1n terms of
components. A set of iteration equations in terms of components is pre-
sented first. These equations are then converted to an equivalent set
of equations in terms of gaseous atoms.

Iteration Equations in Terms cf Components

If the 5th component is designated as WJ, then all of the chemical
species in an l-element system can usually be written as a linear com-
bination of 1 components as follows:

i ijW‘j = YK (1<% <n) (36)
J=1

where ij gives the number of moles of the jth component in the kth

species; WJ may be expressed in terms of the elements as

. 1 .
i .
W= N ey gz (1<5<1) (37)
i=1
where C4j gives the number of gram-atoms of the 1th element in the
%0 component. Substituting (37) into (36) end comparing coefficients

9T6-8
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of 7} with those in (1),
1
z Cijvik = 84k (1<1<1, 15k <n) (38)
Jj=1

To simplify the discussion, the last 1 chemical species
(n -1+ 1Sk Sn) will be selected as components; that is, the jth
component is the (j + n - 1)PR species, or

wd = yJn-i (1<35250) ‘ (39)

This selection includes the condensed species as components as required
by the Brinkley method. This particular choice of components will in

no way restrict the discussion, since it will subsequently be shown that
the choice of components does not affect the corrections obtained during
the iteration procedure. Because of the particular choice of components
(39),

cij = ai, j+n-1 (1<i1<1,153554) (40)

The Vik can be obtained from (38) if the matrix 4 j is nonsingular
and possesses an lnverse coi.  The requirement that Cij be non-

ki
singular restricts the possible cholces of components. In the previous
section, because the atoms were used as components, c¢jij = 8jj and thus

was always nonsingular.

In the previous section, it was found convenient to treat A as
variable in order to introduce a simple relation between the moles and
partial pressures (20). In this section, A is regarded as an arbitrary
constant A', and a new variable X is introduced. The variable X is
equal to the total moles of gaseous products:

m
X = Z Xy (41)
J=1
The partial pressures are then related to the moles by

X3 (1< <m) (42)

The equations for conservation of specles are readily obtained.
Substituting (38) into (4), multiplying the resulting equation by ci%,
and summing on 1 from 1 to 1 give

M
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where
-1
i=1
The conservation equations corresponding to (5) are
qli-qk=Aqk=O (15k§.1) (45)

The condition for equilibrium is again taken to be (10); however,
the free-energy change across the reactions (33) with the choice of com-
ponents (39) is

1
Afi = T = 3 Viefiynog (1 <k <n) (46)
J=1

Since the last 1 species were selected as components,
Vik = ¥jm-1,k (1S3 51, n -1 <k<n) (47)

and thus the last 1 equations of (46) are id:ntically zero.

In his original presentation, Brinkley eliminated the variable X
from his equations by imposing the condition

For comparison with the other methods, the variable X 1is retained.
The use of equation (42) ensures that (13) is satisfied for any choice
of xj. Equation (13) is replaced by the relasion

G = i(x—%) -1 (48)

=

If equation (41) is satisfied (i.e., if during the iteration the esti-
mate for X is obtained from the sum of xj(l <3 Sm)), then

G=0 (49)

If, however, an independent estimate is made for E; then G will be
zero only when the iteration converges.

9T6-1
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The equations that must be satisfied by the system in equilibrium
are (45), (10), (49), and either (14), (18), or (19). Using (42) in (10),
expanding the resulting equations together with (45), (49), and (18) in a
Taylor series as in the previous section, and treating (x5/%)(1 £ § <m),

J(m <j<n), x, and T as variables give

A'(af - qy) = A" Aqy
m n m A}_{
= Z Vikxkgk + E vik /_\.xk + Z Vikxk ;_— (l _<_. 1 _<_ Z)
(50)
1+m-n 5 i: . A ..
._Afk = gk - j_El ij§j+n—z - hk - j ¢ ijhj+n_z) —T-— (l >k __m)
(51a)
1+n-n o 1 . -
B =T - - = <
j=l J:l
(51b)
m m
D DRI N (52)
J=1 k=1
A'(ho - h) = A'Ah
m o n o m A;{_ n . AT
o)
=D, Boncly + D be A+ Y ompx e Y chxg T (s3)
k=1 k=m+1 k=1 S S e
where
N
(yk/?) - (Xk/f)
k = I (1 <x <m)
My = ¥y - Xy (m<k<n) (54)
ME=F-%
AT = Ty - T _J
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P
Treating (19) in similar fashion and adding (; + 1n *2) times (52) to
the result give | x

