90-4

NASA MEMO 1-5-59L

brought to you by CORE

NASA MEMO 1-5-59L 11 - 3.7 NASA 324 MIS MEMORANDUM THE EFFECT OF BEAM LOADING ON WATER IMPACT LOADS AND MOTIONS By John S. Mixson

> Langley Research Center Langley Field, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

February 1959

BUSINESS, SCIENCE & TECHNOLOGY DEP'T.

FEB 1 7 1959

MEMORANDUM 1-5-59L

THE EFFECT OF BEAM LOADING ON WATER IMPACT

LOADS AND MOTIONS

By John S. Mixson

SUMMARY

An investigation of the effect of beam loading on impact loads and motions has been conducted in the Langley impact basin. Water impact tests of flat-bottom 5-inch- and 8-inch-beam models having beam-loading coefficients C_{Λ} from 62.5 to 544 and a 30^o dead-rise 5-inch-beam model having beam-loading coefficients from 208 to 530 are described and the results analyzed to show trends of these heavy-beam-loading data with initial flight-path angle, trim angle, dead-rise angle, and time throughout the impact. Data from flat-bottom model tests, $C_{\Delta} = 4.4$ to 36.5, and from 30° dead-rise model tests, $C_{\Delta} = 0.58$ and 18.8, are included, along with the heavy-beam-loading data; and variations of these data with beam-loading coefficients are shown. Each of the load and motion coefficients is found to be directly proportional to a power factor of C_{Δ} . For instance, the maximum impact lift coefficient $C_{L,max}$ is found to be directly proportional to $C_{\Lambda}^{0.33}$ for the flat-bottom model and $C_{\Lambda}^{0.45}$ for the 30° dead-rise model. These variations of $C_{L,max}$ with C_{\bigwedge} are found to be in agreement with theoretical variations.

Finally, an empirical equation for the prediction of $C_{L,max}$ is presented and is shown to give good agreement with experimental $C_{L,max}$ for about 500 fixed-trim smooth-water impacts. The range of variables included dead-rise angles from 0° to 30°, beam-loading coefficients from 0.48 to 544, trim angles from 3° to 45°, and initial flight-path angles from about 2° to about 27°.

INTRODUCTION

At the Langley impact basin a program has been under way to determine the effects of model configuration on water impact loads and motions of chine-immersed bodies for a range of landing conditions. This program has included investigations of the effects of longitudinal and transverse shape, including curvature and dead rise, at beam-loading coefficients up to 36 (refs. 1 to 6). Narrow hydro-skis having very high beam loading have become of interest for applications requiring impact-load alleviation, for example, on high-speed water-based mircraft. Therefore, an investigation of the effect of very high beam loading on water impact loads and motions has been made, and the results are reported herein.

In order to extend the range of beam-loading coefficient C_{Δ} above 36, water-landing tests of 0° and 30° dead-rise narrow-beam models were conducted. A 30° dead-rise 5-inch-beam model was tested with C_{Δ} from 208 to 530, and flat-bottom (0° dead rise) 5-inch- and 8-inch-beam models were tested with C_{Δ} from 62.5 to 544. Time histories of the loads and motions were measured as the models impacted at fixed trim on smooth water.

In this report the tests of the narrow-beam models are described and the results are analyzed to show trends of these high beam-loading data with time, initial flight-path angle, and dead-rise angle. Data are then included for beam-loading coefficients from 0.58 to 544, and variations of impact loads and motions for this range of beam-loading coefficients are shown. Theoretical variations of maximum impact lift coefficient with beam-loading coefficient are shown and compared with the experimental variations. Finally, an empirical equation for the prediction of maximum impact lift coefficient is developed and compared with a large amount of experimental data.

SYMBOLS

р	model beam, ft
Fγ	vertical component of resultant hydrodynamic force normal to undisturbed water surface, 1b
g	acceleration due to gravity, 32.2 ft/sec ²
l _{cp}	distance from step-keel point to center of pressure, ft
м _ұ	pitching moment about the step-keel point, ft-lb
n _i	impact-load factor normal to undisturbed water surface, F_{V}/W
t	time after water contact, sec

5

V resultant velocity, ft/sec

W dropping weight, lb

z draft of step-keel point normal to undisturbed water surface, ft

 \dot{z} velocity of model normal to undisturbed water surface, ft/sec β dead-rise angle, deg

 γ flight-path angle, relative to undisturbed water surface, deg

ρ mass density of water, 1.938 slugs/cu ft

 τ trim angle, deg

$$C_{L}$$
 impact lift coefficient, $\frac{F_{V}}{\frac{1}{2}\rho V_{O}^{2}b^{2}}$

Cd draft coefficient, z/b

 C_t time coefficient, $V_o t/b$

 $C_{\dot{z}}$ vertical-velocity coefficient, \dot{z}/\dot{z}_{0}

 C_{m} pitching-moment coefficient, $\frac{M_{Y}}{\frac{1}{2}\rho V_{O}^{2}b^{3}}$ C_{cp} center-of-pressure coefficient, $\frac{l_{cp}}{b}$

$$C_{\Delta}$$
 beam-loading coefficient, $\frac{W}{\rho g b^3}$

Subscripts:

o instant of initial contact with water surfacemax maximum

APPARATUS AND TEST PROCEDURE

These tests were conducted in the Langley impact basin which is described in reference 7 along with its basic instrumentation. The equipment consists of a catapult, a testing carriage to which the model is attached, associated instrumentation for measuring loads and motions of the model, and an arresting gear. The model is attached to the carriage at all times by a boom mounted on a parallel linkage which permits the model to move freely relative to the carriage in the vertical direction.

Models

Drawings and pertinent dimensions of the three models used in these tests are shown in figure 1(a), and photographs of the models mounted on the impact basin carriage are shown in figure 1(b). The models were basically of sheetmetal construction and were designed so that any deflection under load could be considered negligible. The chines were sharp enough to insure flow separation, and the parts of the models above the chines therefore had no effect on the test results. The nose shapes were determined by operational considerations and had no effect on the test results.

The 30° dead-rise model was 14 feet in overall length with a beam of 5 inches. In plan form it had a transverse step, a prismatic section 12 feet long, and a nose 2 feet long which tapered to a point. A Fiberglas covered wooden bottom with a constant 30° dead-rise angle was attached to the sheetmetal body. With this model the range of C_{Δ} covered was 208 to 530.

The flat-bottom 5-inch-beam model consisted of the same sheetmetal body used in the 30° dead-rise model with a flat steel sheet replacing the wooden dead-rise bottom. With this model a range of C_{Δ} from 208 to 544 was covered.

The flat-bottom 8-inch-beam model was used to cover a range of C_{\triangle} from 62.5 to 133.7. This model had a rectangular plan form, a 12-foot-long flat bottom, and a 1-foot-long pulled-up nose giving an overall length of 13 feet.

Instrumentation

The instrumentation for each test consisted of an accelerometer, a dynamometer, a water-contact indicator, and electrical pickups for

measuring displacements and velocities. The data from these instruments, together with timing at intervals of 0.01 second, were recorded on a multichannel oscillograph.

Accelerations were measured in the vertical direction by unbonded strain-gage-type accelerometers. For each test the range of the accelerometer and the flat frequency response of the circuit incorporating the accelerometer were as follows:

Мо	odel	Acce	elerometer
β , deg	Beam, in.	Range, g	Frequency, cps
30	5	± 2	13
0	5	± 2	40
0	8	±3	13

Pitching moments M_Y about the step were obtained from a strain-gagetype dynamometer mounted between the model and the carriage boom. (Moments were measured about the front attachment point and were transferred to the step.) Moments due to the acceleration of the mass below the dynamometer were calculated and were found to be negligible.

Model contact with the water was indicated by means of an electric circuit completed by the water. Horizontal and vertical displacements were obtained from a photoelectric cell and slide wire, respectively, as described in reference 7. Vertical velocity of the model was determined by electrically differentiating the displacement measured by the slide wire.

In general, the apparatus used in the tests yields measurements that are believed to be correct within the following limits:

Corizontal velocity, ft/sec	•5
Vertical velocity, ft/sec	.2
Vertical displacement, in ±0	.2
cceleration, g	05
Weight, 1b	10
'ime, sec	02

The time at which maximum values occurred is less precise than the ± 0.002 second given in this table because of difficulty in choosing the point at which the maximum occurred, although the time of the chosen point can be determined within ± 0.002 second.

Test Procedure

A series of impacts were made, at fixed trim in smooth water for a range of trim, velocity, flight-path angle, and dropping weight. The dropping weight ranged from 933 pounds to 2,472 pounds, beam-loading coefficient from 62.5 to 544, trim angle from 3° to 30° , and initial flight-path angle from about 2° to about 20° . The resultant velocity at contact ranged from about 30 feet per second to about 90 feet per second. Throughout each impact a force equal in magnitude and opposite in direction to the total weight of the model and drop linkage was applied to simulate wing lift. A summary of the flight-path angles covered at each test condition of trim and beam loading with each model is presented in table I.

RESULTS

The results of the tests of the heavy-beam-loading models are presented in tables II to IV. Data from tests of the 5-inch-beam 30° deadrise model are presented in table II as basic measured quantities, and in table III in coefficient form. Basic measured quantities and coefficient data from tests of flat-bottom 5- and 8-inch-beam models are presented in table IV. Data are presented in these tables for the instants of maximum lift, maximum moment, maximum draft, and exit during rebound.

Typical variations of very high beam-loading water-impact data with time and with initial flight-path angle are presented in figures 2 and 3. In figure 2 typical time histories of coefficients of impact lift, moment, velocity, draft, and center of pressure are shown for three flight path angles for the 30° dead-rise model at 15° trim, and beam-loading coefficient of 208. It can be seen that the load and moment have been very gradually applied and have sustained flat peaks especially at the lower flight-path angles. These flat peaks, along with small superposed instrument or structural vibrations which have been faired out, made determination of the time of the peaks somewhat uncertain. Because of this uncertainty, more scatter appears, in general, in those coefficients which are read at the time of a peak of some other quantity. In figure 3 typical variations of coefficient data with initial flight-path angle are shown for the instants of maximum impact lift, maximum moment, γ_{0} maximum draft, and exit during rebound. The data presented are for a dead-rise angle of 30°, a beam-loading coefficient of 208, and a trim of 9°. Coefficients of impact lift and moment are shown to change very little (generally about 10 percent for the trims and beam loadings of these tests) between the instants of maximum lift and maximum moment. This small change can be explained by observing that the maximums occur at nearly the same time. In figure 3, when C_t is plotted against γ_0 ,

maximum moment occurs slightly after maximum lift. Also, in figure 2, it is observed that the rates of change of these coefficients are small in the region of their maximums. The variations shown in figures 2 and 3 are similar in character to those shown in references 1 to 6 for beam-loading coefficients from 4.4 to about 36.0. This similarity indicates that no change of trends with initial flight-path angle occurs even with large changes of beam loading.

DISCUSSION

Effect of Beam Loading

The changes of the load and motion coefficients caused by a change of beam loading can be seen from figures 4 and 5, where variations of the coefficients are shown as functions of time (fig. 4) and of initial flight-path angle (fig. 5) for a range of beam-loading coefficients. Included in these and subsequent plots are data for beam loadings obtained from previous investigations (refs. 1 to 6 and 8 to 11). Time histories of CL, Cm, Cd, and C₂ are presented in figure 4 for the 30° dead-rise model at a trim of 15° and C_{Δ} of 208 and 530. Variations of the coefficients with initial flight-path angle are presented in figure 5 for 30° dead-rise models at a trim of 15° and C_{Δ} of 0.58, 18.8, 300, and 530. Both figures show noticeable increases with increasing C_{Δ} of all the coefficients except C_{\dot{z}} in figure 5.

Beam-loading reduction factors.- Analysis of the experimental data indicated that for a given dead-rise angle, flight-path angle, and trim angle, each of the coefficients is proportional to $C_{\Delta}{}^p$, where the value of the exponent p depends on the coefficient under consideration and the dead-rise angle β . Values of p were determined by empirical trial and error means and are given in the following table:

Coefficient	C_{Δ}^{p} for	actors
	$\beta = 0^{\circ}$	$\beta = 30^{\circ}$
Impact lift coefficient, C _L	c_0.33	c_0.45
Pitching-moment coefficient, C _m	c_{Δ}	°∆
Draft coefficient, C_d	с <mark>0.6</mark> 7	с ^{0.55}
Time coefficient, C _t	с _д 0.67	с _д 0.55
Vertical-velocity coefficient, C_z	с_0	с _Д О

Figure 6 shows the time histories presented in figure 4 reduced by the appropriate C_{Δ}^{p} factor. From this figure it can be concluded that C_{Δ}^{p} factors reduce the coefficients to substantially a single variation at least to the stage of maximum draft. Figure 7 shows reduced data for a 0° dead-rise model at trims of 3°, 6°, 15°, and 30°, initial flightpath angles from 2° to about 22°, and beam-loading coefficients from 1 to 544. Figure 8 shows data for a 30° dead-rise angle at trims of 6°, 9°, 15°, and 30°, initial flight-path angles from about 2° to about 27°, and beam loading coefficients from 0.58 to 530. It may be concluded from figures 7 and 8 that the empirically devised factors reduce the data for a large range of beam-loading coefficients to essentially a single variation for each trim angle.

