CASE FILE NASA OPY MEMORANDUM

HEAT TRANSFER IN A LIQUID METAL FLOWING

TURBULENTLY THROUGH A CHANNEL WITH A

STEP FUNCTION BOUNDARY TEMPERATURE

By H. F. Poppendiek

CONVAIR, A Division of General Dynamics Corporation San Diego, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON March 1959



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-5-59W

HEAT TRANSFER IN A LIQUID METAL FLOWING TURBULENTLY THROUGH A CHANNEL WITH A STEP FUNCTION BOUNDARY TEMPERATURE* By H. F. Poppendiek

ABSTRACT

An analytical heat transfer solution is derived and evaluated for the general case of a turbulently flowing liquid metal which suddenly encounters a step-function boundary temperature in a channel system. Local Nusselt moduli, dimensionless mixed-mean fluid temperatures, and arithmetic-mean Nusselt moduli are given as functions of Reynolds and Prandtl moduli and a dimensionless axial-distance modulus. These solutions are compared with known solutions of more specific systems as well as with a set of experimental liquid-metal heat transfer data for a thermal entrance region.

*Originally prepared as Report ZPh-015, by the Physics Section of CONVAIR, a division of General Dynamics Corporation. Reproduced in the original form by NASA, with CONVAIR permission, to increase availability.

NOMENCLATURE

SYMBOLS

a ,	thermal molecular diffusivity, $k/\gamma c_p$, ft ² /hr
A _n ,	series coefficients in equation (14) defined by equation (15), dimensionless
b,	half the channel breadth (see Figure 1), ft
b _n ,	series coefficients in equations (11) and (13), dimensionless
С,	constant in equation (37)
с ₁ ,	constant in equation (30), dimensionless
° ₁ , ° ₂ ,	constants in the general solution, equation (9), dimensionless
°p,	heat capacity, Btu/lb°F
f(r) ,	a function of the variable r, dimensionless
h _{am} ,	arithmetic mean unit thermal conductance or heat transfer
	coefficient, $\frac{q}{A}/\Delta t_{am}$, Btu/hr ft ² °F
h _x ,	local unit thermal conductance or heat transfer coefficient,
	$\left(\frac{\mathbf{q}}{\mathbf{A}}\right)_{\mathbf{X}}$ /($\mathbf{t}_{\mathbf{w}}$ - $\mathbf{t}_{\mathbf{m}}$), Btu/hr ft ² °F
J ₀ , Y ₀ ,	zero order Bessel functions of the first and second kind, respectively
J', Y', 0 0	derivatives of the zero order Bessel functions of the first and second kind, respectively, with respect to the argument
k,	thermal conductivity, Btu/hr ft ² (°F/ft)
р,	constant in equation (37)
$\begin{pmatrix} \mathbf{q} \\ \mathbf{A} \end{pmatrix}_{\mathbf{X}}$,	local heat flux, Btu/hr ft ²
S,	a function of x and y given by equation (37), dimensionless
t,	liquid-metal temperature at some point x, y, °F
t , m	mixed-mean fluid temperature, °F

CONTENTS

																						Page
ABSTRACT .	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•		1
NOMENCLAT	URI	E	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
INTRODUCTI	NC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		5
ANALYSIS .	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	7
RESULTS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
DISCUSSION	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•		•	•	•	34
ACKNOWLED	GM	E N'	т	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
REFERENCES	5	•		-	•	•	•	•		•	•		•			•			•	•		40

APPENDIXES

1	Longitudinal Heat Conduction .	•	•	•	•	•	•	•	•	•	•	•	42
2	Fluid Velocity Distribution	•	•	•	•	•	•	•		•	•	•	43
3	Eddy Diffusivity Distribution .	•	•	•	•	•	•	•	•	•	•	•	45
4	Series Expansion of f(r)	•	•	•	•	•	•	•	•	•	•	•	48
5	Asymptotic Convection Solution	1	•	•	•	•	•	•	•	•	•	•	51
6	Calculated Results Obtained for	Fi	igu	ree	3 2	thr	oug	gh 2	20		•		53

SYMBOLS (Continued)

t _w ,	uniform wall temperature (step function), °F
t _o ,	initial liquid-metal temperature (see Figure 1), °F
u,	liquid-metal velocity profile (function of y), ft/hr
U,	mean or uniform liquid-metal velocity, ft/hr
U _o ,	sum of J and Y functions in equation (11) $_0$
w,	independent variable defined in equation (39), dimensionless
х,у,	Cartesian coordinates, ft
$\Delta_{t_{am}}$,	arithmetic-mean temperature difference, $\frac{\begin{pmatrix} t & -t \\ w & 0 \end{pmatrix} + \begin{pmatrix} t & -t \\ w & m \end{pmatrix}}{2}$, °F
e,	eddy diffusivity, ft ² /hr
ν,	kinematic viscosity, ft^2/hr
β,	parameter arising in the separation-of-variables technique, dimensionless
β _n ,	eigenvalues of equation 12, dimensionless
γ,	weight density, lb/ft ³
Г,	gamma function

DIMENSIONLESS MODULI

$$F_{o} = \frac{4}{Pe}$$
$$F_{1} = \frac{4C_{1}}{\frac{1}{Re}}$$

 $Nu_{X} = \frac{h_{x}^{4b}}{k}, \text{ local Nusselt modulus}$ $Nu_{am} = \frac{h_{am}^{4b}}{k}, \text{ arithmetic-mean Nusselt modulus}$

 $Pe = Re \cdot Pr$, Peclet modulus

$$\mathbf{Pr} = \frac{\gamma c}{\mathbf{p}} \mathbf{p}^{\nu}$$
, Prandtl modulus

<u>DIMENSIONLESS MODULI</u> (Continued)

$$Re = \frac{U4b}{\nu} , \text{ channel Reynolds modulus}$$

$$r = \sqrt{F_{o} + F_{1}Y}$$

$$T = \frac{t - t}{t_{o} - t}$$

$$T_{m} = \int_{0}^{1} TdY$$

$$X = \frac{x}{b}$$

$$Y = \frac{y}{b}$$

INTRODUCTION

It is well known that the convective heat transfer in the entrance regions of duct systems where thermal and hydrodynamic boundary layers are not yet established can be far superior to heat transfer in the established flow regions. A quantitative understanding of this type of heat transfer, sometimes called entrance region heat transfer, is essential when designing high heat-flux cooling systems for rocket motors, nuclear reactors, exhaust nozzles, and missile nose cones. Because the liquid metals are the most effective high-temperature coolants known, they are considered exclusively in this report. Further, in many practical flow systems the hydrodynamic boundary layers have been completely or almost completely established before the thermal entrance region is encountered. Therefore, the work presented deals with heat transfer in the thermal entrance region with an established velocity field.

A thermal entrance region results when a thermally established fluid, flowing in a duct of uniform cross section, suddenly encounters duct surface with some new boundary temperature distribution. Under these circumstances the temperature field in the fluid is no longer established and thus greatly influences the local convective heat transfer. As an example, for a step function boundary temperature entrance region the heat transfer can be very high because the thin thermal boundary layers have low thermal resistances.

A limited number of turbulent flow entrance region solutions for ducts are available in the literature. Sanders (1) has obtained a turbulent flow solution for a step function entrance region in a pipe by transforming the turbulent core to a laminar core of equivalent thermal resistance. Seban and Shimazaki (2) have obtained some specific numerical solutions for the uniform wall-heat-flux entrance region in a pipe. Elser (3) obtained a simplified solution for only the initial portion of the thermal entrance region of a pipe containing a turbulent 'luid and a step function wall temperature distribution. Several mathematical analyses for forced convection heat transfer in thermal entrance regions for low Prandtl modulus (liquid metal) systems were presented previously (4); three dealt with low, tirbulent Reynolds moduli (radial heat flow by conduction only) and two others dealt with all turbulent Reynolds moduli (radial heat flow by eddy transfer as well as conduction). The solutions for the latter two problems had been completed but not evaluated. One solution has since been evaluated and the results are presented. The solution describes the general case of turbulently flowing liquid metal which suddenly encounters a step function boundary temperature in a channel system. The derivation of the mathemat cal solution is presented. Local Nusselt moduli, dimensionless mixed-mean fluid temperatures, and arithmetic-mean Nusselt moduli are given as functions of Reynolds and Prandtl moduli and a dimensionless axial-distance modulus. The solution is shown to reduce correctly to known specific solutions of the general case. Also the solution is compared with a set of experimental liquid-metal heat transfer data previously obtained in a thermal entrance region.

ANALYSIS

The idealized system which defines heat transfer in a liquid metal flowing turbulently through a channel (between two parallel plates of infinite extent) with a step function boundary temperature is based on the following postulates:

- 1) The wall temperature distribution is a simple step function, $t = t_0$ for x < 0 and $t = t_W$ for x > 0. The fluid approaching the entrance region has an established temperature, t_0 (see Figure 1).
- 2) Longitudinal heat conduction is small compared to convection and is neglected (see Appendix 1).
- The established turbulent velocity profile is represented by a uniform distribution u = U, (see Appendix 2).
- 4) The eddy diffusivity distribution varies linearly with distance from the wall and as the nine tenths power of the Reynolds modulus, $\frac{\epsilon}{\nu} = C_1 \operatorname{Re}^{0.9} \frac{y}{b}$, (see Appendix 3).
- 5) The fluid properties are invariant with temperature.
- 6) Steady state exists.

The differential equation describing the convective heat transfer in dimensionless form is (see Appendix 3)

$$\frac{\partial \mathbf{T}}{\partial \mathbf{X}} = \frac{\partial}{\partial \mathbf{Y}} \left[\left(\frac{4}{\mathbf{Pe}} + \frac{4\mathbf{C}_{1}}{\mathbf{Re}} \mathbf{Y} \right) \frac{\partial \mathbf{T}}{\partial \mathbf{Y}} \right]$$
(1)

This equation can be expressed in a simpler form by making the change of variable,

$$r = \sqrt{\frac{4}{Pe} + \frac{4C}{Re^{0.1}}} \quad Y = \sqrt{F_{0} + F_{1}Y}$$
(2)

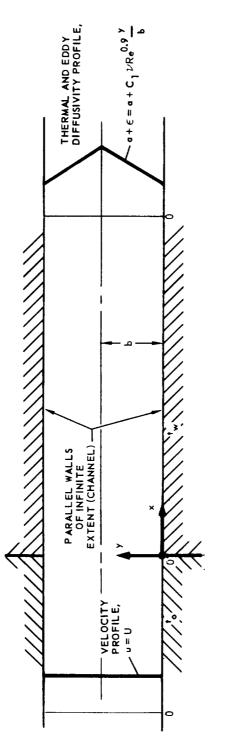


Figure 1.- Idealized heat transfer system.

