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SUMMARY

Experimental data were obtained from the Explorer VII
satellite on five parameters pertinent tothe problem of the inter-
action of space vehicles with an ionized atmosphere. The five
parameters are: photoemission current due to electrons emitted
from the satellite surfaces as a result of solar radiation; electron
and positive ion currents due to the diffusion of charged particles
from the medium to the spacecraft; the vehicle potential relative
to the medium, and the ambient electron temperature. Included in
the experimental data is the aspect dependence of the photoemis-
sion and diffusion currents. On the basis of the observations,
certain characteristics of the satellite's plasma sheath are
postulated.
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INTRODUCTION

This discussion is concerned with one type of interaction between a space vehicle
and an ionized atmosphere. Specifically, it deals with the equilibrium potential of the
Explorer VIII satellite, and the current exchange between this spacecraft and the iono-
sphere. The experimental data presented herein are fundamental to the characteristics
of the plasma sheath surrounding a space vehicle. We are dealing, then, with an interac-
tion confined to the proximity of the body. Since all disturbances must begin right at the
body itself, these data may be found useful in evaluating other types of interactions that
have been postulated.

Both the characteristics of the ionosphere and those of the space vehicle contribute
to their mutual interaction. For an orbiting satellite, the sheath properties are determined
by the following factors:

Parameters of the Undisturbed Ionosphere:

1. the ambient electron temperature, T,;
2. the random electron current density, J;
3. the random ion current density, J,;

4. the magnetic field, B.

Factors Due to the Presence of the Satellite:

1. radio-frequency fields used for telemetry transmissions;
2. the conductivity of the surface;
3. the photoemission current density (jp) due to solar radiation;

4. the satellite motion.



For a conducting body at rest where RF and magnetic fields and solar radiation may
be neglected, the equilibrium potential is given by:

-kT, Je

$o = = In i , (1)

where k is Boltzmann's constant and e the electronic charge. Since j_ >> J,, ¢ will
be negative; this will result in a positive ion sheath with a thickness related to T_ and to
the electron concentration N .

Consider now the factors introduced by the presence of the satellite. It is known that
antennas radiating RF fields can, by a rectifying process, cause a larger negative poten-
tial than would be expected from Equation 1. However, experimental observations made
from rockets (Reference 1) during RF silence have been compared with data taken in the
same flight during RF transmissions. These data show that for the amount of power
{100 mw) and the frequency (108 Mc) used by the Explorer VIII telemetry system, the RF
field effect due to telemetry transmissions can be neglected.

The satellite motion affects the sheath in the following manner. Since the satellite
velocity greatly exceeds that of the positive ions, the random ion current is essentially
incident over that portion of the satellite surface projected in the direction of motion.
The electron current also should be greatest at the forwird surface, although the effect
-will be smaller because of the higher thermal velocities of the electrons.

The electron current is also affected by the magnetic field, as Beard and Johnson
(Reference 2) have described. The motion of the satellite with velocity v through the
magnetic field produces an induced potential that is a fui.ction of position on the satellite
surface,

¢ = gy + (Vx B) - d (2)

where ¢, would be the satellite potential with no magnetic field, and d is the vector dis-
tance of any point on the surface from the satellite center. A satellite potential of ¢,
will be measured at all points that lie on a plane through the satellite center perpendic-
ular to V x B, All other points will be more positive or negative than ¢, as they are
situated on one side of this plane or the other. The max mum electron current would be
expected where » is most positive, i.e., near the point corresponding to the direction
¥ x B.

The photoemission current density J, tends to make i3, more positive. At low
electron concentrations photoemission can predominate, resulting in a positive ¢, and a
sheath containing electrons.
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If the effects of the magnetic field and satellite velocity on the electron current can
be neglected, the following expression for the satellite potential is valid:

KT .S
ibo = —e— ln ——— 77— (3)
des + fjpdS

where the integration is over the satellite surface S. To take the electron current varia-
tions into account, it is necessary to return to the fundamental equation for current
balance:

[1oas = roas «fras. 4)

This report will present experimental values — obtained from the Explorer VIII satel-

lite — of the electron diffusion current i_, the ion diffusion current i,, and the photo-

e?
emission current i, as functions of the orientation of those points relative to the velocity,
solar, and magnetic field vectors. Also presented will be measured values of ¢ and T,.
These experimental observations will then be used to postulate a qualitative model of the
plasma sheath and a quantitative model of the current exchange between satellite and

medium.

