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Goddavrd Space Flight Center

SUMMARY

TIROS II contains instrumentation for measuring infrared and
reflected solar radiation from the earth and its atmosphere. A
medium resolution scanning radiometer and alow resolution non-
scanning radiometer are employed. The satellite's spin provides
the scan line of the medium resolution radiometer which is then
advanced by the orbital motion. The spatial resolution is about
40 miles square when the earth directly beneath the satellite is
viewed. The five channels employ bolometer detectors and filters
to limit the spectral responses to five bands: 6 to 6.5, 8 to 12,
0.2to 64, 8 to 304, and 0.55 to 0.75x. These five bands study,
respectively: radiation in the water vapor absorption band; day
and nighttime cloud cover; albedo; thermal radiation; and visual
maps for comparison with satellite vidicon pictures. The low
resolution non-scanning radiometer measures the earth's black-
body temperature and albedo. Its field when viewing directly
below is a circle of 450 miles diameter, covering part of each
frame from the wide-field television camera. This radiometer
consists of two thermistors, each in the apex of a reflective cone
which provides optical gain. One thermistor isblack and responds
to both thermal and reflected solar radiation. The second re-
sponds to thermal but reflects solar radiation. The design, cali-
bration, performance, and data reduction for both systems are
discussed herein.
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INFRARED AND REFLECTED
SOLAR RADIATION MEASUREMENTS FROM THE

TIROS Il METEOROLOGICAL SATELLITE

by

W. R. Bandeen, R, A, Hanel,
John Licht,* R. A, Stampfl, and W. G. Stroud

Goddard Space Flight Center

INTRODUCTION

The TIROS II (1960 ~,) meteorological satellite (Figure 1) was launched on November 23,
1960. Its orbital characteristics are compared to those of TIROS I (1960 5) in Table 1. Like
its predecessor, TIROS II carries two television cameras. Although pictures from the wide
angle camera are not equivalent to their TIROS I counterparts in quality, the TIROS II tele-
vision system has worked with considerable success. The functioning of the television
system, which is practically equivalent to that of TIROS I, has been reported (References 1
and 2) and will not be discussed here.

Table 1
Orbital Characteristics of TIROS I and TIROS II
Orbital TIROS I TIROS I
Characteristics (Launched April 1, 1960) (Launched November 23, 1960)
Perigee (statute miles) 432.9 385.6
Apogee (statute miles) 464.4 454.4
Period (minutes) 99.24 98.217
Inclination (degrees) 48.39 48.53

*Now with Lockheed Electronics Corporation
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The outstanding difference between the two satellit:s was the inclusion in TIROS II
of an experiment consisting of two radiometers to measure the infrared and reflected
solar radiation from the earth and its atmosphere.

DESCRIPTION OF THE EXPERIMENT

The TIROS II radiation experiment consists of: a medium resolution five- channel
scanning radiometer with its bi-directional optical axes inclined to the spin axis by
angles of 45 and 135 degrees; and a low resolution two- channel non-scanning radiometer
whose optical axes are parallel to the spin axis. As the satellite spins, the 5-degree
field of view of each medium resolution radiometer channel scans alternately the earth
and outer space. The orbital motion provides the advancement from one sweep line to
the next. A spin rate of about 12 rpm was chosen to ac commodate a proper scan pattern,
a raster without overlap or underlap of individual lines. The spin rate is consistent with
the available information bandwidth of 8 cps per chann:l., A scan line is given by the
intersection of the 45-degree half-angle cone described by the optical axis of the detec-
tors in one spin cycle, and the earth's nearly spherica. surface. When the spin axis is
parallel to the local earth radius vector, the scan pattern is a circle on the earth; it
becomes a pair of alternating, hyperbola-like branches wherever the spin vector is
normal to the radius vector. The geometry of the motion is identical to the geometry
which the Vanguard II cloud cover satellite was intended to (but actually did not) assume
(Reference 3). The satellite spin, however, does not modulate the 50-degree field-of-
view low resolution radiometer channels because their optical axes are parallel to the
spin axis. The low resolution radiometer observes an area which is within the field of
the wide angle TV camera; thus interesting correlations between cloud cover and heat
balance may be expected. Figure 2 illustrates the geometry of the scanning motion of the
medium resolution radiometer and that of the viewing area of the low resolution radiom-
eter.

