## ${ }^{\mathrm{CA}}$

 SE FlCOPY
 5

## MEMORANDUM

EVALUATION OF THE LEVY METHOD AS APPLIED
TO VIBRATIONS OF A $45^{\circ}$ DELTA WING
By Edwin T. Kruszewski and Paul G. Waner, Jr.
Langley Research Center
Langley Field, Va.

## NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

February 1959


（1）WWN
 －

## 而

 1等
$\qquad$品 2





等 （ （4）

．

##  <br> 

 W
$\qquad$
A M N





## 



```
*)
*)
```








H
ris？
$\qquad$




$x^{4}$
Wind

等

者
entros＝ ..... 2－x．－75

H2
－

 $-8$ $+$
等
$x=-2$
$x=-2$
$-\operatorname{yy}$$\frac{-x}{4 y}$

R

R ..... Fix ..... Fix

 .....  ..... 2ex：
等至



－atand
－atand
－
－
－
－ ..... $=-8$
$=$ $\cdots$

Neven

－．．．．．

$\qquad$

$\qquad$
E

 $\pm \mathrm{E}$ $\pm \mathrm{E}$ －20．0． －20．0．
x＋3．


54 ..... 
踥 ..... 3
，5－5
素霊
－
 
${ }^{3}$－$x^{2}$
${ }^{3}$－$x^{2}$
－
－
519 3  F

515
5
－
－


2 ..... 
$y=1$  
㲘相

W，Wivaven ＋1


索索$=$
$=$ ..... 害－
$-2$

MEMORANDUM 2-2-59L

EVALUATION OF THE LEVY METHOD AS APPLIED
TO VIBRATIONS OF A $45^{\circ}$ DELTA WING
By Edwin T. Kruszewski and Paul G. Waner, Jr.

SUMMARY

The Levy method which deals with an idealized structure was used to obtain the natural modes and frequencies of a large-scale built-up $45^{\circ}$ delta wing. The results from this approach, both with and without the effects of transverse shear, were compared with the results obtained experimentally and also with those calculated by the Stein-Sanders method. From these comparisons it was concluded that the method as proposed by Levy gives excellent results for thin-skin delta wings, provided that corrections are made for the effect of transverse shear.

## INTRODUCTION

The literature contains many methods for obtaining the deflectional characteristics of low-aspect-ratio and delta wings. (See, for example, refs. 1 to 5.) Although these methods use a variety of approaches and assumptions, they can be classified into two categories: the method either deals with the actual structure and restricts the allowable deflection shape or deals with a simplified structure and allows arbitrary deflections. One analysis from the first category, the SteinSanders method, is described in reference l. In this analysis, the actual structure was analyzed by assuming that its neutral surface was strain free, the effects of transverse shear were negligible, and its chordwise deformation was parabolic. An analysis from the second category, namely the Levy method, is described in reference 2. In this method an idealized structure consisting of interconnected beams and torque boxes whose deflections are unrestrained is analyzed.

Although methods of calculating the deflectional characteristics of low-aspect-ratio and delta wings do exist, there is available very little information concerning the application of the methods and the reliability of their results.

An experimental investigation of the stiffness and vibration characteristics of a large-scale built-up $45^{\circ}$ delta wing has been discussed in
reference 6. Since the detailed stiffness and weight distributions of the specimen are presented therein, the results of the investigation can serve as a reliable basis for the evaluation of the analytical methods. These results have been used in reference 7 to evaluate the Stein-Sanders method. In the present paper the experimental results are used to evaluate the Levy method. A summary of some of the results of this investigation was presented in references 8 and 9 .

The purpose of the present paper is threefold: First, to describe in detail the application of the Levy method to a $45^{\circ}$ delta wing; second, to show how the Levy method can be easily modified to include approximately the influence of transverse shear; and third, to evaluate the method in the light of the results of the Stein-Sanders method and experimental results.

SYMBOLS

| $A_{S}{ }^{\text {G }}$ | shear stiffness of beam |
| :---: | :---: |
| D | constant defined in equation (A8) |
| E | modulus of elasticity |
| EI | bending stiffness of beam |
| GJ | torsional stiffness of torque box |
| h | depth of beam |
| i, ${ }^{\text {, }} \mathrm{n}, \mathrm{N}$ | integers |
| J | torsional constant |
| $\mathrm{K}_{\mathrm{ij}}$ | constants defined in equation (A7) |
| 2 | length of torque box |
| $\begin{aligned} & M, M_{x}, M_{y} \\ & M_{x x}, M_{y y}, M_{3} \end{aligned}$ | constants defined in equation (A9) |
| $\mathrm{P}_{\mathrm{i}}$ | concentrated load at station i |
| v | shear in beam web |


| $\mathrm{w}_{1}$ | deflection of ith station of free wing |
| :---: | :---: |
| $w_{i}{ }^{3 P}$ | deflection of ith station of wing on three-point support |
| $\mathrm{w}_{0}$ | rigid-body translation |
| $\mathrm{x}, \mathrm{y}$ | coordinates of station |
| $\mathrm{x}_{0}$ | distance of force from support |
| $\alpha, \beta$ | a rigid body tipping about y - and x -axis, respectively |
| $\delta$ | influence coefficient of cantilevered beam |
| $\triangle$ | stiffness coefficient of wing |
| $\triangle 3 P$ | stiffness coefficient of wing on three-point support |
| $\Delta_{S}^{i}, \Delta_{R}^{1}, \wedge_{T}^{i}$ | stiffness coefficient of ith spar, rib , and torque box, respectively |
| $\omega$ | circular natural frequency |
| [F] | square matrix defined in equations (A12) and (A24) |
| [ H ] | square matrix defined in equations (All) and (A2l) |
| [ I] | unit matrix |
| $\left[M^{s}\right]$ | diagonal mass matrix for half-span |
| \I〕 | row matrix of ones |
| $\|1\|$ | column matrix of ones |
| [] | rectangular matrix |
| [] | diagonal matrix |
| L | row matrix |
|  | column matrix |

Subscripts:

| $C$ | stations on center line |
| :--- | :--- |
| $R$ | stations on right side of center line |
| $L$ | stations on left side of center line |
| $i, n$ | integers |

Superscripts:
s symmetrical
a antisymmetrical

ANALYSES

Specimen
The specimen used in the investigation discussed in reference 6 is a large-scale built-up $45^{\circ}$ delta wing shown in figure 1 . It has a span of 18 feet $11 \frac{7}{8}$ inches, a midchord of 8 feet $1 \frac{5}{8}$ inches and a uniform carrythrough bay of 2 feet 8 inches. The wing is uniform in depth in the chordwise direction but varies linearly in depth in the spanwise direction from $5 \frac{1}{2}$ inches at the carrythrough section to $1 \frac{3}{4}$ inches at the tip.

The top and bottom covers of the delta wing are of skin stringer construction with four light stringers between each spar. The interior construction consists of four straight spars spaced 24 inches apart, a bent leading-edge spar, and light streamwise bulkhead spaced 8 inches on centers. Detailed dimensions, section properties, and weight distribution of the specimen are given in reference 6 . All parts were constructed of 2024-T6 aluminum alloy.

## Idealization

In order to apply the Levy method, the actual structure in figure 1 was idealized as shown in figure 2 into an orthogonal set of crisscrossing beams with torque boxes attached at their four corners to the intersection of the beams. The locations of the idealized spars were chosen to coincide with the center line of the actual spars. The spacing of the ribs

In the idealized structure, however, was increased over that of the specimen in order to decrease the number of redundants in the analysis from 53 (if the actual rib locations are used) to 34.

All the spanwise normal-stress-carrying material of the spars, cover sheets, and stringers was concentrated into the spars of the idealized wing whereas all the chordwise bending ability of the actual ribs and covers was accounted for in the idealized ribs. The condition suggested by Levy (see ref. 2) of limiting the effectiveness of the sheets in the chordwise direction to 0.181 of the rib length to either side of the rib governed only in the last two outboard ribs of the actual structure. The stiffnesses of the idealized ribs were obtained by first distributing the moments of inertia of the actual ribs and then reconcentrating the inertias at the new stations. The moments of inertias of the idealized spars and ribs are given in tables I and II.

The shear-carrying capacity of the cover sheets is accounted for by the torque boxes in the spar-rib cells of the idealized structure. In the calculation of the torsional stiffness GJ of these boxes, the axis of twist was assumed to be in the spanwise direction. The values of $J$ at the center section of each torque box are given in table III. Note that, when these values were obtained, the side walls of the torque boxes were considered to be rigid in shear as suggested by Levy in reference 2.

## Application of Levy Method

The first step in the analysis of the idealized wing is to determine the loads carried by the individual components in terms of the deflection at the junctions of the spars and ribs. These loads can be expressed as follows:

$$
\begin{array}{ll}
|P|=E\left[\begin{array}{c}
n \\
S_{S}
\end{array}\right]|W| & (n=1,2, \ldots 5) \\
|P|=E\left[\begin{array}{c}
n \\
\Delta_{R}
\end{array}\right]|w| & (n=1,2, \ldots 10) \\
|P|=E\left[\begin{array}{r}
n \\
T
\end{array}\right]|W| & (n=1,2, \ldots 20) \tag{lc}
\end{array}
$$

where $\Delta_{S}^{n}, \Delta_{R}^{n}$, and $\Delta_{T}^{n}$ are the stiffness coefficients of the nth spar, rib, and torque box, respectively. In equation (lb), $n=10$ refers to the swept portion of the leading-edge spar.

In these calculations the influence of shear deformation in the spar and rib webs along with the torque-carrying capacity of the triangular cells was neglected. Furthermore, no moment transfer was permitted to take place between the spars and ribs and between the straight and swept portion of the leading-edge spar. The stiffness coefficients of the nonuniform spars were obtained as described in reference 2 by inversion of the influence coefficients of cantilevered beams. These influence coefficients were calculated by an approximate procedure described in reference 10, which was based on an assumption of a linear 1/EI variation between stations. An example of the resulting influencecoefficient matrix [8] is shown in table IV(a) for the trailing-edge spar. When the stiffness coefficients of the spars were calculated, cognizance of the type of loading was taken. For the case of symmetrical loading the stiffness coefficients of the spars were obtained for the condition of zero slope at the center line, whereas for antisymmetrical loading the condition of zero deflection at the center line was maintained. The resulting stiffness coefficients for symmetrical loading for the trailing-edge spar $\left[\Delta_{S}^{1}\right]$ are shown in table $V$.

Inasmuch as the ribs and torque boxes were uniform, there were no complications involved in the calculations of their stiffness matrices. Typical examples of the stiffness coefficients are shown in table VI for rib number 4 and in table VII for torque boxes 15 and 16. The stiffness coefficients of the swept portion of the leading-edge spar were obtained by considering that the swept portion of the spar acts as a rib and that no moment is transferred at any point of attachment including the junction of the unswept and swept portion of the spar.

The loads carried by the idealized structure are considered to be the sum of the loads carried by the idealized spars in spanwise bending, by the ribs in chordwise bending, and by the torque boxes in torsion. Thus the stiffness coefficients of the composite structure were obtained by summing the stiffness coefficients of the components:

$$
\begin{equation*}
|P|=E[\Delta]|w| \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
[\Delta]=\sum_{n=1}^{5}\left[\Delta_{S}^{n}\right]+\sum_{n=1}^{10}\left[\Delta_{R}^{n}\right]+\sum_{n=1}^{20}\left[\Delta_{T}^{n}\right] \tag{3}
\end{equation*}
$$

The synthesis of a typical row of $[\Delta]$ for symmetrical loading is illustrated in table VIII for row 24. The elements of this row represent the contribution of the deflections at each station of the wing to
the load at station 24. As can be seen, elements associated with stations not on the spar, rib, or torque boxes common to station 24 are zero. The remaining elements of row 24 are the summations of the rows of $\left[\Delta \frac{1}{S}\right],\left[\Delta_{R}^{4}\right],\left[\Delta_{T}^{15}\right]$ and $\left[\Delta_{T}^{16}\right]$ associated with $P_{24}$ and are shown in tables V to VII.

As yet there have not been any restraining or boundary conditions placed on the stiffness matrix [ $\Delta$ ]. Thus the structure represented by this matrix is free to move with a rigid-body displacement. Obviously, the deflections of such a structure are not uniquely related to the loads and therefore the inverse of its stiffness matrix cannot exist, that is, the matrix $[\Delta]$ is singular. In order to obtain a structure whose stiffness matrix can be inverted, the wing was assumed to be simply supported at three points (stations 1 and 22) in figure 2. This particular support condition was used because the results from a three-point support can be converted to influence coefficients for most other support and loading conditions. The particular stations used were chosen to conform to the supporting condition used in the static tests of the delta wing described in reference 6.

