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EFFECT OF NOSE LENGTH, FUSEIAGE LENGTH, AND NOSE FINENESS

RATIO ON THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS

OF TWO COMPLETE MODELS AT HIGH SUBSONIC SPEEDS

By Kenneth W. Goodson

SUMMARY

An investigation has been made of the effects of nose length_ fuse-

lage length, and nose fineness ratio on the static longitudinal aerody-

namic characteristics of an airplane model with a swept wing and low

tail and of a second model with a highly tapered wing of moderate sweep

and a T-tail. The tests were conducted in the Langley high-speed 7- by

10-foot tunnel at Mach numbers from 0.60 to 0.92. The nose and body

cross sections were circular.

For either the model with the swept wing and low tail or the model

with the highly tapered wing of moderate sweep and the T-tail, the

effects of forebody changes amounted primarily to rotations of the

pitching-moment curves (changes in static margin) over the test ranges

of angle of attack and Mach number. For the range of body shapes inves-

tigated the longitudinal stability at low lift is decreased by an increase

in nose length or in fuselage length or by a reduction in nose fineness

ratio when the fuselage length is held constant. In general, the sta-

bility for all model configurations showed substantially the same varia-

tion with changes in forebody area moment. The forebody changes did not

alter the angle of attack at which an unstable break occurred in the

moment contribution of the T-tail but did alter somewhat the magnitude

of the instability.

INTRODUCTION

Experimental investigations of recent years (refs. i to 4) have

shown that the aerodynamic characteristics of slender-fuselage airplane

configurations (high-performance configurations) can be affected con-

siderably by fuselage shape, length, and fineness ratio. The fuselage
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geometric characteristics, in general, affect the cross flow, flow sepa-

ration, and vortex formation on a configuration.

Since the flow phenomena occurring at the fuselage nose of forebody

can influence the overall aerodynamic characteristics, the present inves-

tigation was undertaken to study the effects of nose length, fuselage

length, and nose fineness ratio on the longitudinal aerodynamic charac-

teristics of two complete model configurations, one representing a t_pl-

cal swept-wing design with a low tail, and the second rapresenting a

typical airplane with a highly tapered wing of moderate sweep and a

high tail. Longitudinal stability data on models with the swept wing

and on the highly tapered wing in combination with the basic fuselage

(Fo) are presented in references 5 and 6, respectively.

The swept-wing model of the present investigation had a wing aspect

ratio of 4.00, taper ratio of 0.30, and a quarter-chord sweep of 45 ° and

was fitted with a chord plane horizontal tail. The highly tapered wing

model had a wing aspect ratio of 3.00 with an unswept 0.80-chord line

and was fitted with a high T-tail arrangement. Some data were obtained

with the wings and tails removed from the model.

COEFFICIENTS AND SYMBOLS

The data are presented about the system of axes shown in figure i.

The pitching-moment coefficients are referred to a center-of-gravity

position which is assumed to be located at the quarter-chord point of

the mean aerodynamic chord of the wing under consideration. The force

and moment coefficients of the various configurations are also based on

the area, mean aerodynamic chord, and span of the wing under consideration.

CL lift coefficient, Lift
qS

CD drag coefficient, Drag
qS

C m pitching-moment coefficient,
Pitching moment

qS_

2_Cmt pitching-moment increment due to the tail

aCm_ incremental change in pitching-moment slope relative to that

of the shortest nose length \JCF3]
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Ao/4

R

MN

pV2 ib/sq ftq dynamic pressure --,' 2

p mass density of air, slugs/cu ft

V free-stream velocity, ft/sec

M Mach number

S wing area, sq ft

SD maximum cross-sectional area of fuselage, sq ft

c local chord parallel to plane of symmetry, ft

b/2
2f c2dy, ft

wing mean aerodynamic chord, S_ 0

_h horizontal-tail mean aerodynamic chord, ft

vertical-tail mean aerodynamic chord, ft

wing span, ft

spanwise distance from plane of symmetry, ft

maximum diameter of fuselage, ft

angle of attack, deg

sweep of quarter-chord line, deg

radius of ogive nose, in.

