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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 4-15-59L

CHARTS OF THE INDUCED VELOCITIES NEAR A LIFTING ROTOR

By Joseph W. Jewel, Jr., and Harry H. Heyson

SUMMARY

A compilation of charts of the induced velocities near a lifting

rotor is presented. The charts cover uniform as well as various non-

uniform distributions of disk loading and should be applicable to many

aerodynamic interference problems involving rotors.

INTRODUCTION

Many problems of helicopters and convertiplanes originate in the

action of the rotor flow field on different portions of the machine.

A few of these problems (see refs. 1 and 2) are the mutual interference

between the rotors of multirotor helicopters, the interference between

the wing and the rotor of a convertiplane, and the effect on stability

of the rotor downwash acting on the tail.

In order that the designer may cope with these problems, a knowledge

of the induced velocities in the vicinity of the rotor is necessary.

Several theoretical investigations have dealt with this subject. The

results of the most basic studies are given in references 3 and 4. These

papers are, however, of limited usefulness to the designer because of
the restricted locations for which the induced velocities were calculated.

References 5 and 6 use methods of numerical integration to obtain induced

velocities throughout the longitudinal and lateral planes of a uniformly

loaded rotor. The results of these investigations are presented in

simple, easy-to-use, chart form. This work has recently been extended

(ref. 7) by means of an electromagnetic analog to obtain induced veloc-

ities throughout almost the entire field of the rotor for one case repre-

senting a high-speed flight condition.

Experimental results from a comprehensive rotor-downwash investiga-

tion are presented in references 8 and 9. A preliminary analysis of

these results (ref. 8) indicated that the average of the induced veloc-

ities across the span of a rotor is approximated rather well by the cal-

culated induced velocities in the longitudinal plane of a uniformly

loaded rotor (ref. 5). However, more complete analysis (ref. 9) indicated

that the actual local velocities differ greatly from the average across



the span. Thus, there is a distinct possibility that large errors may
result from the use of the uniformly loaded rotor calculations to obtain
the interference velocities for surfaces of short span such as the usual
helicopter horizontal tail.

The actual local induced velocities are largely a function of the
distribution of load upon the rotor disk. Reference 9 gives a numerical
method for converting the uniformly loaded rotor flow to correspond to
that for a rotor with an arbitrary, nonuniform, axisymmetric, dlsk-load
distribution. In addition, reference 9 gives charts of induced velocity
for two different reasonable distributions of disk load for the longitu-
dinal plane of symmetry of the rotor. These charts were limited to this
one plane because only reference 5 was available at that time.

The more recent appearance of references 6 and 7 has madeit possi-
ble to extend these calculations to manyadditional areas near the rotor.
The actual numerical work required to obtain the induced velocities for
nonuniformly loaded rotors is quite tedious. It is, therefore, desirable
for design purposes to have these velocities available in a simple chart
form.

The purpose of this paper is to provide induced-velocity charts for
several appropriate nonuniform disk loadings and for a numberof wake
skew angles. In order to increase the utility of the calculated results,
induced-veloclty charts previously published in references 5, 6, 7, and 9
are also included in this report to provide, under one cover, a compila-
tion of almost all available rotor-induced-velocity calculations. Details
of the method of calculations and of the extent of the correlation with
experiment are not presented herein inasmuchas the present work is
intended to supplement rather than to supplant the more basic references.

SYMBOLS

aI

CT

R

r

All symbols are defined with respect to the control axis.

longitudinal first-harmonic blade flapping angle, deg

rotor thrust coefficient,

rotor radius, ft

T
2 2(SR)

radial distance from Z-axis, ft

T thrust, ib
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V

V

v o

X,Y,Z

CL

h

P

X

forward velocity of rotor, ft/sec

local induced velocity, ft/sec

momentum-theory value of rotor induced velocity,

ft/sec

CTnR

Cartesian coordinates centered in rotor plane (see fig. i), ft

rotor control-axis angle of attack, deg

rotor inflow ratio,
V sin _ - v o

rotor tip-speed ratio,
V COS

_R

mass density of air, slugs/cu ft

wake skew angle, angle between Z-axis and axis of wake (see

fig. 1), tan-1 (-_ + al, deg

rotor azimuth angle, measured from X-axis in direction of

rotation, deg

rotor rotational speed, radians/sec

RESULTS

General Considerations

A uniformly loaded rotor has the simplest possible loading. The

circulation along the blade is constant, and vortices are shed only at

the tip; thus the wake may be considered as a single vortex cylinder.

Numerical methods for calculating the induced velocities directly from

this comparatively simple vortex system are given in references 5 and 6.