The resulting boundary value problem to be solved is,

$$\frac{\partial \mathbf{T}}{\partial \mathbf{X}} = \frac{\mathbf{F}_{1}^{2}}{4} \frac{\partial^{2} \mathbf{T}}{\partial \mathbf{r}^{2}} + \frac{\mathbf{F}_{1}^{2}}{4} \frac{1}{\mathbf{r}} \frac{\partial \mathbf{T}}{\partial \mathbf{r}}$$
(3)

$$T(0, r) = 1$$
 (4)

$$T(X, \sqrt{F_0}) = 0$$
⁽⁵⁾

$$\frac{\partial T}{\partial r} (X, \sqrt{F_0 + F_1}) = 0$$
(6)

$$\lim_{X \to \infty} T(X, r) = 0$$
(7)

This problem can be solved by the separation-of-variables technique. Let

$$T = \phi_1(X), \ \phi_2(r) \tag{8}$$

where $\phi_1(X)$ and $\phi_2(r)$ are functions of X and r, respectively. Upon substituting equation (8) into equation (3), two total differential equations result. One involves $\phi_1(X)$ and the other $\phi_2(r)$. Their solution yields,

$$T = e^{-\beta^2 X} \left(c_1 J_0 \left(\frac{2\beta}{F_1} r \right) + c_2 Y_0 \left(\frac{2\beta}{F_1} r \right) \right)$$
(9)

where β is the parameter arising in the separation-of-variables technique and c_1 and c_2 are constants in the general solution.

From equation (5), the constant, c_1 , is found to be

$$c_{1} = -c_{2} \frac{Y_{o}\left(\frac{2\beta}{F_{1}}\sqrt{F_{o}}\right)}{J_{o}\left(\frac{2\beta}{F_{1}}\sqrt{F_{o}}\right)}$$
(10)

Thus

$$T = \frac{c_2}{J_o\left(\frac{2\beta}{F_1}\sqrt{F_o}\right)} e^{-\beta^2 X} \left(-Y_o\left(\frac{2\beta}{F_1}\sqrt{F_o}\right) J_o\left(\frac{2\beta}{F_1}r\right) + J_o\left(\frac{2\beta}{F_1}\sqrt{F_o}\right) Y_o\left(\frac{2\beta}{F_1}r\right)\right)$$
$$= \frac{c_2}{J_o\left(\frac{2\beta}{F_1}\sqrt{F_o}\right)} e^{-\beta^2 X} U_o\left(\frac{2\beta}{F_1}r\right)$$
(11)

The constant β can be evaluated by substituting the temperature function, T, into the boundary condition given by equation (6). The resulting expression is,

$$-\mathbf{Y}_{o}\left(\frac{2\beta_{n}}{\mathbf{F}_{1}}\sqrt{\mathbf{F}_{o}}\right)\mathbf{J}_{o}\left(\frac{2\beta_{n}}{\mathbf{F}_{1}}\sqrt{\mathbf{F}_{o}+\mathbf{F}_{1}}\right)+\mathbf{J}_{o}\left(\frac{2\beta_{n}}{\mathbf{F}_{1}}\sqrt{\mathbf{F}_{o}}\right)\mathbf{Y}_{o}\left(\frac{2\beta_{n}}{\mathbf{F}_{1}}\sqrt{\mathbf{F}_{o}+\mathbf{F}_{1}}\right)=0$$
(12)

which is the eigenfunction. The terms β_n are the eigenvalues (n = 1, 2, 3 . . .) .

The constant c_2 in equation (11) is now replaced by the constants $b_n (n = 1, 2, 3, ...)$ corresponding to the values, β_n . The constants, b_n , can be evaluated from the boundary condition given by equation (4),

$$1 = \sum_{n=1}^{\infty} \frac{b_n}{J_o\left(\frac{2\beta_n}{F_1}\right)} U_o\left(\frac{2\beta_n}{F_1}r\right)$$
(13)

It can be shown (see Appendix 4) that a function f(r) can be expanded into a $U_0\left(\frac{2\beta}{F_1}r\right)$ series over the interval r_1 to r_2 ,

$$f(\mathbf{r}) = \sum_{n=1}^{\infty} A_n U_0 \left(\frac{2\beta_n}{F_1} \right)$$
(14)

where

$$A_{n} = \frac{\int_{r_{1}}^{r_{2}} r f(r) U_{0} \left(\frac{2\beta_{n}}{F_{1}}r\right) dr}{\int_{r_{1}}^{r_{2}} r U_{0}^{2} \left(\frac{2\beta_{n}}{F_{1}}r\right) dr}$$
(15)

For the boundary value problem being considered f(r) = 1. From equations (13) and (14),

$$\mathbf{b}_{n} = \mathbf{J}_{0} \left(\frac{2\beta_{n}}{\mathbf{F}_{1}} \sqrt{\mathbf{F}_{0}} \right) \mathbf{A}_{n}$$
(16)

Thus, the temperature solution is,

$$T = \sum_{n=1}^{\infty} A_n e^{-\beta_n^2 X} \left(-Y_o \left(\frac{2\beta_n}{F_1} \sqrt{F_o} \right) J_o \left(\frac{2\beta_n}{F_1} r \right) + J_o \left(\frac{2\beta_n}{F_1} \sqrt{F_o} \right) Y_o \left(\frac{2\beta_n}{F_1} r \right) \right) (17)$$

where the coefficients A_n are given by equation (15) and the eigenvalues are defined by equation (12).

As X approaches zero, many terms are required to obtain convergence in the series solution given by equation (17). Thus, it is convenient to use an asymptotic solution in that region (see Appendix 5).

The mixed-mean fluid temperature $1, t_m$, car be expressed in dimensionless form as

$$T_{m} = \int_{0}^{1} T dY = \frac{2}{F_{1}} \int_{V}^{VF_{0} + F_{1}} T r dr$$
(18)

The local Nusselt modulus, Nu_x , can be expressed as,

$$Nu_{x} = \frac{h_{x}^{4}b}{k}$$

$$= \frac{4\left(\frac{\partial T}{\partial Y}\right)_{Y=0}}{T_{m}} = \frac{\frac{2F_{1}}{\sqrt{F_{0}}} \left(\frac{\partial T}{\partial r}\right)_{r=\sqrt{F_{0}}}}{T_{m}}$$
(19)

where

$$\begin{pmatrix} \frac{\partial T}{\partial r} \end{pmatrix}_{r} = \sqrt{F_{o}} = \sum_{n=1}^{\infty} A_{n} e^{-\beta_{n}^{2} X} \frac{2\beta_{n}}{F_{1}} \left(-Y_{o} \left(\frac{2\beta_{n}}{F_{1}} \sqrt{F_{o}} \right) \frac{\gamma_{o}}{\sigma} \left(\frac{2\beta_{n}}{F_{1}} \sqrt{F_{o}} \right) \right) + J_{o} \left(\frac{2\beta_{n}}{F_{1}} \sqrt{F_{o}} \right) \frac{\gamma_{o}}{\sigma} \left(\frac{2\beta_{n}}{F_{1}} \sqrt{F_{o}} \right) = \sum_{n=1}^{\infty} A_{n} e^{-\beta_{n}^{2} X} \frac{2\beta_{n}}{F_{1}} \left(\frac{2}{\pi} \frac{F_{1}}{2\beta_{n} \sqrt{F_{o}}} \right)$$
(20)

Upon substituting equations (20) and (18) into equation (19), there results

1. The mixed-mean fluid temperature for a channel Hystem is defined as

$$t_{m} = \frac{\int_{0}^{b} u t \, dy}{\int_{0}^{b} u \, dy}$$

$$Nu_{X} = \frac{2F_{1}}{\sqrt{F_{0}}} \sum_{n=1}^{\infty} A_{n} e^{-\beta_{n}^{2}X} \frac{2}{\pi\sqrt{F_{0}}}$$

$$\frac{2}{F_{1}} \int \sum_{n=1}^{\infty} A_{n} e^{-\beta_{n}^{2}X} r \left[-Y_{0}\left(\frac{2\beta_{n}}{F_{1}}\sqrt{F_{0}}\right)J_{0}\left(\frac{2\beta_{n}}{F_{1}}r\right) + J_{0}\left(\frac{2\beta_{n}}{F_{1}}\sqrt{F_{0}}\right)Y_{0}\left(\frac{2\beta_{n}}{F_{1}}r\right)\right] dr$$

$$\frac{2}{\sqrt{F_{0}}} \int \sum_{n=1}^{\infty} A_{n} e^{-\beta_{n}^{2}X} r \left[-Y_{0}\left(\frac{2\beta_{n}}{F_{1}}\sqrt{F_{0}}\right)J_{0}\left(\frac{2\beta_{n}}{F_{1}}r\right) + J_{0}\left(\frac{2\beta_{n}}{F_{1}}\sqrt{F_{0}}\right)Y_{0}\left(\frac{2\beta_{n}}{F_{1}}r\right)\right] dr$$

The arithmetic mean Nusselt modulus, Nu , which is based on an arithmetic am mean wall-fluid temperature difference, is expressed as

$$\frac{h}{am} = \frac{h}{k}$$
(22)

where

$$h_{am} = \frac{q}{A} \frac{1}{\Delta t_{am}}$$
(23)

$$\Delta t_{am} = \frac{(t_{w} - t_{o}) + (t_{w} - t_{m})}{2}$$
(24)

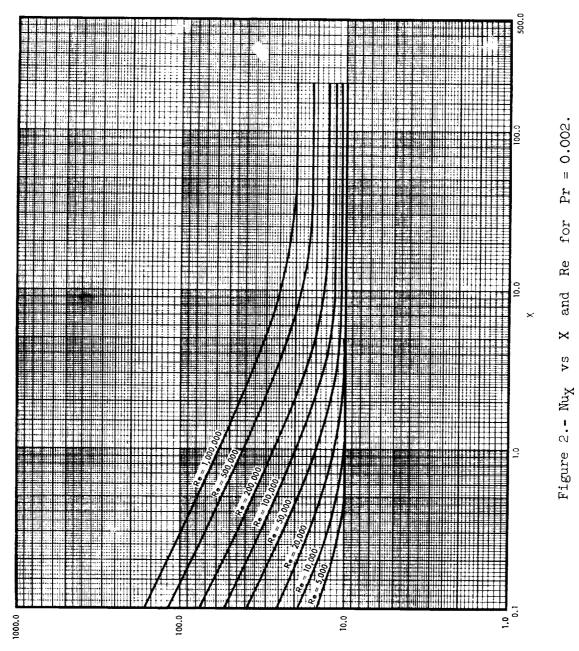
$$\frac{\mathbf{q}}{\mathbf{A}} = \frac{1}{\mathbf{x}} \int_{0}^{\mathbf{x}} -\mathbf{k} \left(\frac{\partial \mathbf{t}}{\partial \mathbf{y}} \right)_{\mathbf{y} = \mathbf{0}} d\mathbf{x}$$
(25)

Upon substituting equations (23), (24), and (25) into equation (22), there results

$$Nu_{am} = \frac{\frac{4}{X} \int_{0}^{X} \left(\frac{\partial T}{\partial Y}\right)_{Y=0} dX}{\frac{1+T}{2}}$$
(26)