moment of area of the various fuselage forebodies about

assumed model center-of-gravity position, in.3

Configuration components:

W wing

F fuselage

V vertical tail
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H horizontal tail

Subscripts:

0,1,2,3,4,5 various nose configurations (see fig. 3)

MODEL AND APPARATUS

A three-view drawing of the complete model with the 45 ° sweptback

wing is shown in figure 2(a). This wing had an aspect ratio of 4.00, a

taper ratio of 0.30, and was constructed of solid aluminum. The model

was also fitted with a 45 ° sweptback horizontal tail located on the wing-

chord plane.

A three-view drawing of the model having the highly tapered wing

with zero sweep of the 0.80-chord line is shown in figure 2(b). The

wing of this model was constructed of steel and had an aspect ratio of

3.00 and a taper ratio of 0.143. This model was fitted with a high
horizontal tail (T-tail).

The vertical tail plan form was the same for both models, but the

airfoil section was 9 percent thick for the swept-wing model and 6 per-

cent thick for the highly tapered model. The incidence of the horizon-

tal tails of both models was fixed at 0°.

The basic fuselage (Fo) was a body of revolution having a fineness

ratio of 10.94 and an ogival nose. The dimensions of this body are pre-

sented in table I. The nose section of the basic fuselage was removable

to allow testing of other nose lengths and nose fineness ratios. All

nose sections were bodies of revolution. The pertinent dimensions of

the various noses are shown in figure 3.

The nose-length series of bodies (fig. 3) were obtained by changing

the nose fineness ratio and adding the various noses to the constant-

length centerbody-afterbody portion of the fuselage. The fuselage

length was varied by taking the smallest _fineness ratio nose (shortest

body length) and adding cylindrical sections to increase the overall

fuselage length. The nose-fineness-ratio series was obtained by using
the longest body in combination with the different fineness ratio noses.



TESTS

The sting-supported model was tested in the Langley high-speed 7-
by 10-foot tunnel through a Machnumberrange of 0.60 to 0.92. The
Reynolds numberbased on the meanaerodynamic chord of the models varied
with Machnumberfrom about 2.5 × 106 to 3.4 × 106•

Longitudinal stability tests were madefor the swept-wing model and
the highly tapered wing model with various nose lengths and nose fine-
ness ratios. Tests were madeof the complete model, wing-fuselage, body-
tail, and body-alone configurations.

CORRECTIONS

Blockage corrections were applied to the results by the method of
reference 7. Jet-boundary corrections to the angle of attack and drag
were applied in accordance with reference 8. Corrections for effects
of the longitudinal pressure gradient in the wind-tunnel test section
have been applied to the data.

Model-support tares have not been applied, except for a fuselage
base-pressure correction to the drag. The corrected drag data represent
a condition of free-stream static pressure at the fuselage base. Past
experience indicates that the influence of the sting support on the model
characteristics is negligible with regard to the lift and pitching moment.

The angle of attack has been corrected for deflection of the balance
and sting support. No attempt has been madeto correct the data for
aeroelastic distortion of the wings.

PRESENTATIONOFRESULTS

The results of tests to determine the effects of nose length, fuse-
lage length, and nose fineness ratio on the aerodynamic characteristics
of the swept-wing model and the highly tapered wing model are presented
in figures 4 to 14. (See the following table.)