The stiffness matrix of the wing on a three-point support was obtained by omitting from the $[\Delta]$ matrix the rows and columns associated with stations 1 and 22. The resulting stiffness matrix $\left[\Delta^{3 P}\right]$ for a delta wing on a three-point support is shown in table IX for both symmetrical and antisymmetrical cases. The influence coefficients of the idealized structure on a three-point support were obtained by inverting the $[\Delta 3 P]$ matrix

$$
\begin{equation*}
|w|=\frac{1}{E}\left[\Delta^{3 P}\right]^{-1}|P| \tag{4}
\end{equation*}
$$

The influence coefficient matrices $\left[\Delta^{3 P}\right]^{-1}$ for symmetrical and antisymmetrical loading conditions are shown in table $X$.

Since the influence coefficients of the delta wing are known for a three-point support, the load deflection characteristics of the wing can be calculated for other support conditions. (See ref. 1.) Furthermore, the frequency equations necessary to determine the natural modes and frequencies can readily be obtained. A method for "freeing" a wing is discussed in the appendix. In this method the displacements of a free-free wing vibrating in a natural mode are described in terms of the influence coefficients of the wing on a three-point support. With the use of the results of the appendix, the frequency equation for a free-free wing can be written as follows (see eqs. (A23) and (A27)):

For symmetrical vibrations:

$$
\begin{equation*}
|w|=\frac{\omega^{2}}{E}\left[[I]+\left[F^{s}\right]\left[M^{s}\right]\right]\left[\Delta^{s}\right]^{-1}\left[M^{S}\right]|w| \tag{5}
\end{equation*}
$$

For antisymmetrical vibrations:

$$
\begin{equation*}
|w|=\frac{\omega^{2}}{E}\left[[I]+2 K_{22}|x|[x]\right]\left[\Delta^{a}\right]^{-1}\left[M^{s}\right]|w| \tag{6}
\end{equation*}
$$

where
[ Fs ] matrix defined in eq. (A24)
$\mathrm{K}_{22} \quad$ constant defined in eq (A7)
[I] unit matrix
$x$ spanwise coordinate
$\left[\Delta^{s}\right],\left[\Delta^{a}\right]$ stiffness matrix for wing on three-point support for symmetrical and antisymmetrical loading conditions, respectively
$\left[\mathrm{M}^{\mathrm{S}}\right]$ diagonal mass matrix for half-span
The elements of the diagonal mass matrix represent the mass that is considered to be concentrated at each station. In order to obtain these elements the components of the wing tabulated in reference 6 were divided into two groups. One group contained the cover sheets, stringers, spars, and spar-to-cover and stringer-to-cover rivets and the second group contained the weights of the ribs and the concentrated weights (such as those of the filler blocks, splice plates, pickup, and the moving elements of vibrators). The contribution of the components of the first group to the elements of the mass matrix was obtained by dividing the wing into regions (shown in fig. 3) and then allotting the weights of the portion of the components included in each region to the station associated with the region. The contribution of the components of the second group was obtained in such a way that the total and first and second moments about the wing center line of these contributions were the same as the total and first and second moments of the weight of the actual components in the second group. The sum of all the weights associated with the stations shown in figure 3 was within 0.1 percent of the actual weight of the wing.

## Modification of the Levy Method to Include Transverse Shear

In the previous calculations the effects of transverse shear were neglected as suggested in reference 2. On the other hand in reference 9 it was shown that the influence of transverse shear could be of importance especially in the higher modes of vibration.

If the effects of transverse shear were to be included exactly in a consistent deformation analysis, such as that of reference 2 , the slopes in both the spanwise and chordwise direction in addition to the deflections at each spar-rib intersection must be treated as unknowns. This requirement would, of course, cause a threefold increase in the number of redundants in the solution. The influence of transverse shear, however, can be included in the Levy method approximately with no increase in the number of redundants and with little additional labor.

In the previous calculations the stiffness coefficients of the spars and ribs were obtained by inversion of the influence coefficients of cantilever beams. These influence coefficients, however, contained only the deflections due to bending. The effects of shear deformation on the spars and the ribs can be included in the influence coefficients by super-imposing the deflections due to shear onto those due to bending. The influence coefficients including shear deformation can be obtained from the equation

$$
\begin{align*}
w= & \int_{0}^{x} \frac{P}{E I}\left(x_{0}-\eta\right)(x-\eta) d \eta+\int_{0}^{x} \frac{P}{A_{S} G} d \eta+\int_{0}^{x} \frac{P}{A_{S} G} \frac{h^{\prime}}{h}\left(x_{0}-\eta\right) d \eta+ \\
& \int_{0}^{x} \frac{P}{A_{S} G} \frac{h^{\prime}}{h}(x-\eta) d \eta+\int_{0}^{x} \frac{P}{A_{S} G}\left(\frac{h^{\prime}}{h}\right)^{2}\left(x_{0}-\eta\right)(x-\eta) d \eta \tag{7}
\end{align*}
$$

where $w$ is the deflection of a cantilever beam at any point $x$ (distance from the root) due to a load $P$ at $x_{0}, h^{\prime}$ is the derivative of $h$ with respect to $\eta$, and $E I$ and $A_{S} G$ are the bending stiffness and effective shear stiffness, respectively. The first term on the right-hand side of equation (7) is the portion of the deflection due to bending stresses. The second term is the shear deformation that would occur if the beam was nontapered. The third term represents the deflection due to the effect of the normal stresses in the flanges of the tapered beams on the shear in the webs. The last two terms represent the deflections due to the effects of taper on the shear strain.

As an example, the influence coefficients with transverse-shear deformations included are shown in table IV(b) for the trailing-edge
spar. Comparisons of these coefficients with those in table IV(a) will give an indication of the magnitude of the transverse-shear deformation. In these calculations the effective shear areas of the spar and rib webs were taken to be the product of the web thickness and the depth of channel.

The set of influence coefficients for all spars and ribs resulting from the use of equation (7) was inverted to obtain the stiffness coefficients of the spars and ribs. The stiffness coefficients of the torque boxes were left unchanged.

The influence coefficients of the idealized delta wing were then obtained in the same manner as described in the previous section. The numerical values of the resulting influence coefficients including transverse shear are shown in table XI for the wing simply supported at three points and loaded both symmetrically and antisymmetrically.

RESULTS AND DISCUSSION

The first nine free-free modes (5 symmetrical and 4 antisymmetrical) of the delta wing were calculated with the use of equations (5) and (6) for both the case where transverse shear was neglected and the case where the influence of transverse shear was included.

In figure 4 the node lines and frequencies as obtained by the Levy method with transverse shear neglected are compared with the node lines and frequencies obtained by the Stein-Sanders method (ref. 7) and with the experimental node lines and frequencies (ref. 6).

Note that the frequencies given in figure 4 for the Levy method are smaller than those given in reference 8. This discrepancy was due to the fact that, in the calculations for the frequencies in reference 8 , 12 inches of the cover sheet were included in the moments of inertia of the leading-edge spar whereas in the present calculation only 6.14 inches were included as suggested by the criteria of reference 2. Furthermore, in the calculations of the results in reference 8 , moment transfer was allowed between the unswept and swept portions of the leading-edge spar whereas in the calculations of the present paper no moment transfer was allowed.

As can be seen in figure 4, the node-line patterns of both the SteinSanders and Levy methods agree fairly well with the ones obtained experimentally. The node lines obtained by the Levy method, however, are not as good as those obtained by the Stein-Sanders method, especially in the vicinity of the leading edge. Examination of the figure seems to indicate that the stiffness of the leading edge in the idealized structure is too great.

Although the Stein-Sanders method predicts the experimental nodeline pattern fairly well, the frequency agreement is poor. The errors range from 7 percent in the first mode to 38 percent in the fifth symmetrical mode. On the other hand, the frequency agreement in the Levy method is much better. The largest error in the first 8 modes occurs in the third antisymmetrical mode and is only $8 \frac{1}{2}$ percent; the error in the fifth symmetrical mode is only 20 percent.

One of the principal sources of error in the Stein-Sanders method is the assumption of a parabolic chordwise variation of deformation. As this particular specimen had no extra chordwise stiffening in the center section such as would be furnished by a fuselage, for example, the errors due to this assumption may be large. Another source of error which is in both the Stein-Sanders and the Levy methods is that the results shown in figure 4 do not include the effects of transverse shear.

The results of the calculations of the frequencies of the first nine free-free modes of the delta wing by various methods are summarized in table XII. The frequencies that were obtained experimentaily are given in the first row. The corresponding frequencies as calculated by the Stein-Sanders method and by the Levy method without shear are tabulated in the second and third rows, respectively. The frequencies obtained by the modified Levy method that includes transverse shear are given in the fourth row. The last row contains frequencies that were calculated from the experimentally determined influence coefficients of reference 6 by the method discussed in the appendix. This calculation was included because a popular method of obtaining frequencies is to measure influence coefficients on a model or full-scale structure and then use them in a vibrational analysis.

A comparison of the results tabulated in rows 1 and 4 of table XII shows that the frequencies calculated by the Levy method with shear are in excellent agreement with the experimental frequencies. The largest error occurs in the seventh (fourth symmetrical) mode and is slightly less than 4 percent. The effect of transverse shear on the calculated nodal-line patterns was slight. The changes that did occur, however, tended to improve the agreement between the calculated and experimental node lines.

Comparison of rows 3 and 4 of table XII indicates that the effect of transverse shear can be important. For instance, the inclusion of transverse shear caused an 18 -percent reduction in the calculated frequencies of the fifth symmetrical mode. Also, a comparison of frequencies shown in rows 1, 4, and 5 shows that, for this particular specimen, the modified Levy method gave results which were as good as those obtained from experimental influence coefficients.

Although a comparison of experimental and calculated frequencies provides a test of the accuracy of calculated influence coefficients, a comparison of calculated to experimental deflections of a cantilever delta wing under static loading is of some interest. Therefore the deflections of a delta-wing specimen clamped along the center line under a uniform load of one pound per square inch were obtained from the influence coefficients shown in table XI and were compared with deflections obtained from the experimental influence coefficients shown in reference 6 .

The results of these calculations are shown in figure 5. The deflections of the five spars as calculated by the Levy method with transverse shear are shown by the solid lines whereas the deflections as obtained from the experimental influence coefficients are shown as points. From figure 5 it can be seen that, with the exception of the tip, the deflections as given by the modified Levy method agree well with those obtained from experimental influence coefficients. The large discrepancy in the tip deflections can be attributed to the neglect of the torsional stiffness of triangular boxes in the analysis. As can be seen from figure 2, such an assumption in the idealized beam leaves only the leading- and trailing-edge spars to transfer the tip load to the inboard stations. In the actual structure, however, the triangular box contributed a large amount of the torsional stiffness.

## CONCLUDING REMARKS

From a comparison of calculated and experimental frequencies it has been shown that a method which deals with an idealized structure, such as the method proposed by Levy, gives excellent results for thinskin wings, such as the $45^{\circ}$ delta-wing specimen investigated, provided that corrections are made for the effects of transverse shear. Furthermore, the Stein-Sanders type of approach seems to be inapplicable to low-aspect-ratio wings with center sections which have not been stiffened against chordwise bending.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., October 20, 1958.

## APPENDIX A

FREEING OF INFLUENCE-COEFFICIENT MATRIX
FOR GENERAL THREE-POINT SUPPORT

## Asymmetrical Structure

The problem of obtaining influence coefficients for other loading and support conditions from the influence coefficients for a three-point support was discussed in reference 1. This appendix is concerned with the problem of obtaining a frequency determinant for a structure from its influence coefficients on an arbitrarily located three-point support.