The instrument in the satellite measures radiation intensities in a certain direction
and from a certain area, the area in the field of view. If the scattering function of this
area were known, the total amount of back-scattered energy, the albedo, could be com-
puted. However, the area in the field of view neither reflects nor radiates according to
Lambert's law like a perfectly diffuse surface; theretore assumptions must be made
about the non-isotropic nature of radiation in order to arrive at the total radiation loss
in all directions (Reference 4). Calculations on the non-isotropic nature of radiation
emerging from the atmosphere can be based on model atmospheres. The satellite
observes certain areas on the earth's surface under different zenith angles within a time
interval as short as three minutes. Results of these cbservations will tend to verify the
choice of a particular model atmosphere in a given region (References 5 and 6).
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In the medium resolution radiometer, lens materials and filters restrict the sensi-
tivities of the five channels to the following spectral regions:

{1) 6 to 6.5 microns—water vapor absorption;

(2) 8 to 12 microns—atmospheric window;

(3) 0.2 to 6 microns—reflected solar radiation;

(4) 8 to 30 microns—thermal radiation;

(5) 0.55 to 0.75 microns—visible reference and daytime cloud cover.

The physical significance of these regions has been reported previously (Reference 7) and
will be discussed only briefly here.

In Figure 3 the transmission characteristic of the filters of channels 3 and 5 are
plotted against the available energy from a blackbody at 5800°K, the color temperature
of the sun. About 99 percent of back-scattered and reflected sunlight falls into the
spectral range of channel 3. The spectral range of channel 5 was chosen to give good
contrast between earth and clouds; it is in the range of visible and infrared photography
and close to the spectral sensitivity of the TIROS television cameras. This channel
yields cloud cover pictures on the illuminated side of the earth, while the television
system covers only limited areas, although with much higher resolution.

Figure 4 shows the transmission characteristics of the three thermal channels (1, 2,
and 4). The abscissa is linearly proportional to the energy available from a 300°K black-
body. Neither the emissivity of the thermistor bolometer nor the chopper characteristic
is included in the diagram. The spectrum of channel 4 (8 to 30 microns) covers fairly
well the range of thermal emission from the earth. In a study of the energy budget, the
total amount of radiation loss is even more important than the albedo. Channel 2 meas-
ures radiation emerging in the atmospheric "window' between 8 and 12 microns, Since
the atmosphere is fairly transparent in this spectral range, the apparent blackbody
temperatures are close to the true temperatures of the radiation surfaces, whether they
be cloud tops, water, or land. Corrections must be made for ozone absorption near 9.6
microns. Because clouds are generally cooler than the earth's surface, a map showing
isolines of radiant emittance can be interpreted as a cloud cover map. This method is
especially valuable since it also works on the dark side of the earth, which is unobserved
by television cameras. The difference between the channel 4 and the channel 2 measure-
ments is essentially the radiation between 12 and 30 microns, characterized by strong
absorption bands of carbon dioxide and water vapor. Channel 1 responds to radiation in
the region of water vapor absorption, between 6 and 6.5 microns. The temperature
profile and relative humidity of the atmosphere determine the energy which can be
observed by this channel,

The spin vector of TIROS I exhibited angular motions of large amplitude during its
78-day active life. These compared closely with a theoretical model based upon reactions
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to two external torques, namely: a primary torque caused by the interaction of a
magnetic dipole along the satellite spin axis with the earth's magnetic field; and a
secondary torque caused by differential gravity in the earth's field (Reference 8).
Because of the importance of keeping the radiation sensors from viewing the sun for
any longer than was absolutely necessary, TIROS II contains a closed current loop with
several possible levels of current flow, both positive and negative, any one of which can
be commanded from the ground. Thus the motion of the satellite spin axis can in some
measure be controlled., This magnetic Attitude Control works satisfactorily and the
observed spin axis motions, after specific current values were programmed in the coil,
agreed well with calculated theoretical movements.