THE EXPLORER VIII SATELLITE

Explorer VIII was launched on November 3, 1960, from Cape Canaveral, Florida, into
an orbit with an inclination of 50 degrees to the equator, a perigee of 425 kilometers, and
an apogee of 2300 kilometers. Its planned active life was two months. The primary mis-
sion of this Ionosphere Direct Measurements Satellite, which is only incidental to this
report, was the in-situ measurement of electron density and temperature and of positive
ion concentration and mass.

A photograph of the satellite, highlighting the characteristics pertinent to this dis-
cussion, is presented in Figure 1. The aluminum shell, consisting of two truncated cones
joined at the equator by a short cylinder, is 30 inches in diameter at the equator and 30
inches high. Non-conductive thermal coatings are located on both cones in a pattern con-
ducive to the maintenance of an equipotential surface. Two ten-foot wires, shown re-
tracted in the photograph served as a shortened dipole for an RF impedance experiment
designed to measure N_. A combined solar-horizon seeker provided supporting informa-
tion on the satellite orientation.

Data from only four of the satellite's many sensors are considered in this presenta-
tion. They are:



1. an ion current monitor, responsive only to the incoming positive ions;

2. an electron current monitor, responsive to the sum of the incoming electron current
and outgoing photoemission current;

3. a total current monitor, responsive to all three tipes of current;

4. an electron temperature probe, responsive only t) electron current and which
measures ¢ and T,.

The locations of these four sensors relative to the aspect sensor are shown in Figure 2.
All but the electron temperature probe are centered on the equator. The latter sensor is
positioned near the forward end of the spin axis as shown in Figure 1.

In order to evaluate in detail the simultaneous effect of all the sheath-influencing fac-
tors cited in the introduction, a single set of conditions was chosen wherein favorable
satellite orientation permits clear delineation of the dependency of the ion, electron, and
photoemission currents on the location of the velocity, solar, and magnetic field vectors.
Consequently, all of the reported data will be for the orientation described by Figure 3.
Of major importance is the fact that the velocity and solar vectors are separated by
159 degrees. This permits separate scanning of the solar and velocity dependent quan-
tities as the satellite spins. The solar elevation angle was 33 degrees on the upper
cone and the velocity vector depression angle was 15 degrees on the lower cone. All the
data were acquired within two minutes of 22:57 UT on 27 November 1960, at which time
the satellite's altitude was 1000 kilometers and its geogr.aphic coordinates were 33°N and
84°E. The spin rate was 21.4 rpm at this time.

MEASURED VALUES OF POSITIVE ION CURRENT

The positive ion current flowing from the ionosphere to the satellite was monitored
by a sensor shown schematically in Figure 4. The senso: is constructed in planar geom-
etry and contains three parallel electrodes. The outermost grid is flush with and elec-
trically connected to the satellite skin. The inner grid is biased negatively to suppress
photoemission from the collector and to remove incoming electron current from the
measured collector current. This collector current i, is related to (i,)g , the current
incident at the skin, by

i, = o (iy)g (5)

where ., is the combined electrical transparency of the two grids for positive ions.

The experimental collector current is plotted in Figure 5 as a function of the azimuth
angle of the sensor relative to the velocity and solar vectors. The absence of a current
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when the sensor is pointed at the sun is proof that photoemission from the collector has
been successfully suppressed. The behavior of i, relative to the velocity vector is in
good agreement with that predicted by Whipple (Reference 3) in the following general
equation which takes into account all values of the satellite-to-ion velocity ratio:

2
i = aNeA Vcos@(%‘r%erfx) + 28X =x2) P (6)
2

where x = (V cos 6/a) - /|¢|e/kT, and where A is the area of the collector, N the parti-
cle concentration, a the most probable thermal velocity of the particle, and ¢ the angle
between the sensor and the velocity vector. This expression has been derived for plane
geometry and is valid for either ions or electrons if the appropriate values and signs for
the symbols are observed. For angles less than 45 degrees in Figure 5, the observed
currents are fitted by the reduced equation:

i, = a,AN,eV cos &. (7)

With an in-flight calibration of the combined electrical transparency of the two grids

(92 percent), a value for N, of 1.3 x 10*/cm? is computed. This is consistent with
electron concentrations obtained from the RF impedance probe experiment also carried
on Explorer VIII. Ionosonde data taken at this geographical position and at this time yield
an electron density of 7 x 10° electrons/cm3 at an altitude of about 300 kilometers. The
positive ion concentration measured from the satellite agrees with this value, assuming an
ionospheric model with a neutral gas scale height of 60 kilometers, diffusive equilibrium,
and a predominant 0* constituent.

One important qualitative conclusion related to sheath characteristics can be drawn
from Figure 5: The absence of a positive ion current on the side away from the velocity
vector is definite experimental evidence for an electron sheath immediately adjoining the
vehicle at this location.

In Figure 6 are plotted values of ion current density computed from i,/A as a func-
tion of the total angle relative to the velocity vector. The solid line is a theoretical
curve based on Equation 6. The agreement between the observed currents and the equa-
tion is evident. However, to get agreement for angles greater than 45 degrees, a value
of 3.6 x 105 cm/sec had to be used in the equation for the most probable ion thermal
velocity. This value corresponds to an anomalously high ion temperature if only 0* is
assumed, but is reasonable if there is a significant amount of H*; the implication is that
at 1000 kilometers the satellite is near the transition region between the upper ionosphere
and the protonosphere. Another possible explanation is that Equation 6 should be modi-
fied to account for the effect on the positive ion collection of electric fields penetrating
the sheath at the sides of the satellite (Reference 4).



MEASURED VALUES OF ELECTRON CURRENT

A sensor responsive to the sum of the incoming electron current and the outgoing
photoemission current is illustrated schematically in Fizure 7. It is mechanically iden-
tical to the ion current monitor but differs electrically i1 that the inner grid is biased
positively rather than negatively. The positive bias serves to remove the incoming ion
current from the measured collector current. The collector current is given by

S D 19(19)8 + ap(xp)sY (8)
where o, and a, are the respective grid transparencies.

The experimental collector current is plotted in Figure 8 as a function of aspect.
The current has its maximum positive value (photoemission) when the azimuth angle of
the sensor relative to the sun is zero. As was postulated in the introduction, the incoming
electron current should be a function of the sensor orientation relative to both the velocity
and the magnetic field vectors. In this case, the maximim electron current on the shaded
side is observed when the angle between the sensor and he cross-product of the velocity
and magnetic fields vectors (V x B) approaches a minimim. This is as expected because
at this time during a spin period the surface near this sensor location would be at its most
positive point,

MEASURED VALUES OF TOTAL CURRENT

The total current to the satellite was measured at its equator by the sensor illustrated
in Figure 9. It consists simply of a collector flush with and insulated from the satellite
skin. This collector current is given by

=y = () *Up,+ ) - 9)
It represents then, the sum of the effects of Figures 5 and 8, except that the overall ampli-
tude of each component is larger since no grid transparencies are involved.

The total current at the point of measurement is plctted as a function of aspect in
Figure 10. It is in definite agreement with the predominant features of the graphs in
Figures 5 and 8. Specifically, the current peaks in the positive direction when the solar
angle is zero because of photoemission. The current peaks again in the positive direction
for a velocity azimuth angle near zero. The peak here is due to the ""ram effect” upon
which the positive ion current is largely dependent. The displacement from the zero
angle point is due to the influence of the electron current in this region. Finally, a peak
current in the direction of an incoming electron current occurs when the angle between
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the sensor and the cross-product of the velocity and magnetic field vectors (V x B) ap-

proaches a minimum.