If, however, the loading is nonuniform, the circulation will vary

along the length of the blade, and vortices must be shed all along the

blade instead of only at the tip. Thus, the wake may be considered as

a series of concentric vortex cylinders. To calculate the induced

velocities directly from this vortex wake would be a particularly arduous



4

task. The direct calculation maybe avoided, however, since the field
of each of the vortex cylinders is, except for dimensions, the sameas
that of the uniformly loaded rotor of references 5 to 7. Thus, super-
position maybe used to develop the field of a nonuniformly loaded rotor
from that of the uniformly loaded rotor. The entire process is exactly
analogous to the use of the horseshoe vortex in developing the field of
a nonunlformly loaded wing. Details of the treatment for a rotor are
given in reference 9 and the results are presented rather compactly in
chart form. In the present paper, all the charts are presented with
reference to the axis system shownin figure 1.

Loadings Considered

The dlsk-load distributions considered in the present paper are
shown in figure 2. Note that the disk loading varies as 1/r times
the blade loading (ref. 9). The calculated-flow charts are presented
in figures 3 to 20. Table I has been prepared to facilitate reference

to these charts. A few remarks appropriate to the choice of each loading

are presented in the following sections.

Uniform loadln_.- As pointed out previously, the induced-flow field

of the uniformly loaded rotor is calculated directly from the wake-vortex

system. No new uniformly loaded rotor calculations have been made for

this paper, the charts having been collected from references 5 to 7.

They are included in the present report since they are fundamental in

the calculation of the fields of nonuniformly loaded rotors.

Tria_lar loadin6.- The triangular loading was chosen because it

is the simplest possible loading which is representative of an actual

helicopter rotor in all flight conditions. This loading is zero at the

rotor center representing the presence of a nonlifting hub. The load

increases linearly toward the rotor tips; thus the elementary considera-

tions of increasing blade-sectlon velocity along the blade are satisfied.

Typical loading.- The typical load distribution is similar to the

average radial load distribution measured doLring wind-tunnel tests of a

rotor having untapered, untwisted blades. These blades were equipped

with instrumentation for measuring the actual pressure distribution.

(See ref. lO.) The loading used herein represents a typical cruising

condition for a lightly loaded rotor.

Uniform loadin6with cutout.- Helicopter rotor blades are often

tapered and twisted in order to approximate the optimum condition of

uniform loading in hovering. This condition is, of course, not realiz-

able in the region of the hub; thus the actual loading will be similar

to that called "uniform with cutout" in this paper. The charts for this



1 since,loading are limited to two skew angles of tan -I 0 and tan -I
in practice, this loading can be achieved only at very low speeds. Sev-
eral charts for this type of loading have also been prepared for the
plane of the rotor at one high skew angle (X = tan -1 10). These charts
are not intended to represent any practical case but are presented only
to illustrate the magnitude of the effect of a cutout on the induced-
velocity distribution.

DISCUSSION

The discussion of the calculated results will be very brief in this
paper since manyof the charts showthe samecharacteristics that have
been discussed in reference 9. The reader's attention is directed to
that paper for a more complete discussion of the results and to refer-
ences l, 8, and 9 for a discussion of the extent to which the calculated
induced velocities correlate with measurements.

Longitudinal Plane

A comparison of the charts for the various loadings in the longi-
tudinal (XZ) plane indicates that the near field of the uniformly loaded
rotor is considerably different from that of the nonuniformly loaded
rotors. This difference is particularly noticeable near the center of
the rotor, where the induced-veloclty ratio is 1.0 for uniform loading
but zero for the nonuniform loadings. In general, the triangular and
typical loadings result in very similar fields in this plane. At least
for the low skew angles considered, however, the uniform loading with
cutout results in a flow field which, except near the center of the wake,
is very nearly like the flow field for a completely uniform loading.
At greater distances from the wake and rotor, only very small differences
in the flow are observed for widely different loadings.

Lateral Plane

The flow field in the lateral (YZ) plane is very sensitive to the
details of the actual loading. A comparison between the charts corre-
sponding to the various disk-load distributions reveals significant dif-
ferences in each case. The calculated flow is symmetrical with respect
to the longitudinal center plane as a result of the assumption in the
analysis that the loading and the corresponding wake vorticlty are
symmetrical. In practice, however, as the tip-speed ratio _ is
increased the loading becomesmore unsyrmnetrical because of the different
velocities on the opposite sides of the rotor. No complete theoretical



treatment of this effect is available as yet, but estimates of the dis-
symmetry can be madefrom the experimental results of reference 9.

A point worthy of notice is the small lateral extent of the upwash
region below the center of the rotor. This trend should also be evident
farther rearward. (See, for example, the flow-survey data of ref. 9.)
The practical aspect of this type of flow distribution is that the charts
for the longitudinal plane are strictly applicable only to tail surfaces
of zero span. There maybe a large gradient of induced velocity across
a tail of large span, and the average induced velocity across the tail
will be correspondingly different. (See refs. i and 8.)