P _ m m n
o] ¥* ¥*
A'As + (l + In ?><x - E XJ) = E stkgk + E Sk Axk
J=1 k=1 k=m+1

I x — Po\ Ax 2 o AT
+ Z S Xy - xln? ?+ E Cr¥y T (55)

k=1 k=1

Assuming that equation (41) is used to obta:n an estimate for E’ the
left side of (52) and the corresponding terri on the left side of (55)

are zero. These terms will therefore be dropped from further considera-
tion. However, it is possible to treat X in a manner identical to the
other variables and to alter the estimate for x as called for by the
iteration equations, so that (41) need not be satisfied until equilibrium
is reached. Equations (50), (51), (52), anc either (53) or (55) can be
reduced to 1 + 2 independent equations by using (5la) to eliminate ;k
from the other equations and (46) to eliminuate Afy  as follows:

m

J=1 \k=1 k=m+1 k=1

m 0 1 771 o0 AT
+ E Vikk*k - Z E VikVik¥k) 2 j+n-1| T

k=1 J=1\ks1

m B m
=~
= A'Bay + Y Vil - L(E Vikvjkxk>fj+n-l

k=1 J'::l =1

(L=<1i=<1) (56)

1+m-n ° 1 o AT 1
E Vik8im-1 * (e - ijhj+n-7)'T_ =Ty - Z VT 5in-1
=1 j=1 J=1
(m <k Sn) (57)
l+Hr-n/ m m o '\ m o AT
3 (E ijxk>€j+n-1 + [2 e - (D ijxk>hj+n—{!—'i'—
j=l k=1 =1 J':: =1

m 1 ¢sm
= E kak - E z ijxk)fj+n_1 (58)
k=1 J=1\k=1

l+m-n s m n e )
Z (Z Vikvjkxk>§.j+n-1 + Z vy X + E VikXk =
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lHn-ny/ m n o m
0
RSN [SIEIL S S D) thk
k=m+1 k=1

o m o 1 m o AT
+|:Z CrXy + Z nphpx, - Z(E hlcévjkxk>hj+n—{|—'f

=l =l j—_—'l k.=l

m 1 m
_ [} 0
= A'Mh + E' hpef) X, - z:(E’ hkvjkxk>fj+n_z (59)

=1 J:l

lfm-n/ m M n N m M _ Po AX
E (Z Sk"jkxk) Cjen-1 + Z s E (Skxk - x in 7) =
j=1

k=m+1 k=1

n m l /m
0 o * © AT
+[E CiXye + E SEhE¥g - ) (E Sk"jk"k)%w-{l'@-
k=1

=1 G=1\k=1

m 1 /m
* *
= AlAs + N sy Tin - §<§, Skvjkxk>f,j+n-z

k=1 J=1\k=1
(60)

Equations (57) are identically satisfied and are included only for
later use. The 1 + 2 linear equations (56), (58), and either (59) or
(60) can be solved to give directly the corrections to yi(n -1 <k<n)
and T. The corrections to the estimates for y(1 <k £n - 1) are
obtained from (5la). Equation (5la) can be written in a form similar
to (35) as follows:

P, . 1+n-n 1
G + 10 == -fic + E VikSiem-1 *+ Z Vikfi+n-1
J=1 J=1
0 L 0 AT
+(hk - E vjkhj+n-l> —'i'— (l S k S m) (61)
=1

The equations for the gaseous components (n - 1 <k Sm) in (61) are
identities.