RESULTS

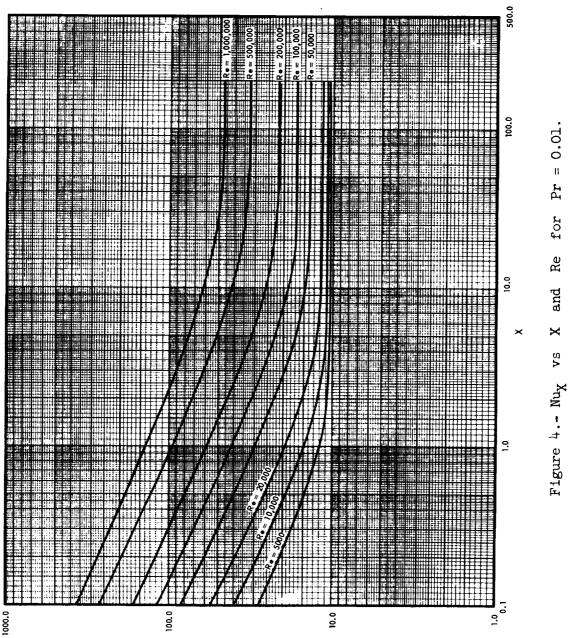
The eigenvalues and series coefficients for this boundary value problem were evaluated for a wide range of Reynolds and Prandtl moduli. The quantities T_m , Nu_X , and Nu_{am} were calculated as functions of the parameter X, and Reynolds and Prandtl moduli. The results are presented in Figures 2 to 20 and in Appendix 6 (Tables I to VI). From the Nu_X graphs it may be observed that the entrance length increases as Reynolds modulus increases. The established Nusselt moduli, Nu_{∞} , are shown as a function of Reynolds and Prandtl moduli, in Figure 8. The T_m graphs show that the fluid temperature approaches the wall temperature in a shorter distance from the entrance as the Reynolds modulus decreases.



x_{nN}

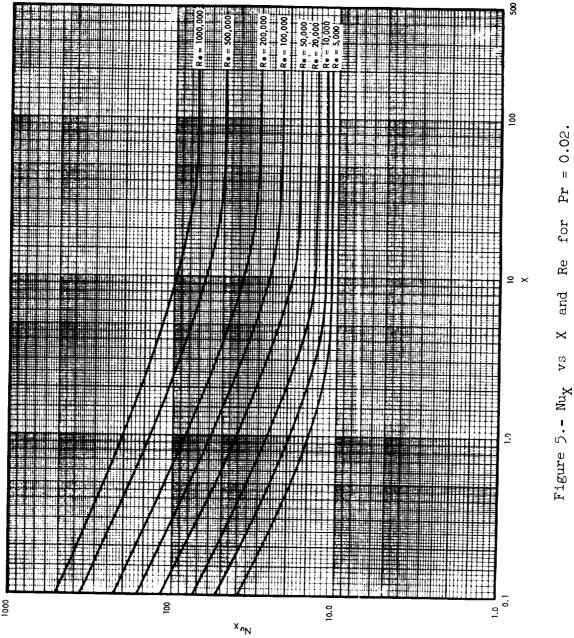


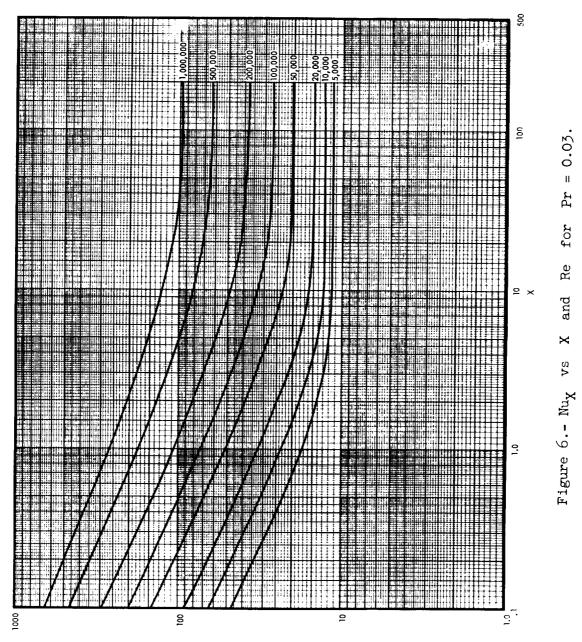
x_{nN}



×nN

Ъг for Re and × ٧s





X_{nN}

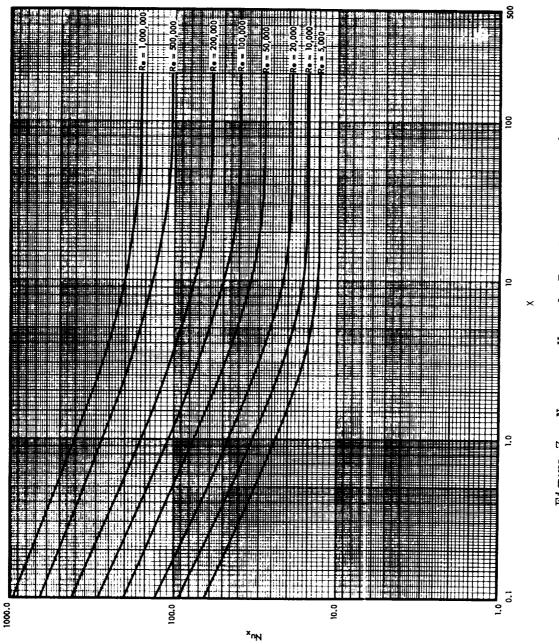
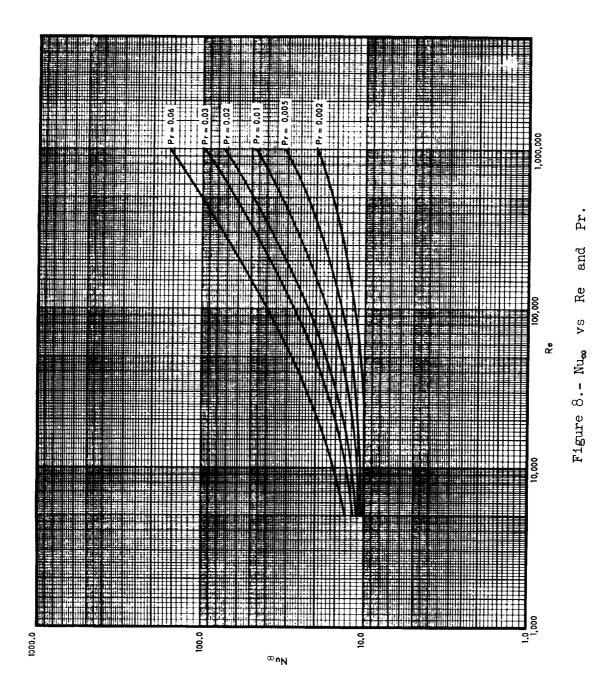


Figure 7.- Nu_X vs X and Re for Pr = 0.06.



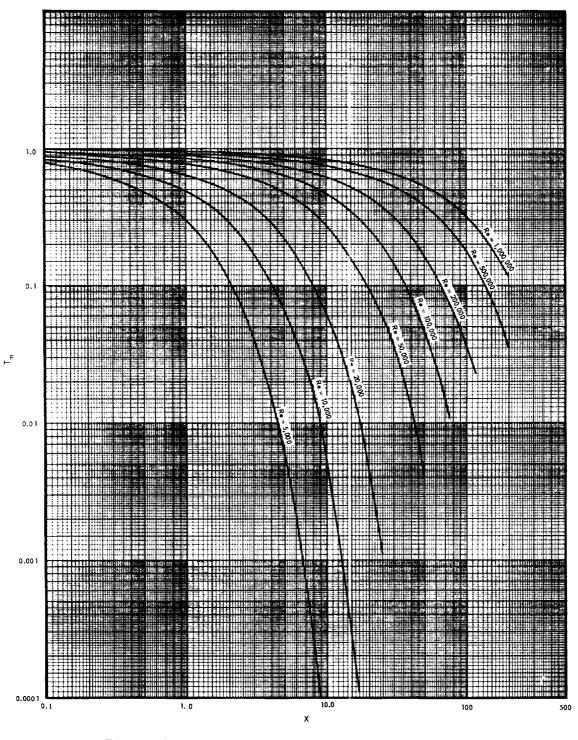
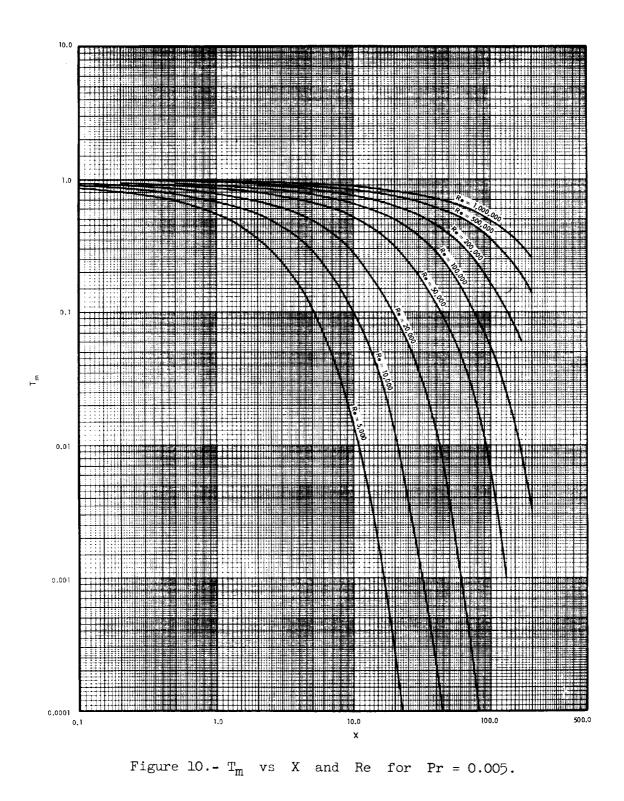


Figure 9.- T_m vs X and Re for Pr = 0.002.