The satellite spin permits examination of the separate behavior of each of the three
currents comprising the total current curve. This in turn makes it possible, by compari-
son of Figure 10 with Figures 5 and 8, to assign an electrical transparency to the grids
used in the ion and electron current monitors. This in-flight calibration shows that the
combined electrical transparency of two parallel grids for positive ions is approximately
the optical transparency. On the other hand, the electrical transparency for electrons
is only about 30 percent of the optical transparency — an important observation in evalu-
ating electron temperature data, which are discussed in a later section.

A significant quantitative value derived from Figure 10 is the measured value of the
photoemission current density (5 x 10-? ampere/cm?) taken right at the vehicle surface
for a minimum solar angle. This value can be compared with the random electron cur-
rent density computed from ionospheric models to predict an approximate altitude at
which the spacecraft potential can become positive. For most ionospheric models, this
should occur at about 4000 kilometers, not too far above the apogee altitude of Explorer
VIIL,

MEASURED VALUES OF ELECTRON TEMPERATURES
AND EQUILIBRIUM POTENTIAL

The sensor illustrated schematically in Figure 11 was used on a time-sharing basis
to monitor alternately the incoming electron current at the sensor location and, in the
other half of its duty cycle, electron temperature and equilibrium potential. The sensor
consists of two electrodes, a grid, and a collector. The collector is biased positively to
remove photoemission and incoming ion current from the measured collector current.
During one time phase the grid is kept at the skin potential, thus permitting a measure-
ment of the incoming electron current as a function of aspect. During the other time
phase the grid potential relative to the satellite skin is varied from -1.2 to +8 volts to
obtain ¢ and T_. The period of the grid voltage sweep is kept small (0.2 seconds) so that
the collector current can be studied as a function of the grid voltage for small changes in
orientation. At the satellite spin rate, it was possible to obtain a volt-ampere curve for
a change in orientation of about 25 degrees.

Figure 12 is a typical volt-ampere curve taken during the phase when the potential
of the grid relative to the satellite skin was varied in accordance with the waveform il-
lustrated in Figure 11. The shape of the electron current curve, plotted on a logarithmic
scale, is in good agreement with Langmuir probe theory. Two distinct slopes are apparent
in the regions where the grid is below and above the plasma potential. The slope of the
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curve when the grid potential is negative is a measure of the electron temperature. The
satellite potential is generally taken as the negative value of either the point where the
curve departs from this slope, or the intersection point of the two slopes. For the
illustrated curve, an electron temperature of 1800° + 300°K and a satellite potential be-
tween 0 and -0.15 volt is obtained. The error quoted in the temperature is due to the

limited resolution.

Additional volt-ampere curves taken at this time for different sensor orientations are
not presented here. These other curves show that as the satellite spins, the same values
of electron temperature are obtained. The major difference is the current read at the
plasma potential. These values are consistent with the c¢lectron current behavior when
the grid is maintained at zero volts as shown in Figure 13.

The large scatter of points in Figure 13 as compared to all the previous graphs oc-
curs because the electrometer sensitivity range is such :hat the input voltage to the
telemetry system is small. The scatter is due, therefor e, to random fluctuations of the
telemetry subcarrier at low signal levels. Despite this difficulty, it is apparent that the
electron current peaks when the velocity vector azimuth angle is zero. From this ob-
servation, together with an examination of the relative values of Vv and ¢ in Equation 6,
it can be concluded that the potential of the upper cone relative to the medium must be
close to zero as indicated above or can even become positive as the satellite spins.

Figure 14, which depicts the orientation of the satel ite with respect to the magnetic
and velocity vectors, verifies this implication. The sen:or on the upper cone always re-
mains on the "positive' half of the satellite, i.e., the side that is positive with respect to
o Moreover, the change in the distance from the ¢, plane is only 24 centimeters, cor-
responding to a change in potential of about 0.04 volt. Ir contrast, the potential on the

2

equator changes by at least 0.14 volt and becomes more negative than ¢,. (Values of
7.4 x 10° cm/sec for v and 0.30 gauss for B were used in the above computation). Note
also that the electron current in Figure 13 is consistently larger than that to the sensor

on the equator, as would be expected.