Plane of Rotor

The usefulness of the charts for the plane of the rotor is somewhat
restricted since reference I has already shownthat these charts repre-
sent only the time-averaged induced velocities which are useful for cal-
culating interference effects. Thus, these are not the effective or
instantaneous induced velocities which are actually sensed by the blades
and which are required for vibration studies. Several qualitative trends
are, however, emphasizedby a brief examination of the calculated flow
in the plane of the rotor. Figures 18(a), 18(b), and 18(c), indicate
that the loading gradient in the outer portion of the blades has no large
effect on the induced-velocity distribution over the front half of the
rotor. This is shownin particular by the similarity of the induced
velocities within the three-quarter-radius point in figures 18(b) and
18(c). Notice also the corresponding similarity in the disk loadings
shownin figure 2.

The predominant feature of the flow in the rear half of the plane
of the rotor is the presence of a region of upwash (negative induced-
velocity ratios) just behind the center of all the nonuniformly loaded
rotors and the uniformly loaded rotors with cutout. The extent and mag-
nitude of this upwash is primarily a function of the size of the cutout
(figs. 18(d), 18(e), and 18(f)). Notice the large effect caused by even
an extremely small cutout in an otherwise uniformly loaded rotor
(fig. 18(d)).

As mentioned previously, although these time-averaged induced veloc-
ities are applicable to performance and stability studies they are not
directly applicable to detailed blade-loading and vibration studies.
There remains, however, a possibility that the time-averaged induced
velocities may yield qualitative trends with regard to these problems.
If such should prove to be the case, figure 18 would indicate that blade
twist, which increases the loading gradient near the hub cutout, might
tend to aggravate rather than to relieve rotor blade vibration.
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CONCLUDING REMARKS

This report presents an extensive compilation of charts of the

induced velocities near a lifting rotor. Both uniform and nonuniform

disk-load distributions are considered. These charts may be conveniently

applied to calculations of the interference between the rotor and wings,

tails, or other rotors in its vicinity, but they are probably not appli-

cable to studies of blade vibrations.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., January 21, 1959.
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Figure 9.- Contours of induced-velocity ratio

plane of the rotor for
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+  rlR

(a) Uniform disk loading (from ref. 6).
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in the lateral

X = tan -I 2 = 63.43 °.
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(a) Uniform disk loading (from ref. 6).

Figure ii.- Contours of induced-velocity ratio v/v o in the lateral

plane of the rotor for X = tan -I 4 = 75.97 °.



56

.8 I0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 26 28 50

-* Y/R

(b) Triangular disk loading.

Figure ii.- Continued.
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(a) Uniform disk loading (from ref. 7).

Figure 12.- Contours of induced-velocity ratio v/v o in the longitudi-

nal plane of the rotor for X = tan -I i0 = 84.29 ° .
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Figure 12.- Continued.
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Figure 13.- Contours of induced-velocity ratio v/v o in the radial
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X = tan -1 lO = 84.29 ° .



42

Z/R
0

2.0 1.0 0 1.0

r/R

(b) Triangular disk loading.

20

Figure 15.- Continued.
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(a) Uniform disk loading (from ref. 7).

Figure 14.- Contours of induced-velocity ratio v/v o in the radial

planes _ = 60 ° , 120 ° , 240 °, and 300 ° of the rotor.

× = tan -1 lO = 8h.29 °.
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Figure 15.- Continued.
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(a) Uniform disk loading (from ref. 6).

Figure 17.- Contours of induced-velocity ratio

plane of the rotor for

V/Vo in the lateral

X = tan -I _ = 90.00 ° .



_4

0

oJ

oJ

od

c,J

0
oJ

0

-- -r-I

.,-t 0

-- % !

ht?

- _ _

0 _

,0

CO

Od

Q CO tO 0

+1

CO tD od 0

0



0 0

N

÷!

0

0

o.

0

0

_c

55

_d

0

o

©

,--t

o

!

,-t

.r-i



56

_oo •
O_

co

0

•H o

o o
r-t c)

,--t

• .r'-I



57

Oh

0
o

o

•,.-40J

0

_-_ 0

I

4-_
.rt

o

o

o

b

4._
.r-t

•,-4 _

o
o o

o

u_
°_

•r-t 0

eJ



58

_vo

2

I

0

2

t

0

2

I

0

2

I

0

2

1

0 I 2 5

X/R

(a) Uniform disk loading (from refs. 5 and 7)-

Figure 19.- Induced-velocity distribution along the longitudinal axis
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Figure 19.- Continued.
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