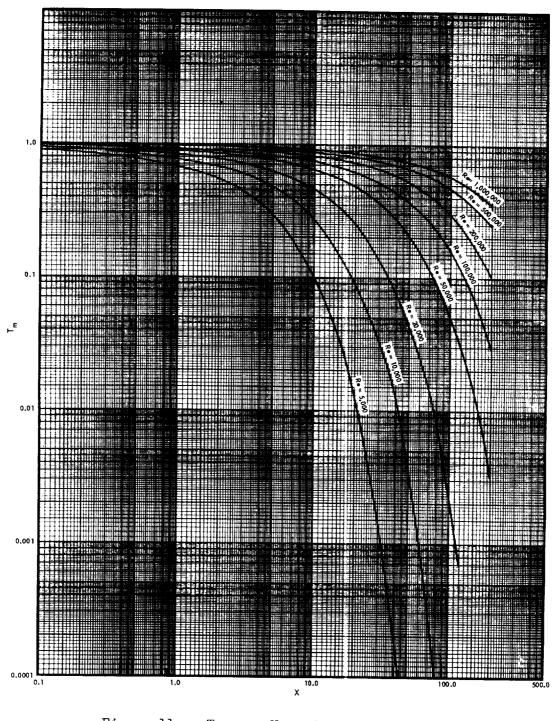
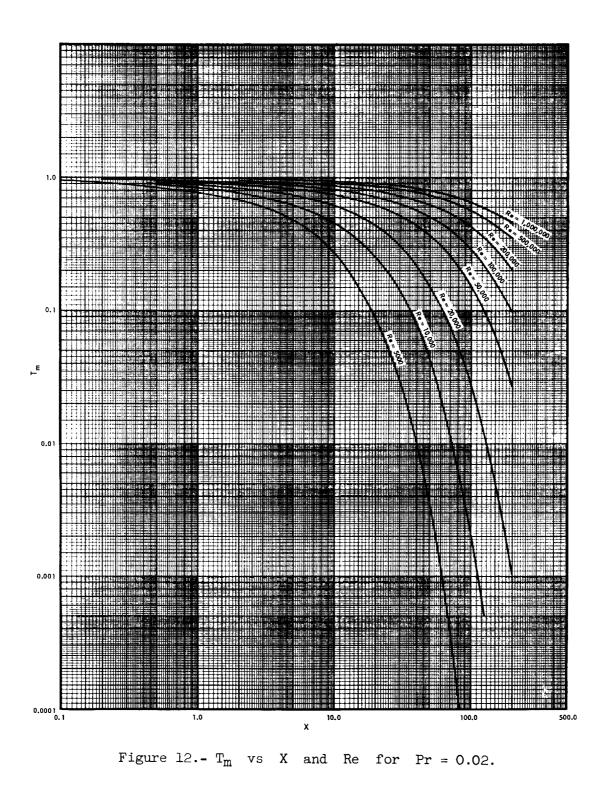


Figure 11.- T_m vs X and Re for Pr = 0.01.



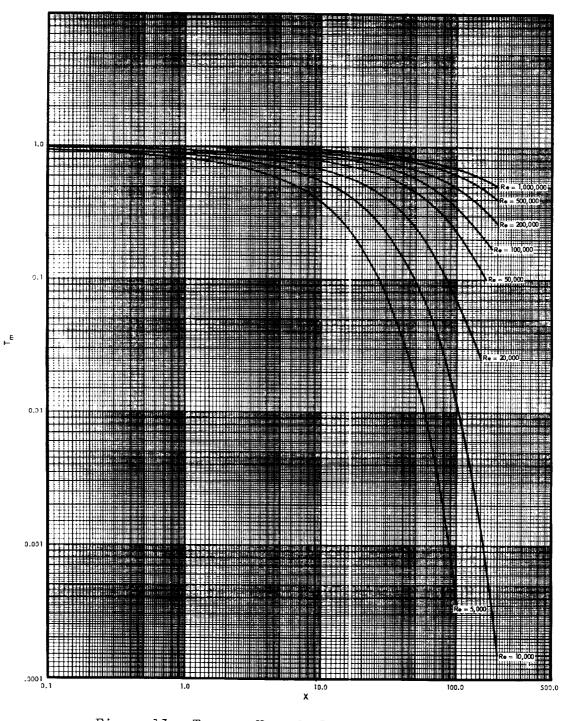


Figure 13.- T_m vs X and Re for Pr = 0.03.

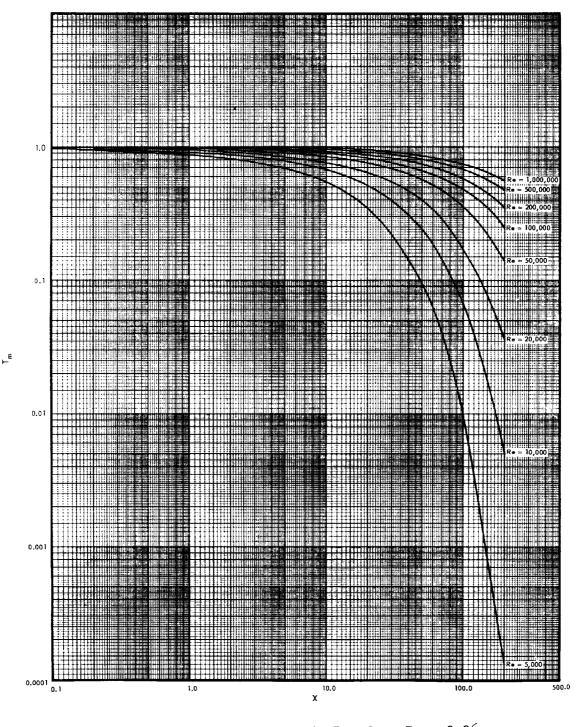
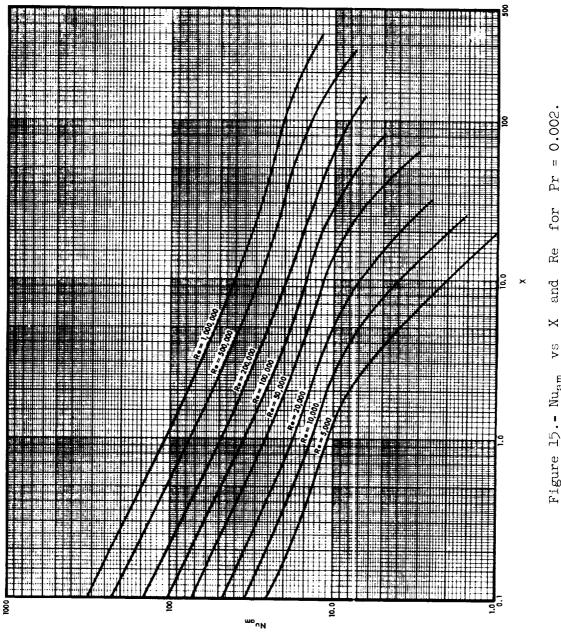
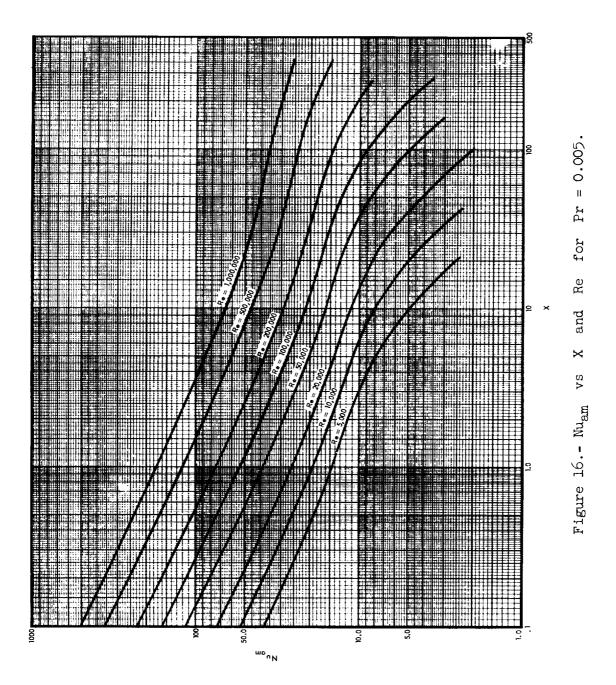
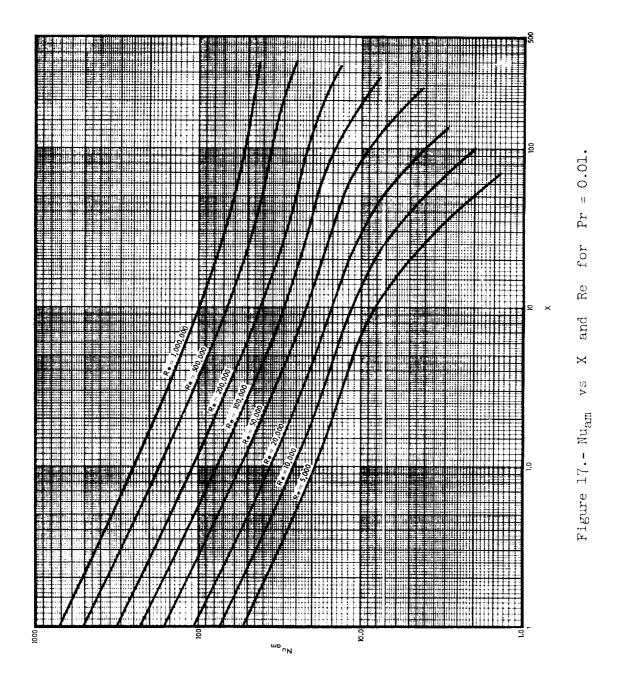


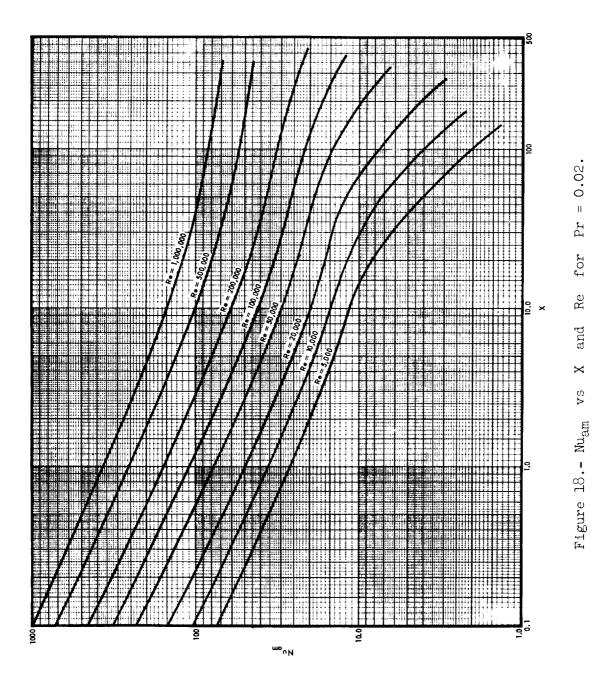
Figure 14.- T_m vs X and Re for Pr = 0.06.



I Рг forRe and × 5 Nuam Figure 15.-







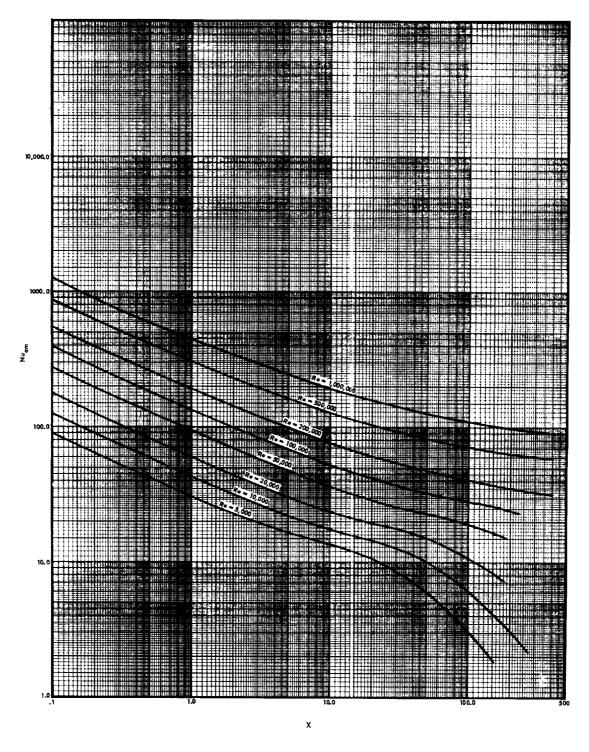


Figure 19.- Nu_{am} vs X and Re for Pr = 0.03.