It remains to point out that these conclusions regarcing the potential are necessary
but not sufficient to explain Figure 13. The observed current modulation requires a
lower electron temperature than the 1800°K discussed ii. the preceding paragraphs. As
was suggested previously, there is evidence that the electrical transparency of the grids
to electrons is a function of the electron energy, the fast electrons getting through more
readily. This situation would tend to enhance any curreit modulation present, and it is
suggested that this is in fact occurring here. A changin: grid transparency may also
affect the determination of temperature. A thorough evzluation of the grid transparency
effect on the electron temperature measurement has not yet been completed.

¥901-a
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SHEATH CHARACTERISTICS POSTULATED FROM
EXPERIMENTAL OBSERVATIONS

It is concluded that the experimental data from the various sensors are mutually con-
sistent. These data can be used to postulate a qualitative model of the sheath character-
istics and a quantitative model of the current exchange between the satellite and the

medium.

First, the value of the satellite potential on the upper cone is between 0 and -0.15
volt. The satellite surface is not equipotential. The motion of the satellite through the
magnetic field causes an induced potential, so that the potential is very close to zero or
positive in the V x B direction and correspondingly more negative at the other end.

The potential distribution on the surface has a marked effect on the observed elec-
tron current, with most electrons incident at the more positive end. It should be noted
that there was a net electron current to the skin even when the current flow was perpendic-
ular to the magnetic field. A qualitative model of the sheath surrounding the satellite is
illustrated in Figure 15, showing also the effects of solar and velocity vector orientations
on the various current exchanges. The electron current shows a ram effect due to the
satellite motion if the frontal surface is favorably situated with respect to the more posi-
tive end of the satellite.

The positive ion current density is a function only of the angle between the surface
normal and the satellite velocity vector. The absence of this current behind the satellite
indicates that there is an electron sheath or wake adjoining the rear surface. If it is
assumed that the wake is in the form of a cone, its size may be estimated from the ratio
of satellite to ion velocities and the satellite diameter. In this case the cone has a half-
angle of about 25 degrees and extends back a distance of about one satellite radius. A
positive ion sheath surrounds the front of the satellite and should envelope both the satel-
lite and the electron wake. The thickness of the ion sheath would be comparable to one
Debye length, which is computed to be 2.5 centimeters.

Finally, there is a photoemission current on the satellite surfaces facing the sun.
This current is important in considering the current balance to the satellite and thus the
equilibrium potential. However, photoemission does not appear to disturb the sheath
adjacent to the emitting surface.

The sheath model illustrated in Figure 15 is for an altitude of 1000 kilometers. The
measured positive ion density is 1.3 x 10%/cm3. A neutral gas scale height of 60 kilo-
meters, corresponding to a temperature of about 1100°K, is indicated by comparison of
this N* with ionosonde data. An electron temperature of 1800° + 300°K was measured by
the electron temperature probe. However, this value could be influenced by the effect on
the probe's grid transparency of a changing electron retarding potential; the percentage
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modulation of the electron current by the satellite velocity indicates a somewhat lower
value for T_. The behavior of the positive ion current at the satellite sides suggest the
possibility that the transition region between the ionosphere and the protonosphere is near
1000 kilometers.
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THERMAL COATING

(1) ELECTRON CURRENT MONITOR
(2) TOTAL CURRENT MONITOR

(3) ELECTRON TEMPERATURE PROBE
(4) ASPECT SENSOR

Figure 1 - lonosphere Direct Measurements Satellite (Explorer V1II)
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Figure 11 - Electron temperature probe
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ELECTRON CURRENT (AMPERES)

10-6

10-7

1078

10-9

-2 -1 0 +1 +2 +3
Date: 27 Nov 60
Time: 22:59 UT
Altitude: 920 KM
Position: 78°E, 37°N

~2 -1 0 +1 +2 +3

GRID-TO-SATELLITE POTENTIAL (VOLTS)

Figure 12 - Typical volt-ampere curve for electron temperoture probe
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Figure 15 - Qualitative satellite sheath model postulated from experimental data