Model Tail Configuration Results

Swept
wing

Highly
tapered
wing

Low tail

Off

Low tail

Off

Complete configuration

Wing-fuselage

Fuselage-tail

Fuselage alone

Basic longitudinal
aerodynamic data

Low tail Complete model _Cm/SCL

Complete model and _gmt 9Low tail fuselage-tail

T-tail

Off

T-tail

Off

Completemodel

Wing-fuselage

Fuselage-tail

Fuselage alone

Complete model and
fuselage-tail

Correlation of all
nose configurations

T-tail

Basic longitudinal
aerodynamic data

plotted against
Nose momentof area

Figure

4

5

6

7

8

i0

ii

12

13

14

15

DISCUSSION

Swept Wing and Low Tail

Nose length.- The principal effect of increasing the nose length of

the complete model by increasing the nose fineness ratio (fig. 4(a)) was

to reduce the longitudinal stability through the lift range. (See

fig. 8.) Study of the lift results (fig. 4(c)) and the pitching-moment

data (figs. 4(a) and (b)) indicates that in changing to the longest nose

(WFIVH), the center of load is not moved as far forward as might be

expected from the increase in length alone, presumably because of the



change in nose shape (higher fineness ratio). These trends are still
evident when the tail is removedfrom the model (fig. 5), when the wing
is removed (body-tail configuration, fig. 6), and for the fuselage alone
(fig. 7). Comparisonof the wing-on and wing-off tail pitching-moment
increments (figs. 9(a) and (b)) indicates that the presence of the wing
reduces the effects of nose length on the tail contribution to the
pitching momentat M = 0.80 primarily at the higher angles of attack;
however, at M = 0.90, the shortest nose produces a rather erratic effect
with wing on.

Fuselage length.- Increasing the fuselage length by adding cylin-

drical inserts to the center section of the fuselage and keeping the

blunt-nose shape (F3, fig. 3) results in a reduction in longitudinal

stability similar to but greater than that obtained when the change in

length is made by an increase in nose fineness ratio. (See figs. 4 and

8.) A comparison of these two sets of data (fig. 4(c)) shows that the

nose with cylindrical inserts tends to carry more lift than the high

fineness ratio noses.

Similar results are obtained when the tail, wing, or both are

removed from the fuselage (figs. 5, 6, and 7, respectively); however,

the lift increment tends to be more nearly proportional to the increase

in fuselage length than that obtained on the complete configuration,

which again indicates that the wing-on and tail-on characteristics are

somewhat affected by the nose-generated flow field. Comparison of the

tail pitching-moment increments given in figure 9 with wing-on and wing-

off shows further evidence of some slight effect of nose-generated flow

field on the tail.

Nose fineness ratio.- When the nose fineness ratio of the body was

increased by slenderizing the nose of the longest body, increases in

longitudinal stability resulted. This is in contrast to the reduction

in stability noted previously when an increase in nose fineness ratio

was achieved by extending the nose length. The present result may be

explained by the fact that increasing the nose fineness ratio on a

constant-length body shifts the lift center rearward due to the change

in nose shape and lifting area. These trends are also evident with the

tail removed (fig. 5), with the wing removed (fig. 6), and with the body

alone (fig. 7). Study of the tail pitching-moment increments of these

configurations (nose-fineness-ratio series, fig. 9) seems to indicate

that the wing reduces the effect of nose wake on the low tail of the

swept-wing model. The erratic curve obtained with the shortest length

nose of the nose length series at M = 0.90 (fig. 9) is eliminated

when this shape is added to the longest body (nose-flneness-ratio series),

indicating that the forebody length controls somewhat the vertical posi-

tion of the nose wake and its influence on the tail.



Highly Tapered Wing and T-Tail

The incremental effects of nose length, fuselage length, and nose
fineness ratio on the pitching momentsfor the highly tapered wing model
are basically very similar to those obtained on the swept-wing model.
(See figs. lO and ll.) The difference in the basic shape of the pitching-
momentcurves for the two complete models is due primarily to the wing
plan form and tail position used. The swept-wing plan form usually
shows a tendency toward longitudinal instability at low lifts and low
angles of attack as is seen in figure 5, with the low tall tending to
minimize this tendency and also to cause a nose-dowmmo_entat the higher
(near stall) angles of attack (fig. 4). The highly tapered wing tends
to eliminate the tail-off instability at the higher angles of attack
(fig. ll). Addition of a T-tail results in instability just beyond wing
stall as is shownin figures lO(a) and (b).