It is assumed that a structure is simply supported at three arbitrary points and that the influence coefficients of this structure at N points (including the supports) are known. The coordinate system is chosen so that the $x$-axis goes through two of the supports and the $y$-axis through the third. The deflections of this structure at any of the points in terms of loading at the points $i=1$ to $N$ are given by the following matrix:

$$
\begin{equation*}
\left|w^{3 P}\right|=[\delta]|P| \tag{Al}
\end{equation*}
$$

where the elements of the matrices are
$w_{i}^{3 P}$ deflection of point $i$ when $i=1,2,3, \ldots N$
$P_{i} \quad$ load at station $i$ when $i=1,2,3, \ldots N$
$\delta_{i j}$ deflection at point $i$ due to a load at point $j$ when i, $j=1,2,3, \ldots N$

If the system is permitted to be completely unrestrained, the deflection at any point can be written as

$$
\begin{equation*}
|w|=\left|w^{3 P}\right|+w_{0}|I|+\alpha|x|+\beta|y| \tag{A2}
\end{equation*}
$$

where

```
wo rigid-body translation
a rigid-body rotation about y-axis
```

$\beta$ rigid-body rotation about x -axis
$x_{1}, y_{i} \quad$ coordinates of point $i$
$|1| \quad$ column matrix of ones
The loadings on this structure must then satisfy the following equilibrium conditions:

$$
\left.\begin{array}{l}
\lfloor l\rfloor|P|=0  \tag{A3}\\
\lfloor x\rfloor|P|=0 \\
\mid y\rfloor|P|=0
\end{array}\right\}
$$

When a structure is vibrating in its natural mode, the inertial loading can be written as:

$$
\begin{equation*}
|P|=\omega^{2}[M]|w| \tag{A4}
\end{equation*}
$$

where $\omega$ is the natural circular frequency and $M_{i}$ is the effective concentrated mass of the structure at station $i$. With the use of equation (A2), equation (A4) can be written as:

$$
\begin{equation*}
|P|=\omega^{2}[M]| | w^{3 P}\left|+w_{0}\right| I|+\alpha| x|+\beta| y| | \tag{A5}
\end{equation*}
$$

The values of $\alpha, \beta$, and $w_{0}$ can be obtained in terms of $|w 3 P|$ by substituting equation (A5) into equation (A3) and solving the resulting equations to yield

$$
\left.\begin{array}{rl}
w_{0} & =\left\langle K_{11}\lfloor 1\rfloor+K_{12}\lfloor x\rfloor+K_{13}\lfloor y\rfloor\right||[M]| w 3 P \mid \\
\alpha & =\left\langle K_{12}\right| 1\left|+K_{22}\right| x\left|+K_{23}\lfloor y\rfloor\right|[M]|w 3 P| \tag{A6}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
K_{11} & =\frac{1}{D}\left(M_{x y}^{2}-M_{x x} M_{y y}\right) \\
K_{12} & =\frac{1}{D}\left(M_{x} M_{y y}-M_{y} M_{x y}\right) \\
K_{13} & =\frac{1}{D}\left(M_{x x} M_{y}-M_{x} M_{x y}\right) \\
K_{22} & =\frac{1}{D}\left(M_{y}^{2}-M M_{y y}\right) \\
K_{23} & =\frac{1}{D}\left(M M_{x y}-M_{x} M_{y}\right) \\
K_{33} & =\frac{1}{D}\left(M_{x}{ }^{2}-M M_{x x}\right)
\end{array}\right\}
$$

and

$$
\begin{align*}
& M=\lfloor 1\rfloor[M]|I| \\
& M_{x}=\lfloor x|[M]| I \mid \\
& M_{y}=|y|[M]|I| \\
& M_{x y}=|x|[M]|y|=\lfloor y|[M]| x \mid  \tag{A9}\\
& M_{x x}=|x|[M]|x| \\
& M_{y y}=|y|[M]|y|
\end{align*}
$$

With equation (A6), equation (A2) becomes

$$
\begin{equation*}
|\mathrm{w}|=[\mathrm{H}]|\mathrm{w} 3 \mathrm{P}| \tag{AlO}
\end{equation*}
$$

where

$$
\begin{gather*}
{[\mathrm{H}]=[[\mathrm{I}]+[\mathrm{F}][\mathrm{M}]]}  \tag{All}\\
{[I]=\text { unit matrix }}
\end{gather*}
$$

and

$$
\begin{align*}
{[F]=} & K_{11}|1|\lfloor 1\rfloor+K_{12}|1|\lfloor x\rfloor+K_{13}|1|\lfloor y\rfloor+ \\
& K_{12}|x|\lfloor 1\rfloor+K_{22}|x|\lfloor x\rfloor+K_{23}|x|\lfloor y\rfloor+ \\
& K_{13} \mid y\left\lfloor\lfloor 1\rfloor+K_{23}|y|\lfloor x\rfloor+K_{33}|y|\lfloor y\rfloor\right. \tag{Al2}
\end{align*}
$$

Substitution of equations (A1) and (A4) into equation (AlO) yields the frequency equation:

$$
\begin{equation*}
|w|=\omega^{2}[H][\delta][M]|w| \tag{Al3}
\end{equation*}
$$

From this frequency or characteristic equation, all modes and frequencies of the free-free asymmetrical structure can be calculated. However, much simplification of the calculation is possible if the structure is symmetrical.

Symmetrical Structure
For a symmetrical structure that is symmetrically supported and whose stations are symmetrically located, the stations can be arranged in three groups: The first group has stations on the center line $x_{C, i}$, $y_{C, i}$, the second group has stations on the right-hand side of the center line $x_{R, 1}, y_{R, i}$, and the third group has stations on the left-hand side $\mathrm{x}_{\mathrm{L}, \mathrm{i}}, \mathrm{y}_{\mathrm{L}, \mathrm{i}}$. Furthermore, the stations of the last group should be numbered so that the ith station on the left is symmetrical with the
ith station on the right. Thus,

$$
\begin{align*}
& \left\lfloor x_{\mathrm{C}}\right\rfloor=0 \\
& \left\lfloor\mathrm{x}_{\mathrm{L}}\right\rfloor=-\left\lfloor\mathrm{x}_{\mathrm{R}}\right\rfloor  \tag{A14}\\
& \left\lfloor\mathrm{y}_{\mathrm{L}}\right\rfloor=\left\lfloor\mathrm{y}_{\mathrm{R}}\right\rfloor
\end{align*}
$$

The characteristic or frequency equations (AlO) can now be partitioned as follows:

$$
\left|\begin{array}{l}
\left|w_{C}\right|  \tag{Al5}\\
\left|w_{R}\right| \\
\left|w_{L}\right|
\end{array}\right|=\omega^{2}\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right]\left[\begin{array}{ccc}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{21} & \delta_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right]\left[\begin{array}{ccc}
{\left[M_{C}\right]} & 0 & 0 \\
0 & {\left[M_{R}\right.} & 0 \\
0 & 0 & {\left[M_{L}\right]}
\end{array}\right]\left|\begin{array}{l}
\left|w_{C}\right| \\
\left|w_{R}\right| \\
\left|w_{L}\right|
\end{array}\right|
$$

From consideration of the symmetry of the structure and the symmetry of the station location, the following relationships exist:

$$
\begin{align*}
{\left[M_{R}\right] } & =\left[M_{L}\right]  \tag{A16}\\
\delta_{12}=\delta_{21} & =\delta_{13}=\delta_{31}  \tag{Al7}\\
\delta_{23} & =\delta_{32} \tag{Al8}
\end{align*}
$$

From equations (A9) and (A14) it can be seen that for symetrical structures

$$
\begin{equation*}
M_{x}=M_{x y}=0 \tag{A19}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathrm{K}_{12}=\mathrm{K}_{23}=0 \tag{A20}
\end{equation*}
$$

Thus, the elements of $[\mathrm{H}]$ in equation (All) can be defined in terms of the locations of the stations on the center line and right-hand side of the structure as

$$
\begin{align*}
& H_{11}=[I]+\left[K_{11}|1|\lfloor 1]+K_{13}|1|\left|y_{C}\right|+K_{13}\left|y_{C}\right| \mid I\right\rfloor+K_{33}\left|y_{C}\right|\left[y_{C} \mid\right]\left[\left[M_{C}\right]\right) \\
& H_{12}=H_{13}=\left[K_{11}|1|\lfloor 1\rfloor+K_{13}|1|\left\lfloor y_{R}\right\rfloor+K_{13}\left|y_{C}\right|\lfloor 1\rfloor+K_{33}\left|y_{C}\right|\left\lfloor y_{R}\right]\right]\left[M_{M_{R}}\right] \\
& \left.H_{21}=H_{31}=\left[K_{11}|1|[1]+K_{13}|1|\left\lfloor y_{C}\right\rfloor+K_{13}\left|y_{R}\right|[1\rfloor+K_{33}\left|y_{R}\right|\left\lfloor y_{C}\right]\right]\left[M_{M_{C}}\right]\right] \\
& \left.\mathrm{H}_{22}=\mathrm{H}_{33}=[\mathrm{I}]+\left[\mathrm{K}_{11}|1|\lfloor 1]+\mathrm{K}_{13}|1| \mid \mathrm{y}_{\mathrm{R}}\right\rfloor+\mathrm{K}_{22}\left|\mathrm{x}_{\mathrm{R}}\right| \mid \mathrm{x}_{\mathrm{R}}\right]+ \\
& K_{13}\left|y_{R}\right|\left[1\left|+K_{33}\right| y_{R} \mid\left\lfloor y_{R}\right]\right]\left[\mathrm{M}_{R}\right] \\
& H_{23}=H_{32}=\left[K_{11}|1|\lfloor 1]+K_{13}|1|\left\lfloor y_{R}\right\rfloor-K_{22}\left|x_{R}\right|\left\lfloor x_{R}\right\rfloor+\right. \\
& \left.K_{13}\left|y_{R}\right||l|+K_{33}\left|y_{R}\right|\left|y_{R}\right|\right]\left[M_{R}\right] \tag{A}
\end{align*}
$$

If the frequency equation (eq. (A13)) is used, both symmetrical and antisymmetrical modes are obtained. However, if the symmetrical and antisymmetrical vibrations are considered separately, the order of the frequency matrix can be considerably reduced.

Symmetrical modes.- For the symmetrical structure vibrating in a symmetrical mode,

$$
\left|w_{R}\right|=\left|w_{L}\right|
$$

Thus, only the deflections at the center line and on the right-hand side of the structure need to be considered and the frequency equation
(eq. (Al3)) reduces to
or

$$
\begin{equation*}
|w|=\omega^{2}\left[[I]+\left[F^{s}\right]\left[M^{s}\right]\right]\left[\delta^{s}\right]\left[M^{s}\right]|w| \tag{A23}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[F^{b}\right]=2\left[K_{11}|1|\lfloor 1\rfloor+K_{13}|I|\left\lfloor y\left|+K_{13}\right| y\left|\lfloor I\rfloor+K_{33}\right| y \mid\lfloor y \mid]\right.\right. \tag{A24}
\end{equation*}
$$

Note that in equation (A21) only the properties of the stations on the center line and on the right-hand side of the structure are involved. Also note that the mass associated with the center-line stations in the $\left[M^{5}\right]$ matrix is one-half of the total assigned mass. The matrix $\left[\delta^{5}\right]$ is the influence coefficient of the structure on a three-point support under a symmetrical loading. When the coefficients $K_{11}, K_{13}$, and $K_{33}$ as shown in equations (A7), (A8), and (A9) are calculated, the [ $M^{s}$ ] matrix can be used instead of the total [M] matrix. In this case,

$$
\left.\begin{array}{l}
M=2\lfloor 1\rfloor\left[M^{s}\right]|1| \\
M_{y}=2\lfloor y]\left[M^{s}\right]|1| \\
M_{y y}=2\lfloor y\rfloor\left[M^{s}\right]|y|  \tag{A25}\\
M_{x x}=2\lfloor x]\left[M^{s}\right]|x| \\
M_{x}=M_{x y}=0
\end{array}\right\}
$$

Antisymmetrical modes.- For a symmetrical structure vibrating in an antisymmetrical mode,

$$
\left|w_{C}\right|=0
$$

and

$$
\left|w_{R}\right|=-\left|w_{L}\right|
$$

Thus, only the deflections on one side need to be considered. For this case, the frequency equation (Al5) reduces to

$$
\begin{equation*}
\left|w_{R}\right|=\omega^{2}\left[H_{22}-H_{23}\right]\left[\delta_{22}-\delta_{23}\right]\left[M_{R}\right]\left|w_{R}\right| \tag{A26}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.|w|=\omega^{2}\left[[I]+2 K_{22}|x| \mid x\right]\right]\left[\delta^{a}\right]\left[M^{s}\right]|w| \tag{A27}
\end{equation*}
$$

Note that in this equation only the properties of the stations on one side of the center line are involved. The influence-coefficient matrix $\left[\delta^{a}\right]$ is the influence coefficient matrix of the structure on a three-point support under an antisymmetrical loading.

1. Stein, Manuel, and Sanders, J. Lyell, Jr.: A Method for Deflection Analysis of Thin Low-Aspect-Ratio Wings. NACA TN 3640, 1956.
2. Levy, Samuel: Structural Analysis and Influence Coefficients for Delta Wings. Jour. Aero. Sci., vol. 20, no. 7, July 1953, pp. 449-454.
3. Schuerch, H. U., and Freelin, J. R.: Structural Analysis of a Delta Wing Structure by Elastic Coefficients. Rep. No. ZS-182, Convair, May 5, 1953.
4. Williams, D.: Recent Developments in the Structural Approach to Aeroelastic Problems. Jour. R.A.S., vol. 58, June 1954, pp. 403-428.
5. Williams, D.: A General Method (Depending on the Aid of a Digitial Computer) for Deriving the Structural Influence Coefficients of Aeroplane Wings. Rep. No. Structures 168, British R.A.E., Nov. 1954.
6. Kordes, Eldon E., Kruszewski, Edwin T., and Weidman, Deene J.: Experimental Influence Coefficients and Vibration Modes of a Built-Up $45^{\circ}$ Delta-Wing Specimen. NACA IN 3999, 1957.
7. Hedgepeth, John M., and Waner, Paul G., Jr.: Application of the Method of Stein and Sanders to the Calculation of Vibration Characteristics of a $45^{\circ}$ Delta-Wing Specimen. NASA MEMO 2-1-59L, 1959.
8. Hedgepeth, John M.: Recent Research on the Determination of Natural Modes and Frequencies of Aircraft Wing Structures. Rep. 37, AGARD, North Atlantic Treaty Organization (Paris), Apr. 1956.
9. Kruszewski, Edwin T., Kordes, Eldon E., and Weidman, Deene J.: Theoretical and Experimental Investigations of Delta-Wing Vibrations. NACA IN 4015, 1957.
10. Houbolt, John C.: A Recurrence Matrix Solution for the Dynamic Response of Aircraft in Gusts. NACA Rep. 1010, 1951. (Supersedes NACA TN 2060.)