In figure 9 the empirically determined trends of $C_{L,max}$ with C_{Δ} are compared with trends predicted by the theory of reference 12. Maximum impact lift coefficient is shown for $0^{\rm C}$ and $30^{\rm O}$ dead-rise angles, C_{Δ} from 1 to 600, trim of 15°, and flight-path angle of 20°. As shown by figure 9, the trend of $C_{L,max}$ with C_{Δ} predicted by reference 12 is not a simple power function of C_{Δ} ; however, for the range of C_{Δ} shown, a simple power function is a good approximation. The empirically determined trends are seen to approximate the theoretical curves reasonably well, so that agreement between the theoretical and empirical trends with beam loading is indicated.

Lift reduction due to dead rise.- The effect of a change of beam loading on the reduction of lift caused by an increase of dead-rise angle can be seen from figures 9 and 10. The theoretical curves of figure 9 show that an increase of dead-rise angle from 0° to 30° decreases the maximum impact lift coefficient by about 30 percent at C_{Δ} of 19 and by about 20 percent at C_{Δ} of 530. In figure 10 experimental maximum impact lift coefficient is shown for 0° and 30° dead-rise angles at C_{Δ} of 18.8 and about 530. The experimental data of figure 10 show that an increase in dead-rise angle from 0° to 30° decreases maximum impact lift coefficient by about 35 percent at C_{Δ} of 18.8 and by only about 15 percent at C_{Δ} of about 530. It may be concluded therefore that the importance of dead-rise angle variations as a means of varying impact lift decreases as beam loading increases.

Empirical $C_{L,max}$ Equation

The large amount of experimental data covering large ranges of trim, dead rise, flight-path angle, and beam loading available in tables III and IV and in references 1 to 11 suggested the possibility

8

of establishing empirically an equation for the prediction of maximum impact lift coefficient $C_{L,max}$. A form which may be assumed for such an equation can be inferred from figures 8 and 9. The $C_{L,max}$ curves of figure 8 indicate that $C_{L,max}$ may be considered as proportional to $(\gamma_0)^s$, where the constant of proportionality and the exponent s both depend on the trim angle τ . The curves of figure 9 indicate that $C_{L,max}$ is proportional to C_{Δ}^p , where this constant of proportionality and the exponent s both depend on the exponent p depend on the dead-rise angle β . Based on these considerations, an equation has been assumed in the following form:

$$C_{L,max} = f_1(\tau) f_2(\beta) \gamma_0^{f_3(\tau)} C_{\Delta}^{f_4(\beta)}$$

. .

Analysis of the experimental data yielded the following empirical expressions for the unknown functions:

$$f_{1}(\tau) = 0.0125 + 0.000963\tau$$

$$f_{2}(\beta) = 1.0 - 0.0806\beta^{0.56}$$

$$f_{3}(\tau) = 1.8 - 0.29\tau^{0.3}$$

$$f_{h}(\beta) = 0.333 + 0.0141\beta^{0.566}$$

In figure 11, $C_{L,max}$ predicted by this equation is compared with experimental $C_{L,max}$ for about 500 fixed trim, smooth-water impacts. The range of variables includes dead-rise angles from 0° to 30°, beamloading coefficients from 0.48 to 544, trim angles from 3° to 45°, and flight-path angles from about 2° to about 27°. Figure 11 shows that the empirical equation gives values of $C_{L,max}$ generally within about 15 percent of the experimental value.

CONCLUSIONS

An investigation of the effect of beam loading on impact loads and motions has been conducted in the Langley impact basin. Landing impactloads data were included for 0° dead-rise models having beam-loading coefficients C_{Δ} from 1 to 544 and 30° dead-rise models having beamloading coefficients from 0.58 to 530; the following conclusions were reached:

1. The following beam-loading coefficient C_{Δ} factors were found to reduce the data to essentially a single variation with initial flightpath angle for a given trim angle τ and dead-rise angle, β :

	C∠ ^p fe	ictors
COEFficient	$\beta = 0^{\circ}$	$\beta = 30^{\circ}$
Impact lift coefficient, CL	_{د 0.33}	с <mark>0.4</mark> 5
Moment coefficient, C _m	C_{Δ}	с ^Д
Draft coefficient, C _d	с <mark>0.67</mark>	с ₀ .55
Time coefficient, C _t	₂₀ 0.67	₂₀ 0.55
Vertical-velocity coefficient, C_{z}	с ⁰ о	с _Д о

2. The importance of increasing dead-rise angle as a means of reducing impact lift is shown theoretically and experimentally to decrease as beam loading increases. Experimentally, an increase of dead-rise angle from 0° to 30° is shown to decrease maximum impact lift coefficient by about 35 percent at a beam-loading coefficient of 18.8 and by only about 15 percent at a beam-loading coefficient of about 530.

3. The following equation for the prediction of maximum impact lift coefficient $C_{L,max}$ was determined empirically and was shown to give good agreement with experimental data over a range of dead-rise angle β from 0° to 30°, trim angle τ from 3° to 45°, beam-loading coefficient C_{Δ} from 0.48 to 544, and initial flight-path angle γ_0 from about 2° to about 27°:

$$C_{L,\max} = f_1(\tau)f_2(\beta)\gamma_0^{f_3(\tau)}C_{\Delta}^{f_4(\beta)}$$

where

$$f_{1}(\tau) = 0.0125 + 0.000963\tau$$

$$f_{2}(\beta) = 1.0 - 0.0806\beta^{0.55}$$

$$f_{3}(\tau) = 1.8 - 0.29\tau^{0.3}$$

$$f_{4}(\beta) = 0.333 + 0.0141\beta^{0.566}$$

Langley Research Center, National Aeronautics and Space Administration, Langley Field, Va., October 1, 1953.

REFERENCES

- Edge, Philip M., Jr., and Mixson, John S.: Impact-Loads Investigation of a Chine-Immersed Model Having a Longitudinally Curved Bow and a V-Bottom With a Dead-Rise Angle of 30°. NACA TN 4106, 1957.
- 2. Edge, Philip M., Jr.: Impact-Loads Investigation of Chine-Immersed Model Having a Circular-Arc Transverse Shape. NACA TN 4103, 1957.
- 3. Edge, Philip M., Jr.: Impact-Loads Investigation of Chine-Immersed Models Having Concave-Convex Transverse Shape and Straight or Curved Keel Lines. NACA TN 3940, 1957.
- 4. Batterson, Sidney A.: Water Landing Investigation of a Hydro-Ski Model at Beam Loadings of 18.9 and 4.4. NACA RM L51F27, 1951.
- 5. Batterson, Sidney A., and McArver, A. Ethelda: Water Landing Investigation of a Model Having a Heavy Beam Loading and a 30° Angle of Dead Rise. NACA TN 2015, 1950.
- McArver, A. Ethelda: Water-Landing Investigation of a Model Having Heavy Beam Loadings and O^O Angle of Dead Rise. NACA TN 2330, 1951.
- 7. Batterson, Sidney A.: The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights. NACA Rep. 795, 1944. (Supersedes NACA WR L-163.)
- Miller, Robert W., and Leshnover, Samuel: Hydrodynamic Impact Loads in Smooth Water for a Prismatic Float Having an Angle of Dead Rise of 30°. NACA TN 1325, 1947.
- 9. Smiley, Robert F.: Water Pressure Distributions During Landings of a Prismatic Model Having an Angle of Dead Rise of $22\frac{1}{2}^{\circ}$ and Beam-Loading Coefficients of 0.48 and 0.97. NACA TN 2816, 1952.
- 10. Markey, Melvin F., and Carpini, Thomas D.: Rough-Water Impact-Load Investigation of a Chine-Immersed V-Bottom Model Having a Dead-Rise Angle of 10°. NACA TN 4123, 1957.
- 11. Edge, Philip M., Jr.: Hydrodynamic Impact Loads in Smooth Water for a Prismatic Float Having an Angle of Dead Rise of 10^o. NACA TN 3608, 1956.
- 12. Schnitzer, Emanuel: Theory and Procedure for Determining Loads and Motions in Chine-Immersed Hydrodynamic Impacts of Prismatic Bodies. NACA Rep. 1152, 1953. (Supersedes NACA TN 2813.)

τ, deg	C_{Δ}	W, lb	γ_0 , deg
	β = 3	0 ⁰ ; b = 5 i	in.
3 6 9 15 15 15 15 30 30	208 208 208 530 208 300 400 530 208 530	933 933 2,350 933 1,315 1,767 2,350 933 2,350	2.48 to 8.06 2.64 to 12.36 3.16 to 17.88 2.52 to 10.00 2.62 to 20.55 3.21 to 18.54 3.15 to 13.29 2.16 to 12.04 2.75 to 20.91 2.22 to 12.97
	β = C	0°; b = 8 in	a.
3 6 6 15 15 15 15 30 30 30	$\begin{array}{r} 62.5\\ 133.7\\ 62.5\\ 103.4\\ 133.7\\ 62.5\\ 85.1\\ 103.4\\ 133.7\\ 1\\ 62.5\\ 133.7\\ 1\\ 62.5\\ 133.7\end{array}$	1,156 2,472 1,156 1,912 2,472 1,156 1,574 1,912 2,472 1,156 2,472	2.29 to 7.38 1.97 to 5.45 2.54 to 10.31 2.65 to 10.13 2.26 to 11.71 2.55 to 20.06 2.37 to 18.81 2.55 to 17.51 2.48 to 19.58 3.59 2.54 to 21.79 2.48 to 18.95
	β = 0)°; b = 5 i	n.
6 6 15 15	208 544 208 544	933 2,455 933 2,455	2.71 to 14.80 3.13 to 8.08 2.85 to 15.66 3.17 to 16.04