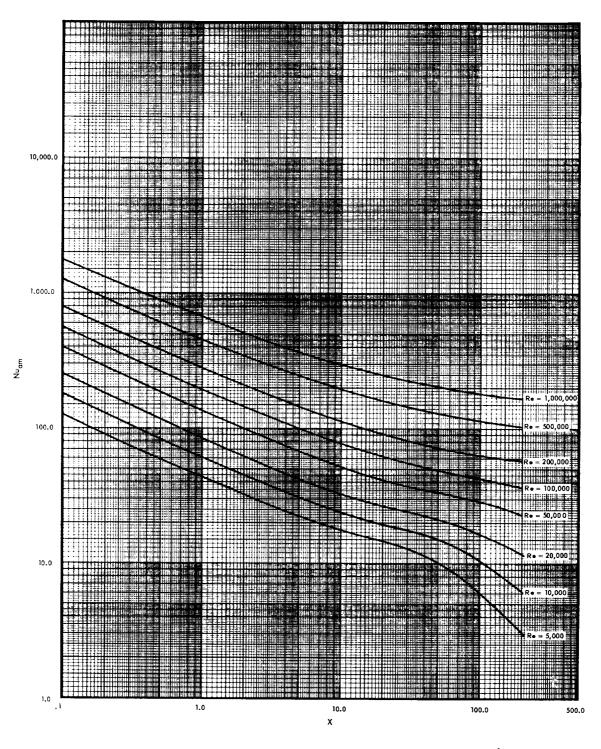


Figure 20.- Nu_{am} vs X and Re for Pr = 0.06.

DISCUSSION

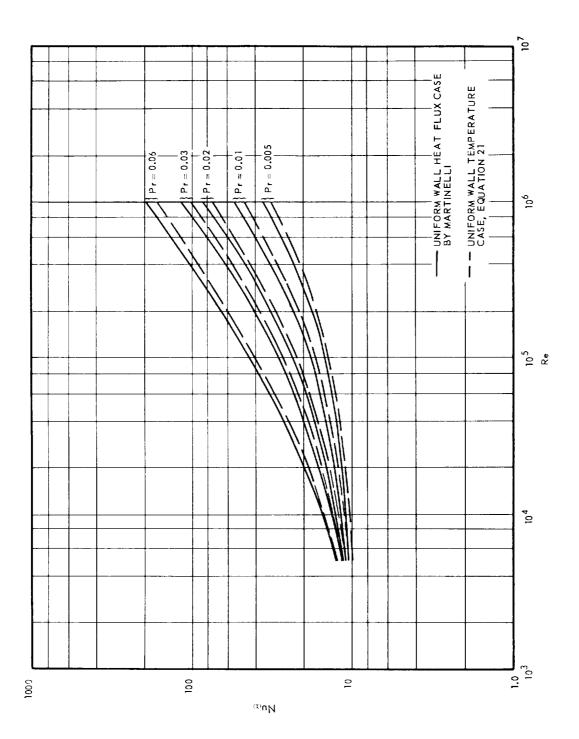
Comparison of Solution with Specific Analytical and Numerical Work

The well known solution for the special case of flow in a channel under low Reynolds and Prandtl moduli conditions (radial heat flow by conduction only) with a uniform velocity profile was compared with the general convection solution derived above for a condition where eddy transfer is small compared to conduction, namely, Re = 5000 and Pr = 0.002; the respective temperature and Nusselt modulus solutions for the two cases were in complete agreement for all values of X.

The established Nusselt modulus solution for long channels, Nu_{∞} for uniform wall-heat-flux conditions by Martinelli (5) was also compared to the established Nusselt modulus results (Figure 8) obtained from the general solution. Figure 21 illustrates that the two sets of calculations are in good agreement, and the uniform wall temperature Nusselt moduli fall about 15 percent below the uniform wall-heat-flux Nusselt moduli.²

A discussion of the linear approximation of the complicated eddy diffusivity profile was presented in Appendix 3. It was concluded that the agreement between the linear and actual eddy diffusivity functions in the important heat transfer layers was good. To substantiate this conclusion further, a numerical analysis of the convective heat transfer problem was made with the actual eddy diffusivity function for the specific case of Re = 200,000 and Pr = 0.01. The agreement between the analytical solutions (using the linear eddy diffusivity function) and the numerical solutions (using the actual eddy diffusivity function) was good. For example, the local Nusselt moduli for the two cases shown in Figure 22 fall within about 10 percent of each other.

^{2.} It has been found (6) that for the case of established flow $X \rightarrow \infty$ the Nusselt moduli for uniform wall-heat-flux boundary conditions are a little greater than those quantities for uniform wall-temperature boundary conditions; this result was based on analytical conduction solutions as well as on numerical turbulence solut ons.



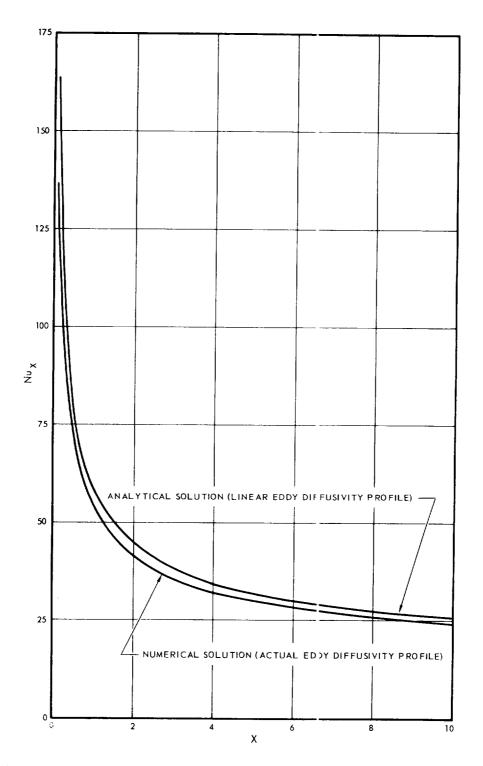


Figure 22.- Nu_X vs X for analytical and numerical solutions (Re = 200,000 and Pr = 0.01).

Comparison of Solution with Experimental Data

The only experimental heat transfer data that could be found for a uniform walltemperature system were those of Harrison (8) for turbulently flowing mercury in small diameter pipes with short heating sections. These experimental data occurred in the initial part of the entrance region³ where the asymptotic solutions (Appendix 5) hold. These solutions compared favorably with Harrison's experimental results (4) as shown in Figure 23.

Application

There are a number of practical high-heat-flux cooling systems to which the convection solution presented may be applied. One good example is a nuclear reactor core whose fuel elements are plates which are cooled by a liquid metal. It is possible to calculate ideal fission heat source distributributions in the axial direction in fuel plates of nuclear reactors which yield maximum uniform fuel plate temperature distributions. Maximum reactor powers would result from such axial temperature profiles.

Another example is a liquid-metal cooled target of an accelerator. For high-conductivity targets, the power that can be absorbed without exceeding limiting target temperatures can also be determined.

The solution is also applicable to special cooling problems encountered with missile nose cones and exhaust nozzles of propulsion systems; the excellent heat transfer that can be obtained in the thermal entrance regions of liquid-metal convection systems can be used to advantage. In such cases, the liquid metal would flow between plates (fins) which would be attached to the heat transfer surface to be cooled.

^{3.} Mean Nusselt moduli, Nu_{am}, in Harrison's system were from about two to four times higher than those for established flow values, Nu_m.

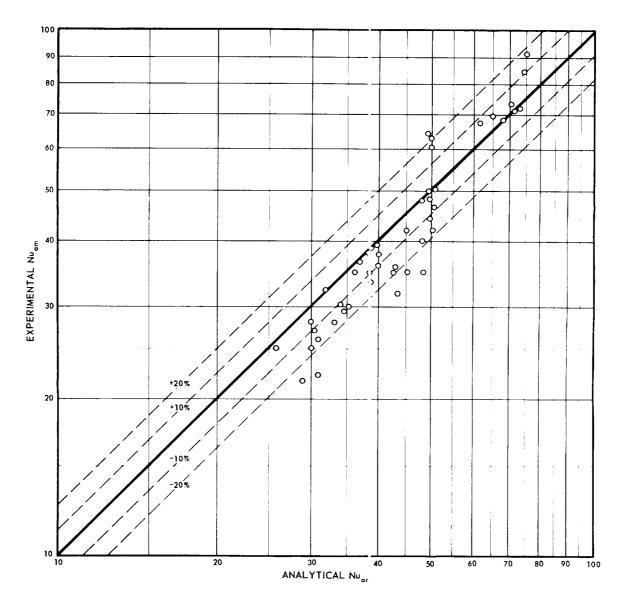


Figure 23.- A comparison of Harrison's experimental mercury heat transfer data with the asymptotic solution for a pipe with a uniform velocity profile.

ACKNOWLEDGMENT

The writer wishes to thank Miss Andrea B. Hart of General Atomic for her fine work in calculating the eigenvalues and series coefficients that arise in the solution and also for making most of the Nusselt modulus and temperature calculations that appear in the report.

REFERENCES

- Sanders, V.D., "A Mathematical Analysis of the Turbulent Heat Transfer in a Pipe with a Surface Temperature Discontinuity at Entrance," M.S. Thesis, University of California, Berkeley, California, Nov. 1946.
- Seban, R.A. and Shimazaki, T., "Calculations Relative to the Thermal Entry Length for Fluids of Low Prandtl Number," Report Series No. 16, Issue No. 4, Contract No. N7-onr-29523 Phase (2), N.R. 035324, University of California, Berkeley, California, 1949.
- 3. Elser, D., Schweizer Archiv. No. 12, Dec. 1949.
- Poppendiek, H. F. and Harrison, W.B., "Remarks on Thermal Entrance-Region Heat Transfer in Liquid-Metal Systems" <u>AIChE Heat</u> Transfer Symposium, Dec. 13 - 16, 1953.
- Martinelli, R. C., "Heat Transfer to Molten Metals" <u>Trans. Am. Soc.</u> Mech. <u>Engr.</u>, 69, 1947, pp 947 - 949.
- Lyon, R.N., ed Liquid Metals Handbook, Atomic Energy Comm. and Dept of the Navy, Washington, D.C., 1952.
- Nikuradse, J., "Gesetzmassigkeiten der urbulenten Stromung in glatten Rohren," <u>V. D. I. Forschungsheft</u>, 356, 1932, 36pp.
- Harrison, W. B., "Heat Transfer to Liquid Metals in a Thermal Entrance Region," PhD Thesis at the Chemical Engineering Dept at the University of Tennessee, Dec. 1952.