TABLE I.- MOMENTS OF INERTIA OF IDEALIZED SPARS

| x | Moments of inertia of - |  |  |  |  |  |  |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Spar 1 | Spar 2 | Spar 3 | Spar 4 | Spar 5 | Swept <br> leading <br> edge |  |
| 0 | 26.123 | 43.546 | 45.643 | 40.300 | 20.635 |  |  |
| 16 | 26.123 | 43.546 | 45.643 | 40.300 | 20.635 | 8.624 |  |
| 28 | 21.748 | 36.374 | 31.131 | 33.720 |  | 7.119 |  |
| 40 | 17.785 | 29.858 | 31.306 | 27.738 |  | 5.785 |  |
| 52 | 14.230 | 23.995 | 25.163 |  |  | 4.599 |  |
| 64 | 11.080 | 18.781 | 19.700 |  |  | 3.559 |  |
| 76 | 8.331 | 14.213 |  |  |  | 2.659 |  |
| 88 | 5.980 | 10.287 |  |  |  | 1.897 |  |
| 100 | 4.022 |  |  |  |  | 1.268 |  |
| 112 | 2.456 |  |  |  |  | .770 |  |

TABLE II.- MOMENT OF INERTIAS OF IDEALIZED RIBS

| R1b | $I$ <br> $(*)$ |
| :---: | :---: |
| 1 | 11.588 |
| 2 | 15.647 |
| 3 | 11.550 |
| 4 | 9.402 |
| 5 | 7.509 |
| 6 | 5.816 |
| 7 | 4.369 |
| 8 | 3.115 |
| 9 | 1.255 |

*Ribs are assumed
to be uniform.

TABLE III.- TORSIONAL CONSTANT OF TORQUE BOXES


| Torque box | $J$ |
| :---: | :---: |
| $1,3,7$, and 13 | 98.517 |
| 2,8, and 14 | 97.674 |
| $4, .322$ |  |
| 5,9, and 15 | 74.750 |
| 6 | 45.544 |
| 10 and 16 | 60.726 |
| 11 and 17 | 48.154 |
| 12 | 27.782 |
| 18 | 37.043 |
| 19 | 27.385 |
| 20 | 14.387 |

TABLE IV.- INFLUENCE COEFFICIENTS FOR SPAR 1 AS CANTILEVER BEAM

$$
\left[|w|=\frac{1}{E}\left[\delta_{S}\right]|p|\right]
$$

(a) Neglecting the effects of transverse shear
$\left[\delta_{S}\right]$

| Station | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 52.266 | 111.064 | 169.863 | 228.662 | 287.461 | 346.259 | 405.058 | 463.857 | 522.656 |
| 23 | 111.064 | 281.220 | 463.508 | 645.797 | 828.086 | $1,010.375$ | $1,192.664$ | $1,374.953$ | $1,557.242$ |
| 24 | 169.863 | 463.508 | 834.758 | $1,220.725$ | $1,606.692$ | $1,992.659$ | $2,378.626$ | $2,764.593$ | $3,150.560$ |
| 25 | 228.662 | 645.797 | $1,220.725$ | $1,890.308$ | $2,578.308$ | $3,266.207$ | $3,954.107$ | $4,642.006$ | $5,329.905$ |
| 26 | 287.461 | 828.086 | $1,606.692$ | $2,578.308$ | $3,668.163$ | $4,781.134$ | $5,894.105$ | $7,007.076$ | $8,120.047$ |
| 27 | 346.259 | $1,010.375$ | $1,992.659$ | $3,266.207$ | $4,781.134$ | $6,447.672$ | $8,144.491$ | $9,841.309$ | $11,538.128$ |
| 28 | 405.058 | $1,192.664$ | $2,378.626$ | $3,954.107$ | $5,894.105$ | $8,144.491$ | $10,596.220$ | $13,089.314$ | $15,582.408$ |
| 29 | 463.857 | $1,374.953$ | $2,764.593$ | $4,642.006$ | $7,007.076$ | $9,841.309$ | $13,089.314$ | $16,617.617$ | $20,205.800$ |
| 30 | 522.656 | $1,557.242$ | $3,150.560$ | $5,329.905$ | $8,120.047$ | $11,538.128$ | $15,582.408$ | $20,205.800$ | $25,246.469$ |

(b) Including the effects of transverse shear
$\left[\delta_{S}\right]$

| Station | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 175.545 | 234.344 | 293.143 | 351.942 | 410.740 | 469.539 | 528.338 | 587.137 | 645.935 |
| 23 | 234.344 | 492.616 | 665.770 | 838.925 | $1,012.080$ | $1,185.235$ | $1,358.389$ | $1,531.544$ | $1,704.699$ |
| 24 | 293.143 | 665.770 | $1,125.587$ | $1,492.177$ | $1,858.767$ | $2,225.358$ | $2,591.978$ | $2,958.538$ | $3,325.128$ |
| 25 | 351.942 | 838.925 | $1,492.177$ | $2,251.988$ | $2,908.724$ | $3,565.461$ | $4,222.197$ | $4,878.933$ | $5,535.670$ |
| 26 | 410.740 | $1,012.080$ | $1,858.767$ | $2,908.724$ | $4,091.808$ | $5,159.590$ | $6,227.372$ | $7,295.155$ | $9,362.937$ |
| 27 | 469.539 | $1,185.235$ | $2,225.358$ | $3,565.461$ | $5,159.590$ | $6,924.698$ | $8,558.872$ | $10,193.046$ | $11,827.220$ |
| 28 | 528.338 | $1,358.389$ | $2,591.978$ | $4,222.197$ | $6,227.372$ | $8,558.872$ | $11,117.942$ | $13,525.292$ | $15,932.642$ |
| 29 | 587.137 | $1,531.544$ | $2,958.538$ | $4,878.933$ | $7,295.155$ | $10,193.046$ | $13,525.292$ | $17,175.353$ | $20,644.405$ |
| 30 | 645.935 | $1,704.699$ | $3,325.128$ | $5,535.670$ | $9,362.937$ | $11,827.220$ | $15,932.642$ | $20,644.405$ | $25,831.532$ |


[这]

| Station | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 0.04908861 | -0.0822049 | 0.0411729 | 0.00999641 | 0.0024012 | -0.00056916 | 0.00013281 | -0.00003010 | 0.000005979 | -0.000000933 |
| 22 | -.0822049 | .172020 | -.131713 | .0519875 | .012489 | .0029607 | .0006896 | .00015617 | .000032568 | .000004646 |
| 23 | .0411729 | -.131713 | .173902 | -.119798 | .045101 | -.010692 | .00249059 | -.0056472 | .00011823 | .000016929 |
| 24 | -.00999641 | .0519875 | -.119798 | .146262 | -.09788 | .036196 | -.0084332 | .0019138 | -.0040124 | .000057546 |
| 25 | .0024012 | -.012489 | .045101 | -.097788 | .217039 | -.0776837 | .0280409 | -.0063648 | .00013349 | -.00019150 |
| 26 | -.00056916 | .0029607 | -.010692 | .036196 | -.0770837 | .0908740 | -.0587813 | .0208393 | -.0043710 | .00062716 |
| 27 | .00013281 | -.0006896 | .00249059 | -.0084332 | .0280409 | -.0587813 | .0679500 | -.0427307 | .0140343 | -.0020138 |
| 28 | -.00003010 | .00015617 | -.00056472 | .0019138 | -.0063648 | .0208393 | -.0427307 | .0476624 | -.0271777 | .0062964 |
| 29 | .000005979 | -.000032568 | .00011823 | -.00040124 | .0013349 | -.0043710 | .0140343 | -.0271777 | .0248476 | -.0083585 |
| 30 | -.000000933 | .000004646 | -.000016929 | .000057546 | -.00019150 | .00062716 | -.0020138 | .0062964 | -.0083585 | .00359591 |

TABLE VI.- STIFFNESS COEFFICIENTS FOR RIB 4

| Station | 6 | 10 | 16 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 0.00108821 | -0.0024847 | 0.00163231 | -0.00027205 |
| 10 | -. 00244847 | . 00652924 | -. 00571.307 | . 00163231 |
| 16 | . 00163231 | -. 00571308 | . 00652924 | -. 00244847 |
| 24 | -. 00027205 | . 00163231 | -. 00244847 | . 00108821 |

TABLE VII．－STIFFNESS COEFFICIENTS FOR TORQUE BOXES 15 AND 16

table VIII.- ELEMENTS OF ROW 24 OF STIFFNESS COEFFICIENT OF DELTA WING UNDER SYMMETRICAL LOADING

$$
\left.P_{24}=E \mid \Delta_{24, n}\right\rfloor\left|w_{i}\right|
$$

$\left\lfloor\Delta_{24, n}\right\rfloor$

| $n$ | $\Delta_{24, n}$ | $n$ | $\Delta_{24, n}$ |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 18 | 0 |
| 2 | 0 | 19 | 0 |
| 3 | 0 | 20 | 0 |
| 4 | 0 | 21 | -.00999641 |
| 5 | 0 | 22 | .0519875 |
| 6 | -.00027205 | 23 | -.1238534 |
| 7 | 0 | 24 | .15470014 |
| 8 | 0 | 25 | -.10108250 |
| 9 | 0 | 26 | .036196 |
| 10 | .00163231 | 27 | -.0084332 |
| 11 | 0 | 28 | .019138 |
| 12 | 0 | 29 | -.00040124 |
| 13 | 0 | 30 | .00005746 |
| 14 | 0 | 31 | 0 |
| 15 | .004055431 | 32 | 0 |
| 16 | -.009798400 | 33 | 0 |
| 17 | .003294499 | 34 | 0 |



[^0]

| Sta- | ${ }^{2}$ | 4 | ' | 6 | 8 | 9 | 10 | 12 | 12 | 14 | 15 | 1.6 | 27 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.0117074t | -0.0118034t |  |  |  | 0 |  |  |  | -0.00072762's | 0 | 0 | 0 | - |
| 4 | -.01280341 | ${ }^{-0.018123116}$ | $\left\lvert\, \begin{aligned} & .007,6+502 \\ & -15,69 \times 8 \end{aligned}\right.$ | $.0450679$ | -.01957595 | . 004895355 |  | 0 |  | . $00436577^{4}$ | 0 | 0 | 0 | 0 |
| 5 | . $017.51+5029$ | $\cdots 15963588$ | . 226601361 | -. 272515631 | . 004895355 | -.025 514726 | . 004455438 | - |  |  | . 00440182 | 20163231 | $\bigcirc$ | $\bigcirc$ |
| B | . 00363035 | . 040606 | -.07551363 | . 05474396 |  | . 004055431 | -.008374781 | .001.941755 | ${ }^{00041130834}$ |  |  | ${ }_{0}^{.00163231}$ | ¢ | - |
|  | . 010970508 | $\cdots$ | -. 021554726 | ${ }^{\circ} .00409543_{1}$ | . 2088681271 | --19741071 | $\xrightarrow{-21597606}$ | -.01826517 .076815 | -002814076 | -.00489555 | -.01-895355 | ${ }^{0} .004055431$ |  | 0 |
| 10 | - |  | . 004095431 | -.008974781 | 0803364 | -. 21957686 | .2720314.81 | -.16885325 | . 0397646 |  | . 0040554431 | -.01306301 | . 005894499 |  |
| 12 | - | - |  | . 00.944175 | -. 01825517 | .0756823 | -.16565385 | . 18027205 | -.055837571 | 0 |  | -00599449 | - .013313:80: | -.0026129709 |
| 12 | - ocreace subr |  |  | .0041158834 | . 00281407 | -.01137046 | .038,646 | -.05583757 | . 03823282 |  |  |  | -.0026129709 | -.0063818866 |
| 14 | -.000727625 | .00435574 | $0^{0} 00440182$ |  | -.019575855 | -. 0048953535 |  |  |  | .1762260 | - 18886471 | .0770356 $-.2054036$ | -.0185388 -.0749101 .- | . 0.0177553 |
| 25 | - | $0$ | 0 - 0 440182 |  | -004875355 | -. 017443026 | -0060554311 |  |  | $-.18886471$ | -303146062 -20548862 | -.20540386 | $-.0749101$ <br> $-.17088000$ | -.017353 |
| 17 | - | c | , |  | 0 |  | . 5 csegi499 | -.015598834 | . 0026129703 | -. 0285368 | . 0749101 | -. 17088000 | . 21483968 | -. 134706142 |
| 18 | - | 0 | - |  | O | $\bigcirc$ | $\bigcirc$ | . 0628125709 | -.005 31818868 | . 0043917 | -.017353 | . 0607546 | -. 134706142 |  |
| 19 | - | 0 |  |  | - | 0 | 0 |  | . 0030144550 | -. 000971203 | . 00391818 | -.0134237 | .0447670 | -.0958264157 .0221607 |
| 20 | 0.000010648 | 0 - |  | . 0002160107 |  |  |  | 0 | . 002349564 | .000146573 | -.00059076 | . 00202371 | $-.00674923$ | $0^{.0221607}$ |
| 2 | ${ }^{\text {c }}$ | 0 0 0 | -00073028 | -. 200272050 |  | 0.0020008 | - | $\bigcirc$ | $10$ |  | -.0040 25431 | -.0007998400 | . 003294 |  |
| 25 | $\bigcirc$ | 0 | 0 |  | 0 |  |  | . 00177766 |  | $\bigcirc$ |  | .003294499 | . 0079810094 | .0076:257 |
| 26 | d | 0 | 0 | 0 | 0 |  |  |  | . 00063105 | 0 | 0 | $\bigcirc$ | 002612571 | -.0058842927 |
| 27 | c | 0 | 0 | 0 | 0 |  |  |  |  | - | 0 | 0 |  | .0020096217 |
| 28 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | - | 0 | - | $\bigcirc$ | 0 | $\bigcirc$ | - |  |
| 29 | - | 0 | 0 |  | - | - | - | 0 |  | - | - | $\bigcirc$ |  |  |
| 30 | .000000312 | 0 | $\bigcirc$ | . 000006367 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | . 0000699880 | $\bigcirc$ | 0 |  |  |  |
| 32 | -.000002182 | $0$ | 0 | - | 0 | $1$ | $10$ |  | $=.0004697922$ |  | - | $0$ |  | ${ }^{2} .005014245$ |
| 3 | -.000856076 | 0 | - | -.01605957 | - |  | .00494175 | -.0173667 | -.006776619 | - |  | 0 | .00355532 |  |
| 34 | -. 01243979 | . 00714502 | -.02666848 | -.01226425 | $\bigcirc$ | .0058602881 | $1^{\circ}$ |  | $\underline{-001135430}$ | : | -. 00146728 | 0 |  |  |