TABLE I.- SUMMARY OF TEST CONDITIONS

[]	At co	ntact		1	At m	aximum l	oad			At maxi	mum mo	ment		At	maxim	um dra	ft	At	exit
x _o , fps	ż _o , fps	V _o , fps	γ _o , deg	t, sec	n _i	M _Y , ft-lb	z, ft	ż, fps	t, sec	M _Y , ft-lb	n ₁	z, ft	ż, fps	t, sec	z, ft	ni	My, ft-lb	t, sec	ż, fps
								τ ₌	3°; W	= 933	1b								
87.7 75.8 69.0 69.0 62.1 54.8 51.2	3.8 3.7 4.6 5.8 6.0 6.0 7.2	87.8 75.8 69.1 69.2 62.4 55.1 51.7	2.48 2.76 3.76 4.82 5.54 6.26 8.06	0.13 .14 .14 .10 .14 .11 .12	0.38 .31 .40 .57 .56 .53 .66	1,402 1,272 1,979 3,619 3,678 2,764 4,855	0.41 .43 .52 .52 .60 .58 .68	2.7 2.6 3.3 4.3 4.5 5.4	0.23 .23 .22 .15 .14 .14 .14	1,924 1,841 2,563 4,281 3,678 3,233 4,855	0.35 .31 .38 .56 .56 .51 .66	0.60 .59 .71 .70 .72 .70 .73	1.5 1.7 2.0 3.5 3.8 3.9 5.2	0.41 .40 .44 .43 .47 .49 .41	0.72 .72 .91 1.18 1.27 1.30 1.55	0.08 .20 .27 .31 .28 .29 .44	362 936 1,231 1,744 598 895 1,949		
<u> </u>	<u> </u>	<u> </u>	L				I	τ =	6°; W	= 933	10	L		L		L			I
85.5 82.0 59.5 56.9 61.9 64.5 52.6 52.6 48.8 42.7	3.9 3.8 10.6 7.7 9.7 10.3 9.4 10.7 10.6 9.4	85.6 82.1 60.4 56.6 62.7 65.3 53.5 53.5 53.7 49.9 43.8	2.64 2.74 6.05 7.81 8.93 9.09 10.09 11.48 12.27 12.36	0.17 .18 .15 .14 .13 .14 .14 .14 .15 .17	0.49 .45 .76 1.07 1.18 .90 1.08 1.04 .81	1,743 1,497 4,984 3,747 5,487 6,346 4,444 6,489 6,280 5,002	0.49 .57 .97 1.07 1.10 1.05 1.24 1.27 1.34	2.0 2.1 6.2 5.3 6.5 6.5 6.7 6.9 5.8	0.17 .24 .23 .16 .17 .17 .17 .17 .18 .19	1,743 1,590 5,518 4,330 6,630 7,462 5,425 7,017 7,080 5,185	0.49 .43 .51 .67 1.03 1.10 .85 .99 .98 .80	0.49 .66 1.22 1.30 1.25 1.36 1.24 1.42 1.45 1.44	2.0 1.2 3.7 5.2 5.5 5.5 5.9 6.0 5.5	0.32 .35 .34 .44 .42 .39 .47 .40 .41 .45	0.63 .72 1.38 1.59 1.77 1.86 1.93 2.05 2.14 2.12	0.34 .28 .32 .43 .43 .48 	1,078 957 3,502 1,700 2,288 2,389 1,889 4,509 5,031 3,927		
							,	τ=	9 ⁰ ; W	= 933	1b			r	r		r	·	
86.2 75.2 62.1 52.1 43.6 44.8 35.8 39.2 33.3	4.7 8.4 10.6 8.9 9.9 10.6 8.6 10.5 10.8	86.3 75.7 63.0 52.8 44.7 46.1 34.9 54.2 35.0	3.16 6.36 9.64 9.69 12.84 13.25 14.26 15.04 17.88	0.17 .15 .13 .15 .17 .14 .19 .13 .14	0.65 .98 1.15 .84 .96 .62 1.64 .83	1,751 3,613 4,297 3,234 3,805 3,781 2,734 3,671 3,459	0.60 .99 1.13 1.13 1.31 1.22 1.28 1.20 1.29	2.1 4.6 5.8 5.5 7.4 5.4 7.7 7.5	0.17 .22 .21 .22 .23 .25 .26 .22 .24	1,751 3,783 5,675 3,746 4,121 4,857 2,962 5,058 4,497	0.65 .87 1.02 .75 .78 .82 .57 1.48 .73	0.60 1.20 1.54 1.47 1.62 1.75 1.59 1.76 1.91	2.1 4.0 4.2 4.0 4.7 4.0 1 5.5	0.29 .30 .43 .45 .45 .46 .55 .49 .51	0.71 1.29 1.79 1.84 2.09 2.21 2.08 2.30 2.52	0.50 .61 .57 .40 .42 .41 .33 .77	1,409 2,478 3,475 2,251 2,286 2,425 1,408 2,343 2,371	 1.63 1.39	-1.55
								<u>,</u> π ≠	9°; W	= 2,39	ю 1ъ			1		L	<u> </u>	L	
86.2 74.1 67.1 68.5 57.3 63.5 56.4	3.7 5.7 6.0 7.8 8.4 9.7 10.0	86.3 74.3 67.4 68.9 57.9 64.2 57.3	2.52 4.40 5.10 6.47 8.29 8.63 10.00	0.28 .25 .27 .26 .27 .24 .23	0.29 .39 .36 .53 .48 .64 .57	2,208 4,310 15,843 7,491 7,254 10,133 5,802	0.79 1.18 1.22 1.63 1.83 1.88 1.88	2.1 3.4 3.3 4.9 5.4 6.1 6.5	0.39 .32 .36 .33 .27	2,562 4,999 8,240 7,820 10,788	0.28 .39 .49 .46 .63	0.93 1.38 1.99 2.09 2.06 	0.7 2.6 3.2 4.4 5.6	0.49 .54 .61 .57 .61 .53 .57	0.97 1.65 1.77 2.33 2.70 2.80 2.94	0.24 .29 	2,083 4,097 18,637 7,358 7,297 10,915 2,425		
				<u> </u>				τ = 	15°;	W = 933	15	1		,					Г.,
85.5 83.0 81.3 87.0 83.3	3.9 3.9 4.2 5.3 6.2	85.6 83.1 81.4 87.1 83.6	2.62 2.71 2.94 3.44 4.20	0.13 .16 .17 .16 .16	0.67 .67 .62 .85 .94	1,894 1,313 1,537 1,459 1,816	0.41 .44 .48 .59 .75	2.1 1.6 1.7 2.6 2.8	0.16 .16 .23 .18 .22	1,477 1,313 1,467 1,644 1,675	0.67 .67 .62 .83 .92	0.46 .44 .54 .62 .84	1.6 1.6 .5 1.5 1.2	0.22 .25 .25 .25 .25	0.51 .49 .54 .66 .85	0.63 .54 .57 .71 .82	1,711 462 1,706 1,058 1,937	0.53 .55 .58 .55 .58	-2.4 -2.0 -2.3 -3.1 -3.6
74.6 75.8 73.5 69.4 56.8	8.2 8.4 8.8 8.4 7.2	75.1 76.2 74.1 70.0 57.3	6.26 6.35 6.87 6.89 7.27	.15 .16 .18 .16 .18	1.04 1.15 1.20 1.09 .80	2,571 1,725 3,065 1,317 1,375	.85 1.05 1.15 1.06 1.03	4.1 4.1 3.4 4.3 3.9	.23 .16 .22 .23 .23	2,983 1,725 3,191 777 990	.96 1.15 1.10 1.02 .75	1.07 1.05 1.25 1.25 1.18	1.5 4.1 1.9 1.8 2.5	.27 .27 .28 .28 .33	1.10 1.26 1.28 1.28 1.29	.85 .94 .85 .85 .57	2,532 1,479 2,165 1,201 653	.71 .70 .74 .88	-3.5 -3.6 -4.1 -3.0
62.5 52.0 61.7 62.1 62.1	8.8 8.4 10.1 10.2 10.6	63.1 52.6 62.6 63.0 63.0	8.05 9.22 9.27 9.35 9.69	.16 .16 .15 .17 .13	1.06 .89 1.24 1.28 1.24	1,128 965 3,666 956 2,138	1.12 1.10 1.25 1.38 1.15	4.8 5.3 5.8 5.1 7.0	.21 .23 .22 .24 .20	843 404 4,146 180 723	1.03 .83 1.11 1.10 1.20	1.30 1.40 1.54 1.62 1.50	3.1 3.5 3.1 2.7 3.8	.31 .37 .32 .32 .31	1.46 1.60 1.68 1.70 1.68	.75 .58 .82 .83 .83	701 195 2,817 9 391	.82 1.02 .86 .84 .82	-3.9 -3.0 -3.7 -4.1 -4.4
61.9 59.2 61.5 59.5 61.0	10.7 10.4 10.8 10.6 11.1	62.8 60.1 62.5 60.4 62.0	9.81 9.92 9.97 10.00 10.30	.15 .15 .15 .15 .16	1.25 1.24 1.24 1.10 1.28	3,790 4,038 3,826 16,744 4,638	1.34 1.25 1.32 1.19 1.31	6.4 6.1 6.0 6.3 6.3	.22 .22 .22 .22	4,276 4,515 4,318 5,073	1.15 1.15 1.13 1.14	1.69 1.55 1.64 1.68	3.6 3.5 3.2 3.1	.34 .35 .34 .34 .32	1.88 1.72 1.81 1.65 1.80	.73 .68 .70 .65 .87	2,611 2,706 2,569 10,602 3,984	 .95 .92 .90	-3.3 -3.3 -4.3
52.0 50.0 48.0 43.5 42.1	10.6 10.9 11.3 10.5 10.8	53.0 51.2 49.3 44.7 43.5	11.54 12.29 13.23 13.65 14.29	.15 .15 .12 .19 .16	1.10 1.12 1.18 .97 1.02	985 3,352 3,339 592 2,942	1.33 1.35 1.27 1.60 1.42	6.6 7.0 8.6 5.9 7.2	.22 .23 .19 .23 .18	208 3,587 4,405 47 3,281	1.03 1.00 1.15 .59 1.01	1.70 1.77 1.73 1.80 1.56	4.2 4.2 5.9 4.7 6.8	.39 .40 .39 .44 .44	1.98 2.07 2.24 2.22 2.28	.60 .58 .66 .49 .50	35 1,739 2,912 19 1,892	1.05 1.19 1.19 1.30 1.43	-3.4 -2.8 -3.0 -3.1 -2.3
43.5 38.9 35.2 33.7 34.1 28.7	11.4 11.5 10.7 10.4 11.5 10.8	45.0 40.6 36.8 35.2 36.0 30.7	14.69 16.48 16.95 17.20 18.61 20.55	.17 .16 .20 .16 .17 .16	1.14 1.05 .84 .83 .99 .76	3,869 3,517 295 409 3,622 420	1.68 1.56 1.70 1.47 1.69 1.50	7.1 7.7 6.8 7.2 7.9 7.6	.19 .31 .23 .21 .24 .23	4,067 3,991 65 58 4,043 220	1.07 .83 .79 .82 .90 .71	1.81 2.34 1.88 1.79 2.14 1.95	6.4 3.2 5.9 6.2 5.8 6.0	.41 .45 .50 .51 .48 .57	2.44 2.52 2.59 2.57 2.76 2.81	.89 .49 .43 .41 .51 .35	2,786 2,354 300 235 2,522 94	1.37 1.48 1.70 1.67 1.64 1.86	-2.3 -2.3 -2.2 -2.1 -2.0 -1.7