Spin-up rockets attached to the periphery of the satellite's base plate can be fired by
ground command, either to achieve the desired spin rate if the de-spin after injection
results in too low a rate, or to restore the desired level after magnetic spin-decaying
effects have operated for a time. Two pairs of spin-up rockets were fired two days after
the launching, increasing the spin rate from 8.0 rpm to 14.0 rpm.

INSTRUMENTATION

One channel of the medium resolution radiometer is depicted in Figure 5. The chop-
per disk, which is half reflecting and half absorbing, reflects radiation alternately from
the scan beam and the reference beam to the detector. Consequently, the alternating
voltage generated at the thermistor bolometer is propor:ional to the energy difference
between the two opposite directions. The radiometer is shown in Figure 6.

The two low resolution radiometer channels consist of a black and a white detector,
each mountedin the apex of a highly reflective cone (Figire 7 and Reference 9). The
black detector is equally sensitive to reflected sunlight «ind long-wavelength terrestrial
radiation. The white detector is coated to be reflective :n the visible and near infrared;
its surface appears white to the eye even though its emissivity is high in the far infrared.
Since 99.9 percent of the terrestrial radiation is emitte¢ at wavelengths of 4 microns and
longer, both detectors have the same equilibrium tempesrature when they face the dark
side of the earth. On the illuminated side of the earth the temperature of the black detec-
tor rises in contrast to that of the white, which is affected to a lesser extent by reflected
sunlight., Careful measurements of the temperatures of the detectors and the mounting
plate, as well as a determination of thermal conduction «nd radiation coupling between
thermistor flake and satellite, permits the determination of the apparent blackbody tem-
perature and the amount of reflected sunlight within the 50-degree field of view of the
instrument.
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Before installation in the satellite, the radiometers had to pass a series of environ-
mental tests and calibration measurements, In order to calibrate its three thermal
channels, the medium resolution radiometer was exposed to two blackbodies. One,
simulating outer space, had the temperature of liquid nitrogen. The second blackbody,
which simulated radiation from the earth, was adjusted to various temperatures between
250° and 320°K. To minimize errors from water vapor absorption and to prevent con-
densation on the cold targets, the radiometer and the blackbodies were placed in a dry
nitrogen atmosphere. The response V of a channel is proportional to the energy dif-
ference between opposite directions, expressed by

v = kj [W, (T = W (Tp] f, dr. (1)
0

where W,(T,) and W,(T,) are the spectral radiant emittances of the blackbodies, and f,
is the filter function for the channel in question. The emissivity of the bolometer and
reflectivity of the chopper are considered independent of wavelength. This is fairly well
justified for all but the 8to 30 micron channel. The second part of the integral in Equa-
tion 1 is negligible for liquid nitrogen temperatures but has to be taken into account if
T, and T, are at room temperature or slightly above. The latter temperatures existed
in a check of calibration at Cape Canaveral where the whole system, including radiometer
and telemetering electronics, was tested. The constant k includes also the gain of the
preamplifier. In the calibration the gain was set to give the same maximum voltage in
each channel for different blackbody temperatures: 265°, 315°, and 305°K for channels
1, 2, and 4 respectively.

The standard source in the calibration of the two solar channels of the medium
resolution radiometer (0.2 to 6 and 0.55 to 0.75 microns) was a tungsten band lamp with
a quartz window. It was necessary to make extensive corrections because of the dif-
ference between the lower color temperature of 2200°K and sun temperatures of about
5800°K. Since the standard lamp is too small to fill the field of view of the radiometer,
and its intensity too great, a larger source was used as an intermediate step. The opal
glass used in the intermediate step is not quite as diffuse at 2 microns as it is in the
visible. Unfortunately this effect was not recognized immediately, and the gain on these
two channels was set about 10 decibels too low. However, since the signal-to-noise ratio
is good such an error can be compensated for by readjusting the gain in the ground
station.

The low resolution radiometer was calibrated in vacuum. It was mounted on a metal
frame which simulated the satellite, and the temperature of the frame was adjusted in
steps between -10° and +60°C. Radiation from the earth was simulated by a blackbody,
which filled the field of view, whose temperature was varied between -130° and +60°C.