| 19 | 0 | 2) | $2 \cdot$ | 23 | 2 | 27 | 28 | 29 | 50 | 31 | 32 | 33 | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9,000010608 | - | $\bigcirc$ |  | 0 | 0 | 0 | 0 | 0.000000312 | -0.000002182 | -0.000046755 | -0.000896076 | $-0.01248779$ |
| C |  |  | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 |  |  |  |  | - 007343028 |
| - | ${ }^{3} .0002160107$ | ${ }^{-13} 000733628$ | -.00027205 | 0 |  | O | 0 | 0 | .000006387 | $\bigcirc$ | -.000955419 | -01605958 | .002668948 -.02288425 |
| 3 |  |  | $\square^{-9}$ | 0 | - | O | $\bigcirc$ | O | 1.000006387 | $0^{-0000449943}$ | -.000953418 | -61605958 | - |
| 0 | 0 | .90720087 |  | 0 | - | 0 | 0 | 0 | 0 | 0 | - |  | . 0058689988 |
| $\bigcirc$ |  |  | .00163232 |  | - | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | . 00444155 |  |
| 0 Onentice |  | 0 |  | . 0017766 |  |  | $\bigcirc$ | 0 |  |  |  | -.017586705 |  |
| - 0 -03014415 | .502445564 -000146575 | .0048953 |  |  | $0^{.000631 .05}$ | O | $\bigcirc$ | $\bigcirc$ | . 000069580 | -0004897922 | --00966743 | -. 00875619 | -. |
| . 00518 lal | -.00050076 | -.0120C7576 | . . 040554332 | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | \% | - | \% | - | - | -.00146728 |
| -. 01543 3 57 | .00202371 | .1004055432 | - . 009748420 | . 0032944499 | 0 | 0 | 0 | 0 | - | 0 | - |  |  |
| . 0447670 | -.00674 223 |  | . $00323+3499$ | -. 0079810094 | .002612771 |  |  | 0 |  | 0 |  | . 00355532 |  |
| - 05882646 | . 2221607 | 0 |  | 062612571 | -.005884292 | . 0020096217 |  |  |  | $\bigcirc$ | . 005014435 |  | 0 |
| - 21936481 | $-.031446264$ |  |  |  | -00200\%6217 | -. 0053914059 | .001485664 -00266188 |  |  |  | -009821085 |  |  |
|  | , 02020631 | . 17881577 | -.12181843 | - 0446126 | -. 0105760 | . $00246 \times 16$ | -.000558374 | .001561745 | $\begin{array}{r} .0006946096 \\ -.0001696 \end{array}$ | $0^{-.00488: 560}$ |  | $0^{-.000710073}$ | -.0000545973 |
| $\because$ | - | -. 12181845 | . 154206614 | -. 10096.00 | .0351678 | -. 00842654 | . 01919066 | -.00040113 | . 000057465 | - | 0 |  |  |
| 0 | 0 | . 0446126 | -. 10096440 | . 1238069 | -.07966947 | . 2280393 | - 0063644 | .00133487 | -. 00019148 | 0 | 0 | -.00059255ie | $\bigcirc$ |
| mmatil |  | -. 01.05760 | .0361678 | -. 079 c8, ${ }^{\text {a }} 71$ | .09612564 | -.06079092 | . 0208392 | -. .00437099 | . 00062716 | 0 |  |  | 0 |
| -009391466 | . 1014856664 | . 0024696 | -.00042654 | . 0230393 | - . 06070052 | . OT207taz | - , 044216369. | . 01203643 | -.0020136 | 0 | . 0012 (4.7) 8 | 0 | 0 |
| . 001485664 | - . 002266188 |  | . 00191066 | -.0065644 | .2048392 | -. 044216369 | . 0499288588 | - .026738745 | . 006099641 | .00156104s |  | 0 | $\bigcirc$ |
|  | .0015610459 | .0001276 | -.00040113, | . 00113487 | -.00437099 | . 0140343 | -.020738745 | . 077369695 | -.0083585 | -0031200951 |  |  |  |
| $\bigcirc$ | . 0006844609 | -.0000165\% | . 000057465 . | -00019148 | . 00062726 | -.0020138 | . 00629641 | -.0083585 | ${ }^{.003992017}$ | - . 0005411247 | -.0002za8io | -.0000232887 |  |
| - 00088210fs | -004582569 |  |  |  |  |  | . 001561045 | -.0031220951 | -0009211247 -00022830 | ${ }^{0058743} 1$ | .01567975 | 000149948 00518224 | $\begin{aligned} & .0000123806 \\ & .00026568] \end{aligned}$ |
| \% | -00072.557 |  | O | -.000592552 | - | $0^{.00126460}$ | 0 | - | - -00002221268 | . 00014974 l | . 00318224 |  | . 0048404766 |
| $\bigcirc$ | -.000059574] | . $00024+5542$ | 0 |  | - |  | 0 | 0 | -. 00000017616 | . 00000223606 | .00026 3681 | . 004804766 | . 03557598 |


| Sta- <br> tior | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 23 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 51.840 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 23.232960 | 1247.57966 | 235.62897 | 225.04320 | 218.53506 | 274.60063 | 267.11635 | 254.96150 | 24.53798 | 232.01163 | 225.45891 | 164.56460 | 163.448 | 161.46636 | 158.78607 | 155.24781 |
|  | 29.565920 | 235.62697 | 244.74324 | 253.15037 | 262.86324 | 273.27832 | 274.16204 | 27.45005 | 268.34342 | 268.80281 | 27.56951 | 1157.60093 | 168.29999 | 170.05828 | 172.8103 | 175.78873 |
| 5 | 35.316710 | 225.04320 | $\underline{233.15837}$ | 301.02180 349.09570 | 349.99520 | ${ }^{278} 8.08520$ | 286.89350 302.5880 | 301.63130 338.7200 | ${ }^{319.61840}$ | (41.23400 | 363.51070 468.67480 | 173.23440 | 177.60530 | ${ }^{186} .76790$ | 200.24900 | 216.25470 |
|  | 19.903370 | 274.60063 | 27.27832 | 278.06520 | 282.61720 | 4 | 380.98263 | 边 | ${ }^{333} 30.69741$ | 438.00640 316.5779 | l 488.87480 | 179.69910 |  | 208.77050 244.46499 | 236.80540 | 270.80980 219.90623 |
| - | 20.465700 | 267.12635 | 274.16204 | 286.8935 | 302. 588830 | 380.88263 | 379.13997 | 368.82967 | 556.48657 | 349.05079 | 345. 38343 | 254.06752 | 232.97341 | 250.9731 | 248.46662 | 245.69783 |
|  | 21.979080 | 234.96158 | 271.45005 | 301.63130 | 339.79200 | 356.70920 | 368.82967 | 186.51508 | 399.42266 | 413.65496 | 430.96817 | 240.7335 | 246.39250 | 262.01677 | 278.84224 | 296.30163 |
| 10 | 24.066920 | 241.53798 | 268.34342 | 319.61840 | 386.00540 | 333.69741 | 356.48657 | 399.422 | 455.56540 | 51.5030 | 567.69530 | 225.14606 | 242.69510 | 276.02460 | \$21.20260 | 37.41560 |
| 11 | 26.079420 | 232.01163 | 268.80281 | 341.12420 | 438.00640 | 316.57T39 | 349.05079 | 413.65496 | 511.50330 | 635.76580 | 761.92350 | 210.82960 | 238.66860 | 293.53450 | 372.83110 | 467.89410 |
| 12 | ${ }^{27.874650}$ | 225.45891 | 271.56951 | 363.51070 | 488.87490 | 303.34514 | 345.38343 | 430.96817 | 567.69530 | 761.92350 | 996.95490 | 197.80460 | 236.17010 | 313.35490 | 429.32630 | 576.26070 |
| 13 | 10.371690 | 164.56462 | ${ }^{167.60093}$ | 173.12440 | 179.68910 | 262.04986 | 254.06732 | 240. 7335 | 235.14600 | 21.82 | 197.80460 | 229.36349 | 209.72454 | ${ }_{286.17612}$ | 164.32654 | 145.25174 |
| 14 | 10.662470 | 165.44822 | 168.29999 | 177.60530 | 189. 3 89920 | 225.15322 | 232.97341 | 248.39250 | 24.68510 | 238.65660 | 236.17010 | 209.72454 | 208. | 200.62860 | 190.55103 | 182.10886 |
| 15 | 11.151280 | ${ }^{161.46636}$ | 170.05828 | 286.76790 | 208. 11050 | 244.46439 | 2350.9731 | 262.01677 | 276.02460 | 293.53450 | 313.35490 | 186.17612 | 200.62866 | 223.92021 | $240.4 \times 412$ | 255-52490 |
| 16 | 11.880520 12.859990 | (158.2860781 | 172.81753 | 200.24900 216.25470 | 236.80540 270.80990 | 232.30749 219.90623 | 248.46668 | 278.84214 | 321.20230 | 372.83110 | 429.32630 | 164. 32654 | 190.55103 | 240.45412 | 304.29198 | 362.89558 |
| 18 | 13.989390 |  | ${ }_{\text {l }}^{179.78462}$ | 21625470235032 | 270.80960 308.14990 | 2190.602361 | 245.69783 243.89994 | 296.30163 314.59785 | 737. 41.860 | ${ }_{4}^{467.894120}$ | ${ }^{576.26070}$ | 145.25174 | 182.10886 | 255.52490 | 362.89558 | 488.94366 |
| 19 | 15.076700 | 150.389 | 184.68959 | 253.29980 | 347.1295 | 201.29882 | 245.85356 |  |  | 570.41270 | 742.749800 | 128.924259 | 176.28969 174.33366 | 272.3017 | ${ }_{4}^{49.03029}$ | 610.42677 |
| 20 | 16.209680 | 150.46747 | 191.46258 | 27.48250 | 386.23640 | 196.4911 | 250.38445 | 360.90139 | 537.54060 | 787.05970 | 1,094.0155 | 105.59449 | 174.67950 | 216.92998 |  |  |
| 21 | -. 072966640 | ${ }^{-3} .1444147$ | -4.0419050 | -5.885790 | -8.31×2540 | -3.6232471 | -5.8823331 | -10.127944 | -16.442396 | -24, 396833 | -33.371936 | 4.3651906 | -3.5299065 | -15.910915 | -28.981237 | -42.554224 |
| 23 | . 17780006 | 8.8867806 | 10.690521 | 14.346473 | 19.454219 | 12.940974 | 17.179794 | 25.535838 | 37.950270 | 53.822627 | 71.960922 | 3.1766129 | 15.1207210 | 36.603710 |  | 91.419690 |
| 24 | . 472068500 | 20.378383 | 24,953327 | 34.227050 | 47.194640 | 29.226680 | 39.685 | 60.297604 | 91.042460 | 130.83680 | 176.8577 | 9.0351190 | 34.356940 | 82.388967 | 147.29465 | 219.76164 |
| 25 | .88695100 | 31.57625 | 39.85727 | 56.602570 | 79.96280 | 43.866486 | 61.949296 | 97.859930 | 152.01433 | 223.05953 | 306.26422 | 13.190036 | 51.792825 | 127.55338 | 256.35265 | 367.11114 |
| 26 | 1.4306880 | 41.110207 |  | 79. 739030 | 125.77008 | 54.988079 | ${ }^{81.566313}$ | 134.82631 | 216.23918 | 3324 | 453.24553 | 14.441825 | ${ }^{65.851401}$ | 168.74845 | 322.59439 | 518.7797 |
| 27 | 2.1018470 2.8629730 | ( $\begin{aligned} & 48.470065 \\ & 54.16545\end{aligned}$ | 76.449152 | 102.67839 125.16849 | 253.14557 191.27610 | 69.193320 66.530017 | 97.686169 | 169.40000 | 280.51503 | 退 430.88413 | 611.19202 | 12.676594 | 76.394282 | 235.35581 | 403.71972 | 1667.05769 |
| 29 | 3.6482160 | 59.464670 | 88.706978 | 147.64494 | ${ }^{2} 29.74819$ | 70.53658 | ${ }_{123.95841}$ | $2 \times 3.91545$ | 407. 30780 | 647.87599 | 76.1.33495 | 8. 73174400 | 34.430357 91.881588 | 272.192939 | +80.78091 |  |
| 30 | 4. 6333400 | 64.75340 | 99.703880 | 170.15070 | 268.28680 | 73.740510 | 136.76250 | 265.99593 | 471.14950 | \$77.09070 | 1,107.9447 | .13972000 | 99.266390 | 304. 79918 | 632.97939 | $4{ }^{4}$ |
| 31 | 10.281080 | 107.36165 | 145.60106 | 221.96440 | 327.59470 | $134.959{ }^{146}$ | 293.50042 | 313.5765 | 504.84210 | 773.14900 | 1,102.7935 | 52.59278 | 136.80602 | 310.67067 | 587.4 | 978.2175 |
| 32 | 21.931720 33.878620 | 198.34443 | 235.99242 | 323.11560 78.63170 | 442.33220 505.83910 |  |  | 405.0972 | 564. 54620 | 791.76740 | 1,071.9111 | 157.87029 | 211.86375 | 322.19832 | 49.808594 | 726.34476 |
| 35 34 | 33.278620 45.386200 | 280.05895 | 285.01765 | 378.63170 | 505.83910 | 316.53644 | 348.76665 | 412.07144 | 507.40530 | 631.45210 | 762.8350 | 206.31744 | 229.08259 | 274.29645 | 34.48261 | 421.36746 |
| 54 | 45. | 142.07974 | 271.27049 | 22.96610 | 279.80200 | 172.68259 | 181.55129 | 197.26304 | 217.33680 | 238.39220 | 258.73880 | 206.25322 | 210.01762 | 117.61472 | 128.65921 | 142.13633 |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 179 |  |  |  |  | , | 1.8.85re\% |  |  |  |  |  |  |  |  |  |
| cose |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |
| cit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }_{762}$ | ${ }_{\text {a }}^{\text {978. }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{174}^{1216}$ |  | - 3.5 |  |  |  |  |  | ${ }^{\text {a }}$ - 74535385 |  |  |  |  |  |  |
| ${ }_{4}^{27}$ |  |  | -15. |  |  |  |  |  | 289. |  |  |  |  |  |  |
| ${ }_{8}^{629}$ |  |  | 52, |  |  |  | Sib:709 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | ${ }_{-6} 6$ |  |  |  |  |  |  |  | 0.65 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | $\mid$ |  | $\xrightarrow{759.880}$ |  |  |


