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EFFECT OF TAiL DIHEDRAL ON LATERAL CONTRCL EFFECTIVENESS
AT HIGH SUBSONIC SPEEDS OF DIFFERENTTAILY DEFLECTED
HORIZONTAL-TAIL SURFACES ON A CONFIGURATION
HAVING A THIN HIGHLY TAPERED WING*

By Paul G. Fournier
SUMMARY

Tests have been conducted in the Langley high-speed T7- by 10-foot
tunnel to determine the effect of tail dihedral on lateral control effec-
tiveness of a complete-model configuration having differentially deflected
horizontal-tail surfaces. Limited tests were made to determine the
lateral characteristics as well as the longitudinal characteristics in
sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14,
28.80° sweep of the quarter-chord line with zero sweep at the 80-percent-
chord line, and NACA 65A004 airfoil sections. The test Mach number range
extended from 0.60 to 0.92.

There are only small variations in the roll effectiveness param-
eter 016 with negative tail dihedral angle. The tail size used on the

test model, however, is perhaps inadequate for providing the roll rates
specified by current military requirements at subsonic speeds. The
lateral aerodynamic characteristics were essentially constant throughout
the range of sideslip angle from 12° to -12°. A general increase in
yawing moment was noted with increased negative dihedral throughout the
Mach number range.

INTRODUCTION

The use of thin flexible wings for high-speed airplanes frequently
has resulted in the loss of control effectiveness of conventional flap-
type ailerons at high subsonic speeds which maskes it necessary to

*Title, Unclassified.
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consider other means of lateral control. A promising lateral control
device presently being considered 1s an all-myvable, differentially
deflected horizontal tail. References 1 to 3 present lateral-control
data for differentially deflected horizontal-zail surfaces for Mach num-
bers of 0.055 to 2.0. Data obtained prior to those presented in refer-
ences 1 to 3 have been summarized in reference 4. These data include
effects of wing plan form, aeroelasticity, and control deflection angle
through wide ranges of angle of attack and anzle of sideslip. Data
have been obtained, however, only for constan: dihedral angles, in most
cases gero degree. Longitudinal stability rejuirements for high-speed
airplanes have indicated the need for low horizontal-tail positions,
which in some cases can only be accomplished by large negative tail
dihedral angles.

This paper presents results of an investigation to determine the
lateral control effectiveness as well as the stability characteristics
of a differentially deflected horizontal tail through a systematic varia-
tion of dihedral angles from 0° to -30°, The results presented herein
include only a very limited analysis.

SYMBOLS

The data are presented about the system of axes shown in figure 1.
The moment coefficients are referred to a censer-of-gravity location
which is at the quarter-chord point of the wing mean aerodynamic chord.

Ch drag coefficient (approximate), Qg?i
C 1ift coefficient, Liit
L
a5
CZ rolling-moment coefficient, Rolllngbmoment
qis
ACZ,ACH,ACY incremental forces and moment: due to control deflection
dCZ
‘I, " T
5> B2
2V
)
¢ = ——, per degree
s~ 5
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Pitching moment

pitching-moment coefficient, —
gsc
Yawing moment

vawing-moment coefficient,
asb

per degree

ratio of yawing moment to rolling moment due to control
deflection

Lateral force
as

lateral-force coefficient,
per degree

wing span, ft

local wing chord parallel to plane of symmetry, ft
5 b/2
wing mean aerodynamic chord, é-\/p cedy, ft
0

effective angle of incidence of horizontal tail with respect
to fuselage center line, deg

Mach number

rolling velocity, radians/sec

wing-tip helix angle, radians
. pV
dynamic pressure, = lb/sq ft

wing area, sq ft
free-stream velocity, ft/sec
angle of attack, deg

angle of sideslip, deg



T dihedral angle of horizontal tail, deg

9] total roll-control deflection, SR - SL, deg
Ac/h sweep angle of quarter-chord liﬁe, deg

p mass density of air, slugs/cu ft

Subscripts:

L left horizontal-tail panel

R right horizontal-tail panel

Model component designations:

F fuselage

H horizontal tail

Vv vertical tail

W wing

T.0. horizontal tail off

APPARATUS, MODEL, AND TE3TS

Tests were conducted in the lLangley high-3speed 7- by 10-foot tun-
nel of a sting-supported model having a wing of aspect ratio 3, a taper
ratio of 0.1k, zero sweep at the 80-percent-chord line (Ac/u = 28.800),

and NACA 65A004 airfoil sections parallel to the plane of symmetry.