TABLE 11.- BASIC MEASURED QUANTITIES FROM TESTS OF A 5-INCH-BEAM, 30° DEAD-RISE MODEL

	At co	ontact			At ma	ximum	load		At	maxim	um mo	ment		At	maxim	um dr	aft	At e	xit
x _o , fps	ż _o , fps	V _o , fps	γ ₀ , deg	t, sec	ni	M _Y , ft-1b	z, ft	ż, fps	t, sec	M _Y , ft-lb	n _i	z, ft	ż, fps	t, sec	z, ft	n _i	M _Y , ft-1b	t, sec	ż, fps
	J		L	L			I T	= 1	5°; W	= 1,3	15 _1)							
78.1 76.3 66.4 59.9 52.9 52.9 52.9 52.9 52.9 52.9 37.6 32.9	4.3 7.2 10.3 10.8 10.3 10.3 10.3 10.4 11.0	78.2 76.7 67.2 60.8 53.9 43.4 39.0 34.7	3.21 5.42 8.76 10.19 11.00 13.73 15.42 18.54	0.19 .16 .21 .15 .21 .29 .21 .23	0.52 .91 1.10 1.02 .90 .71 .71 .71	1,150 3,400 5,814 4,753 5,014 4,603 4,004 3,881	0.65 .98 1.67 1.37 2.31 1.90 2.11	2.3 4.2 4.8 7.3 5.8 4.8 6.9 7.3	0.22 .23 .21 .24 .21 .36 .30 .35	1,110 3,380 5,814 6,158 5,014 5,164 5,168 4,978	0.50 .85 1.10 .98 .90 .68 .71 .61	0.70 1.20 1.67 1.91 1.79 2.59 2.44 2.80	1.7 2.3 4.8 5.8 3.6 4.9 4.5	0.34 .31 .41 .46 .57 .58 .62	0.78 1.29 2.02 2.27 2.44 2.88 3.09 3.36	0.39 .67 .73 .64 .51 .34	483 2,647 4,252 4,660 3,342 2,582 3,123 3,086		
			4	• • • •				r =]	15°; V	1 = 1,	767 1	b							
85. 74. 70. 45. 66. 50. 63. 51. 48. 44. 44.	5 4.7 9 4.7 4 6.1 2 4.9 2 6.1 8 7.8 7 10.9 8 6.4 3 9.7 5 9.6 9 .6 9 .6 9 .6 9 .6 9 .6 9 .6 9 .6	85.6 75.1 70.7 45.5 66.5 48.6 51.4 64.6 37.3 52.2 49.2 49.2 49.2	3.15 3.59 4.94 6.09 6.84 7.17 8.76 9.92 10.73 11.23 12.18 13.29	0.26 .24 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .23 .28 .24 .24 .24 .24 .23 .28 .24 .24 .24 .24 .23 .28 .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	0.51 .45 .55 .64 .35 .52 .89 .52 .89 .52 .52 .52 .54 .59 .54	1,882 2,903 3,746 1,686 5,398 6,512 2,499 3,914 4,160 3,816 3,931	0.89 .88 1.18 1.35 1.43 1.49 1.61 1.89 1.65 1.75 1.80 1.78 1.84	$\begin{array}{c} 1.8 \\ 2.4 \\ 2.9 \\ 2.8 \\ 4.9 \\ 4.9 \\ 5.6 \\ 5.7 \\ 6.2 \\ 6.5 \\ 6.5 \end{array}$	0.35 .32 .39 .33 .37 .28 .32 .33 .24 .47 .39 .42	2,050 3,195 950 4,307 2,030 3,680 7,268 2,499 4,924 5,145 5,063 5,201	0.48 .535 .25 .60 .351 .799 .64 .49 .149 .149	0.97 1.36 1.47 1.75 1.80 1.75 2.41 1.65 2.60 2.76 2.60	0.3 1.7 2.55 2.99 3.29 3.29 3.25 5.60 1.80 5.65 3.65	0.36 .38 .41 .66 .48 .66 .58 .49 .83 .60 .58 .60 .58 .67 .69	0.98 1.05 1.44 1.82 2.35 2.35 2.37 2.85 2.37 2.85 2.30 3.01 3.16	0.45 .38 .45 .18 .39 .20 .27 .48 .10 .29 .32 .26 	1,776 481 2,534 1,035 2,062 4,224 467 2,335 3,184 2,816	0.86	-2.7 -2.3 -2.8
			- -		.		T	τ =	15°;	W = 2,	350] 	.b 		T	т	1	1		
86. 87. 80. 76. 78. 72. 71. 67. 67. 60. 63. 61. 54. 45. 45. 45.	2066177787478999999	2 86.3 5 87.6 5 87.6 5 87.7 5 72.9 8 71.9 9 45.9 6 68.2 6 64.6 7 62.8 9 55.9 9 55.9 8 55.9 9 50.8 8 55.9 9 50.8 8 55.9 9 50.8 8 46.0	$\begin{array}{c} & 2.14\\ & 2.22\\ & 2.57\\ & 2.57\\ & 3.63\\ & 3.63\\ & 3.63\\ & 4.52\\ & 4.52\\ & 6.02\\ & 6.02\\ & 6.42\\ & 7.7\\ & 8.62\\ & 8.92\\ & 10.2\\ & 11.3\\ & 12.0\\ \end{array}$	$ \begin{array}{c} 6 & 0.27 \\ 2 & .19 \\ 8 & .30 \\ 5 & .29 \\ 7 & .19 \\ 8 & .31 \\ 7 & .21 \\ 1 & .25 \\ 6 & .26 \\ 5 & .26 \\ 1 & .24 \\ 7 & .21 \\ .25 \\ .26$	0.30 .33 .37 .40 .47 .43 .51 .258 .664 .58 .644 .58 .644 .58 .54 .54 .57	5,957 1,258 2,249 3,055 2,378 3,004 4,275 2,143 2,195 5,143 4,852 6,355 5,844 5,804 7,318	$\begin{array}{c} 0.63\\ .53\\ .80\\ 1.02\\ .74\\ 1.31\\ .95\\ 1.35\\ 1.05\\ 1.55\\ 1.55\\ 1.56\\ 1.56\\ 1.56\\ 1.68\\ 1.76\\ 3.2.44\end{array}$		0.27 .25 .30 .36 .36 .35 .27 .32 .32 .32 .32 .32 .32 .33 .35 .35 .35 .35 .35 .35 .35 .35 .35	5,957 1,226 2,249 3,097 2,603 3,822 3,576 4,408 5,534 5,534 5,534 5,535 6,876 9,6,666 5,6,255 7,889	0.30 .32 .37 .37 .37 .37 .37 .37 .44 .44 .44 .44 .44 .57 .57 .57 .57 .57 .57 .57 .57	0.6 0.6	3 1.4 3 1.6 1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 <td>10.41 10.43 143 143 143 143 143 143 143 1</td> <td>0.71 .73 .86 1.15 1.10 1.49 1.37 1.75 1.590 1.96 2.20 5 2.65 3 2.67 2.88 3.09 3.27</td> <td>0.25 .27 .26 .30 .24 .41 .29 .35 .17 .39 .32 .33 .42 .33 .27 .20</td> <td>4,784 871 1,054 2,482 557 3,575 1,589 3,120 1,485 3,660 3,581 5,541 4,180 2,87 4,180</td> <td>0.94</td> <td>-2.0 -2.5 -1.7 -2.6 -2.5 -2.6 </td>	10.41 10.43 143 143 143 143 143 143 143 1	0.71 .73 .86 1.15 1.10 1.49 1.37 1.75 1.590 1.96 2.20 5 2.65 3 2.67 2.88 3.09 3.27	0.25 .27 .26 .30 .24 .41 .29 .35 .17 .39 .32 .33 .42 .33 .27 .20	4,784 871 1,054 2,482 557 3,575 1,589 3,120 1,485 3,660 3,581 5,541 4,180 2,87 4,180	0.94	-2.0 -2.5 -1.7 -2.6 -2.5 -2.6
							- <i>i</i>	τ=	30°;	W = 9	33 lb	- <u>-</u>	- F						
80 75 63 43 33 27	.3 3. .2 8. .1 10. .7 10. .3 10. .9 10.	8 80. 2 75. 6 64. 1 44. 7 35. 7 29.	4 2.7 6 6.2 0 9.5 8 13.0 0 17.8 9 20.9	75 0.10 24 .19 50 .20 57 .22 35 .22 51 .22	5 0.79 9 1.47 9 1.46 2 .98 2 .69	96 2,16 2,58 2,58 2,27 5 2,38 9 1,85	6 0.4 0 1.0 8 1.4 0 1.7 3 1.9 2 1.9	5 1.6 4 2.1 6 3.9 1 4.9 2 6.1 6 6.1	6 0.10 1 .2 5 .2 1 .2 6 .3	6 96 3 2,66 2 2,58 2 2,27 8 2,20 4 2,10	6 0.7 7 1.4 8 1.4 0 9 3 8 5 6	9 0.4 3 1.0 6 1.4 8 1.7 1 2.2 5 2.5	51. 73. 14. 214. 564.	6 0.20 3 .25 5 .20 9 .40 9 .40 4 .49	0 0.48 3 1.07 6 1.55 0 2.08 9 2.58 6 2.96	3 0.73 1.43 5 1.33 6 .67 6 .41	5 2,66 5 2,11 7 1,24 7 1,00 4 1,38	8 0.4 7 .5 8 .6 9 6 1.3 0 1.8	7 -2.4 -5.7 3 -6.3 8 -4.9 6 -3.4 1 -2.1
				_ <u>_</u>				т ≓ -т-	30°;	W = 2	,35	1b -T	- 1	1	- <u> </u>		<u>.</u>		- <u>-</u>
87 78 68 55 49	.0 3 .1 4 .5 8 .1 9 .2 9 .0 9 .5 10	.5 87. .8 78. .5 69. .6 62. .7 56. .8 50. .0 44	0 2.2 3 3.5 .0 7. .8 8.0 .1 9.5 .0 11. .6 12.5	22 0.2 59 .2 11 .2 30 .2 97 .3 33 .3 97 .3	5 0.44 5 .55 8 .7 4 .7 2 .6 2 .6 8 .5	8 83 5 2,00 4 4,47 9 5,10 5 0 4,21 1 3,81	0 0.6 9 .9 0 1.7 4 1.9 - 2.3 4 2.5 7 2.9	31. 553. 56. 455 15.	3 0.2 0 .2 9 .3 2 .3 7 2 .4 1 .5	8 1,00 7 2,04 4 4,59 0 5,36 8 4,64 5 4,94	104	8 0.6 5 .9 73 1.9 78 2.2 55 3.1 55 3.1	56 0. 98 1. 93 2. 22 4. 10 2. 49 2.	8 0.3 6 .3 4 .4 7 .5 .5 .5	1 0.68 7 1.06 5 2.05 9 2.60 6 2.8 3 3.24 5 3.49	3 0 .46 5 .49 5 .7 7 .49 7 .49 .59	6 62 9 1,30 1 5,36 9 4,02 9 2 3,31 0 4,94	5 0.7 + .8 9 1.1 9 5 2	0 -2.6 2 -3.8 3 -5.2

TABLE II.- BASIC MEASURED QUANTITIES FROM TESTS OF A 5-INCH-BEAM, 30° DEAD-RISE MODEL - Concluded

	1	A	t maxi	mum lo	ad		1	At	maxim	ium mom	ent			At ma	ximum	draft	_	At	exit
l γ _o , deg	C _t	CL	C _m	c _d	C;	Ccp	ct	C _m	CL	c _d	Cż	c _{ep}	Ct	c _d	CL	C _m	Ccp	C _t	C;
	1	L	1	.I	I		1	Iт	= 3°;	С _Д = 2	208			1	1	I	1	1	
2.48 2.76 3.76 4.82 5.54 6.26 8.06	27.4 25.5 23.2 16.6 21.0 14.6 14.9	0.27 .30 .46 .66 .80 .97 1.37	2.6 3.2 5.9 10.8 11.1 13.0 23.0	0.98 1.02 1.25 1.25 1.44 1.38 1.63	0.71 .71 .66 .75 .73 .72 .74	9.7 10.5 12.7 16.6 15.2 14.8 16.0	48.5 41.9 36.5 24.9 21.0 18.5 14.9	3.6 4.6 7.7 12.8 13.5 15.2 26.0	0.25 .30 .44 .65 .80 .93 1.37	1.45 1.42 1.71 1.69 1.73 1.67 1.76	0.40 .45 .43 .60 .63 .65 .72	14.5 15.2 17.3 19.6 17.8 16.3 16.9	86.4 72.8 73.0 71.4 70.4 64.8 50.8	1.72 1.73 2.18 2.82 3.05 3.13 3.73	0.06 .19 .31 .36 .40 .53 .91	0.7 2.3 3.7 5.2 2.2 4.2 10.4	11.6 12.0 11.7 12.8 5.5 8.8 11.4		
			1		I		1	T	≠ 6°;	C [∇] = 5	808 1		<u>1:</u>	1			1		
2.04 2.74 6.05 7.81 8.93 9.09 10.09 11.48 12.27 12.36	54.9 35.4 28.4 19.0 19.6 20.4 18.0 18.0 18.0 17.9	0.37 .37 .87 1.32 1.51 1.53 1.75 2.08 2.32 2.35	3.4 3.2 11.4 16.7 19.9 21.2 22.2 32.1 36.0 37.3	1.18 1.36 2.33 2.27 2.56 2.65 2.52 2.98 3.04 3.21	0.51 .55 .69 .65 .67 .69 .65 .65 .62	9.1 8.5 13.1 12.6 13.1 13.8 12.6 15.4 15.4 15.8	34.9 47.3 43.5 31.2 24.1 26.7 21.8 21.9 21.6 20.0	3.4 3.4 12.7 19.3 24.1 25.0 27.1 34.7 40.6 38.7	0.37 .35 .78 1.16 1.45 1.43 1.65 1.90 2.18 2.32	1.18 1.58 2.93 3.13 2.96 3.26 2.97 3.40 3.48 3.48	0.51 .32 .40 .53 .51 .59 .55 .57 .59	9.1 9.7 16.2 16.5 16.5 17.4 16.3 18.1 18.5 16.6	65.7 68.9 64.4 59.7 63.2 60.3 51.6 49.1 47.3	1.50 1.72 3.32 3.81 4.25 4.47 4.62 4.91 5.14 5.08	0.26 .23 .49 .57 .61 .62 	2.1 2.0 8.0 7.6 8.3 8.0	8.1 8.7 16.3 13.2 13.6 12.8		
ļ,		·····		·	r	.	····	т т-	= 9°;	C _Δ = 2	808		r						
3.16 6.36 9.64 9.69 12.84 13.25 14.26 15.04 17.88	35.2 27.2 19.7 19.0 18.2 15.5 15.9 12.7 11.8	0.48 .95 1.61 1.67 2.33 2.51 2.83 3.09 3.75	3.4 9.0 15.5 16.5 27.2 25.4 32.1 31.8 40.3	1.44 2.37 2.71 2.71 3.14 2.93 3.06 2.88 3.09	0.45 .54 .65 .65 .65 .70 .63 .73 .70	6.9 9.4 9.5 9.8 11.5 10.0 11.2 10.1 10.6	35.2 39.9 31.8 27.9 24.7 25.4 21.7 21.4 20.2	3.4 9.4 20.4 19.2 29.5 32.7 34.8 43.8 52.3	0.48 .84 1.43 1.49 2.17 2.14 2.60 2.79 3.30	1.44 2.88 3.70 3.52 3.89 4.19 3.82 4.22 4.22 4.58	0.45 .29 .38 .47 .47 .46 .46 .48 .49	6.9 11.0 14.1 12.7 13.4 15.0 13.2 15.5 15.6	60.1 54.5 54.4 54.5 48.3 50.9 46.0 47.8 42.9	1.70 3.10 4.30 4.42 5.01 5.30 4.99 5.53 6.04	0.37 .59 .80 .80 1.17 1.07 1.51 1.45	2.7 6.2 12.5 11.5 16.3 16.3 16.6 20.3	7.2 10.3 15.5 14.3 13.8 15.0 10.8 13.9	 136.3 135.7	 -0.18 24
		I			r			T	= 9°;	C _A = 5	30 1			·	r		r		1
2.52 4.40 5.10 6.47 8.29 8.63 10.00	58.0 44.6 43.7 43.0 37.5 37.0 31.6	0.55 1.00 1.13 1.59 2.03 2.21 2.47	4.2 11.2 22.5 30.9 35.1	1.90 2.83 2.93 3.91 4.38 4.52 4.47	0.57 .60 .55 .63 .64 .63 .65	7.5 11.0 14.0 15.0 15.7	80.8 57.1 59.6 45.9 41.6	4.9 12.9 24.8 33.3 37.3 	0.53 1.00 1.47 1.95 2.17	2.23 3.31 4.78 5.02 4.94	0.18 .45 .41 .53 .58	9.1 12.7 16.7 16.9 17.0	101.5 96.3 98.6 94.3 84.8 81.7 78.4	2.32 3.96 4.24 5.58 6.47 6.73 7.06	0.46	4.0	8.6		
			· · · · · · · · · · · · · · · · · · ·					τ	= 15°;	°∆ =	208	.			1	L	1		·
2.62 2.71 2.94 3.44 4.20	26.7 31.9 33.2 33.5 32.1	0.51 .54 .52 .62 .75	1.6 2.7 2.0 2.7 4.0	0.99 1.06 1.16 1.41 1.79	0.54 .42 .41 .49 .45	3.1 4.8 3.7 4.3 5.2	32.9 31.9 44.9 37.6 44.1	2.4 2.7 2.2 3.1 4.2	0.51 .54 .52 .61	1.11 1.06 1.30 1.49 2.02	0.41 .42 .11 .29 .19	4.7 4.8 1.3 4.9 5.5	45.2 49.9 48.8 52.3 50.1	1.23 1.18 1.30 1.58 2.05	0.48 .43 .48 .52 .65	1.6 1.0 1.2 2.0 2.8	3.2 2.2 2.5 3.7 4.2	108.0 109.7 112.5 115.6 115.7	-0.60 52 54 59 58
6.26 6.35 6.87 6.89 7.27	27.0 29.3 32.0 26.9 24.7	1.02 1.10 1.21 1.24 1.35	6.5 7.1 8.0 8.8 8.1	2.03 2.53 2.75 2.54 2.47	.50 .49 .51 .51	6.1 6.2 6.4 6.9 5.8	41.4 29.3 39.1 38.6 31.6	7.6 7.1 8.3 9.7 9.0	.94 1.10 1.11 1.15 1.27	2.56 2.53 2.99 2.99 2.82	.18 .49 .21 .21 .35	7.8 6.2 7.2 8.2 6.8	48.7 49.4 49.8 47.0 45.4	2.63 3.03 3.06 3.08 3.10	.84 .90 .86 .96 .96	6.4 5.6 5.6 6.5 7.1	7.4 6.0 6.3 6.6 7.1	127.9 124.4 123.4 121.0	43 42 46 42
8.05 9.22 9.27 9.35 9.69	24.2 20.2 22.5 25.7 19.7	1.48 1.78 1.76 1.79 1.73	11.3 13.5 13.4 15.0 10.3	2.69 2.63 2.99 3.31 2.76	.54 .65 .57 .58 .66	7.4 7.3 7.3 8.1 5.7	31.8 29.1 33.0 36.3 30.2	11.9 15.0 15.1 15.2 14.7	1.43 1.66 1.57 1.54 1.68	3.13 3.35 3.69 3.90 3.61	.35 .42 .31 .26 .36	8.0 8.7 9.3 9.6 8.5	47.0 46.7 48.0 48.3 46.9	3.50 3.85 4.02 4.09 4.04	1.04 1.16 1.16 1.16 1.15	8.4 11.1 10.3 12.0 10.5	7.8 9.2 8.5 9.9 8.9	124.7 128.7 129.5 127.0 124.1	44 35 37 40 41
9.81 9.92 9.97 10.0 10.3	22.6 21.6 22.5 21.8 23.8	1.76 1.91 1.76 1.67 1.85	13.7 16.0 14.0 17.2	3.22 2.99 3.16 2.86 3.15	.60 .59 .56 .60 .57	7.5 8.1 7.7 9.0	33.2 31.7 33.0 35.7	15.5 17.9 15.8 	1.62 1.77 1.61 1.65	4.05 3.73 3.94 4.02	.34 .34 .30 .28	9.2 9.7 9.5 	51.3 50.5 51.0 49.3 47.6	4.51 4.12 4.34 3.97 4.31	1.03 1.04 .99 .98 1.26	9.4 10.7 9.4 14.8	8.9 9.9 9.1 11.4	136.5 133.9 133.9	32 31 39
11.54 12.29 13.23 13.65 14.29	19.1 18.4 14.2 20.4 16.7	2.17 2.38 2.70 2.69 3.00	17.4 21.9 19.6 23.6 22.2	3.20 3.24 3.04 3.85 3.41	.62 .64 .76 .56 .67	7.7 8.9 7.0 8.5 8.0	28.0 28.3 22.5 24.7 18.8	20.0 22.0 25.9 25.8 24.8	2.03 2.12 2.63 2.47 2.97	4.07 4.25 4.16 4.33 3.74	.40 .39 .52 .45 .63	9.5 10.1 9.5 10.1 8.6	49.6 49.1 46.1 47.3 45.9	4.74 4.96 5.38 5.32 5.47	1.18 1.24 1.51 1.36 1.46	12.0 13.0 17.1 14.0 14.3	9.8 10.1 11.0 10.0 10.6	134.0 146.0 140.7 139.8 149.1	32 26 27 29 21
14.69 16.48 16.95 17.20 18.61 20.55	18.3 15.6 17.7 13.5 14.7 11.8	3.13 3.54 3.44 3.71 4.23 4.48	27.3 30.5 32.4 34.1 39.9 39.9	4.03 3.74 4.08 3.53 4.06 3.61	.62 .67 .63 .69 .69 .71	8.4 8.3 9.1 8.9 9.1 8.6	20.5 30.2 20.3 17.8 20.7 16.9	28.7 34.6 34.2 37.4 44.5 46.6	2.94 2.80 3.23 3.66 3.85 4.18	4.34 5.61 4.51 4.29 5.14 4.68	.56 .28 .55 .59 .51 .56	9.4 11.9 10.2 9.9 11.2 10.8	44.2 43.8 44.2 43.1 41.5 42.0	5.85 6.06 6.22 6.16 6.62 6.75	1.62 1.65 1.76 1.83 2.18 2.06	19.7 20.4 20.9 21.3 27.8 20.2	11.7 12.0 11.5 11.2 12.3 9.4	147.4 144.0 150.3 141.0 141.4 137.4	20 20 20 20 17 16