- Carslaw, H. S. and Jaeger, J. C., <u>Conduction of Heat in Solids</u>, Oxford Press, 1947, pp. 172-173.
- Poppendiek, H. F., and Palmer L. D., "Forced Convection Heat Transfer in Thermal Entrance Regions - Part II," ORNL-914, Oak Ridge National Laboratory, 1952.

APPENDIX 1

LONGITUDINAL HEAT CONDUCTION

Mathematical convection solutions are usually based on the postulate that the longitudinal heat conduction term is negligible compared with the convection term. The validity of this premise was investigated for channel and pipe systems for low Prandtl modulus conditions and uniform velocity profiles (reference 4). Temperature solutions were derived for the case where the axial conduction term was not neglected and the results were compared to the solution for the case where axial conduction was neglected. The comparison revealed that axial conduction was relatively unimportant for turbulent flow conditions. For example, it was found that for a Prandtl modulus of 0.005 (which represents a practical minimum value for liquid metals) and the low turbulent Reynolds modulus of 8,000, the two Nusselt moduli for a pipe system differed by 2.5 percent at 0.4 of a diameter from the entrance, 1.3 percent at one diameter from the entrance, and a still smaller percentage at greater distances from the entrance.

APPENDIX 2

FLUID VELOCITY DISTRIBUTION

The blunt-nosed turbulent velocity distribution in a channel can be represented satisfactorily by a uniform distribution. In reference 4, entrance region heat transfer solutions for a channel were presented for low turbulent Reynolds modulus conditions for both uniform and blunt-nosed (one seventh power law) velocity distributions. The results are graphed in Figure 24. Note that the Nusselt moduli for these two profiles $\frac{4}{4}$ differ from each other by percentages varying from about 6 to 20 over the wide range of Re Pr/Xvalues shown. The higher difference-percentages correspond to the initial portion of the entrance region which normally represents only a small fraction of the total heat transfer surface in the entrance region. However, if one desires to calculate convective heat transfer in the very initial portion of the entrance region, where a non-uniform velocity profile should be used, the asymptotic solutions given in reference 4 can be used. At the higher turbulent Reynolds moduli, the actual turbulent velocity profiles become very flat (reference 7); in this region the idealized uniform velocity profile very closely represents the actual ones.

4. The results for a third velocity profile, the parabola, are also graphed in Figure 24 for purposes of comparison.

100,000 10,000 PLEN BOLIC UNIFORMY VELOCITY - VELOCITY C001 × K <u>1</u> 10 8 0001 10 x _{nN}

APPENDIX 3

EDDY DIFFUSIVITY DISTRIBUTION

The general differential equation describing convective heat transfer for the idealized system described previously is

$$U \frac{\partial t}{\partial x} = \frac{\partial}{\partial y} \left[(a + \epsilon) \frac{\partial t}{\partial y} \right]$$
(27)

This equation can be expressed in a dimensionless form,

$$\frac{\partial \mathbf{T}}{\partial \mathbf{X}} = \frac{\partial}{\partial \mathbf{Y}} \left[\frac{4}{\mathbf{Re}} \left(\frac{1}{\mathbf{Pr}} + \frac{\epsilon}{\nu} \right) \frac{\partial \mathbf{T}}{\partial \mathbf{Y}} \right]$$
(28)

The analogy between heat and momentum transfer has been firmly established in many experimental turbulent-flow systems. Thus it is postulated in this analysis that heat transfer and momentum transfer eddy diffusivities are identical. Momentum transfer eddy diffusivities (in dimensionless form) for a channel system can be represented as follows:⁵

for a channel system can be represented as follows: $\frac{\text{Laminar Sublayer}}{(0 < Y < 131.5/\text{Re}^{0.9})} \qquad \frac{\epsilon}{\nu} = 0$ $\frac{\text{Buffer Layer}}{(131.5/\text{Re}^{0.9} < Y < 789/\text{Re}^{0.9})} \qquad \frac{\epsilon}{\nu} = 0.0076 \text{ Re}^{0.9} \frac{y}{b} - 1$ $\frac{\text{Outer Turbulent Layer}}{(789/\text{Re}^{0.9} < Y < 0.5)} \qquad \frac{\epsilon}{\nu} = 0.0152 \text{ Re}^{0.9}(1 - \frac{y}{b}) \frac{y}{b}$ (29) $\frac{\text{Inner Turbulent Layer}}{(0.5 < Y < 1.0)} \qquad \frac{\epsilon}{\nu} = 0.0038 \text{ Re}^{0.9}$

5. These relations are obtained from the shear stress expression, the generalized velocity profile for turbulent flow, and the shear equation. The results pertain to smooth channels over a Reynolds modulus range of 5×10^3 to 10^6 .

Because the important heat transfer layers are those nearest the wall,⁶ an idealized eddy diffusivity function is postulated which approximates the actual one in that region; the idealized eddy diffusivity relation is,

$$\frac{\epsilon}{\nu} = C_1 \operatorname{Re}^{\cdot 9} \frac{y}{b} = 0.01 \operatorname{Re}^{0.9} \frac{y}{b}$$
(30)

Note, from equation (28), the dimensionless eddy diffusivity always appears together with the reciprocal of the Prandtl modulus in the form of a sum, $\frac{1}{Pr} + \frac{\epsilon}{\nu}$. A comparison of this sum for the actual and idealized eddy diffusivity functions is shown in Figure 25 for a typical liquid-metal system. Note, that in the important outer half of the flow channel, the idealized sum, $\frac{1}{Pr} + \frac{\epsilon}{\nu}$, is a good approximation of the actual quantity. Upon substituting equation (30) into equation (28), equation (1) can be obtained.

^{6.} The heat transfer layers between the wall and about half the distance to the duct center are the important ones because a large fraction of the total radial temperature drop is found there. This is true because 1) the radial heat flows and 2) the thermal resistances are large in this region in comparison to the central duct core.

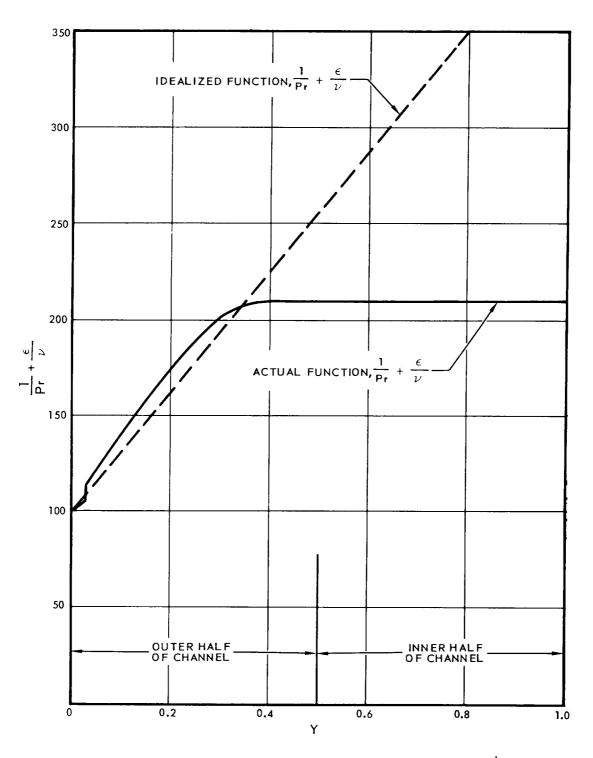


Figure 25.- Comparison of actual and idealized functions, $\frac{1}{Pr} + \frac{\epsilon}{\nu}$ for a channel with Re = 100,000 and Pr = 0.01.

APPENDIX 4

SERIES EXPANSION OF f(r)

In equation (13) it was found necessary to expand unity into series of $U_o\left(\frac{2\beta_n}{F_1}r\right)$ functions. The known procedure for doing this (see reference 9 for example) is discussed here for the case of a general function, f(r). It is desired to expand f(r) into a $U_o\left(\frac{2\beta_n}{F_1}r\right)$ series in the interval r_1 to r_2 ,

$$f(\mathbf{r}) = \sum_{n=1}^{\infty} \mathbf{A}_{n} \mathbf{U}_{0} \left(\frac{2\beta_{n}}{F_{1}} \right)$$
(31)

If both sides of equation (31) are multiplied by the term, $r U_0 \begin{pmatrix} \frac{2\beta}{n} & r \\ F_1 & r \end{pmatrix}$, and the equation is integrated from r_1 to r_2 , all integrals involving

 $U_{o}\left(\frac{2\beta}{F_{1}}r\right)$ terms with two different values of β_{n} are zero. Only the integral having $U_{o}\left(\frac{2\beta}{F_{1}}r\right)$ terms with the same values of β_{n} are not zero. Thus the equation for the series coefficient is found to be

$$A_{n} = \frac{\int_{r_{1}}^{r_{2}} r f(r) U_{o}\left(\frac{2\beta_{n}}{F_{1}} r\right) dr}{\int_{r_{1}}^{r_{2}} r U_{o}^{2}\left(\frac{2\beta_{n}}{F_{1}} r\right) dr}$$
(32)
The proof that the integral
$$\int_{r_{1}}^{r_{2}} r U_{o}\left(\frac{2\beta_{n}}{F_{1}} r\right) U_{o}\left(\frac{2\beta_{n}'}{F_{1}} r\right) dr$$

is equal to zero is outlined below. The quantities β_n and β'_n represent two different eigenvalues. The proof usually involves writing down two differential Bessel equations for two different solutions, one in terms of β_n and another in terms of β'_n . Upon multiplying each equation by the solution of the other, subtracting, and integrating over the range r_1 to r_2 , there results

$$\int_{r_{1}}^{r_{2}} r U_{o}\left(\frac{2\beta_{n}}{F_{1}}r\right) U_{o}\left(\frac{2\beta_{n}'}{F_{1}}r\right) dr$$

$$= \frac{\left[r\left(\frac{dU_{o}\left(\frac{2\beta_{n}}{F_{1}}r\right)}{dr}\cdot U_{o}\left(\frac{2\beta_{n}'}{F_{1}}r\right) - U_{o}\left(\frac{2\beta_{n}}{F_{1}}r\right) - \frac{dU_{o}\left(\frac{2\beta_{n}'}{F_{1}}r\right)}{dr}\right]_{r_{1}}^{r_{2}}}{\frac{4}{F_{1}^{2}}\left(\beta_{n}'^{2} - \beta_{n}^{2}\right)}$$
(33)