When the temperature 1s assigned directly by (14), temperature 1s no
longer a variable, and the appropriate set of iteration equations is (56)
to (58) with the AT/T terms deleted. The AT/T term is also deleted
from (61).
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Iteration Equations in Terms of Atoms

The set of 1 + 2 independent equations (56), (58), (59), plus the

n - m identities (57), or the same set of ecuations with (59) replaced
by (60), can be converted to 1 + (n - m) + ¢ independent linear equa-
tions very similar in form to equations (28) to (32) used in the Huff
method as follows:

First, the vj, may be obtained from (38) as
1

Vik = E Cj%‘aik (62)
i=1

Next, equations (62) and (44) are used in (5¢) to (60) and the equations

resulting from (56) are also multiplied by €31 and summed on 1. The

resulting system of equations is:

1 n m e m 1 AT
_ (8] 3.0
> raxli + Y ik e+ Y, e =+ (Z ST fikhk>—T-
i=1 st} =1 =1 =1
1L X P, t -
=AMy + Y aikxk(fk + 1n —§—> - Y Ttk (1<12<71)
k=1 =1
(63)
1 _ 1 o o & _ y
O oy _ .
Z angk + hJ - Z athﬁ>—T- = fJ - E ak( fk (Il'l <J= I’l) (64)
k=1 =1 k=1

LU - 0 [aya: =
= E fjxj +x 1n = - Z(E a‘ijj)fk (65)
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m P 1 m
—~ At * * ~93 _ ¥ o
= A'As + E 5% (fj + 1n ;) }:(Z akJstJ> « (67)
j=1 k=1\j=1
where
_ l+m-n h
€= ) ik bjum-1
J=1
_ 1
@] O
hy = > ¢3k Nin-1 Hl<kiz) (68)
J=1
_ 1 1 1 1 P, l4m-n 1
f = T Of. = T f¥ 4+ In = R
K E ik Tim-1 z Cik y Z © ik
j=1 j=1 j=1
In similar fashion, equation (61) becomes
Po * L = = l —o\AT
. —_ = - o . Ol=— < 35 <
§J+ln; fj+2 akj(fk+§k)+(hj EakjhkT (1£5<m
k=1 k=1



z2

The set of equations (63), (64), (65), and (66) or (67) represents
a more useful form of the iteration equations for automatic computation
than the set (56), (58), and (59) or (60). Although the latter contain

n - m fewer equations if condensed products sre present, it is necessary

to obtain a new set of Vik for each new choice of components, and the

calculation can be rather lengthy when many spzcies are under considera-
tion. However, using the former set it is only necessary to calculate
an inverse matrix for each new choice of components and from it the x

and Eﬁ. In a subsequent section it will be saown that it is possible

to obtain a set of iteration equations that dc not contain Ek and EE,

and hence it is unnecessary to obtain the matrix c{%.
MODIFIED METHOD OF WHITE =T AL.

The methods of Huff and Brinkley are Newton-Raphson iterations
where the conditions for chemical equilibrium are given in terms of free-
energy changes across reactlons (equilibrium constants). The White
method uses the alternative but equivalent method of specifying equilib-
rium conditions as the minimum of the total frze energy of the mixture.

With (42), equation (7) becomes

1 P
* —
F(Xl,T) = E fixi + X ln "-;{-9‘ (70)

i=1

If (y;,T,) represents a neighboring point to (x;,T) with y; satisfying
equation (6) with A = A', then the Taylor seri=zs approximation for the
free energy at (yi,To), expanded about (Xi,T) and neglecting terms higher
than second order, is

m 1
_ * O -
Q(y;,T,) = F(x;,T) + Z: G€'+-ln 7§)Axl + 24 £, Axy
i=1 i=r+1l
n m m 3
AT 1 Gk 1

- hlxi T + E ( Xi - )—( i AXK

L i=1 i=1 k=1
n n 2

o) AT 1 o) AT
- E hi Axi T + Al (th - Cﬁ)xk(ﬁr) (71)
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because
P
3F f§+ln?o (1 <1i<m)
x4 £¥ (m < i< n)
O
oF _ 55 hixy
T - 4 T
i=1
and
Sik 1
—_— . = (121i<m 1<x<m)
o S X
:;X-ESX
Tk 0 (m<i<n, m<kn)
O
dCF hi .
ox;of =~ T (1=1=n)
n o o
3%F _ z (2h3 - C3)xy
2 2
AT = T

The function @ 1is to be minimized as a function of ¥y subject
to the restriction

n
A'Aby - z aj5(yy - x5) = 0 (1<1<1) (72)
j=1

obtained by the subtraction of eguations (6) and (4) with A = A'. Thus,
1t 1s necessary to minimize the function

n
U=Qq + 2 xi[A’Abi - aij(yj - xj)] (73)

1=

where the =n; are Lagrangian multipliers. This requires that the fol-

i
lowing conditions be satisfied:
1l
U 3 <k <
= 'E njaqy = 0 1SkSn 74
55; g;g i%ik ( ) (74)

i=1



From equation (71),

p -
ffen 24 (K. F) e (1 <k <n)
X Xk X T
Tk AT
¥* 0 2L <
fy - by T (m <k Sn)
Thus, equation (74) becomes
— 1
* Po yk AT
fk+ln—;+(g-—%) hOT Zﬂiaik=0 (L<x<m) (75a)
i=1
* o}
fk—hk%—ixiaik=0 (m <k Sn) (75b)

Equations similar in form to the correction eguations in the Huff
method [(28), (29), (30), and (31) or (32)] a1d the Brinkley method
[(63), (64), (65), and (66) or (67)] may now de obtained as follows.
Rewriting equation (72) in the form

m n
E ajk(yk - Xk) + E a3k Age = A'Abj
k=1 k=m+1

and eliminating ¥ (1 Sk S m) with equation (75a) give

1 n - m

m
o. AT
E I‘ikﬂk + E aik AXk Z lkxk -—- + Z aikhkxk F
k=1 kmmt1 k=1 =

\
m P
* o] .

k=1

Solving equation (75a) for y, and summing orer k(1 <k < m),

1 il m _ P,
E(Z aijj)“k + Z hkxk T Z kak txIn = (77)

k=l J=l k:
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The remaining iteration equation can be obtained from either (18)
or (19). Expanding (18) in a Taylor series about (XJ,T) gives

Il n
Aldh = 3 oy b + PR % (78)
k=1 =

Eliminating ¥ (1 £k <m) from (78) using (75a) gives

1 m n m A
E(Z 8 51 j>ﬂk + Z hy Axg + Z hx, =

k=m+1 k=1

m Il m P
0,.0 o) * O
+< E: hphpxy + E: Ckxk>— = A'Ah + 2' hpx (fe + 1n _f> (79)

k=1 k=1 k=1

P
Proceeding in an identical fashion with (19) and adding 1n —— times
. X
(77) to the result give

x(

m
k=1\]

* L L’ 2 E' - PO Ag
Z akjijj T+ sy AxK + E spx. = X In = =
=1

k=m+1

m n m
* AT * P
+ E skhgxk + E CEXK>T = A'As + 2 : sf;xk (fk + 1n ?o (80)
k=1 k=1 k=1

Equations (76), (75b), (77), and either (79) or (80) are the
iteration equations of the extended White method in the variables

T (1 Sk =), &xg (m<k Sn), AX/X, and AT/T. The new values for
the (l S 5 Sm) are obtained from (75a) with the use of the solution

to the preceding set of equations. Equation (75a) can be written in a
form similar to (35) and (61) as follows:

P 1

o _ * o AT .

?\j+ln—§——-fj+§:akjﬂk+hj-—,r (1< Jj<m) (81)
k=1

where

(81a)

Sy LE
1)
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COMPARISON OF MODIFIED METHODS
Differences in Presentation from Original Reports

Before making a comparison of the three extended methods, it is
appropriate to point out how the methods presented here differ from the
original presentation. The Huff et al. method as presented here is sub-
stantially the same as that in reference 1, differing primarily in
notation, a modified entropy equation, and the use of alternative ex-
pressions for the elements of the last two columns of the augmented
matrix.