TABLE III.- COEFFICIENT DATA FROM TESTS OF A 5-INCH-BEAM, 30° DEAD-RISE MODEL

~		At	maxir	num lo	ad			At n	aximu	m mon	ent		F	t may	imum	draft		At e	exit
deg	Ct	c_{L}	C _m	c _d	Cż	C _{cp}	Ct	Cm	C _L	Cd	Сż	C _{ep}	c_t	Cd	C_{L}	с _m	C _{ep}	Ct	Cż
				I		-		τ :	= 15°;	° _∆ =	300								
3.21 5.42 8.76 10.19 11.00 13.73 15.42 18.54	35.7 29.4 33.9 21.9 27.2 30.2 19.7 19.1	0.68 1.25 1.96 2.22 2.50 3.03 3.76 4.35	2.7 8.3 18.4 18.3 24.6 34.8 37.6 46.0	1.56 2.36 4.01 3.29 4.30 5.54 4.56 5.06	0.54 .58 .47 .68 .56 .47 .67 .66	3.8 6.4 9.0 8.0 9.5 11.1 9.7 10.2	41.3 42.3 33.9 35.0 27.2 37.5 28.1 29.1	2.6 8.2 18.4 23.8 24.6 39.1 48.0 59.1	0.66 1.16 1.96 2.13 2.50 2.90 3.76 4.08	1.69 2.89 4.01 4.59 4.30 6.21 5.86 6.72	0.40 .32 .47 .43 .56 .35 .47 .41	3.8 6.8 9.0 10.8 9.5 13.0 12.7 14.0	63.9 57.0 59.7 59.5 59.5 59.4 54.3 51.6	1.88 3.09 4.85 5.45 5.86 6.91 7.41 8.07	0.51 .92 1.30 1.39 1.41 1.45	1.1 6.4 13.4 18.0 16.4 19.5	2.1 6.6 10.0 12.5 11.2 13.0		
	L		L		F			τ.	= 15°;	; с ^д =	= 400								
3.15 3.59 4.94 6.09 6.84 7.17 8.76 9.71 9.92 10.73 11.23 12.18 13.29	53.4 43.2 40.7 37.1 36.7 32.6 29.6 29.6 27.6 27.6 27.2 24.1 23.4	0.75 .86 1.18 1.30 1.56 1.59 2.12 2.29 2.55 2.52 2.61 2.78 3.11	3.7 8.3 6.3 12.1 10.2 18.4 22.3 25.6 20.5 24.5 26.1 31.3	2.13 2.10 2.82 3.25 3.44 3.58 3.86 4.54 3.95 4.20 4.31 4.27 4.42	0.37 .50 .48 .59 .66 .63 .57 .57 .62 .65 .69 .67	4.7 6.8 4.7 7.5 6.2 8.4 9.4 9.7 8.7 9.0 9.1 9.7	71.9 54.3 42.6 52.7 43.1 34.5 29.6 29.6 30.1 55.6 42.7 42.7	4.0 9.1 6.6 13.9 12.3 19.9 25.6 25.8 30.3 34.7 41.4	0.70 1.14 1.30 1.46 1.59 2.08 2.03 2.55 2.52 2.17 2.63 2.93	2.33 3.26 3.53 4.20 4.31 4.29 5.79 3.95 4.45 6.47 6.23 6.63	0.06 .28 .51 .29 .48 .55 .29 .57 .58 .19 .37 .37	5.5 7.7 4.9 9.2 7 9.5 11.3 9.7 10.0 13.5 12.7 13.5	74.0 68.4 69.5 72.1 76.6 76.9 71.5 76.0 74.3 75.2 68.6 73.4 70.2	2.35 2.52 3.46 4.37 5.30 5.65 5.68 6.35 5.68 6.73 7.23 7.59	0.66 .73 .97 .93 .95 .91 1.10 1.24 1.77 1.14 1.42 1.34	3.5 7.5 3.3 8.2 6.3 11.2 14.4 4.8 12.2 18.7 19.3	5.1 7.5 3.4 8.3 6.6 9.8 11.3 6.0 11.5 12.8 13.9	176.5 180.1 186.1 	-0.58 48 47
	1	.L	1	L · · ·			•	т	= 15 ⁰	; c _Δ	= 530								
$\begin{array}{c} 2.16\\ 2.22\\ 2.56\\ 3.65\\ 3.67\\ 4.38\\ 4.57\\ 6.01\\ 6.06\\ 6.45\\ 7.71\\ 8.67\\ 8.96\\ 10.25\\ 11.35\\ 12.0 \end{array}$	55.9 39.7 58.1 53.4 54.3 54.3 54.3 40.9 542.6 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2	$\begin{array}{c} 0.57\\.62\\.81\\.94\\.93\\1.26\\1.18\\1.56\\1.77\\2.01\\2.01\\2.30\\2.70\\5.3.66\end{array}$	11.4 2.4 5.5 9.7 8.3 13.1 14.9 15.8 19.9 21.4 9.7 49.0	$\begin{array}{c} 1.52\\ 1.27\\ 1.91\\ 2.44\\ 1.78\\ 3.15\\ 2.28\\ 3.18\\ 2.52\\ 3.61\\ 3.77\\ 4.02\\ 4.23\\ 4.39\\ 4.27\\ 5.85\end{array}$	0.44 .66 .35 .37 .64 .41 .66 .56 .55 .57 .67 .64 .71 .98	19.3 3.7 5.9 7.6 5.8 7.5 6.6 8.6 8.6 3.9 9.1 9.3 9.1 9.3 9.1 12.9	55.9 52.2 58.1 66.3 67.6 61.3 46.6 52.4 36.4 536.4 536.4 58.4 59.5 51.7 51.7	11.4 2.9 4.9 7.5 6.1 10.3 9.9 13.5 15.8 17.0 21.1 23.4 25.7 740.2 52.8	0.57 .60 .81 .88 1.23 1.18 1.47 1.69 1.74 1.94 2.04 2.38 2.49 3.46	1.52 1.52 1.91 2.66 2.55 3.32 2.70 3.67 2.85 3.86 4.58 5.65 6.10 6.63 6.67	0.44 .47 .35 .22 .18 .32 .48 .32 .53 .53 .47 .39 .33 .37 .34 .35 .74	19.3 4.4 5.3 8.L 6.5 8.L 7.5 9.5 9.5 9.5 12.1 12.5 12.7 14.5 14.7	84.9 83.5 82.9 88.3 78.8 80.2 72.7 81.9 79.3 81.9 79.3 86.0 87.0 87.0 87.0 87.0	1.71 1.75 2.76 2.64 3.57 3.28 4.19 3.81 4.70 5.27 6.37 6.41 $3.6.90$ 7.41 7.84	0.48 .51 .57 .72 .56 1.10 1.07 1.15 1.19 1.25 1.46 1.20 1.26	9.2 1.6 2.3 6.0 1.3 9.6 1.3 9.6 10.1 11.2 13.7 14.1 16.5 18.2 	18.6 3.1 3.9 8.0 2.3 8.5 5.3 8.5 9.1 10.5 12.5 12.1 12.7 14.2	194.6 198.4 194.7 204.8 220.2 209.0 	-0.61 71 48 52 45 45 45 45
								т	= 30 ⁰	; c∆	= 208	} 					,		ا ا
2.75 6.24 9.50 13.07 17.85 20.95	5 30.9 + 34.5 0 30.7 7 23.7 5 18.9 1 15.8	9 0.68 5 1.42 7 1.98 7 2.71 5 3.89 8 4.28	3 2.1 2 5.1 3 9.0 1 16.1 9 27.1 3 29.0	1.08 2.49 3.50 4.10 34.61 54.70	0.42 .25 .33 .48 .57 .62	2.7 3.3 4.1 5.2 6.2	30.9 41.0 2 23.1 2 23.1 2 23.1 2 23.1 2 24.1	2.1 3 6.7 7 9.0 7 16.1 5 25.7 4 33 .6	0.68 1.39 1.98 2.71 3.67 4.03	1.08 2.56 3.50 4.10 5.31 6.14	0.42 .04 .33 .48 .41 .38	2.7 4.2 4.1 5.2 6 1 7 2	38.6 41.8 39.9 43.0 41.2 40.2	51.16 2.56 3.73 4.98 26.19 27.10	0.63	0.1 6.7 7.4 8.8 11.7 22.0	0.1 4.2 3.8 4.1 4.8 7.0	91.1 92.6 96.1 105.9 114.1 130.0	-0.62 69 60 48 32 20
								т	= 300	,; c⊽	= 530) 	-1	- -	T		r		T
2.2 3.5 7.1 8.8 9.9 11.3 12.9	2 52 . 9 47 . 1 46 . 0 36 . 7 43 . 3 38 . 7 40 .	2 0.90 0 1.28 4 2.2 2 2.8 1 2.9 5 3.40 7 3.6	0 1.0 3 4.1 1 13.4 + 18.4 + 0 24.0 + 27.1	5 1.52 7 2.27 4 4.21 5 4.62 - 5.70 6.04 4 6.98	2 0.37 7 .41 46 2 .64 0 .48 4 .53 3 .51	1. 3. 5. 5. 6. 6.	5 58. 2 50. 5 56. 6 45. 1 57. 5 58.	5 1.9 7 4.1 3 13.1 2 19.1 7 26.1 9 35.1	0.90 31.28 32.18 + 2.81 + 3.12 + 3.12	1.58 2.35 4.63 5.32 7.43 7.43 8.31	3 0.24 .33 .28 .45 .24	18	8 64.7 69.5 74.5 73.9 75.4 75.4 75.5 75.5	$7 1.62$ $5 2.5^{1}$ $5 4.92$ 6.23 $4 6.89$ $7 7.7$ 8.37	2 0.86 1.14 2 2.12 2 2.12 2 2.12 7 2.30 7 3.55	6 1.2 4 3.0 2 16.1 2 14.6 1 8 18.9 7 35.1		146.2 154.3 187.8 	2 -0.73 179 861