| Station | 2 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 575.7224 | 360.5361 | 601.7281 | 823.7979 | 232.9755 | 404.9876 | 571.0150 | 727.6955 | 876.5052 | 124.9455 | 226.5982 | 337.1404 | 454.6444 | 575.4706 |
| 4 | 360.5361 | 309.3417 | 518.1413 | 713.5195 | 220.3955 | 379.0422 | 529.5642 | 672.5078 | 809.4466 | 120.0355 | 217.4012 | 322.5558 | 433.2395 | 546.4655 |
| 5 | 601.7281 | 518.1413 | 894.3876 | 1250.551 | 379.7971 | 657.7621 | 924.7133 | 1179.133 | 1422.640 | 209.3141 | 379.4903 | 563.9921 | 758.9652 | 958.9030 |
| 6 | 823.7979 | 713.5195 | 1250.551 | 1788.111 | 533.7412 | 929.9671 | 1316.661 | 1687.412 | 2041.955 | 297.5370 | 540.2849 | 804.5489 | 1085.073 | 1373.601 |
| 8 | 232.9755 | 220.3955 | 379.7971 | 533.7412 | 194.2970 | 323.1545 | 441.2496 | 553.6178 | 662.5724 | 111.8606 | 198.2547 | 287.5461 | 379.1012 | 471.9543 |
| 9 | 404.9896 | 379.0422 | 657.7621 | 929.9671 | 323.1545 | 557.2611 | 773.0448 | 976.0771 | 1172.523 | $190.77{ }^{\text {94 }}$ | 342.7637 | 502.9228 | 668.1963 | 835.8900 |
| 10 | 571.0150 | 529.5642 | 924.7133 | 1316.661 | 441.2496 | 773.0448 | 1099.712 | 1408.627 | 1705.653 | 264.5714 | 481.5123 | 716.9574 | 693.9362 | 1215.762 |
| 11 | 727.6955 | 672.5078 | 1179.133 | 1687.412 | 553.6178 | 976.0771 | 1408.627 | 1846.530 | 2271.723 | 334.4817 | 614.9803 | 928.2693 | 1265.833 | 1615.077 |
| 12 | 876.5052 | 809.4466 | 1422.640 | 2041.955 | 662.5724 | 1172.523 | 1705.653 | 2271.723 | 2861.562 | 402.0729 | 744.8913 | 1136.470 | 1569.478 | 2027.530 |
| 14 | 124.9455 | 120.0355 | 209.3141 | 297.5370 | 111.8606 | 190.7794 | 264.5714 | 334.4817 | 402.0729 | 88.21691 | 143.8514 | 196.3179 | 249.9188 | 503.3133 |
| 15 | 226.5982 | 217.4012 | 379.4903 | 540.2849 | 198.2547 | 342.7637 | 481.5123 | 614.9803 | 744.8913 | 143.8514 | 256.1005 | 363.5947 | 470.0499 | 578.6888 |
| 16 | 337.1404 | 322.5558 | 563.9921 | 804.5489 | 287.5461 | 502.9228 | 716.9574 | 928.2693 | 1136.470 | 196.3179 | 363.5947 | 546.3199 | 727.0367 | 907.0376 |
| 17 | 454.6444 | 433.2395 | 558.9652 | 1085.073 | 379.1012 | 668.1963 | 693.9362 | 1265.833 | 1569.478 | 249.9188 | 470.0499 | 727.0367 | 1007.767 | 1286.898 |
| 18 | 575.4706 | 546.4655 | 958.9030 | 1373.601 | 471.9543 | 835.8900 | 1215.762 | 1615.077 | 2027.530 | 503.3133 | 578.6888 | 907.0376 | 1286.898 | 1698.932 |
| 19 | 695.8834 | 659.7765 | 1159.022 | 1662.447 | 565.7222 | 1005.146 | 1469.988 | 1968.729 | 2494.570 | 362.3366 | 690.0625 | 1090.039 | 1565.981 | 2113.005 |
| 20 | 814.5225 | 771.9030 | 1356.955 | 1947.981 | 659.3562 | 1174.044 | 1723.354 | 2320.541 | 2958.426 | 419.9036 | 802.5235 | 1274.774 | 1847.050 | 2526.946 |
| 23 | 38.35874 | 38.24327 | 67.09824 | 96.04945 | 36.60115 | 64.49765 | 93.29599 | 123.1929 | 153.8919 | 28.58607 | 56.24736 | 88.30693 | 122.2403 | 156.7459 |
| 24 | 105.4341 | 104.7382 | 183.7961 | 263.2276 | 99.01192 | 175.0705 | 254.2079 | 337.1822 | 423.1287 | 74.43128 | 147.0713 | 235.4857 | 332.7353 | 433.3575 |
| 25 | 191.0006 | 188.9669 | 331.7017 | 475.2769 | 176.1990 | 312.5988 | 455.8918 | 607.7461 | 766.5208 | 128.0436 | 253.2921 | 410.7206 | 592.4898 | 786.9185 |
| 26 | 288.6308 | 284.2863 | 499.2316 | 715.7050 | 261.5968 | 465.4293 | 681.5948 | 913.2406 | 1157.605 | 185.0113 | 365.7954 | 597.1513 | 874.5669 | 1184.964 |
| 27 | 393.8827 | 386.1788 | 678.5074 | 973.3144 | 351.1174 | 626.0849 | 920.0474 | 1238.396 | 1577.201 | 243.1567 | 480.2726 | 786.7557 | 1163.579 | 1602.011 |
| 28 | 503.3678 | 491.5430 | 864.0397 | 1240.165 | 442.5008 | 790.3360 | 1164.566 | 1573.427 | 2011.937 | 301.6006 | 595.1023 | 976.6871 | 1453.633 | 2024.719 |
| 29 | 614.3577 | 598.2163 | 1051.910 | 1510.433 | 534.7234 | 956.1780 | 1411.678 | 2912.448 | 2452.473 | 360.3014 | 710.3637 | 1167.306 | 1745.137 | 2451.449 |
| 30 | 725.5679 | 705.0981 | 1240.148 | 1781.231 | 627.1087 | 1122.324 | 1659.256 | 2252.161 | 2893.949 | 419.0725 | 825.751 | 1358.153 | 2037.103 | 2879.251 |
| 31 | 771.1284 | 739.5294 | 1300.366 | 1867.218 | 644.0469 | 1149.697 | 1693.665 | 2289.752 | 2930.782 | 419.8628 | 814.839? | 1317.677 | 1944.427 | 2708.292 |
| 32 | 851.0952 | 797.3192 | 1401.382 | 2011.412 | 668.3934 | 1186.848 | 1735.363 | 2326.621 | 2953.807 | 416.5422 | 783.7281 : | 1220.577 | 1728.534 | 2302.308 |
| 33 | 866.6755 | 782. 3820 | 1374.774 | 1972.989 | 617.3092 | 1085.215 | 1560.231 | 2040.695 | 2512.023 | 359.8214 | 658.7492 | 990.2826 | 1347.053 | 1717.064 |
| 34 | 711.2854 | 559.0436 | 964.5270 | 1351.587 | 393.6721 | 683.6136 | 963.9637 | 1229.640 | 1482.730 | 214.7360 | 389.4617 | 579.0498 | 780.0244 | 986.4768 |