Brinkley expressed his correction equations in terms of gk' In
this paper the correction equations are in terms of zk. Both sets of
equations lead to the identical corrections. The use of Zk permits

a direct comparison with the other methods as well as offering some
computational advantages, as was pointed out in a previous section.

Brinkley's original method was an iteration for assigned tempera-
ture and pressure where composition estimates were made only for the
components, the remaining composition variables being determined from
the equilibrium constants. As presented here, the method may be used
for variable-temperature iteration, and the estimates for all the com-
position variables may be made independently. If, by cholce, independ-
ent estimates are made only for components, then the free-energy terms
on the right side of the iteration equations vanish identically, and
only the mass-balance and enthalpy or entropy errors remain. However,
this latter procedure may lead to unnecessary difficulties, as for ex-
ample when some of the components are not major species. 1In this case
small errors in the trace components are magnified to such proportions
that convergence may be slow if not impossible.

The extended White method permlts variable-temperature iteration,
inclusion of condensed reaction products, and the use of estimates that
need not satisfy mass-balance restriction. When the temperature of the
system is assigned directly (14), only gaseous products are considered,
and the estimates satisfy the mass-balance equations, then these equa-
tions reduce to those of reference 4. For the case of variable tem-
perature, the minimization procedure has been combined with a Newton-
Raphson iteration for temperature.

Compariscn of Modified Iteration Equations

The equations for the three modified methods are preggnted in fig-
ure 1. In this comparison the set of equations for the §; variables

9T6~H
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will be used for the Brinkley iteration, since these equations charac-
terize the Brinkley iteration as adequately as the equations for the on
variables. A comparison of the corresponding Huff and Brinkley equa.-
tions discloses a great similarity; the coefficient matrices are identi-
cal, except for the last two columns. The second-last columns differ
only in that in the Huff equations the summation extends from 1 to n,
while in the Brinkley equations the summation is only to m. This is
directly attributable to the different roles played by the variables A
and X. The former is associated with all the species, while the latter
refers specifically to the gaseous reaction products. The last columns
of the coefficient matrices are both formed in part from linear combina-
tions of the first 1 columns, differing only in the fact that constants
of combination differ. The constants of combination are hf in one
case and hg in the other. The right sides also differ by the use of
different constants of combination in forming linear combinations of
columns of the coefficient matrix.

FINAL MODIFICATIONS

Derivation of Component-Independent Forms
of Huff and Brinkley Equations

The elimination of the linear combination terms from the Huff
and Brinkley equations in figure 1 would mske these equations in-
dependent of components. To eliminate these terms, 1t is necessary
to establish a relation between the solution vector of a set of
equations with linear combination terms and the solution vector of
a new set of linear equations with these linear combination terms
removed.,

To accomplish this objective, consider two sets of r 1linear
equations:

I
Y, My ouy=ag ) (82a)
j=1

> (151<r)
Tr
Z Mij vy = ey (82b)
j=1 J

where the relations between the matrices Mj and Ny and between

the vectors di and e; are

r
p=1
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e; = d; - ; NipTp (83b)

The constants Bp and Yp are defined to te zero for p greater than

1 and nonzero for (1L S p <1). The equaticns (82b) are analogous to
the Huff or Brinkley equations of figure 1, while (82a) represents these
equations with the linear comblnation terms deleted from the last column
of the coefficient matrix and the right side.

To obtain the relation between w, ané vy, both (82a) and (82b)
are multiplied by the inverse matrix Ni% end summed on 1. Using the
identities (83a) and (83b), one obtains

r
-1
up = E - Npidy
i=1

r
-1
Vi - VePe = Y Merdy - Ty
i=1

and therefore
Vi = U + VpBe - T (:<x<r) (84)

From (84) and the definition of the constants of combination there
follows

Uy + Vrﬁk - Yk (l S k S 1)
U (1 <xSr)

Equations (85) is the desired relation. It shows that the linear com-
bination terms affect only the first 1 components of the solution
vector, leaving unaltered the remaining components of the solution vec-
tor. The following table indlcates the correspondence between the
variables in (85) and the variables of the nodified Huff and Brinkley
equations of figure 1:

QTR=-
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Modified | Modified

Huf?f Brinkley
v (1 Sk <1) Oy [
Ve Aln T &L
T
o] -0
B (1 Sk <) hy hye
Ty (L Sk S1) fir e

With the correspondence of the table and the use of 1y = Gk with

the Brinkley variables, (85) for (1 Sk < 1) gives the two transformation
equations

Op + ff =y +hy A 1n T (1 <k <1) (86)

i

7 = - ~o AT < <

C + Ty uk+hkT (12x=>1) (87)
Eliminating 0, from the modified Huff equations (28), (29), (30), (31),
and (32) with the transformation (86) and eliminating § from the
modified Brinkley equations (63), (64), (65), (66), and %67) with the
transformation (87) give a new set of iteration equations for these two
iteration methods. These are presented in figure 2, together with the
modified White iteration equations from figure 1.

All three sets of iteration eguations in figure 2 now give directly
the correctiong to the condensed species, temperature and either X or
A; however, none of the iteration equations give the corrections to the
gaseous species directly. The corrections to the gaseous species in
the modified White iteration are obtained from (81). Corrections to
the gaseous species for the Huff and Brinkley equations of figure 1 are
obtained from (35) and (69), respectively. These two equations can be
transformed to correspond to the variables of the Huff and Brinkley
equations of figure 2 by substituting (86) into (35) and (87) into (69):

1
* 0 .
05 = -fy + z : ey + 03 A In T (1 <3< m) (88)

J
k=1

Po - AT
6y + In == -f3 + 2: B s + hg = (12355 m) (89)
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Comparison of Final BEquations

An examination of figure 2 discloses that in this form all three
sets of iteration equations are independent of components. Further, in
this form the Brinkley and White equations ars computationally identical,
while the Huff egquations differ only slightly from these two. The Huff
equations have additional terms in the second-last column of the coef-
ficient matrix, while the other two have additional terms on the right
side. When only gaseous products are considered, the three coefficient
matrices are identical except for one term in the entropy row.

OBTAINING AND APPLYING CORRECTIONS

A distinction should be made between the solution of the equations
to obtaln corrections and the application of these corrections to ob-
tain new estimates.

Obtaining Correctiors

As was pointed out previously, all three modified methods give the
corrections to the condensed species, temperature and either X or A
directly. The corrections to the gaseous species are obtained from the
auxiliary relations (81), (88), or (89). For the Huff iteration, (88)
gives the correction variable 95, which may be regarded as either

AX s
J

A ln x5 or —= and applied accordingly. However, (81) and (89) give
J

the variables Ay and §j, respectively.

AX .
The corrections A 1ln Xy or ;Ti may bz related directly to %J

or gj if use 1is made of the approximate relation A 1n z = é—Z—:

(modified White)

B

AX
A 1ln xj = —J

X: - (20)
J

=B

E. + (modified Brinkley)

J

Since the Brinkley and White iteration equations in figure 2 and also
the corresponding auxiliary relations (89) anl (81l) are identical, it
follows that the modified Brinkley and White =quations provide identical
corrections. These corrections will in general differ from those given
by the Huff iteration.

9Té-o
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Applying Corrections

Once the corrections have been obtained from one of the three iter-
ation procedures, there still remains the question of how to use these
corrections. Some of the possible variations are

(1) Using the corrections for the gaseous species and temperature
JAV'S
k
linearly or logarithmically, for example, < °T O In Xy
k

(2) Using the entire correction or some fraction of the correction
(3) Using some or all of the composition corrections:

(a) Applying only 1 of the composition corrections and de-
termining the remaining n - 1 composition variables from
the equilibrium constants

(b) Applying n - 1 of the composition corrections, deter-
mining the remaining 1 composition variables from the
mass-balance relations

(c) Applying all n composition corrections
(4) Using some combination of the above three.

In the original papers Huff et al. advocate the use of logarithmic
corrections while Brinkley and White use linear corrections. Further,
Brinkley makes use of variation (3a), and White (3b), while Huff uses
(3c). In addition, White suggests the use of fractional corrections
and reference 1 indicates that fractiocnal corrections may also be used
with the Huff method.