In this way, heat conduction and radiation coupling between thermistor flakes and satellite
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structure were determined. Then the detector, still in vacuum, was exposed to sunlight
(and artificial light) reflected by a white diffuser. The transmission characteristic of
the quartz window which sealed the vacuum chamber was taken into account. A thermo-
pile served as the calibration standard.

The radiation experiment instrumentation is independent of the television camera
system except for power, command, certain timing signals, and antennas (Figures 8 and
9). The outputs of the five narrow angle radiometer channels are fed to five subcarrier
oscillators. These voltage controlled oscillators are of the phase shift type, with sym-
metric amplifiers in the feedback loops, the gains of which are controlled by the balanced
input signal.

A sixth channel telemeters the wide-angle low-resolution sensor data, environ-
mental temperatures, instrumentation canister pressure, and calibration. A mechanical
commutator switches resistive sensors in one branch of a phase shift oscillator. The
seventh channel, a tuning fork oscillator, serves as a reference frequency and timing
signal. The outputs from these seven different channels are added and the resultant
composite signal is equalized in a record amplifier which drives the head of a miniature
tape recorder.

An oscillator provides an alternating current bias to the record head and also pro-
vides the signal required for the erase head. For convenience, erasure of the magnetic
tape occurs immediately before recording. The record spectrum extends from 100 to
550 cps. The tape recorder is an endless loop two-speed design, running at 0.4 in./sec
record speed and 12 in./sec playback speed. The endless loop records continuously
except during a playback sequence. A hysteresis synchronous motor generates torque in
the record mode through a mylar belt speed reduction system (Reference 10). The fourth
subharmonic of the tuning fork oscillator, generated by {lip flops, drives the motor, The
record motor also drives a cam shaft which activates a bank of micro switches connected
to the five commutated sub-channels of the time-sharing sixth channel. Each is sampled
every six seconds, and the fifth includes a group of seven to be sub-commutated.

Playback begins upon command, by applying power o a direct current motor. A

magnetized flywheel generates a frequency proportional to the motor speed. A frequency

discriminator feeds the error signal to the stabilized pcwer supply of the motor and
closes the servo loop. Playback speed is essentially coastant from 0° to 50°C. A low
flutter and wow, 2.5 percent peak to peak measured witkout frequency limitations, is
achieved by using precision bearings and ground-in-place shafts with tolerances better
than 50 parts per million. A command pulse activates tie playback motor, the playback
amplifier, and the 238-Mc FM telemetry transmitter feeding the duplexer and antenna.

To permit comparison of the low resolution measurements with TV pictures, each
TV shutter action generates a 1.5 second pulse which is recorded as an amplitude
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modulation of the channel 7 timing signal. As in TIROS I, there are nine solar cells
mounted behind narrow slits for north angle determination. These slits have an opening
angle of close to 180 degrees in planes through the spin axis. The sun illumination
generates pulses as long as there is no illumination parallel to the spin axis. One of
these sensors generates a 0.5 second pulse in addition to the north indicator code, sothat
spin rate information and a measure of relative sun position is available. Again, this
pulse is recorded as an amplitude modulation of channel 7. Reconstruction of the radia-
tion information vitally depends on its correlation with absolute time. The tuning fork
oscillator provides an accurate but relative timing signal; and the sun pulses give a
crude one, except in the earth's umbra. Absolute time is transmitted to the satellite and
recorded on the tape as a 1 second drop-out of channel 7. The occurrence of this pulse
is known within milliseconds of absolute time.

OPERATION OF THE EXPERIMENT

Upon interrogation, the 238 Mc carrier from the satellite is received by a 60-foot
parabolic antenna; the composite signal is recorded on magnetic tape and, simultaneously,
fed to a "Quick-Look' demodulator (Figure 10a). At the same time, the envelope of chan-
nel 7 and the clipped signal of channel 4 are graphically recorded. The 8 to 30 micron
"events' on the graphic record show the earth and sky scan intervals alternately, and the
channel 7 envelope shows the three distinctive types of AM pulses impressed on the clock
frequency during the record mode. These pulses are the sun sensor pulses, the TV
camera pulses, and the "end-of-tape' pulse. Auxiliary uses of the radiation data include
determination of the spin axis attitude in space and the times when television pictures
were taken and recorded in the satellite, to be read out later over a ground station
(Figure 10b).