TABLE III.- COEFFICIENT DATA FROM TESTS OF A 5-INCH-BEAM, 30° DEAD-RISE MODEL - Concluded

	At c	ontac	t	Т				A	t max	imum	load						At n	maximu	m dre	ft		At e	xit
V _o , fps	ż _о , fpб	ż _o , fps	γ _o de	, В	t, sec	Ct	ni	c _L	z, ft	C _d	ż, fps	Сż	M _Y , ft-1b	c _m	C _{cp}	t, sec	C _t	ⁿ i	cL	z, ft	c _d	t, sec	ż, fps
								τ	= 3°;	₩ =	1,15	6 1b;	C _∆ = 6	2.5;	b = {	3 in.							
82.3	3.3	82.3	2.2	29	0.077	9.5	0.54	0.21	0.19	0.28	2.1	0.65	1,771	0.9	4.3	0.247	30.5	0.27	0.11	0.38	0.58	0.767	-0.7
52.8 68.8	4.5	52.6	4.4	89 61	.086 .079	6.8 8.1	.52 1.02	.50 .58	. 34 .42	.50 .63	3.1 4.3	.70 .64	2,762	3.4 4.3	6.9 7.5	-359 .274	28.4 28.2	.28 .57	.27	.71 .80	1.07 1.19		
57.5 54.2	7.3	57.1	7.	25 38	.075 .078	6.5 6.3	1.12 1.07	.91 .98	.46 .47	.68 .70	5.0 4.7	.68 .68	6,728 6,572	7.1	7.8 8.0	.291	25.1 24.6	.56 .56	.46 .51	.95 .98	$1.42 \\ 1.47$.931 .929	-1.3
	<u> </u>	1	L					τ	= 3°;	W =	2,47	L 72 1b;	С _Д = 1	33.7	. b =	8 in.			1	1			
85.3	2.9	85.3	1.	97	0.053	6.8	0.30	0.24	0.14	0.22	2.6	0.89	2,384	1.1	4.8	0.393	50.3	0.19	0.15	0.55	0.82		
84.0 84.3	2.9	84.0 84.2	2.	20 94	.093 .162	$\frac{11.7}{20.5}$.27 .40	.22 .29	.26 .54	.39 .80	2.2 2.4	.75 .56	2,151 5,534	1.1 2.7	4.8 9.3	.363	45.8	.17 .36	.14 .29	.53 .76	.80 1.28		
68.1 68.0	3.9	68.0	3. 3.	31 51	.084 .091	8.6 9.3	.33 .36	.41 .45	.29 .33	.43 .49	3.3 3.3	.83 .80	3,299 4,362	2.5 3.3	6.1 7.4	.419 .411	42.8 42.0	.25 .27	.31 .34	.79 .85	1.19 1.24		
60.6 67.5	4.0 4.9	60.5	3.	77	.091 .090	8.3 9.1	.31 .43	.48 .54	.33 .39	.50 .58	3.2 3.6	.81 .74	3,518 5,710	3.3 4.4	6.9 8.0	.091 .090	8.3 9.1	.23 .32	.36 .40	.88 .97	1.31		
69.8	6.7	69.4	5.	50	.091	9.5	.68	.80	-53	.79	4.7	.71	11,964	8.6	10.7	.091	9.5	.44	.52	1.13	1.70		
	. –						r	τ	= 6°;	; W =	1,1	56 lb;	C _∆ = 6	52.5;	b =	8 in. 1					>		
81.0 65.1	3.6	81.0	2.	54 84	0.098 .080	11.9 7.8	0.74 1.07	0.30 .68	0.28	0.42	1.9	0.54	2,599 3,928	1.4 3.2	4.5 4.7	0.188	15.2 16.2	0.53	0.22	0.36	0.54	0.455 .684	-1.8
64.6 52.8	8.1 9.4	64.1	7.	21 31	.074 .077	7.2 6.1	1.32 1.30	.85 1.25	.52 .64	.78 .95	5.2 6.9	.65	5,229 5,276	4.4 6.6	5.1 5.2	.265	$17.1 \\ 17.3$.60 .53	.59 .51	.95 1.38	1.43	.772 1.130	-2.3
	·		.L				L	τ	= 6°;	; W =	1,9	1. 12 16;	; C _A = 1	103.4	;b≠	8 in.	L	I	J	I	1		
82.4	3.8	82.3	2.	65	0.109	13.5	0.52	0.34	0.35	0.53	2.5	0.66	3, 314	1.7	5.0	0.268	33.1	0.40	0.26	0.53	0.80	0.689	-1.7
59.2 52.7	5.9 7.4	58.9	5.	76 10	.098 .093	8.7 7.4	.63 .75	.80 1.20	.52 .64	.79 .96	4.6 5.7	.77 .76	4,742	4.7	5.9 6.6	.383	34.0 33.4	.33 .34	.42 .54	1.07	1.60	1.135	-1.2
46.6	8.2	45.8	3 10.	13	.088	6.1	.79	1.62	.66	•99	6.3	.77	6,703	10.8	6.6	.468	32.7	.35	.72	1.69	2.55	1.488	-1.2
	r			-				τ	= 60	; W =	2,4'	72 lb; I	C _∆ = 1	133.7	; b =	8 in.		r					
83.6 42.0	3.3	83.9	2.	26 63	0.109 .180	$13.7 \\ 11.3$	0.39 .23	0.32	0.32	0.47	2.3	0.70	2,628	1.3	4.1	0.294	36.8 35.9	0.33	0.26	0.51 .95	0.76	0.792	-1.4
62.2 68.1	5.8	61.9	5.	33 51	.111 .102	10.4 10.4	.44 .63	.65 .78	.54 .60	.82 .89	4.2 4.8	.73 .73	4,021 6,384	3.6	5.5 6.1	.431	40.2	.27 .35	.40	1.13 1.22	1.70	1.320	-1.2 -1.4
56.6 52.4	6.0	56.	6.	03 80	.115 .120	9.7 9.4	-53 -49	.95 1.02	.60 .65	.90 .97	4.5	.75 .75	6,166 6,115	6.7	7.0 7.5	.452 .510	38.4 40.1	.28 .28	.51 .60	1.24	1.86		
57.1 56.1	7.2	56.	7.	25 34	.107	9.2 8.4	.65 .83	$1.14 \\ 1.51$.70 .78	1.04	5.5 6.8	.77	7,550 10,428	8.1 11.5	7.0	.477 .470	40.9	.32 .37	.56 .68	1.55	2.33		
49.4 56.2	8.4	48.	9.	83 42	.108	8.0 9.2	.62 .92	1.46 1.67	.73 .92	1.10	6.4	.76 .70	7,276	10.4 13.6	7.1	.512	38.0	.31 .36	.73	1.80	2.70	1.732	8
55.6	11.5	54.2	11.	91	.087	7.3	1.07	2.00	.87	1.30	8.4	.73	13,910	15.6	7.8	.513	42.8	.39	.72	2.28	3.42		
	1	·	T					7	= 60	; W =	933	15; ($C_{\Delta} = 20$	8; b	= 5 1	n. 1	[1	1		I		1
89.4 78.9	4.2	89.	5 2. 7 3.	71 59	0.090	19.3 16.1	0.62	0.43	0.12 .18	0.28	2.9	0.68	1,806	3.2 4.3	7.5	0.290	62.2 55.9	0.23	0.16	0.30	0.71	0.677	-1.1 -1.0
68.4 63.2	7.4	68.0) 6. 5 9.	17 53	.083 .069	13.6 10.5	.86 1.31	1.02	.34 .45	.81 1.09	5.5 8.6	.74	3,118 6,122	9.5 21.9	9.3 12.0	.323	53.1 52.9	.40	.47	.88 1.37	2.12		
39.5	10.1	38.	2 14.	80	.112	10.6	•95	3.37	.78	1.88	7.2	.71	4,827	44.0	13.0	.441	41.8	.56	1.97	1.76	4.23	1.325	-1.6
		.1.						T	= 60	; W =	2,4	55 1b	; ^C <u>A</u> =	544; 	b = 5	in.	ler -	1	0.5	.	0.0-	r	-
1. 78 1. 77	4.8	87. 77) 3. 5 4.	.13 .07	0.176 .170	36.8 31.7	0.38	0.72	0.76	1.83 1.97	3.0 3.7	0.62	3,826 4,059	7.2 9.6	9.9	0.456	95.3 96.1	0.27	0.51	1.17	3.31		
68.1 46.5	6.1	2 46.	8 5. 1 7	.15 .70	.205 .190	33.5 21.2	.39 .27	1.23	1.09	2.61	4.1	.67 .76	5,545 3,684	24.3	13.3	.670	74.8	.27	1.79	2.30	5.51		
62.3	8.8	3 61.	7 8.	.08	.150	22.4	2.03	2.07	1.19	1.74	6.8	.77			-	.505	75.6	1.79	2.96	2.42	5.80		
	1	T .	T				F	т Г	= 15	~; W	= 1,	156 1	□; C <u>A</u> =	62.5	; • =	0 in.	1.0	0.00	0	0.0	0.1-	0.700	
81.6 69.3	5.0	81. 69.	5 2. 1 4.	55 50	0.106 .103	13.0 10.7	1.05 1.14	0.42	0.26 .45	0.40	2.7	0.28 .50	2,347	2.0	3.0	.178	18.5	1.03	.58	.54	.82	.418	-3.2
69.1	6.	7 69. 3 52.	3 5. 5 8.	.55 .43	.102 .105	10.7	1.37 1.16	.76. 1.08	.55 .67	.83 1.00	3.5 5.0	.52	3,431 3,259	2.5	3.1 3.5	.192	20.1	1.10	.61	1.02	1.54	.435	-3.5
51.3	9.	50. 937.	4 10 . 1 12.	.63 .05	.103 .119	8.2 7.0	1.38	1.41	7.81 .82	1.20	6.0 5.5	.64	4,781	6.3 7.0	4.3	.265	20.2	.89	.91	1.26	2.05	.665	-2.4
41.7	10.1	+ 40. - 39.	4 14. 2 15.	.48 .72	.088 .093	5.5 5.7	1.57 1.39	1.96	.80 .85	1.21	7.3 7.1	.70	4,003 5,184	8.0	4.0	.32 .32	20.2 19.7	.41	1.16	1.51	2.27	.896	-3.5
36.1	11.	9 34 . 0 33 .	7 18. 9 19	93 52	.085 .084	4.7	1.36	2.77	.89 .88	1.33	8.7 8.7	.73 .73	4,603	11.9 12.5	4.1	.370	20.4 19.4	.52	1.04	1.88	2.82	1.117	-3.2
-	.						.	τ	= 15	°;₩	= 1,	574 1	b; C∆ =	85.1	; b =	8 in.		.	A	•	•	•	
79.8	3.	3 79.	7 2	.37	0.114	13.6	0.69	0.40	0.24	0.36	1.7	0.52	1,775	1.0	2.4	0.18	22.0			0.29	0.43	0.398	-1.7
68.6	6.0	6 68. 2 49.	3 5 3 10	. 53 . 55	.112 .114	11.5 8.6	$1.12 \\ 1.11$.87 1.62	.57	1.25	3.8 6.5	.57	4,605	7.6	4.5	.224	29.0	.61	35	1.47	2.21	.844	-3.6
23.3	7.	5 22.	0 18	.81	.159	5.6	.52	3.50	.98	1.46	15.9	1.78	2,919	18.7	1 5.2	1.658	22.3	1 . 23	11.55	15.16	12.28	1	[