CONVERGENCE OF THE THREE MODIFIED ITERATION METHODS

Because of the experience factors involved 1n the use of correc-
tions, no completely analytical discussion can be given to the problem
of convergence rate. It is possible, however, to draw some conclusions
concerning the relative convergence rates of the three modified methods
if it is assumed that all three methods use the corrections in an equiv-
alent manner. The modified Brinkley and Huff methods are Newton-Raphson
iterations, which are known ultimately to converge quadratically (ref.
6). Since the modified Brinkley and White methods are identical, all
three methods must ultimately converge quadratically. Further, Gleyzal
(ref. 7) has demonstrated that the Newton-Raphson iterations are guar-
anteed to converge if an appropriate use of the corrections is made;
thus, all three methods are mathematically guaranteed to converge.



The remaining small differences between the modified Huff and the
other two modified methods is due to the use cf the variable A in one
case and the variable X in the other. It wculd therefore seem reason-
able to expect that the rate of convergence wculd be about the same for
all three. This is somewhat substantiated by the fact that, for the
particular problem used as an example in reference 4, both the Huff and
White methods required six iterations to converge to the same degree of
accuracy. This was so even though logarithmic corrections were used in
the Huff iteration and fractional linear corrections were used in the
White iteration. While one example cannot be considered conclusive, 1t
is indicative of the fact that none of the methods can be expected to
offer a marked advantage.

Experience has shown that by the proper use of the corrections it
is possible to accelerate the convergence. Thus, if one is in a situa-
tion where the errors are primarily in equilibrium, the use of loga-
rithmic corrections will reduce the error most rapidly. This is true
because the equilibrium equations are linear in the logarithmic variables.
However, where the error is primarily in the rass balance, the linear
corrections are best because the mass-balance equations are linear in
the variables. Linear corrections permit negative values of X3, whereas
logarithmic corrections do not. While negative x: for condensed re-
action products are significant since they indicate that the particular
condensed product is absent, for gaseous products the x; should be

J
greater than or equal to zero.

Several years of experience (ref. 1) have shown that the use of
logarithmic corrections for the gaseous products and linear corrections
for condensed products permits rapid convergence for a wide variety of
problems even with poor first estimates.

SUMMARY OF RESULTS

Three widely used methods of equilibrium calculations were analyt-
ically compared. To permit the comparison, the methods were modified
and extended. The Brinkley method was extendel to allow variable tem-
peratures and to permit estimates that do not satisfy the equilibrium
constants. The White method was extended to accommodate condensed
species and variable temperatures and also to permit estimates that do
not satisfy mass-balance requirements. The ccuparison of the methods
showed the following results:

1. The modified methods are computationally equivalent.

2. The modified Brinkley and White iterations give identical
corrections.

9T6~-d
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3. Alternative sets of ilteration equations for the Brinkley and
Huff iterations were obtained that offer computational advantages over
the original set.

4, Neither the concept of components nor the particular set of
components selected plays a role in obbtaining corrections to the
estimates.

5. All three methods are guaranteed to converge and will ultimately
converge quadratically.

6. No one of the methods offers any significant advantage over the
other two.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 7, 1360
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- Comparison of modified iteration eguations with linear combinaticn terms deleted (W, White; B, Brinkley;

B t T - 4
i W x, ax, o Ay
| x : ;
| _ —
| B 1y X, Ax AT
| i ® 3 T
|

H g
‘ W Tiy
I
|
| i
i i .

CW By fo o 54
- " = " "
|

B " o " "
e -t

m I m

W z By g% 0 0 Z hgx
i J=1 Jal
"B " " " n
' !

H H " ‘ ALl " "
. |
i ‘ m ! T m T o3 m

W Z ak'jhng : hg Z hyXy ! C%x] + 2 ‘n?h?x]
; =1 ‘ k=1 j=1 J=1
s . L , .

H

m

W

Ioa=1

5 |
- H
L .

i€ <), ¥m<x Sn).

E"Ecmm:ion used to derive this equation.

igure 2.
H, Huff).

NASA - Langley Field, Va. =916