Upon substitution of equations (5) and (12) into the bracket of equation (33), the integral is found to be,

$$\int_{r_{1}}^{r_{2}} r U_{o} \left(\frac{2\beta_{n}}{F_{1}}r\right) U_{o} \left(\frac{2\beta_{n}'}{F_{1}}r\right) dr = 0 \quad (34)$$
The integral
$$\int_{r_{1}}^{r_{2}} r U_{o}^{2} \left(\frac{2\beta_{n}}{F_{1}}r\right) dr \text{ is evaluated as follows. If}$$
the original differential Bessel equation is multiplied by $2r^{2} = \frac{d U_{o} \left(\frac{2\beta_{n}}{F_{1}}r\right)}{dr}$, and the resulting equation is integrated by parts over the range r_{1} to r_{2} , there results,

the

$$\int_{r_{1}}^{r_{2}} r U_{0}^{2} \left(\frac{2\beta_{n}}{F_{1}}r\right) dr$$

$$= \frac{F_{1}^{2}}{8\beta_{n}^{2}} \left[r^{2} \left(\frac{dU_{0} \left(\frac{2\beta_{n}}{F_{1}}r\right)}{dr}\right) + \frac{4\beta_{n}^{2}}{F_{1}^{2}}r^{2} U_{0}^{2} \left(\frac{2\beta_{n}}{F_{1}}r\right)\right]_{r_{1}}^{r_{2}} (35)$$

where the limits for the specific problem being studied are

$$r_2 = \sqrt{F_0 + F_1}$$
 and $r_1 = \sqrt{F_0}$

APPENDIX 5

ASYMPTOTIC CONVECTION SOLUTION

Equation (17) converges very slowly for small values of X. A general asymptotic solution has been derived (reference 4) which can be used to evaluate the temperature and heat transfer in this region. For small values of X, the turbulent flow system being studied here reduces to the case of convection over a single flat plate with radial heat flow being achieved entirely by conduction. This is true because for small values of X 1) the influence of heat flow from the other wall would not exist and 2) the thermal boundary layer would not have diffused into the turbulent flow region. The boundary conditions for the asymptotic case are

$$T (X, 0) = 0$$

$$\lim_{X \to \infty} T (X, Y) = 0$$

$$T (0, Y) = 1$$

$$\lim_{Y \to \infty} T (X, Y) = 1$$
(36)

The solution of equation (1) together with the boundary equations (36) can be accomplished by making a change in variable,

$$\mathbf{S} = \mathbf{c} \quad \frac{\mathbf{y}}{\mathbf{x}^{\mathbf{p}}} \tag{37}$$

where p and c are constants to be determined. Upon substituting equation (37) into equation (1), the solution for the boundary equations (36) is found to be (reference 10)

$$T = \frac{\int_{0}^{w} e^{-w^{2}} dw}{\Gamma\left(\frac{3}{2}\right)}$$
(38)

where

$$w = \sqrt{\frac{Ub}{4 a X}} Y$$
 (39)

Further it can be shown that for small values of X,

Nu_X =
$$\frac{\text{Re}^{1/2} \text{Pr}^{1/2}}{\Gamma(\frac{3}{2}) \text{x}^{1/2}}$$
 (40)

and

Nu_{am} =
$$\frac{2 \text{ Re}^{1/2} \text{ Pr}^{1/2}}{\Gamma(\frac{3}{2}) \text{ x}^{1/2}}$$
 (41)

CONVAIR,

A Division of General Dynamics Corportion, San Diego, Calif., May 1958.

9
\mathbf{N}
H
분
ធ
þ.
P.
Y

CALCULATED RESULTS OBTAINED FOR FIGURES 2 through 20

TABLE I

Nu_X , T_m , Nu_m vs X and Re for Pr = 0.002

0	Nu am		41.044 95 086	93 446	17 680	13 899	10 010	212.01	177.1	4.111	00		145.348	105.087	68.044	49.313	36.455	24 845	19 918	15 587	11.498
Re = 20,000	$\mathbf{T}_{\mathbf{m}}$	0 887	0 840	0.746	0.639	0.489	0 225	0.062	0.001	GUU .U	Re = 200,000		0.964	0.949	0.919	0.884	0.835	0.733	0.615	0.444	0.169
	NuX	25.616	19, 181	13.730	11.389	10.427	10.296	10.296	10 906	067.01			75.219	54.415	36.009	26.836	20.503	15.319	13.407	12.915	12.890
00	Nu am	34,691	25.720	17.610	13.687	10.976	7.118	4.015	9 044		00		103.567	74.739	48.687	35.513	26.508	18.461	14.638	11.862	7.415
Re = 10,000	цц	0.840	0.773	0.641	0.492	0.296	0.065	0.005			Re = 100,000		0.949	0.929	0.886	0.837	0.768	0.628	0.467	0.261	0.046
	NuX	19.091	14.690	11.252	10.248	10.102	10.100	10.100	10.100				52.980	38.992	26.191	19.805	15.500	12.340	11.636	11.578	11.578
	Nu am	25.445	19.192	13.648	10.850	8.190	4.067	2.056	1.028	0.411			74.022	53.792	35.278	25.978	19.693	14.191	11.352	8.480	4.096
Re = 5000	ц Н	0.774	0.680	0.494	0.299	0.110	0.005				Re = 50,000		0.928	0.898	0.839	0.771	0.674	0.480	0.279	0.095	0.004
	NuX	14.635	11.796	10.151	9.997	9.994	9.994	9.994	9.994	9.994		712 36	50 100	28.460	19.427	15.072	12.331	10.912	10.818	10.818	10.818
	x	0.1	0.2	0.5	1.0	0 0	5.0	10.0	20.0	50.0		- 0	C	7 . 7 .	0.0	1.0	0 °	0.0	10.0	20.0	50 . 0

(Continued)	
T.ABLE I	

000
500,(
າ ເບ
Re

Re = 1,000,000

321.782	231.606	150.089	102.545	76.810	52.386	39.915	31 515	24.363	20.575	16.152
0.984	0.977	0.963	0.947	0.924	0.875	0.817	0.728	0.534	0.321	0.116
162.481	120.353	79.211	58.427	<u>4</u> 3.851	31.192	25.214	21 703	20.333	20.292	20.292
228.291	164.746	106.521	76.978	56.610	38.088	28.928	939 939	17.779	14.173	9.658
0.977	0.968	0.948	0.926	0.894	0.827	0.749	0 630	0.388	0.174	0.035
117.160	85.209	56.014	41.376	31.149	22.390	18.447	16 502	16.074	16.070	16.070
0.1	0.2	0.5	1.0	2.0	5.0	10.0	0.02	50.0	100.0	200.0

	0	Nu am	74.022	53.834	35.319	26.021	19.740	14.246	11.403	8.507	4.099	2.064	00	228, 294	164.920	106.752	77.232	56.877	38.375	29.237	23.280	18.128	14.406	
	Re = 20,000	$\mathbf{I}_{\mathbf{m}}$	0.928	0.898	0.839	0.771	0.673	0.478	0.277	0.093	0.004		Re = 200,000	0.977	0.968	0.948	0.926	0.893	0.826	0.746	0.626	.0.380	0.166	
		NuX	38.840	28.499	19.470	15.120	12.390	10.994	10.905	10.905	10.905	10.904	Η	117.587	85.479	56.285	41.655	31.437	22.707	18.811	16.948	16.573	16.571	
r Pr = 0.005	0	Nu am	53.157	38.890	25.850	19.360	15.069	11.155	8.225	5.062			00	162.221	116.560	75.567	54.835	40.552	27.607	21.294	17.238	13.046	9.050	5.148
X and Re fo	Re = 10,000	$^{\mathrm{T}}_{\mathrm{m}}$	0.899	0.856	0.772	0.677	0.541	0.288	0.101	0.013			Re = 100,000	0.967	0.954	0.927	0.896	0.851	0.759	0.650	0.491	0.215	0.054	0, 003
Nu _X , T _m , Nu _{am} vs X and Re for Pr	-	NuX	28.297	21.062	14.866	12.079	10.722	10.438	10.437	10.437	10.437		Υ.	81.601	60.207	40.166	29.893	22.773	16.869	14.553	13.838	13.785	13.785	13.785
Nu _X ,		Nu am	38.434	28.386	19.266	14.818	11.860	8.169	4.920	2.566				115.467	83.618	54.329	39.542	29.425	20.359	16.042	13.088	8.734	5.004	
	Re = 5000	н	0.857	0.797	0.679	0.545	0.361	0.106	0.014				Re = 50,000	0.954	0.935	0.897	0.854	0.791	0.664	0.517	0.318	0.074	0.007	
		NuX	20.946	15.957	11.912	10.500	10.189	10.178	10.178	10.178	10.178			59.993	43.546	29.050	21.871	16.989	13.245	12.232	12.108	12.106	12.106	
		X	0.1	0.2	0.0	1.0	2.0	5.0	10.0	20.0	50.0	100.0		0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0

TABLE II

(Continued)
ABLE II
Ē

,000	507.275	364.570	238.232	173.521	128.492	87.125	66.328	52.284	40.252	34.753	29.857
Re = 1,000,000	0.990	0.985	0.976	0.966	0.950	0.917	0.876	0.812	0.667	0.486	0.258
R	261.084	193.337	128.054	95.069	71.831	51.458	41.571	35.281	31.852	31.582	31.578
0	359.461	258.100	168.283	122.016	89.966	60.667	46.037	36.276	28.057	23.894	19.215
Re = 500,000	0.985	0.979	0.967	0.952	0.931	0.886	0.832	0.749	0.564	0.356	0.141
	181.784	135.270	89.326	66.078	49.748	35.548	28.809	24.796	23.141	23.083	23.082
	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0

		Nu am	103.867	77.254	49.782	36.141	26.905	18.735	14.880	12.060	7.479	4.060	0	321.786	232.355	150.927	109.445	80.746	54.551	41.511	32.872	25.633	21.639	16.742
	Re = 20,000	н Н	0.943	0.928	0.885	0.837	0.767	0.625	0.462	0.255	0.043	0.002	Re = 200,000	0.984	0.977	0.963	0.947	0.923	0.873	0.812	0.720	0.517	0.300	0.101
	H	NuX	53.900	39.251	26.322	19.946	15.661	12.557	11.901	11.852	11.852	11.852	щ	164.504	121.320	80.098	59.332	44.766	32.154	26.256	22.914	21.774	21.750	21.750
	0	Nu am	74.023	53.849	35.344	26.051	19.776	14.290	11.443	8.529	4.100	2.065	00	228.295	165.058	106.937	77.436	57.095	38.608	29.488	23.559	18.410	14.589	7.77
	Re = 10,000	T m	0.928	0.898	0.838	0.770	0.673	0.477	0.275	0.092	0.003		Re = 100,000	0.977	0.967	0.948	0.926	0.893	0.825	0.744	0.622	0.373	0.160	0.029
11 aut	Η	NuX	38.869	28.530	19.504	15.159	12.438	11.061	10.975	10.975	10.975	10.975	Η	117.917	85.697	56.506	41.882	31.673	22.967	19.108	17.312	16.975	16.973	16.973
E <		Nu am	53.158	38.899	25.865	19.379	15.091	11.178	8.237	5.064	2.084		0	162.197	117.356	76.052	55.144	40.775	27.786	21.470	17.419	13.182	9.098	5.152
	Re = 5000	$\mathbf{T}_{\mathbf{m}}$	0.899	0.856	0.772	0.677	0.540	0.287	0.101	0.012			Re = 50,000	0.968	0.954	0.927	0.896	0.851	0.758	0.648	0.487	0.210	0.052	0.003
	,,,	NuX	28.314	21.080	14.887	12.105	10.756	10.478	10.476	10.476	10.476			84.121	60.889	40.296	30.022	22.911	17.031	14.754	14.077	14.031	14.031	14.031
		x	0.1	0, 2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0		0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0