TABLE IV.- EXPERIMENTAL DATA FROM TESTS OF FLAT-BOTTOM (0° DEAD RISE) 5-INCH- AND 8-INCH-BEAM MODELS

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		At c	ontact					A	t max	imum	losd						At m	aximu	m dre	aft		At ex	dit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v _o ,	ż ₀ ,	х́ _о ,	γ ₀ ,	t,	Ct	ni	C _L	Z,	c _d	ż,	Cż	Му, Pt_1b	C _m	C _{ep}	t,	c _t	n _i	сĽ	z, ft	c _a	t, Bec	ż, fos
$ \begin{array}{c} 31.7 \\ 3.6 \\ 81.6 \\ 8.9 \\ 80.6 \\ 82.5 \\ 9.6 \\ 91.4 \\ 80.6 \\ 92.5 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4 \\ 92.6 \\ 91.4$	rps	fps	rps	aeg	Bec				- 15 ⁰		1 9	2 10	: C	103.4		8 in.	1	1					-1-
$ \begin{array}{c} 0.51 \\ 0.52 \\ 0.57 \\ 0$	81 7	16	81.6	2 55	0.114	14.0	0.77	0.51	= 1) 0.31	0.47	1.7	5.46	2.934	1.5	3.0	2.179	21.9	0.71	0.47	0.36	0.55	0.408	-2.4
$ \begin{array}{c} 26.3 & 7.9 & 25.1 & 17.5 & 1.59 & 6.3 & 4.6 & 3.67 & 1.19 & 1.69 & 6.2 & 7.8 & 3.01 & 15.1 & 4.8 & 6.44 & 27.4 & .20 & 1.29 & 2.46 & 3.72 & & \\ \hline \hline$	69.4 55.0	5.0 6.9	69.1	5.68	1.112	11.7	1.01	.93 1.57	.63	.94 1.38	4.3	.63	4,790	3.5	3.6 4.6	.242	25.2 27.6	.84 .70	.77 1.02	.89 1.56	1.34 2.34	.543 .879	-3.6 -3.7
$ \mathbf{\tau} = 19^{\circ}, \mathbf{W} = 2, 472 \text{ lb}; \mathbf{C}_{\Delta} = 133 \text{ T}; \mathbf{b} = 8 \text{ f}. \mathbf{h} = 1, 2 \text{ J}. 2 \text{ J}.2 \text$	26.3	7.9	25.1	17.51	.159	6.3	.48	3.07	1.13	1.69	6.2	.78	3,014	15.1	4.8	.694	27.4	.20	1.29	2.48	3.72		
$\begin{array}{c} 8_{12} \\ 8_{12} \\ 8_{13} \\ 8_{14} \\ 8_{15} \\ 8_{15} \\ 8_{16} \\ 8_{15} \\ 8_{16} \\ 8_{15} \\ 8_{16} \\ 8_{15} \\ 8_{16$		r						٢	= 15°	; W =	2,4	72 1b	; ^C <u>A</u> =	133.7	'; b =	8 in.	T						- (
$\begin{array}{c} 9_{0}, 6_{1}, 0_{1}, 0_{2}, 0_{2}, 176 \\ 15, 4_{1}, 159 \\ 1, 100 \\ 1$	85.2 68.2	3.6 6.8	83.2 67.9	2.48 5.71	0.120 .118	15.0 12.1	0.59 .78	0.50 .96	0.33 .69	0.50 1.03	1.9	.68	2,985 4,856	1.5 3.6	3.0 3.6	.303	27.5 31.0	0.60 .66	0.50	0.41	0.62	0.469	-2.6
$\begin{array}{c} 39.9 \\ 39.9 \\ 50.8 \\ 12.0 \\ 14.0 \\ 14.0 \\ 12.0 \\ 14.0 \\ 14.0 \\ 12.0 \\ 14$	50.6 56.9	7.0	50.1 56.1	7.92 9.78	.176 .137	13.4 11.7	.63 .91	1.41 1.61	.99 1.12	$1.48 \\ 1.68$	4.3 6.5	.62 .67	4,620	6.3	4.7	.407	50.9 51.8	.46	1.05	1.79	2.68	.988	-2.9
$\begin{array}{c} 50. \\$	39.9 56.5	8.0 12.5	39.1 55.1	11.51 12.80	.170 .165	10.2 14.0	.59 1.32	2.13 2.37	$1.18 \\ 1.59$	1.77 2.39	5.6 7.4	.71 .59	4,746	10.4	4.7	.540	52.5 31.8	.69	1.12	2.19	3.28	1.128	-3.1
$\begin{array}{c} 44.7 \ [12.2 \ [45.0 \ [15.77] \ .164 \ [11.0 \ [1.4 \ [5.80 \ [1.65 \ [2.47] \ [7.0 \ .58 \ [1.64.0 \ [2.40 \ [2.40 \ [2.40 \ [2.40 \ [2.40 \ [2.40 \ [2.40 \ [2.40 \ [3.40 \ [3.40 \ [3.40 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [2.12 \ [6.5 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [1.41 \ [3.40 \ [3.40 \ [3.41 \ [1.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.41 \ [3.40 \ [3.40 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.41 \ [3.40 \ [3.40 \ [3.40 \ [3.41 \ [3.4$	50.4 31.8	12.0 8.0	49.0	13.80 14.57	.163 .190	12.3 9.1	1.20 .45	2.71	1.64 1.34	2.46 2.01	6.8	.75	3,786	17.0	4.9	.425	52.1 32.9	.25 .21	1.17	2.63	3.94	2.623	8
$ \begin{array}{c} 4_{0.8} \\ 11.4 \\ 52.0 \\ 9.5 \\ 50.5 \\ 11.7 \\ 51.7 \\ 51.7 \\ 51.2 \\ 52.5 \\ 51.7 \\ 55.5 \\ 51.7 \\ 55.5 \\ 51.7 \\$	44.7 32.4	12.2	43.0	15.77 15.98	.164 .184	11.0 9.0	1.14 .63	3.28 3.44	1.65	2.47	7.0 6.3	.58	6,199	21.6	5.8	.677	32.9	.24	1.31	2.64	3.96	1 858	
$\begin{array}{c} 37,9 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 37,4 \\ 12,2 \\ 12$	40.8 32.0	11.4 9.6	39.2 30.5	16.15 17.43	.170 .170	10.4 8.2	.96 .60	3.30 5.37	1.62	2.45	7.2	.05	5,718	19.5	5.6	.680	32.6	.24	1.34	2.93	4.39	2.546	9
$ \begin{array}{c} \tau = 15^{\circ}; \ W = 933 \ 1b; \ C_{\Delta} = 208; \ b = 5 : n. \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	37.9 37.4	12.1 12.2	35.9 35.4	18.61 19.01	.164 .159	9.3 8.9	1.02	4.08	1.67 1.69	2.50 2.53	7.8	.65 .70	11,378	28.2	6.4	.520	29.6	.51	2.04	3.01	4.51	2.056	8
$ \begin{array}{c} 88.6 & 4.4 & 88.5 & 2.85 & 0.095 & 20.2 & 0.89 & 0.62 & 0.36 & 0.86 & 2.7 & 0.61 & 897 & 1.6 & 2.5 & 0.180 & 58.5 & 0.73 & 0.52 & 0.44 & 1.06 & 0.412 & 2.7 \\ 79.5 & 5.1 & 79.4 & 3.71 & 1.37 & 26.2 & .85 & .74 & 56 & 1.33 & 2.4 & 46 & 1.534 & 1.1 & 1.250 & 43.9 & 63 & .56 & .64 & 1.55 & .516 & .57 & .56 & .57 & .56 & .57 & .56 & .57 $		_	I	L	·			τ	= 15); W =	- 933	1ь;	с ^Ф = 5	о8;ъ	= 5 :	n.					T		
$ \begin{array}{c} (9, 2) \\ (9, 2) \\ (1, 2) \\ (1, 2) \\ (2, $	88.6	4.4	88.5	2.85	0.095	20.2	0.89	0.62	0.36	0.86	2.7	0.61	897	1.6	2.5	0.180	38.3 43.9	0.73 .63	0.52	0.44 .64	1.06	0.412 .516	-2.6
$ \begin{array}{c} 02.4 & 10.5 & 20.5 & 21.5 & 21.52 & $	68.4	7.5	68.0	6.28	.125	20.5	1.07	1.27	.76	1.81	4.3	.57	2,568	7.8	6.0	.273	44.8 41.0	.61 .86	.72	1.00	2.39	.653 .751	-3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.6	10.	38.2	15.66	.136	12.9	.99	3.48	1.25	3.00	7.4	.69	3,145	28.6	7.9	.431	41.0	.41	1.46	2,16	5.18	1.695	-5.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.3	5.2	5 0	90.00	.492	6.5	.17				3.2	.61	389		5.8								
$ \begin{array}{c} 10.8 \ 0.6 \ 0.8 \ 0.9 \ 0.00 \ .229 \ 1.5 \ 1.22 \ 1.5 \ 1.22 \ 1.5 \ 1.22 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1.5 \ 1.25 \ 1$	9.1	9.1	0	90.00	.528	11.5	.85				3.1	.34	5,014		14.7								
$ \begin{array}{c} 85.6 & 4.7 & 85.5 & 5.17 & 0.182 & 37.4 & 0.53 & 1.05 & 0.73 & 1.74 & 2.2 & 0.47 & 2.989 & 5.8 & 5.3 & 0.332 & 68.2 & 0.355 & 0.70 & 0.87 & 2.08 & 0.774 & -2.76 & -2.76 & -2.26 & -2.$	10.8	10.0	<u> </u>	90.00	.,2)	1.0	1.22	 τ	= 15); W	= 2,4	.55 11	; C _A =	 544;) b =	, in.		L	L	I	<u> </u>	1	J
$ \begin{array}{c} \textbf{f}_{6.8} & \textbf{5}_{.6} (\textbf{f}_{6.6} (\textbf{k}, \textbf{1k} \textbf{2k}_{2} \textbf{k}_{4.6} (\textbf{k}, \textbf{5}_{1} \textbf{1,27} \textbf{.04} \textbf{2,49} \textbf{2,6} \textbf{.48} \textbf{3,540} \textbf{8.1} \textbf{8}_{.2} \textbf{4,22} \textbf{77.8} \textbf{3.5} \textbf{22.67} \textbf{1.005} \textbf{22.67} \textbf{22.6} 2$	85.6	4.	85.5	3.17	0.182	37.4	0.53	1.05	0.73	1.74	2.2	0.47	2,989	5.8	5.3	0.332	68.2	0.35	0.70	0.87	2.08	0.774	-2.7
$ \begin{array}{c} 62.5 & 10.9 & 61.4 & 10.0 & .215 & 32.2 & .82 & 3.10 & 1.93 & 4.63 & 6.6 & .61 & 9.09 & 93.2 & 10.3 & .490 & 73.3 & .461 & 1.71 & 2.72 & 6.54 & & \\ \hline & & & & & & & & & & & & & & & & & &$	76.8 67.1	5.	66.7	4.14	.242	44.6 38.0	.51	1.27	1.04	2.49	2.6 4.3	.48 .54	3,340 5,628	8.1	6.2 8.6	.422 .508	77.8 81.8	.35 .30	.82	1.20	2.87	1.016	
$ \begin{array}{c} \tau = 30^{\circ}; \ C_{\Delta} = 1 \\ \hline \tau = 30^{\circ}; \ C_{\Delta} = 1 \\ \hline \tau = 30^{\circ}; \ C_{\Delta} = 1 \\ \hline \tau = 30^{\circ}; \ C_{\Delta} = 1 \\ \hline \tau = 30^{\circ}; \ C_{\Delta} = 1 \\ \hline \tau = 30^{\circ}; \ V = 1,156 \ 1b; \ C_{\Delta} = 62.5; \ b = 8 \ 1n. \\ \hline \end{array}$	62.3 39.1	10.	9 61.4 3 37.6	10.04	.215	32.2 27.4	.82	3.10	1.93	4.63 6.17	6.6	.61 .59	9,019 8,777	33.2 82.0	10.3 13.8	.490 .676	73.3 63.5	.46 .27	1.71 2.58	3.55	8.52		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				L	I		I	L		I	τ =	30°;	C _Δ = 1	1	L								
$ \begin{array}{c} \mathbf{r} = 30^{\circ}; \ \mathbf{W} = 1,156 \ 1b; \ \mathbf{C}_{\Delta} = 62.5; \ \mathbf{b} = 8 \ \mathbf{in}. \\ \hline \mathbf{R} = 1,156 \ 1b; \ \mathbf{C}_{\Delta} = 62.5; \ \mathbf{b} = 8 \ \mathbf{in}. \\ \hline \mathbf{R} = 1,156 \ 1b; \ \mathbf{C}_{\Delta} = 62.5; \ \mathbf{b} = 8 \ \mathbf{in}. \\ \hline \mathbf{R} = 1,156 \ 1b; \ \mathbf{C}_{\Delta} = 62.5; \ \mathbf{b} = 8 \ \mathbf{in}. \\ \hline \mathbf{R} = 1,156 \ \mathbf{R} = 1,166 \ R$				3.59				0.17															
$ \begin{array}{c} 81.1 & 3.6 & 81.0 & 2.54 & 0.110 & 13.4 & 1.35 & 0.55 & 0.27 & 0.40 & 0.9 & 0.26 & 2,393 & 1.3 & 2.0 & 0.122 & 14.8 & 1.26 & 0.52 & 0.27 & 0.41 & 0.258 & -3 \\ 68.9 & 5.4 & 68.7 & 4.48 & 1.06 & 11.0 & 1.40 & .79 & .42 & .63 & 2.2 & .40 & 2,902 & 2.1 & 2.3 & .154 & 15.9 & 1.30 & .74 & .47 & .71 & .333 & -4 \\ 68.5 & 6.8 & 68.3 & 5.67 & 1.07 & 11.0 & 1.57 & .90 & .53 & .80 & 3.0 & .44 & 3,555 & 2.6 & 2.5 & .155 & 16.0 & 1.44 & .46 & .60 & .91 & .359 & -5 \\ 51.9 & 7.9 & 51.3 & 8.74 & .115 & 9.0 & 1.28 & 1.28 & 1.28 & .74 & 1.11 & 14.8 & .61 & 3,406 & 4.4 & 3.6 & .222 & 17.3 & 1.12 & 1.12 &99 & 1.48 & .517 & -4 \\ 51.3 & 9.3 & 50.4 & 10.45 & .110 & 8.5 & 1.45 & 1.48 & .88 & 1.32 & 6.0 & .64 & 3,653 & 5.1 & 3. & .240 & 18.5 & 1.26 & 1.29 & 1.24 & 1.67 \\ 538.1 & 7.9 & 37.3 & 11.9 & 1.57 & 8.7 & .89 & 1.65 & .97 & 1.45 & 4.8 & .60 & 1.966 & 4.4 & 2.3 & .308 & 17.6 & .64 & 1.18 & 1.28 & 1.92 & .769 & -3 \\ 39.0 & 7.8 & 28.0 & 15.57 & .152 & 6.6 & .74 & 2.36 & .96 & 1.44 & 4.9 & .62 & 2,309 & 9.5 & .5 & .387 & 16.8 & .51 & 1.63 & 1.54 & 2.31 & 1.07 & -3 \\ 40.7 & 11.2 & 39:1 & 15.95 & .161 & 9.8 & 1.45 & 2.35 & 1.30 & 1.96 & 5.2 & .32 & .361 & 3.4 & .301 & 18.4 & .97 & 1.57 & 1.53 & 2.44 & 770 & -5 \\ 35.6 & 11.7 & 37.6 & 1.65 & .88 & 1.10 & 2.35 & 1.26 & 1.90 & 5.2 & .52 & 3,264 & 9.0 & 3.3 & .351 & 18.4 & .77 & 1.53 & 2.44 & 1.70 & -3 \\ 40.7 & 11.2 & 39:1 & 1.595 & .161 & 9.8 & 1.45 & 2.35 & 1.26 & 1.90 & 5.2 & .52 & 3,264 & 9.0 & 3.3 & .351 & 18.4 & .77 & 1.57 & 1.53 & 2.44 & 770 & -5 \\ 35.6 & 11.7 & 1.37 & 1.59 & .161 & 9.8 & 1.46 & 2.93 & .82 & .26 & .52 & .52 & 3,264 & 9.0 & 3.3 & .351 & 18.4 & .77 & 1.57 & 1.59 & 2.99 & .894 & .44 & .57 & .598 & -5 & .598$		-1				1	A	τ	= 30	°; W	≠ 1,1	156 11	b; C∆ =	62.5	; b =	8 in.				,	· ·		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81.1	3.	6 81.0	2.54	0.110	13.4	1.35	0.55	0.27	0.40	0.9	0.26	2,393	1.3	2.0	0.122	14.8 15.9	1.26	0.52	0.27	0.41	0.258	3 -3.2
$ \begin{array}{c} 1.9 \\ 7.9 \\ 7.9 \\ 7.5 $	68.	5 6.	8 68.	5.67	.107	11.0	1.57	.90	.53	.80	3.0	.44 61	3,535	2.6	2.5	.155	16.0	1.44	.82 1.12	2 .60	91.91 1.48	.359	-5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.	5 9.	3 50.4	10.45	.110	8.5	1.45	1.48	.88	1.32	6.0	.64	3,853	5.1	3.0	.240	18.5	1.26	1.29	1.2	1.87	.556	3 - 5.4
$ \begin{array}{c} 40. (11.2 \\ 5.5 \\ 10.1 \\ 34. 0 \\ 16.56 \\ 165 \\ 8.8 \\ 1.10 \\ 2.5 \\ 1.54 \\ 1.26 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.7 \\ 1.5 \\ 1.7 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.7 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.7 \\ 1.5 \\ 1.$	29.0	7.	8 28.0	15.57	.152	6.6	.74	2.36	.96	1.44	4.9	.62	2,309	9.5	3.5	.387	16.8	.51 .97	1.6	51.54 71.63	2.31	1.107	-3.4
	40. 35.	5 10.	1 34 0	16.56	.165	8.8	31.10	2.35	1.26	1.90	5.2	.52	3,264	9.0	3.3	.345	18.4	.77	1.6	1.7	5 2.59	.89 .89	+ - 4 - 2 2 - 4 - 7
54.8 11.8 52.7 19.74 .158 8.2 1.42 3.15 1.48 2.22 6.1 .52 4,824 13.9 3.t .333 17.4 .69 1.69 1.99 2.99 .694 -4	34.	B 11.	8 32.7	19.14	.158	8.2	1.42	3.15	1.48	2.22	6.1	.52	4,824	13.9	3.8	.333	17.4	.85	1.8	1.9	2.93	. 69	-4.9
$\tau = 30^{\circ}$; W = 2,472 lb; C _A = 133.7; b = 8 ln.		_						1	r ≕ 30	°; W	= 2,	472 1	b; C <u>∆</u> =	: 133.	7; b	= 8 in			1 -	T .	1	T	
$ \begin{bmatrix} 79.2 \\ 5.8 \\ 63 \\ 65 \\ 5.8 \\ 63 \\ 65 \\ 5.65 \\ 5.65 \\ 5.65 \\ 1.80 \\ 17.2 \\ .88 \\ 1.24 \\ .86 \\ 1.29 \\ 2.5 \\ .86 \\ 1.29 \\ 2.5 \\ .40 \\ 3,703 \\ 3.2 \\ 2.6 \\ 2.70 \\ 2.6 \\ 2.70 \\ 25.8 \\ .83 \\ 1.17 \\ .97 \\ 1.45 \\ .97 \\ 1.45 \\ .598 \\ -37 \\ -37 \\ 1.45 \\ .598 \\ -37 \\ -37 \\ 1.45 \\ .598 \\ -37 \\ -37 \\ 1.45 \\ .598 \\ -37 \\ -37 \\ 1.45 \\ .598 \\ -37 \\ -37 \\ -37 \\ 1.45 \\ .598 \\ -37 \\ -$	79.	2 3.	4 79.1	2.48	0.192 .180	2 22.8	80.70	0.6	0.36	0.54	0.2	0.07	2,003	5 1.1 5 3.2	2 2.2	0.197	25.4	0.6	3 0.5 1.1	7 0.39 9	9 0.59 7 1.45	0.42	+ -2. 8 -3.
$\begin{bmatrix} 64.5 \\ 8.7 \\ 63.9 \\ 7.72 \\ 1.63 \\ 1.77 \\ 1.206 \\ 1.36 \\ 1.60 \\ 1.78 \\ 1.36 \\ 2.04 \\ 1.7 \\ 1.26 \\ 1.79 \\ 3.5 \\ 1.40 \\ 6.318 \\ 5.3 \\ 2.5 \\ 1.278 \\ 26.9 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.05 \\ 2.02 \\ 1.02 \\ 1.05 \\ $	64. LL	5 8.	7 63.9	7.7	.18	5 17.7	1.1	5 1.59	31.36	1.75	3.5	.40 .26	6,318	3 5.3 5 8.0	5 2.9	.278	26.9	1.04	21.5	+ 1.3	5 2.02	.63	L -5.
57.5 9.6 56.7 9.63 187 16.1 1.07 1.86 1.38 2.06 6.9 .71 6,558 6.9 3.6 .322 27.8 .92 1.60 1.67 2.51 .752 -5 .57.51 2.55 8 12.59 .170 14.61 .49 2.62 1.63 2.45 7.0 .56 10,301 11.0 3.6 .321 27.5 1.10 1.93 2.11 3.17 .768 -6	57	5 9.	6 56	9.6	3 .18	16.1	1.0	7 1.8	51.38 21.63	2.4	6.9	·71 .56	6,55	8 6.9 L 11.0	3.2	.322	27.8	.92 1.10	21.6	0 1.6 9 2.1	7 2.51 1 3 .17	.75	2 -5. B -6.
51.4 12.1 49.9 13.63 175 13.5 1.36 2.96 1.78 2.66 6.6 .54 10,257 13.5 4.0 .355 27.4 .97 2.11 2.31 3.46 .890 -6 56 61.2 49.113.92 .105 14.0 1.27 2.85 1.80 2.69 6.8 .56 9.693 13.2 4.0 .397 30.1 .79 1.77 2.45 3.67 .994 -5	51	4 12	1 49.	13.6	.17	5 13.5	1.3	5 2.9 7 2.8	5 1.7	32.6	6.6	.54 .56	10,25	7 13.5	5 4.0 2 4.0	.355	27.4	.9	2.1	1 2.3	1 3.46 5 3.61	.890 .994	-6. -5.
45.111.243.714.42. $17311.71.193.3612.443.6677.6$. $6899.02415.44.($. 42829.0 . $712.002.613.921.106-5$. $42.112.443.714.42$. $17311.71.123.612.443.667.0$. $6899.074819.0$. $4.61.42829.0$. $712.002.613.921.106-5$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.22829.0$. $712.002.613.921.106-5$. $4.22829.0$. $4.2829.0$. 4.282	45.		2 43	7 14.4	1.17		71.1	9 3.3	61.78	32.6	7.6	.68	9,02	+ 15.4 B 19.0	+ 4.0 0 4.6	.428	29.0	.71	2.4	2 3.2	1 3.92	1.10	6 - 5. 0 - 5.
33.5 9.2 32.2 16.00 1.80 9.0 .63 3.22 1.42 2.13 6.8 .74 4,464 13.8 3	33.	5 9	2 32.	16.0	1.18	9.0	.6	3 3.2 8 3.7	21.42	2.80	6.8	.74	4,46	4 13.4 1 17.1	B 3. 7 4.:	.590 .483	29.7	- 30 - 75	3 1.9 5 2.8	4 2.9	4 4.4] 9 4.48	. 1.65 1.31	6 -2. 0 -4.
	38.	4 12	1 36.	5 18.3	.17	B 10.	5 .9	8 3.8 8 3.3	01.8 61.8	2.8	18.1 27.8	.67 .66	7,41	4 17 6 15	5 4.0 5 4.0	.586	3 33.9	.7	2 2.8	0 3.0	3 4.45 2 4.2	5 1.50 5 1.35	9 -3. 0 -4.