The changes in the aerodynamic results of the highly tapered wing
due to the nose length and shape are similar to those obtained with the
swept-wing model (figs. I0 to 13). The incremental contribution of the
T-tail to the pitching-moment curves appears to be influenced predomi-
nately by the variation of wing-wake characteristics with angle of
attack. The effects of forebody shape were relatively small (fig. 14).
With any of the forebodies, the unstable break in the pitching-moment
curve occurred at essentially the sameangle of attack, although the
magnitude of the instability was affected somewhatby forebody shape.
The changes in lift and drag due to change in nose shape or length with
either the high or low tail configurations were generally small.

Correlation of Nose Effects

A review of the preceding sections indicates that variations in
pitching-moment-curve slopes are associated with changes in forebody
area and center of load. Consequently, a correlation showing the varia-
tion of pitching-moment-curve-slope increments with forebody momentof
area was made. The slope increments were obtained by subtracting the
value for the shortest length nose from those of the other noses. These
slope increments were then reduced to a commonreference based on the
fuselage area and diameter. The nose momentsof area (area forward of
the momentreference center) were measuredabout the assumedmodel center

I___

of gravity. The correlation (fig. 15)shows that 2_(S_) is prima-

rily affected by the moment of area with the scatter in points being due

to secondary effects. In general, substantially the same rate of change

in the moment-slope parameter with change in forebody area moment is

obtained for all model configurations.
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CONCLUSIONS

The results of a wind-tunnel investigation at high subsonic speeds

of the effects of nose length, fuselage length, and nose fineness ratio

for complete models representative of a typical design with a swept wing

and low tail and of a typical design with a highly tapered wing of mod-

erate sweep and a T-tail indicate the following conclusions:

i. For either the model with the swept wing and low tail or the

model with the highly tapered wing and T-tail, the effects of forebody

changes amounted primarily to rotations of the pitching-moment curves

(changes in static margin) over the test ranges of angle of attack and

Mach number.

2. For the range of body shapes investigated, the longitudinal sta-

bility at low lift is decreased by an increase in nose length or in

fuselage length or by a reduction in nose fineness ratio when the fuse-

lage length is held constant. In general, the stability for all model

configurations showed substantially the same variation with changes in

forebody area moment.

3. The forebody changes did not alter the angle of attack at which

an unstable break occurred in the moment contribution of the T-tail but

did alter somewhat the magnitude of the instability.

Ls_Igley Research Center,

National Aeronautics and Space Administration_

Langley Field, Va., April 29, 1958.
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TABLE I.- FUSELAGE ORDINATES

17.50 15.45

Station, Radius,
in. in.

0

2.00

4.OO

6.00

8.OO

O

.53

1.00
1.44

i. 80

i0. O0

12.O0
14.O0

]6. oo
17.50

41.27

43.27

45.27

47.27

48.30

54.72

2.07
2.30
2.42
2.47
2.50
2.50
2.42
2.35
2.25
2.14
z.65



12

e

b_
_o

o

c_
._-_

.,-i

@
h

@
,-H
t_0

Q

©

O

Q

O1-'-

O
O

cJ
©

,-H

>

©
>

O
P_

©
X

O

©

09

I

t_



%

_5

C5

k_

13

X=

°H

@

c_

0

©

-M

,--4

t_

©

-.P
0

t 0

©

g _

•._/ 0

%

0

%

0

r_

!

©



14

rd

rd

_0

_Q

_d

O

!

c_



15

F_

-_ 5oo / _'"

__ 3.30

R=I6.56_F. 4.

R =62,50 _

R= 139.06 _11

Nose-lenqlh series

F_ _-- i

_-8.75 -_ 8.75 _ Fuset_-Iength series

Figure 3. Various nose configurations tested on the swept and highly
tapered wing models.

. Nose-fineness-to/tO series
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Figure 6.- Effect of nose length, fuselage length, and nose fineness

ratio on the longitudinal aerodynamic characteristics of the fuselage

and tail of the swept-wing model. Low tail.
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Figure 9.- Effect of nose length, fuselage length, and nose fineness

ratio on the tail contribution to the swept-wing model. Low tail.
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Figure 13.- Effect of nose length, fuselage length, and nose fineness

ratio on the longitudinal characteristics of the fuselage of the

highly tapered wing model.
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