Every day the magnetic tapes are mailed to the Aeronomy and Meteorology Division,
Goddard Space Flight Center, Greenbelt, Maryland. The master tape containing the com-
posite radiation signal is demultiplexed, demodulated, and fed to an analog-to-digital con-
verter (Figure 11). The pressure is read separately. The analog-to-digital converter
produces a magnetic ""Radiation Data Tape' of 36-bit words suitable for an IBM 7090 com-
puter. In addition to the digital magnetic tape for routine analyses on a computer, an analog
record may be produced on an oscillograph for special hand analyses. The initial reduction
of data from orbit 0", discussed later in this paper, was carried out in this way.

The IBM 7090 computer program of the U. S. Weather Bureau's Meteorological
Satellite Laboratory requires inputs from three sources to produce the ""Final Meteor-
ological Radiation Tape" (Figure 12). One source is the Radiation Data Tape containing
radiation and satellite environmental parameters in digital form. A second source is the



"Orbital Tape" from the NASA Space Computing Center, containing satellite position and
attitude data. The third is the calibration for converting the digital information to mean-
ingful physical units. The Final Meteorological Radiation Tape, then, is the basic
repository of data from the medium resolution scanning radiometer. In order to study
and utilize the scanning radiometer data, appropriate computer programs must be
written to ""talk" to the Final Meteorological Radiation Tape and provide for printing out
data, punching cards, or producing maps. It is planned {hat The National Weather Records
Center (NWRC), Asheville, North Carolina, will make copies of the Final Meteorological
Radiation Tape available to universities and other interested research groups. A special
document will be prepared describing the contents of the Final Meteorological Radiation
Tape in technical computer language for users who wish to write their own programs.

Because it is sampled only when TV pictures are taken, the output rate of the non-
scanning, low resolution radiometer is vastly smaller than that of the medium resolution
radiometer, Hence the non-scanning data will be punched on cards or printed.

PRELIMINARY RESULTS

Samples of data have been reduced by hand analyses to check the computer program
and to demonstrate the validity and usefulness of the infcrmation. Figure 13 shows three
consecutive sweeps of channel 2, recorded on the {irst pi.ss between Australia and New
Zealand. These are typical scan patterns. The base linc corresponds to zero radiation
level; at that instant both sides of the detector faced outer space. The amplitude is
proportional to the energy available within the spectral range of the channel. Detectors,
preamplifiers, and voltage controlled oscillators contribute, in the form of non-linearities
and temperature dependence, to the final conversion factir between the recorded fre-
quency deviation and the radiation level seen by the detector. Figure 14 shows all chan-
nels on a more compressed scale, The amplitude modul ition on channel 7 shows sun
pulses. The first five patterns are the five channels of t 1e medium resolution radiometer.
The commutated channel 6 contains temperatures of the jlack and white cone and all the
"housekeeping' information. The point of verticality, where one detector sweeps a circle
on the earth, can be recognized on the right where the hcrizon is not intercepted at all.
Figure 15 shows only the last two channels. The wider pulses on channel 7 are camera
shutter signals recorded as pictures were taken every 3¢ seconds. In Figure 16 the
transition between the illuminated and shadowed part of :n orbit can be identified by the
cessation of sun pulses.

For the analysis, samples were selected from the first orbits over the United States
and over the Tasmanian Sea. Conversion factors between frequency deviation and appar-
ent blackbody temperatures were deduced from calibration data. Figure 17 is a plot of
the 8 to 12 micron radiation temperatures, Only the point where the optical axis intercepts
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the satellite path and two points 10 degrees on either side are shown for sweeps one
minute apart. These are less than 1 percent of the available data points. Blackbody
temperatures over the Northwestern States varied from 210° to 250°K. The maximum
temperatures, recorded in the vicinity of Ohio and of California is close to 280°K. But
temperatures over the Eastern States are again lower than this.