TABLE IV. - EXPERIMENTAL DATA FROM TESTS OF FLAT-BOTTOM (0° DEAD RISE) 5-IN H- AND 8-INCH-BEAM MODELS - Concluded

 $\beta = 0^{\circ}; b = 8$ in.

 $\beta = 0^{\circ}; b = 5 in.$

L-58-2558

(b) Photographs of models mounted on the Langley impact-basin carriage boom.

Figure 1.- Concluded.

Figure 2.- Typical time histories of impact loads and motions of a 30° dead-rise model. $C_{\Delta} = 208; \tau = 15^{\circ}$.

Figure 3.- Typical variations of coefficient data with initial flightpath angle. $\beta = 30^{\circ}; \tau = 9^{\circ}; C_{\Delta} = 208.$

Figure 4.- Typical time histories of impact loads and motions of a 30° dead-rise model. $\tau = 15^{\circ}$.

Figure 5.- Variation of coefficients with initial flight-path angle and various beam loading coefficients. $\beta = 30^{\circ}; \tau = 15^{\circ}$.

Figure 6.- Typical time histories of impact loads and motions of a 30° dead-rise model. Coefficients reduced by C_{Δ} factors. $\tau = 15^{\circ}$.

(a) C_{L,max}.

Figure 7.- Variation of coefficients reduced by beam-loading factors with initial flight-path angle. $\beta = 0^{\circ}$.

Figure 7.- Continued.

(a) $C_{L,max}$.

Figure 8.- Variation of coefficients reduced by beam-loading factors with initial flight-path angle. $\beta = 30^{\circ}$.

Figure 8.- Continued.

Figure 8.- Continued.

Figure 8.- Continued.

Figure 8.- Continued.

Figure 8.- Concluded.

Maximum impact lift coefficient, ${}^{\rm C}{\rm L},{}^{\rm max}$