TABLE III

 Nu_X , T_m , Nu_{am} vs X and Re for Pr = 0.01

TABLE III (Continued)

										32 47.216	
0.9	0.989	0.9	0.9	0.9	0.9	0.9	0.8	0.7:	0.5	0.3	
370.444	278.897	186.839	139.989	106.878	77.645	63.250	53.798	47.937	47.246	47.227	
507.282	365.502	239.176	174.432	129.384	88.005	67.211	53.190	41.231	35.729	30.636	
0.990	0.985	0.976	0.965	0.950	0.916	0.874	0.809	0.660	0.475	0.247	
265.322	194.937	128.944	95.944	72.703	52.336	42.478	36.262	33.022	32.798	32.796	
0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0	

		0	Nu am	145.354	105.253	68.307	49.617	36.790	25.226	19.651	16.054	11.805	7.632	4.121	00		454.009	328.014	214.477	156.348	115.965	78.940	60.384	47.943	27 J.J.	39 495	27.225
		Re = 20,000	T m	0.964	0.949	0.918	0.884	0.833	0.730	0.608	0.431	0.156	0.029	0.001	Re = 200, 00 0		0.988	0.983	0.973	0.961	0.944	0.906	0.860	0.788	0 623	0.425	0.198
			NuX	75.552	54.740	36.347	27.192	20.889	15.785	13.995	13.592	13.577	13.577	13.577			230.632	173. 398	115.419	85.944	65.203	47.088	38.403	33.089	30.654	30.540	30.539
	Pr = 0.02	0	Nu am	103.562	75.106	48.940	35.740	26.732	18.708	14.909	12.102	7.484	4.054		00		321.788	232.693	151.323	109.858	81.169	54.989	41.966	33.360	26.162	22.089	16.976
:	and Re for	Re = 10,000	T m	0.949	0.928	0.885	0.836	0.766	0.623	0.460	0.252	0.042	0.002		Re = 100,000		0.984	0.977	0.963	0.946	0.923	0.872	0.811	0.717	0.510	0.291	0.095
	$\mathrm{Nu}_{\mathrm{X}},~\mathrm{T}_{\mathrm{m}},~\mathrm{Nu}_{\mathrm{am}}$ vs X and Re for Pr		NuX	54.003	39.310	26.385	20.015	15.739	12.661	12.028	11.983	11.982	11.982				165.391	121.782	80.527	59.763	45.204	32.615	26.756	23.497	22.454	22.436	22.436
	Nu _X , T		Nu am	74.024	53.866	35.371	26.084	19.814	14.337	11.486	8.552	4.102	2.065				228.238	165.202	107.136	77.655	57.328	38.859	29.757	23.856	18.706	14.777	9.826
		Re = 5000	ц	0.928	0.898	0.838	0.770	0.672	0.476	0.274	0.091	0.003			Re = 50,000		0.371	0.967	0.948	0.925	0.892	0.824	0.742	0.618	0.366	0.153	0.269
			NuX	38.901	28.563	19.541	15.200	12.490	11.132	11.050	11.050	11.050		090.11		110 964		55.932	30.744	42.125	31.925	23.244	19.427	17.700	17.399	17.398	17.398
			x	0,1	0.2	0.5 • •	г. 0 С	1 . U	0.0 1	10.0 20 2	20.0	50.00	100.00	200.00		1 0	• •	7 U	c. ,	1.U	1.0 1	0.0	10.0	20.0 20.0	50.0	100.00	200.00

TABLE IV

(Continued)
2
LE
ф

Re = 1,000,000

Re = 500,000

-	
\mathbf{S}	
LE	
AB	
Н	

1011.982	740.276	493.500	365.558	275.840	192.626	150.258	121.141	95 454	83.968	76.038
0.995	0.992	0.988	0.981	0.973	0.953	0.928	0.887	0,788	0.654	0.452
530.791	400.613	276.416	209.772	162.422	120.267	99.217	85.051	75 537	74.088	74.027
716.339	521.903	344.165	252.679	188.886	130.110	100.419	80.231	69 75 6	54.956	48.796
0.993	0.989	0.983	0.975	0.963	0.937	0.905	0.853	0 730	0.570	0.348
374.095	278.338	188.504	141.639	108.505	79.257	64.878	55.500	49 R9R	49.315	49.302
0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50 O	100.0	200.0

	00	Nu am	177.430	128.482	83.348	60.478	44.747	30.512	23.575	19, 134	14 718	10 535		00		555.455	401.810	264.131	193.403	144.125	98.797	75.988	60.603	47.506	41.499	35.891
	Re = 20,000	ц	0.970	0.958	0.933	0.904	0.862	0.776	0.673	0.520	0.243	0,069		Re = 200,000		0.990	0.986	0.973	-0.968	0.953	0.921	0.881	0.818	0.671	0.488	0.258
		NuX	92.233	66.814	44.243	32.973	25.161	18.659	16.063	15.217	15.147	15.147		I		291.063	215.475	143.784	107.593	82.075	59.683	48.833	42.011	38.522	38.295	38. 293
or = 0.03	ð	Nu am	126.237	91.477	59.468	43.292	32.212	22.267	17.524	14.366	9.976	5,938	3.077	0		393.530	284.734	185.850	135.313	100.268	68.203	52.188	41.523	32.596	28.043	
and Re for 1	Re = 10,000	ц	0.958	0.941	0.906	0.866	0.808	0.689	0.550	0.357	0.098	0.011		Re = 100,000		0.987	0.981	0.969	0.956	0.936	0.893	0.841	0.759	0.575	0.365	
^{Nu}X , T_m , ^{Nu}w vs X and Re for Pr		NuX	65.725	47.705	31.812	23.928	18.546	14.345	13.108	12.925	12.922	12.922	12.922	Ι		T.J. TOZ	150.090	99.657	74.171	56.265	40.693	33.324	28.994	27.308	27.257	
^{Nu} X, T _I		Nu am	90.050	65.397	42.742	31.330	23.572	16.719	13.436	10.666	59.261	30.674		0	970 001	470.017	T/A.102	131.237	95.246 70 201	195.07	47.734	36.513	29.165	22.974	18.984	
	Re = 5000	Ч В	0.941	0.917	0.868	0.811	0.731	0.567	0.384	0.177	0.017			Re = 50,000	0 981	100.0		1.68.0	0.938	116.0	0.004	0.784	0.677	0.449	0.228	
		NuX	47.107	34.403	23.258	17.808	14.227	11.919	11.608	11.597	11.597	11.597			144 303	105 508		00, 100 F1 000	000.1L	00 157 00	10# 107	61.040	470.12 40 90 90	20. 333 80 861	20.334	
		x	0.1	0.0	و. ^ر	1.U	0.0		10.0	20.0	00.U	100.0	200.0		0.1	6 0	ש ה כ		 	o c i r	0.0	0.01			0.001 200.0	

TABLE V

TABLE V (Continued)

Re = 1,000,000

= 500,000

Re

1238.846 900.769 607.884 455.143 346.995 244.708 193.682 193.682 125.578 111.121 0.996 0.994 0.994 0.985 0.985 0.985 0.985 0.987 0.937 0.937 0.937 0.937 0.937 659.178 509.478 350.289 268.095 209.570 157.162 130.744 112.764 98.114 876.753 635.124 423.032 313.233 236.111 164.519 128.102 103.174 81.379 81.379 64.513 0.994 0.991 0.986 0.979 0.979 0.947 0.947 0.918 0.918 0.872 0.872 0.615 0.615 349.953 237.019 179.394 138.547 102.303 84.325 72.422 63.994 63.994 63.967 461.719 0.1 0.5 0.5 1.0 2.0 2.0 5.0 20.0 50.0 100.0 200.0

	0	Nu am	249.843	181.066	117.688	85.467	63.229	43.008	33.034	26.562	20.997	16.905	11.580	00	784.469	570.102	379.234	280.470	211.240	147.123	114.600	92.411	73.280	64.743	57.862
	Re = 20,000	T m	0.979	0.970	0.952	0.931	0.901	0.837	0.759	0.641	0.395	0.176	0.035	Re = 200,000	0.993	0.990	0.984	0.977	0.965	0.941	0.909	0.858	0.736	0.576	0.353
	I	NuX	129.936	94.619	62.632	46.606	35.417	25.874	21.648	19.686	19.320	19.318	19.318	Ι	416.802	313.177	211.722	160.224	123.764	91.500	75.608	65.275	59.272	58.704	58.693
r = 0.06		Nu am	177.433	128.571	83.484	60.623	44.916	30.699	23.782	19.362	14.903	10.609	6.167	00	555.472	402.932	265.348	194.614	145.328	99.989	77.183	61.826	48.815	42.788	36.908
nd Re for P	Re = 10,000	л ш	0.970	0.958	0.933	0.904	0.862	0.775	0.671	0.516	0.238	0.066	0.005	Re = 100,000	0.990	0.986	0.978	0.968	0.953	0.920	0.879	0.815	0.664	0.476	0.245
Nu_X , T m, Nu_{am} vs X and Re for Pr	н	NuX	92.419	66.981	44.444	33.152	25.350	18.876	16.327	15.530	15.470	15.470	15.470	ц	284.858	215.934	144.996	108.793	83.264	60.874	50.055	43.327	40.060	39.878	39.877
Nu _X , T _m		Nu am	126.239	91.524	59.544	43.379	32.309	22.379	17.652	14.495	10.036	5.947	3.076		393.532	285.274	186.476	135.962	100.928	68.876	52.878	42.249	33. 382	28.756	23.213
	Re = 5000	Tm	0.958	0.941	0.906	0.865	0.807	0.688	0.548	0.353	0.095	0.011		Re = 50,000	0.987	0.981	0.969	0.956	0.935	0.892	0.839	0.755	0.567	0.354	0.138
	-	NuX	65.819	47.798	31.909	24.031	18.660	14.488	13.289	13.120	13.117	13.117	13.117		203.189	150.829	100.329	74.843	56.940	41.388	34.060	29.826	28.27 9 -	28.240	28.240
		×	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0		0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0

TABLE VI

(Continued)
5
E
T.ABI

1750.927	1289.515	887.962	675.753	504.283	365.521	304.974	252.498	204.918	183.219	169.362
0.997	0.995	0,992	0′. 988	0.982	0.968	0.950	0.920	0.843	0.736	0.561
964.916	758.037	532:192	414.287	305.7 33	234.323	213.736	186. 447	166.552	162.677	162.428
1238.891	901.786	609.881	458.391	350.894	249.886	197, 884	161.876	129.859	115.533	105.743

0.996 0.994 0.994 0.984 0.977 0.977 0.959 0.936 0.898 0.805 0.805 0.805

655.601 507.384 354.279 272.720 214.054 161.454 161.454 116.997 116.997 104.881 103.042 102.966

0.1 0.2 0.5 1.0 5.0 10.0 20.0 20.0 200.0

Re = 1,000,000

NASA	- Langley Field, Va	W-105