This wing is the same aspect-ratioc-3 wing that was obtained by clipping
the tips of a basic aspect-ratio-4 wing discussed in reference 5. The
fuselage had a fineness ratio of 10.94 and was similar to the fuselage
of reference 5 except for the cylindrical afte:body. The details of the
fuselage are given in figure 2.

The model was so constructed that the horizontal-tail panel (mounted
from the fuselage center line) could be indivilually deflected through
an angle-of-incidence range from 159 to -15° i1 50 increments and mounted
to provide a dihedral-angle range from 500 to -500 from the wing-chord
plane extended.



The horizontal and vertical tails had quarter-chord sweep angles
of 14.37° and 28.00°, respectively, and unswept trailing edges. Details
of the complete model are given in figure 2. A photograph of the model
and support system is presented as figure 3 in which is shown the hori-
zontal tail with asymmetric deflection.

The model was tested through a Mach number range from 0.60 to 0.92
with corresponding Reynolds numbers ranging from approximately

2.6 x 106 to 3.4 x 106, pased on the wing mean aerodynamic chord. The
angle-of-attack range varied with loading conditions, the maximum range

being from about -2° to 22°,

Force tests were made to determine the effect of dihedral on the
rolling effectiveness of an all-movable differentially deflected hori-
zontal tail at dihedral angles of 0°, -150, and -30°. Longitudinal and
lateral aerodynamic characteristics were also obtained. The forces and
moments were measured by means of a six-component electrical strain-
gage balance mounted internally in the fuselage. Limited data were also
obtained from tests through a range of sideslip angle from 12° to -12°
at several constant angles of attack.

CORRECTIONS

Blockage corrections were applied to the data by the method of
reference 6. Jet-boundary corrections to angle of attack and drag were
applied in accordance with reference 7.

Tares due to the sting support have not been applied, except for a
fuselage-base-pressure correction to drag, since from past experience
it was found that these tares are negligible.

The angles of attack have been corrected for deflection of the
sting support and balance under load. No attempt has been made to cor-
rect the data for aeroelastic distortion of the wing; however, such
distortion is believed to be negligible since the wing was constructed
of steel.

RESULTS

TLateral Characteristics

The lateral aerodynamic characteristics for the complete-model
configuration are presented as increments of total control deflection in
figures 4 to 11 for angles of dihedral of 0°, -15°, and -30°.



There are only small variations in the -oll effectiveness param-
eter Cl& with negative tail dihedral angle at any given Mach number

or angle of attack (at least up to a = 150)) as shown in figure 4 for
constant total roll control deflection of -10° and in figure 9 for
constant effective tail incidence. The dashed curves in figure L repre-
sent the values of Cl& at the trim angle of attack with the center of

gravity at T/k for various effective stabilizer angles. These results
are summarized in figure 5.

In order to provide an approximate assessment of the adequacy of
the present lateral-control system, simple ore-degree-of-freedom calcu-
lations were made to determine the rolling-mcment coefficient required
in order to satisfy current flying qualities requirements. Experimental
values of the damping-in-roll derivative Clp were obtained from ref-

erence 8 for an aspect-ratio-3 wing. A value of g% = 0.09 was usegq,

since reference 9 specifies this value within the range from 1.1 times
stalling speed to minimum combat speed for fizhter-type aircraft. The
resulting required value of VA OF B - approximately 0.025, which is
about 30 percent more than was achieved with 1 total differential tail
deflection of 30°. These calculations, of couirse, are very approximate;
however, it would seem that the tail size usei on the present model is
smaller than should be provided to meet current subsonic roll require-
ments for fighter-type aircraft.