A cloud analysis and frontal position map is shown in Figure 18. Areas of low radia-
tion temperatures seem to coincide with the cloud shield very well. The 6 to 6.5 micron
map (Figure 19) shows less variation between cloudy and clear areas. Radiation tem-
peratures range from 220°K, over clouds, to 250 °K, over cloudless areas. The absolute
scale for blackbody temperatures measured by the 8 to 30 micron channel has not yet
been established with the same confidence that exists in regard to the other channels.
However, the same general pattern can be recognized and results from this channel are
expected to fall between those of channels 1 and 2. The relative accuracy of channels 1
and 2 is about +2°C, although absolute values may shift up and down as much as 5°C as
second order effects in the calibration procedure are taken into account.

An area between Australia and New Zealand was reduced to the fullest extent, Fig-
ure 20 shows the TIROS radiation map of apparent blackbody temperatures near local
midnight. Low temperatures east of the islands indicate clouds probably higher than 5
kilometers. The maximum temperatures registered come close to the surface tem-
peratures of water in this area,

Data from the low resolution radiometer are in Figure 21 together with a neph-
analysis for the first four orbits. The temperature of the black thermistor varies con-
siderably between 306°K over Africa and 286°K over the Atlantic Ocean. The tempera-
ture of the white thermistor follows the same pattern. A maximum of about 8°C differ-
ence in sensor temperatures (Tg - Ty) existed over the largely overcast frontal area
just south of Greece, but the two temperatures are the same over clear ocean areas
where the albedo is low. The temperature difference is smaller than was expected from
the calibration data. The white detector seems to act like a "medium gray" sensor; but
before final conclusions can be drawn, much more data will have to be analyzed. In spite
of lower temperature differences than were expected, the cloud cover analysis is in good
agreement with the radiometer data.

CONCLUSION

The radiation experiment of TIROS II, a rather complex electronic and mechanical
system, has worked very well. The instruments have produced and are continuing to
produce valuable data. The enormous amount of data should be made available to the
meteorological community as soon as there is full confidence in all scales which go with
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the data, and as soon as the automatic data processing techniques are working entirely
satisfactorily.
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Figure 1 —The TIROS Il meteorological satellite. The medium resolut on scanning radiometer looks through
rectangular apertures in the side and base plate. The low resoluticn radiometer looks through the round
aperture in the base plate almost diametrically opposed to the protruding wide-angle television lens.
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Figure 6—Exterior view of the medium resolution radiometer showing the view apertures in onedirection of
the five channels. The prismatic cross-section of the reflector is seen on the right of the line of apertures.
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Figure 7—Exterior view of the low resolution radiometer showing the
black detector (left) and the white detactor (right)
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Figure 13~Oscillogream showing three consecutive sky-earth scans of channel 2 of the medium resolution
radiometer. The spin period was 7.53 seconds. The amplitude (orcinate) is approximately proportional to

the radiant energy received.
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Figure 14—0Oscillogram showing all channels of the radiometer experiment. Reading from top to bottom:
the five medium resolution channels, the commutated channel 6, and the envelope of the clock frequency
showing sun sensor pulses every spin period of 7.53 seconds. The "point of verticality" where one detec-
tor sweeps a circle on the earth can be recognized on the right where the horizon is not intercepted at
all (see Figure 2).
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Figure 18—Nephanalysis and frontal position map for 1800 GMT, November 23, 1960. The subsatellite
paths, the apparent blackbody temperatures viewed by the 8 to 12 micron channel of the medium resolu-
tion radiometer, and the beginning times of the west-to-east passes of orbits 3 and 4 over the United
States are shown. Note that maximum temperatures occur over clear areos whereas minimum tempera-

tures occur in the vicinity of largely overcast frontal areas (see Figures 17 and 19).
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Figure 20—Radiation map constructed from apparent blackbody temperatures viewed by the 8 to 12 micron
channel of the medium resolution radiometer while passing over the New Zealand area during orbit "0"
just after launch, November 23, 1960. The frontal positions were taken from a standard weather map,
based upon limited observations, and modified in accordance with the more voluminous radiation data.
Marker dots are placed at 1-minute intervals along the subsatellite path.
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Figure 21 —Temperaturedata from the black and white cones of the low resolution radiometer during orbits
0, 1, 2, and 3 over the Mediterranean, Arabia, Africa, and the Atlantic Ocean, November 23, 1960.
The radiometer data are in agreement with the indicated weathe - data.
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