WING ON THREE-POINT SUPPORT - Concluded
trunverse aheur neglected

| 19 | 20 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 695.8834 | 814.5225 | 38.35874 | 105.4341 | 191.0006 | 288.6308 | 393.8827 | 503.3678 | 614.3577 | 725.5679 | 771.1284 | 851.0952 | 866.6755 | 711.2854 |
| 659.7765 | 771.9030 | 38.24327 | 104.7382 | 188.9669 | 284.2863 | 386.1788 | 491.5430 | 598.2163 | 705.0981 | 739.5294 | 797.3192 | 782.3820 | 559.0436 |
| 1159.022 | 1356.955 | 67.09824 | 183.7961 | 331.7017 | 499.2316 | 678.5074 | 864.0397 | 1051.910 | 1240.148 | . 36 |  | 74 |  |
| 1662.447 | 1947.981 | 96.04945 | 263.2276 | 475.2769 | 715.7050 | 973.3144 | 1240.165 | 1510.433 | 1781.231 627.1087 | 1867.218 | 2011.412 | 1972.989 <br> 617.3092 | $\left\|\begin{array}{l} 1351.587 \\ 393.6721 \end{array}\right\|$ |
| 565.7222 | 659.3562 | 36.60115 | 99.01192 | 276.1990 | 261.5968 | 351.1174 | 442.5008 790.3360 | 534.7234 956.1780 | 627.1087 1122.324 | 644.0469 1149.697 | 1186.848 | 1085.215 | $393.0721$ |
| 1005.146 | 1174.044 | 64.49765 | 175.0705 | 312.5988 | 465.4293 | 626.0849 920.0474 | 790.3360 1164.566 | 956.1780 1411.678 | 1125.324 1659.256 | 11693.665 | 1735.363 | 1560.231 | 963.9637 |
| 1469.988 | 1723.354 | 93.29599 | 254.2079 | 455.8918 | 681.5948 913.2406 | 920.0474 1238.396 127 | 1164.266 1573.427 | 1912.448 |  | 2289.752 | 2326.621 | 2040.695 | 1229.640 |
| 1968.729 | 2320.541 | 123.1929 | 337.1822 | 607.7461 | 913.2406 | 1238.396 | 1573.427 2011.937 | 1912.448 | 2252.161 | 2930.782 | 2953.807 | 2512.023 | 1482.730 |
| 2494.570 | 2958.426 | 153.8919 | 423.1287 | 766.5208 | 1157.603 185.0713 | 1577.201 243.1567 | 2011.337 301.6006 | 2452.473 | 419.0725 | 419.8628 | 416.5422 | 359.8214 | 214.7360 |
| 362.3366 | 419.9036 | 28.58607 | 74.43128 | 128.0436 | 185.0113 365.7954 | 243.1567 480.2736 | 301.6000 599.1023 | 300.3014 710.3637 | 825.7551 | 814.8397 | 783.7281 | 658.7492 | 389.4617 |
| 690.0625 | 802.5235 | 56.24736 | 147.0713 | 253.2921 410.7206 | 365.7954 | 480.2736 786.7557 | 599.1023 976.6871 | 710.3637 1167.306 | 825.751 1358.153 | 1317.677 | 1220.577 | 990.2826 | 579.0498 |
| 1090.039 | 1274.774 | 88.30693 | 235.4857 | 410.7206 | 597.1513 | 786.7557 | 970.6871 1433.633 | 1745.137 | 2037.103 | 1914.427 | 1728.534 | 1347.053 | 780.0244 |
| 1565.981 | 1847.050 | 122.2403 | 332.7353 | 592.4898 | 874.5669 | 1163.579 | 1453.633 2024.719 | 1745.137 2451.449 | 2037.103 287 | 19708.292 | 2302.308 | 1717.064 | 986.4768 |
| 2113.005 | 2526.946 | 156.7459 | 433.3575 | 786.9185 | 1184.964 | 1602.011 | 2024.719 <br> 2684 <br> 288 | 1451.449 3291.864 | 2879.251 3901.957 | 2708.292 3624.717 | 2931.885 | 2088.546 | 1192.692 |
| 2714.100 | 3323.006 | 191.4536 | 535.3350 | 987.2658 | 1514.556 | 2088.708 | 2684.388 | 3291.864 4238.620 | 5076.664 | 4666.654 | 3577.888 | 2456.087 | 1396.264 |
| 3323.006 | 4203.940 | 226.3014 | 638.0764 | 1190.529 | 1854.487 | 2602.685 | 3406.315 235.0022 | 4238.620 270.2040 | 5076.634 305.342 | 265.5966 | 188.7385 | 124.2525 | 67.46783 |
| 191.4536 | 226.3014 | 41.53388 | 86.37670 | 126.1979 | 263.477 | 199.5231 | 235.0022 672.5222 | 270.2040 777.1148 | 305.3432 881.4462 | 758.7331 | 525.1686 | 340.5937 | 185.1267 |
| 535.3350 | 638.0764 | 86.37670 | 218.7270 | 344.2830 | 458.3183 | 566.7128 | 672.5222 | 777.1148 | 1696.936 | 1440.519 | 964.2659 | 615.0777 | 334.6642 |
| 987.2658 | 1190.529 | 126.1979 | 344. 2830 | 601.1648 | 841.3429 | 1063.548 1657.844 | 1277.445 2030.309 | 1487.578 2392.611 | \|1696.936 | 1440.319 2295.124 | 147.596 | 926.1097 | 504.6002 |
| 1514.956 | 1854.487 | 163.4775 | 458.3183 | 841.3429 | 1262.039 | 1657.844 2298.178 | 2030.309 2909.246 | 2392.611 344.658 | 2752.909 4075.260 | 2295.124 <br> 3317.985 | 143.596 2033.552 | 1259.034 | 687.0963 |
| 2088.708 | 2602.685 | 199.5231 | 566.7128 | 1063.548 1277.45 | 1657.844 2030.309 | 2298.178 2909.246 | 2909.246 | 3494.658 4797.624 | 5722.244 | 4516.405 | 2617.092 | 1603.616 | 876.4354 |
| 2684.388 | 3406.315 | 235.0022 | 672.5222 | 1277.445 | 2030.309 | 2909.246 3494.658 | 3862.151 4747.624 | 6270.249 | 7777.237 | 5894.344 | 3208.527 | 1952.572 | 1068.264 |
| 3291.864 | 4238.620 | 270.2040 | 777.1148 | 1487.578 | 2392.611 | 3494.658 4075.260 | 4797.624 5722.24 | 6270.249 7777.237 | 10187.43 | 7353.460 | $3800.90+$ | 2302.291 | 1260.470 |
| 3901.957 | 5076.664 | 305.3432 | 881.4462 | 1696.936 | 2752.909 | 4075.260 | 5722.244 4516.403 | 5894. 344 |  | 6108.619 | 3644.117 | 2382.263 | 1330.225 |
| 3624.717 | 4666.654 | 265.5966 | 758.7331 | 1440.519 | 229.124 | 3317.985 2035.552 | 4516.403 2617.092 | 5894.344 | 1353.460 3800.904 | 3694.117 | 3370.296 | 2506.623 | 1450.230 |
| 2931.885 | 3577.888 | 188.7385 | 525.1686 | 964.2659 615.0777 | 1475.596 926.1097 | 2035.552 1259.034 | 2617.092 1603.616 | $\left\|\begin{array}{l} 3208.527 \\ 1952.572 \end{array}\right\|$ | 3800.904 2302.291 | 2382.563 | 2500.623 | 2349.878 | 1449.599 |
| 2088.546 1192.592 | 2456.087 1396.264 | 124.2525 67.46783 | 340.5937 185.1267 | 615.0777 334.6642 | 926.1097 504.6002 | 1259.034 687.0963 | 1603.616 876.4354 | $\begin{aligned} & 1952.572 \\ & 1068.264 \end{aligned}$ | 2360.470 1260 | 1330.225 | 1450.230 | 2449.599 | 1097.784 |



(b) Antisymuetrical loading;

| Station | 2 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 664.5865 | 435.6276 | 680.6178 | 612.6123 | 278.6191 | 472.3982 | 660.6795 | 833.0287 | 997.6331 | 147.2090 | 281.3849 | 422.8304 | 565.6384 | 708.4203 |
| 4 | 435.6276 | 380.6261 | 592.7688 | 798.8377 | 264.0352 | 440.5289 | 610.0023 | 772.0952 | 926.6229 | 141.6636 | 268.9312 | 401.7767 | 536.9514 | 671.5259 |
| 5 | 680.6178 | 592.7688 | 1,032.748 | 1,405.865 | 435.3010 | 766.0688 | 1,070.319 | 1,360.526 | 1,636.103 | 241.5507 | 470.6019 | 706.8619 | 947.5047 | 1,187.079 |
| 6 | 612.6123 | 798.8377 | 1,405.865 | 2,019.019 | 600.2362 | 1,065.821 | 1,528.929 | 1,958.564 | 2,363.037 | 338.774 | 664.9336 | 1,011.996 | 1,363.699 | 1,733.716 |
| 8 | 278.6191 | 264.0352 | 435.3010 | 600.2362 | 241.1957 | 376.0705 | 508.6251 | 638.9806 | 766.0272 | 135.8592 | 243.7442 | 354.7006 | 467.2502 | 579.1817 |
| 9 | 472.3982 | 440.5289 | 766.0688 | 1,065.821 | 376.0705 | 673.0784 | 913.7638 | 1,151.125 | 1,383.316 | 222.2218 | 435.5921 | 640.4300 | 847.6122 | 1,053.354 |
| 10 | 660.6795 | 610.0023 | 1,070.319 | 1,528.929 | 508.6251 | 913.7638 | 1,332.223 | 1,687.743 | 2,037.232 | 305.3881 | 607.9971 | 932.9471 | 1,246.503 | 1,557.214 |
| 11 | 833.0287 | 772.0952 | 1,360.526 | 1,958.564 | 638.9806 | 1,151.125 | 1,687.743 | 2,260.407 | 2,756.579 | 386.6501 | TT7. 0480 | 1,207.087 | 1.,664.049 | 2,101.407 |
| 12 | 997.6331 | 926.6229 | 1,636.103 | 2,363.037 | 766.0272 | 1,383.316 | 2,037.232 | 2,756.579 | 3,507.773 | 465.9746 | 942.6906 | 1,476.400 | 2,059.530 | 2,663.030 |
| 14 | 147.2090 | 141.6636 | 241.5507 | 338.7714 | 135.8592 | 222.2218 | 305.3881 | 386.6501 | 465.9746 | 114.9871 | 174.8473 | 238.9946 | 305.9231 | 373.9022 |
| 15 | 281.3849 | 268.9312 | 470.6019 | 664.9336 | 243.7442 | 435.5921 | 607.9971 | T77.0480 | 942.6906 | 174.8473 | 359.3019 | 497.0443 | 640.1399 | 785.4992 |
| 16 | 422.8304 | 401.7767 | 706.8619 | 1,011.996 | 354.7006 | 640.4300 | 932.9471 | 1,207.087 | 1,476.400 | 238.9946 | 497.0443 | 786.0877 | 1,021.877 | 1,261.737 |
| 17 | 565.6384 | 536.9514 | 947.5047 | 1,363.699 | 467.2502 | 847.6122 | 1,246.503 | 1,664.049 | 2,059.530 | 305.9231 | 640.1399 | 1,021.877 | 1,441.862 | 1,798.077 |
| 18 | 708.4203 | 671.5259 | 1,187.079 | 1,713.716 | 579.1817 | 1,053.354 | 1,557.214 | 2,101.407 | 2,663.030 | 373.9022 | 785.4992 | 1,261.737 | 1,798.077 | 2,379.692 |
| 19 | 846.5773 | 803.4266 | 1,421.402 | 2,054.819 | 692.0864 | 1,261.016 | 1,870.972 | 2,540.949 | 3,254.237 | 443.8083 | 234.6744 | 1,508.200 | 2,164.806 | 2,896.768 |
| 20 | 981.9168 | 932.6754 | 1,650.973 | 2,388.839 | 803.0764 | 1,465.055 | 2,178.733 | 2,970.351 | 3,826.232 | 513.2624 | 1,083.383 | 1,754.864 | 2,533.696 | 3,420.225 |
| 23 | 86.12594 | 84.65226 | 151.4270 | 217.4603 | 78.40340 | 148.5744 | 215.6364 | 283.4477 | 351.7204 | 56.47173 | 143.4252 | 214.2897 | 285.0582 | 355.7912 |
| 24 | 190.0611 | 185.8989 | 331.1825 | 478.8885 | 170.2997 | 317.6516 | 472.7408 | 627.2312 | 783.7252 | 119.8828 | 282.8905 | 466.7043 | 633.5189 | 800.3203 |
| 25 | 305.4440 | 297.9933 | 530.1599 | 767.7709 | 270.4453 | 501.6768 | 748.8850 | 1,010.724 | 1,274.112 | 187.0861 | 428.7939 | 712.4192 | 1,019.566 | 1,310.366 |
| 26 | 528.3692 | 146.6691 | 740.8234 | 1,073.765 | 375.1425 | 693.9846 | 1,037.821 | 1,409.856 | 1,800.193 | 256.0191 | 577.5021 | 959.8497 | 1,392.906 | 1,858.470 |
| 27 | 554.9558 | 538.7776 | 957.5168 | 1,388.443 | 482.5512 | 891.3225 | 1,334.706 | 1,820.948 | 2,341.644 | 325.8487 | 727.6012 | 1,210.016 | 1,768.420 | 2,391.666 |
| 28 | 683.4830 | 662. 3809 | 1,176.914 | 1,707.203 | 590.5572 | 1,089.779 | 1,633.408 | 2,235.168 | 2,888.089 | 395.4240 | 877.0961 | 1,459.004 | 2,142.03? | 2,922.448 |
| 29 | 811.8107 | 786.0634 | 1,396.354 | 2,025.800 | 699.2492 | 1,289.392 | 1,933.606 | 2,650.610 | 3,434.433 | 466.0090 | 1,028.603 | 1,711.512 | 2,521.628 | 3,463.496 |
| 30 | 939.8441 | 909.4441 | 1,615.272 | 2,343.665 | 807.6335 | 1,488.458 | 2,233.002 | 3,065.000 | 3,979.494 | 536.3698 | 1,179.693 | 1,963.338 | 2,900.094 | 4,002.557 |
| 31 | 961.9050 | 922.1010 | 1,634.921 | 2,368.778 | 806.4063 | 1,478.626 | 2,208.607 | 3,021-258 | 3,907.244 | 525.5784 | 1,132.961 | 1,867.426 | 2,720.708 | 3,718.099 |
| 32 | 994.1112 | 934.9840 | 1,652.729 | 2,388.806 | 791.0607 | 1,436.001 | 2,126.053 | 2,889.253 | 3,707.556 | 494.5318 | 1,021.882 | 1,628.866 | 2,314.906 | 3,066.618 |
| 33 | 965.7547 | 877.6160 | 1,548.466 | 2,235.464 | 697.1640 | 1,249.908 | 1,821. 355 | 2,430.348 | 2,975.027 | 509.7573 | 816.1166 | 1,260.108 | 1,732.656 | 2,196.925 |
| 34 | 795.1994 | 632.0434 | 1,092.738 | 1,496.815 | 447.8560 | 787.8441 | 1,109.591 | 1,407.850 | 1,691.279 | 246.0945 | 479.4174 | 722.8857 | 969.3915 | 1,215.342 |