There was a general increase in Cn6 wish inereasing negative

dihedral throughout the Mach number range and for angles of attack up

to at least 15° for conditions of either cons*.ant control deflection

or of constant effective stabilizer angle, as may be seen in figures 6
end 10. There was a corresponding variation :n the lateral force incre-
ment OY6. (See figs. 7 and 11.) These effects are due to increases

in the lateral component of the horizontal-tasl loads which increased
with negative dihedral. Figure 8 presents the ratio of the yawing moment
(n
to rolling moment due to control deflection E~§ for the configurations
3
having constant control deflection. These data indicate that the yawing
rioment increases substantially with increasing negative dihedral angle
throughout the Mach number range. The configuration having it = -10°

showed wide variations with angle of attack particularly at M = 0.90
and 0.52. These variations were due principally to the low values of C16

in this Mach number range shown in figure 4L(b) rather than to the varia-
tion in Cn6'



The effect of the vertical tail on the incremental lateral charac-
teristics is shown in figure 12 for M = 0.80 and & = -20° (iy = 0°)
for each value of dihedral angle T'. The vertical tail tends to decrease

the rolling moment throughout the range of angle of attack (fig. 12(a)).
This effect on Cl& is in the direction expected for the loads induced

on the vertical tail by asymmetrical deflection of the horizontal tail.
Increases in negative dihedral angle (in effect lowering the horizontal
tail) decreased the induced loads carried by the vertical tail by as
much as 40 percent, as may be seen in figures 12(b) and 12(c).

The lateral aerodynamic characteristics due to differential deflec-
tion of the horizontal tail with and without the vertical tail, shown
in figure 13 for a representative value of M of 0.80 at a = 0°,
were essentially constant through the range of sideslip angles.

Longitudinal Characteristics

The longitudinal characteristics of the complete-model configura-
tion with both symmetrical and asymmetrical deflection of the horizontal
tail for the range of dihedral angles investigated, along with tail-off
characteristics, are presented in figures 14 to 16. (In order to facili-
tate presentation of the data, staggered scales have been used in several
of the figures and care should be taken in identifying the proper scale
for each curve.)

The overall trends of the pitching-moment characteristics above
10° angle of attack for a given dihedral angle are generally similar for
either the symmetrical or asymmetrical (roll control) deflection at a
given effective stabilizer setting. Increasing the negative dihedral
of the horizontal tail improved the linearity of the pitching-moment
curves up to a = 15° as would be expected (see figs. 1lh(c), 15(c),
and 16(c)) for this type of configuration. Figure 17 shows that the
variations of CL’ Cb, and C, with sideslip angle are not greatly

affected by tail dihedral.
CONCLUSIONS

From tests conducted in the Langley high-speed T7- by 10-foot tun-
nel of differentially deflected horizontal-tail surfaces on a configura-
tion having a low-aspect-ratic thin wing through a range of negative
tail dihedral angles, the following conclusions can be made:



1. There are only small variations in the roll effectiveness param-
eter CZB with negative tail dihedral angle. The tail size used on the

test model, however, is perhaps inadequate for providing the roll rates
specified by current military requirements ai. subsonic speeds.

2. There was a general increase in yawing moment with increase in
negative dihedral throughout the Mach number range up to an angle of
attack of 15°.

5. The lateral aerodynamic characteristics were essentially constant
throughout the range of sideslip angle from 12° to -12° at a Mach num-
ber of 0.80.

Langley Research Center,
National Aeronautics and Space Administration,
lLangley Field, Va., October 1, 1958.
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Angle of attack,a,deg

090

M

1L

(b) M = 0.90 and 0.92.

Figure 4.- Conclud:d.
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I'=-30°

Angle of attack,a, deg

0.90 and 0.92.

M =

(o)

Figure 6.- Concluded.
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-5

Angle of attack,a, deg

(b) M - 0.90 and 0.92.

Figure 7.- Concluded.
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o 5 0 /5 20 25
Angle of attack, a,deg

(a) M = 0.60 and 0.80.

Figure 8.- Variation with angle of attack of the ratio
parameter to roll-contrcl parameter for each tail di
a constant control deflection thro
settings.

of yawing-moment
hedral angle and
ugh a range of effective stabilizer
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-5
Angle of attack,a,deg

(b) M = 0.90 and C.92.

Figure 9.- Concluded.
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Figure 16.- Contirued.
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