| 19 | 20 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 846.5 | 981.9168 | 86.12594 | 190.0611 | 305.4540 | 528.3692 | 554.9558 |  |  |  |  | 994.1112 |  | 795.1994 |
| 803.4266 | 932.6754 | 84.65226 | 185.8989 | 297.9933 | 146.6691 | 538.7776 | 662.3809 | 786.0634 | 909.4 | 922.1010 | 934.9840 | 877.6160 |  |
| 1,421.402 | 1,650.973 | 151.4270 | 331.1825 | 530.1599 | 740.8234 | 957.5168 | 1,176.914 | 1,396.354 | 1,615.272 | 1,634.921 | 1,652.729 | 48.466 | 1,092. 738 |
| 2,054.819 | 2,388.839 | 217.4603 | 478.8885 | 767.7709 | 1,073.765 | 1,388.443 | 1,707.203 | 2,025.800 | 2,343.665 | 2,368.778 | 2,388.806 | 35.464 |  |
| 692.0864 | 803.0764 | 78.40340 | 170.2997 | 270.4453 | 37.1425 | 482.5512 | 590.5572 | 699.2492 | 807.6335 | 806.4065 | 791.0607 | . 1640 |  |
| 1,261.016 | 1,465.055 | 148.5744 | 517.6516 | 501.6768 | 693.9846 | 891.3225 | 1,089.779 | 1,289.392 | 1,488.458 | 1,478.626 | 1,436.001 | 1,249.908 | 787.8441 |
| 1,870.972 | 2,179.733 | 215.6364 | 472.7408 | 748.8850 | 1,037.821 | 1,354.706 | 1,633.408 | 1,933.606 | 2,233.002 | 2,208.607 | 2,126.053 | 1,821.355 | 1,109.591 |
| 2,540.949 | 2,970.331 | 283.4477 | 627.2312 | 1,010.724 | 1,409.856 | 2,820.948 | 2,235.168 | 2,650.610 | 3,065.000 | 3,021.258 | 2,389.253 | 2,430.348 | $1,407.850$ $1,691.279$ |
| 3,254.237 | 3,826.232 | 351.7224 | 783.7252 | 1,274.112 | 1,800.193 | $2,341.644$ 325.8487 | 2,888.089 | $3,434.433$ 466.0090 | $3,979.494$ 536.3698 | $3,907.244$ 525.5784 | $3,707.556$ $494.5318$ | $2,975.027$ 509.7573 | $\begin{aligned} & 1,691.279 \\ & 246.0945 \end{aligned}$ |
| 443.8083 234.6744 | 513.2624 $1,083.383$ | 56.4773 143.4252 | 119.8828 282.8905 | 187.0861 428.7939 | 256.0191 577.5021 | 325.8487 727.6012 | 395.4240 877.0961 | 466.0090 $1,026.603$ | 536.3698 $1,179.693$ | 525.5784 $1,132.961$ | $\begin{aligned} & 494.5318 \\ & 1,021.982 \end{aligned}$ | 509.7573 816.1166 | $\begin{aligned} & 246.0945 \\ & 479.4174 \end{aligned}$ |
| 234.6744 $1,508.200$ | $1,083.383$ $1,754,864$ | 143.4252 214.2897 | 466.7043 | +128.7939 | 577.501 959.8497 | 1,210.016 | 1,459.004 | 1,711.512 | 1,963.338 | 1,861.426 | 1,628.866 | 1,260.108 | 722.8857 |
| 2,164.806 | 2,535.696 | 285.0582 | 633.5189 | 1,019.566 | 1,392.906 | 1,766.420 | 2,142.037 | 2,521.628 | 2,900.094 | 2,720,708 | 2,314.906 | 1,732.656 | 969.3915 |
| 2,896.768 | 3,420.225 | 355.7912 | 800.3203 | 1,310.366 | 1,858.470 | 2,391.666 | 2,922.448 | 3,463.496 | 4,002.557 | 3,718.099 | 3,066.618 | 2,196.925 | 1,215.342 |
| 3,726.823 | 4,471.743 | 426.6003 | 967.6372 | 1,603.128 | 2,311.630 | 3.073 .603 | 3,816.534 | 4,575.176 | 5,330.070 | 4,913.520 | 3,923.500 | 2,650.546 | 1,454.438 |
| $4,471.743$ | 5,626.605 | 497.5801 | 1,135.697 | 1,897.947 | 2,769.574 | 3,745.672 | 4,784.020 | 5,836.504 | 6,879.561 | 6,284.682 | 4,715.509 | 3,095.696 | 1,688.660 |
| 426.6003 | 497.5801 | 142.6733 | 217.7445 | 291.0805 | 363.3977 | 435.2005 | 506.8428 | 578.3484 | 649.9258 | 573.52 |  |  | 152.178 |
| 967.6372 | 1,155.697 | 217.7445 | 477.0185 | 656.1563 | 830.6203 | 1,002.684 | 1,173.906 | 1,344.529 | 1,515.471 | 1,324.543 |  |  | 334.0873 555.5112 |
| 1,603.128 | 1,897.947 | 291.0805 | 656.1563 | 1,066.413 | 1,381.178 | 1,688.643 | 1,993.326 | 2,296.348 | 2,600.298 | 2,246.057 | $1,576.275$ $2,263.881$ |  |  |
| 2,311.630 | 2,769.574 | 363. 3977 | 830.6203 | 1,381.178 | $1,984.781$ $2,46.684$ | $2,476.684$ $3,339.489$ | 2,960.843 | $3,441.338$ $4,803.281$ | $3,924.104$ $5,536.649$ | 3,339.307 $4,624.256$ | 2,263.881 | 1,482.653 | 749.3836 969.4498 |
| 3,073.603 | 3,745.672 | 435.2005 | 1,002.684 | 1,688.643 | $2,476.684$ $2,060.843$ | $3,339.489$ $4,074.996$ | 4,074.996 | $4,803.281$ $6,397.244$ | 5,536.649 | 4, $6,106.2995$ | 3,005.688 | 1,265.058 | 1,192.574 |
| $3,816.534$ $4,575.176$ | $4,784.020$ $5,836.504$ | 506.8428 578.3484 | 1,173.906 | $1,993.326$ $2,296.348$ | $2,960.843$ $3,441.338$ | $4,074.996$ $4,803.281$ | 5,304.802 | 6,397.24 | 10,007.76 | 6,890.489 | $3,55.516$ $4,502.317$ | 2,688.553 | 1,415.512 |
| $4,575.176$ $5,330.070$ | $5,836.504$ $6,879.561$ | 578.3484 <br> 649.9258 | 1, $1,515.471$ | 2,600.298 | 3,924.104 | 5,536.649 | 7,500.234 | 10,007.76 | 12,959.40 | 9,638.002 | 5,246.729 | 3,111.087 | 1,637.936 |
| 4,913.520 | 6,284.682 | 573.5230 | 1,324.543 | 2,246.057 | 3,339.307 | 4,624.256 | 6,106.995 | 7,890.489 | 9,538.002 | 8,144.210 | 4,989.119 | 3,105.691 | 1,665.079 |
| 3,922.500 | 4,715.509 | 423.7588 | 956.0355 | 1,576.275 | 2,263.881 | 3,008.688 | 3, 555.516 | 4,502.317 | 5,246.729 | 4,989.119 | 4,361.136 | 3,054.714 | 1,698.327 |
| 2,650.546 | 3,093.696 | 283.8784 | 628.4669 | 1,015.220 | 1,422.653 | 1,841.434 | 2,265.058 | 2,688.553 | 3,111.087 | 3,105.691 | 3,054.714 | 2,731.569 | 1,617.700 |
| 1,454.438 | 1,688.660 | 152.1718 | 334.0873 | 535.5112 | 749.3836 | 969.4498 | 1,192.514 | 1,415.512 | 1,637.936 | 1,665.079 | 1,698.327 | 1,617.700 | 1,228.548 |

TABLE XII．－COMPARISON OF EXPERIMENTAL AND CALCULATED
FREQUENCIES FOR FREE－FREE VIBRATION

|  | －¢ <br> ¢ <br> 茴 | $$ | ¢ | ® さ స － | ¢ 6 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{ll} \underset{\sim}{1} & 0 \\ \underset{\sim}{1} & 0 \\ \underset{\sim}{0} \end{array}$ | $\begin{aligned} & \text { O} \\ & \underset{\sim}{N} \\ & \underset{\sim}{4} \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \stackrel{0}{0} \\ & \underset{\sim}{4} \end{aligned}$ |  |
|  |  | $\begin{array}{ll} \sim & + \\ \underset{\sim}{\alpha} & \stackrel{\sim}{O} \end{array}$ | $\begin{aligned} & \text { ờ } \\ & \dot{y} \end{aligned}$ | $\begin{aligned} & \stackrel{N}{9} \\ & \dot{8} \end{aligned}$ | $\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$ |
|  |  | $\begin{array}{ll} \text { y } \\ \text { in } \\ \text { in } \end{array}$ | $\begin{aligned} & \text { ì } \\ & \text { í } \\ & \text { in } \end{aligned}$ | N in in | $\begin{gathered} \text { r-1 } \\ \text {-i } \end{gathered}$ |
|  |  | $$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{N} \end{aligned}$ |  | $\begin{aligned} & \mathrm{O} \\ & \text { ̇ㅡㄴ } \end{aligned}$ |
|  |  | $\begin{array}{ll} \text { M } & 0 \\ \dot{O} & \text { Oi } \\ \text { O- } \end{array}$ | $\begin{aligned} & 0 \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \underset{\sim}{\infty} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$ |
|  |  |  | $\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \dot{甘} \\ & \underset{H}{\prime} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 7 \end{aligned}$ |
|  |  | $\begin{array}{ll} \infty & M \\ \infty & \dot{O} \\ \infty & 0 \end{array}$ | $\begin{aligned} & \text { テ } \\ & \dot{む} \end{aligned}$ | $\dot{\infty}$ | $\underset{\infty}{\dot{\infty}}$ |
|  | ＋ | $\begin{array}{ll} \hline \cdots \\ \underset{子}{m} & \underset{y}{c} \end{array}$ | $\cdots$ | ¢ | $\underset{\sim}{\sim}$ |
|  |  |  |  |  |  |
|  | $$ | H N | $m$ | $\pm$ | in |

L-153




| $i$ | $w_{i}$ | $i$ | $w_{i}$ | $i$ | $w_{i}$ | $i$ | $w_{i}$ |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.702 | 10 | 10726 | 19 | 6.649 | 28 | 6.488 |
| 2 | 5.975 | 11 | 7.232 | 20 | 5.458 | 29 | 2.486 |
| 3 | 6.575 | 12 | 5840 | 21 | 4.457 | 30 | 1.717 |
| 4 | 10.538 | 13 | 7.200 | 22 | 7.058 | 31 | 2358 |
| 5 | 6.404 | 14 | 11.316 | 23 | 5.496 | 32 | 2.535 |
| 6 | 5.553 | 15 | 8.963 | 24 | 5.884 | 33 | 2.705 |
| 7 | 7.477 | 16 | 9.095 | 25 | 5294 | 34 | 2.877 |
| 8 | 11.649 | 17 | 8.652 | 26 | 5.729 |  |  |
| 9 | 9.295 | 18 | 8874 | 27 | 5.095 |  |  |

$W_{i}=$ Weight concentrated at ith station in pounds
Figure 3.- Mass distribution.

(a) Symmetrical modes.

Figure 4.- Calculated and experimental node lines and frequencies.


|  | Frequency, cps |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Mode |  |  |  |
|  | 1 | 2 | 3 | 4 |
| __Experimental | 522 | 917 | 1311 | 1692 |
| --- Levy | 522 | 96.3 | 142.3 | 200.7 |
| ---Stein-Sanders | 567 | 1034 | 1666 | 2165 |

(b) Antisymmetrical modes.

Figure 4.- Concluded.


Figure 5.- Deflection of cantilevered wing under uniform load.



[^0]:    Wex on made-pelme strpon:

