Copy 5S
NASA MEMO 3-15-59L
NACA
394 477
p. 66
MEMORANDUM
for the
U.S. Air Force
RESULTS OF A CYCLIC LOAD TEST OF AN RB-47E AIRPLANE
COORD. NO. AF-AM-171
By Wilber B. Huston
Langley Research Center Langley Chiefdf Na TION CHANGED FROM SECRET TO UNCLASSIFIED
AUTHORITY: NASA TECHNICAL FUBLICATIONS ANNOUNCEMENTS NO. 55
CLASSIFIE FOCUMENTIVE DATE: SHITE-BER 1, 1961 WHL This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON
JAN 3.0 1959

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 3-15-59L

for the

U. S. Air Force

RESULTS OF A CYCLIC LOAD TEST OF AN RB-47E AIRPIANE*

COORD. NO. AF-AM-171

By Wilber B. Huston

SUMMARY

Results of a cyclic load test made by NASA on an RB-47E airplane are given. The test reported on is for one of three B-47 airplanes in a test program set up by the U. S. Air Force to evaluate the effect of wing structural reinforcements on fatigue life. As a result of crack development in the upper fuselage longerons of the other two airplanes in the program, a longeron and fuselage skin modification was incorporated early in the test.

Fuselage strain-gage measurements made before and after the longeron modification and wing strain-gage measurements made only after wing reinforcement are summarized. The history of crack development and repair is given in detail. Testing was terminated one sequence short of the planned end of the program with the occurrence of a major crack in the lower right wing skin.

INTRODUCTION

At the request of the U. S. Air Force, the NASA has participated in a test program designed to evaluate some wing structural reinforcements of the B-47 airplane. The loading program was established by agreement between the Air Force and the Boeing Airplane Company. Operational data were used to estimate rate of fatigue damage and test loadings were designed to reproduce this rate of damage by applying cyclic loads of four types. The program, as outlined in reference 1, called for the cyclic loading to be applied to three airplanes. Testing was performed

*Title, Unclassified.

by three agencies: the Boeing Airplane Company at Wichita, Kansas, the Douglas Aircraft Company, at Tulsa, Oklahoma, and the NASA at the Langley Research Center, Langley Field, Virginia. For convenience these airplanes will be referred to as the Boeing, Douglas, and NASA test airplanes.

As originally set up, the cyclic loading program was designed to evaluate structural reinforcements of two major splice areas in the airplane wing. One such splice, located at wing station 354 (W.S. 354), joins two sections of the wing lower skin in the region outboard of the inboard nacelle structure. The other splice, located at buttock line 45 (B.L. 45) is at the wing-fuselage junction where the wing principal structural elements change direction. Reinforcement of these splices had been deemed necessary on the basis of evidence of fatigue. During the course of the tests a new location, the upper fuselage longerons, was found to be critical in fatigue. It is the purpose of the present paper to describe the course of the investigation on the NASA test airplane, to report the stress measurements made, and to summarize the findings of the periodic crack inspections.

In order to minimize differences in applied loads due to equipment, the loading rigs for the three test airplanes were fabricated from the same drawings. Principal structural components of the loading equipment utilized in the NASA phase were fabricated by Boeing at Wichita and shipped to Langley for erection.

APPARATUS

Airplane

The airplane for the NASA phase of the program was an RB-47E airplane, with 918 hours of flying time recorded when delivered to Langley. The maintenance log showed no major structural modifications except for a programed replacement (at 519 flight hours) of the lower drag angles, which tie the wing center section to the fuselage sides. Extracts from the log and maintenance reports are given in the appendix together with available information on the prior utilization of the airplane.

The airplane was stripped of nonstructural items, such as fuel tanks and navigational, communication, and reconnaissance equipment, and was thoroughly inspected for fatigue cracks in accordance with the procedures specified in reference 2. Two cracks were found in the W.S. 354 splice area on the left side. The wing-splice reinforcements at W.S. 354 and B.L. 45 were then installed; these reinforcements are described in reference 3 and photographs are given in figure 1.

For the test, the outboard engines and nacelles were removed, fairings were removed from the inboard nacelles, and salvageable J47-23 engines substituted for the operating J47-25 engines. Wing weight changes due to these modifications were compensated for by adding dead weights and by the weight of the wing formers (installed for load application) at wing stations 715, 515, and 258. Wing dead weight in the test was equivalent to the dead weight of the wing in flight.

Test Setup

General views of the airplane in the test position and of the loading equipment are shown in figure 2. The airplane was in a level flight attitude. Front and rear landing gears were secured to tiedowns capable of transmitting vertical loads to the floor. (See fig. 3.) Loads were applied to the airplane by hydraulic rams at seven stations. Rams at wing stations 715 and 515 were supported from the towers shown in figure 2(a); rams at wing station 258 pushed up from the floor. A fuselage loading point was incorporated at body station 1166. Points of load application for each level in the loads spectrum were as specified in reference 1.

Strain-Gage Instrumentation

Strain-gage bridges were installed in the wing and fuselage to measure stresses in various members. In general, wing strain-gage bridges incorporated two active arms installed on inner and outer surfaces of the lower wing skin. Both rosette and axial bridges were installed. All bridges were installed at the locations and with the orientations specified in reference 1.

Some of the strain-gage bridges callel for in reference 1 were, by agreement, omitted from the NASA installation. Some of those specified in reference 1 were installed after the start of the tests as the need for further stress measurements was indicated. Some of the bridges were monitored continually throughout the program on recording oscillographs, whereas others were read at particular points in the program on a spotlight galvanometer. Stress measurements were made at a total of 69 locations. The bridge numbers, general locations, and point in the program at which the bridges were installed are shown in the following table:

<u>apapan</u>

Strain-gage bridge number	Approximate location	Strain-gage bridges installed -
23, 24, 29 10, 17, 19 34, 36, 37 49, 50, 55, 56 44, 45, 46 59, 60, 67, 68, 69, 72 73 to 88, 190 193 to 208, 191	W.S. 635.5 W.S. 375 W.S. 125 W.S. 112 B.L. 56 Inboard of B.L. 45 Right longeron Left longeron	At start of test
94, 95, 96, 97 214, 215, 216, 217 100, 101, 102, 103	Right longeron Left longeron Right crown-skin reinforcing plate	After longeron modification

For convenience a pictorial representation of the strain-gage locations on the wing and longeron is given in figure 4.

TEST PROCEDURE

Cyclic Loading

The cyclic loading of the airplane was accomplished in sequence as specified in reference 1. The loads were applied in spectrums, each spectrum consisting of three types of loading, with a specified number of cycles for each type as follows:

																							Number of
																							cycles
Ground-air-ground	(G	AC	3)	•	•	•	•	•	•		•	•	•	•		•			•	•			28
High-gust (Hi)	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	202
Low-gust (Lo)	•	•		•	•	-	•	•	•	-	•	•	•	•	•	•		•	•		•	•	2,926
																				T	ota	a]	3,156

An additional type of loading, a "90 percent limit load," was applied at the start of the program and, in general, after every fourth spectrum. The actual loading history is summarized in table 1, which shows how the order of loading was varied in successive spectrums and the points in the program at which the 90 percent limit loads were applied. The applied forces associated with the maximums and minimums of these loadings are given in table 2 together with the points of application of the forces. The moments and torques associated with these forces are given in table 3. Also given in tables 2 and 3 is a loading denoted "Inspection." These inspection loads were applied and maintained during inspections when it

was necessary to have the wing in a zero stress or jig position for strain reference, or in order to facilitate the removal of bolts during inspections.

Hydraulic pressure for the loading rams was supplied by a pump through a solenoid-operated valve. At a control panel the pump output was supplied to four individually controlled reducing valves which in turn supplied the two rams at each of the three wing stations and the single ram at the fuselage station. The loads applied by each ram were monitored by means of strain-gage-type load cells whose outputs were recorded continuously. The recorders were located at the control panel and were constantly under surveillance by the operating engineer.

Maximum conditions for any loading were fixed by setting the hydraulic pressures while monitoring the load recorders. Minimum conditions were fixed in two ways. At wing stations 715, 515, and 258, the minimum conditions were fixed by jacks with load cells attached under the wing formers. The minimum load at W.S. 258 was also limited by collars on the rams. At body station 1166 (B.S. 1166), auxiliary supports were provided which limited the ram stroke when the hydraulic pressure to the rams was reduced to zero.

Cyclic loading was controlled by timers which alternately placed a solenoid-operated valve in the load or dump position. Cycling rates were 4 cycles per minute in the low-gust loading, 2 cycles per minute in the high-gust loading, and 1 cycle per minute in the ground-air-ground loading.

The 90 percent limit load was applied in increments by manually controlling the hydraulic pressures to the rams. Beginning with no ram pressure, and with the wing in the droop position, the pressures were applied incrementally in such a way that each load step was 10 percent of the 90-percent-limit-load value. The load was returned to zero in similar steps.

Inspection

Prior to the start of cyclic loading, a uniform inspection procedure was established for all three test airplanes. Inspections were scheduled following each two spectrums. A careful visual inspection was given to all external skin and to the interior portion of the wing in the root region. In addition, 71 bolts were removed at each W.S. 354 splice and 50 bolts were removed at each B.L. 45 splice in order to permit inspection of the bolt holes with a borescope. Following the installation of the upper longeron modification, two bolt holes were also inspected in each of the upper longeron splices.

Operation

Cyclic loads were applied to the airplane 24 hours a day, 7 days a week, except as interrupted for load level changes, routine maintenance, inspections, or repairs. During the Boeing phase of the program, fatigue cracks in the upper longerons resulted in a fuselage failure during spectrum 13. In order to determine the stresses in the region of failure, additional strain gages were installed on the NASA test airplane and stress data were recorded during the first two 90 percent limit loadings which were applied prior to cycling. (See table 1.) Continuous cycling of the NASA test airplane followed. Further on in the program, fatigue cracks were found in the upper longerons of the repaired Boeing test airplane and in the Douglas test airplane at spectrums 17 and 12, respectively. Cyclic loading of the NASA test airplane was halted at this point (low gust, spectrum 3) to await completion of design of a longeron modification kit. Once this modification was installed, testing was resumed and completed without any major shutdowns.

RESULTS AND DISCUSSION

Stress Measurements

Stress measurements prior to longeron modification.- Wing and longeron stress measurements made in the initial phases of cyclic loading, prior to longeron modification are given in table 4. The reference condition for all wing stresses is the droop position in the low-gust loading, as indicated by the zeroes in the first line of data. For convenience in comparing stress measurements, the bending moment at W.S. 120 is also given in table 4 as a percentage of the limit bending moment at this station. All data of table 4(a) were obtained from recording oscillographs. The highest values of wing stress measured were shown by the primary arm of strain-gage bridge 36 (i.e., 36-3). The maximum value was 41.6 ksi from the reference condition or 35.4 ksi from the inspection position, corresponding to 39.3 ksi at limit load and 59.0 ksi at ultimate load.

The variation of stress with load is shown in figure 5 for representative gages from each of the wing stations surveyed during the present study. Gages 23 and 10 are at wing stations 635.5 and 375, respectively; they represent the bending stresses just inboard of the splice at W.S. 642 and outboard of the splice at W.S. 354. Gages 49 and 60 are outboard and inboard, respectively, of the splice area at B.L. 45. For comparison of the results at the four different loading configurations, the measured stresses are plotted against applied bending moment at W.S. 120, expressed as a percent of limit bending moment at that station. There is little evidence of nonlinearity with load in these plots. Torque differences

 γ

associated with the various load configurations appear to have a noticeable effect on the stress only at W.S. 375.

Longeron stress data in tables 4(b), 4(c), 5(a), and 5(b) were recorded on a spotlight galvanometer in order to secure more rapid data workup and to reduce the number of recorder channels required. The reference condition for each load configuration is the wing in the droop position for that configuration. Although a correction due to the small differences in droop bending moment for the different configurations is indicated, any correction would be smaller than the reading error of the spotlight galvanometer.

In table 4(b), the strain-gage bridges were located on the right longeron; the installation was duplicated on the left longeron, but stress measurements on the left, tabulated in table 4(c), showed no essential difference from those on the right. The largest longeron stresses were measured at B.S. 508 (see fig. 4(c)), which also showed the largest differences between adjoining gages at the same cross section. It was at this station that the longeron cracks occurred on the Boeing and Douglas test airplanes. Gage 79 showed the largest measured stress, 44.2 ksi, or from the inspection position, 38.3 ksi, corresponding to 42.6 ksi at limit load and 63.8 ksi at ultimate load. Gage 74 located at this same fuselage station showed only a maximum of 7.2 ksi from the inspection position for 90 percent limit load.

The variation of stress with load is shown in figure 6 for the four gages at B.S. 508. The abscissa is again arbitrarily chosen as the percent of limit load for W.S. 120. There is no evidence of nonlinearity with load, as indicated by the solid lines faired through the data.

<u>Stress measurements following longeron modification</u>. After installation of the longeron splice modification, strain gages disturbed by the modification were replaced, in some instances with a slight change of position. The installation is shown pictorially in figures 4(c) and 4(d). The stresses measured during the high-gust loading and the 90 percent limit loading are given in table 5. The installation on the left side was less extensive than that on the right; however, right and left sides are in essential agreement. The variation of stress with load for the strain gages at B.S. 508 is shown in figure 6 by the dashed line faired through the test data. As may be seen by the results for gage 79, the effect of the modification has been to reduce the maximum stress by 34 percent. On the other hand the stress at gage 74 has been increased slightly, resulting in a very much more uniform stress distribution through the cross section.

Gages 100 to 103 are located on the upper-skin reinforcement plate. These gages were single axial gages located on the outer surface of the

skin only. Gages 100 and 101, at B.S. 442.5, appear to be responding primarily to stress induced by wrinkling of the underlying original skin. The stresses for gages 102 and 103, at B.S. 518.5, vary linearly with load and indicate a reasonably uniform stress distribution across the plate.

Throughout the program, stresses were checked periodically. Results of this check for a representative strain gage, number 37-3, are shown in figure 7, where the incremental (difference between maximum and minimum) stresses measured during cycling at each spectrum are compared with the incremental stresses measured during the static loadings made prior to the start of cycling. (See tables 4 and 5.)

Fatigue Crack Observations and Repairs

The cracks which were observed during the course of the test program are reported in table 6. This table contains 22 entries, each indicates an area in which cracks developed during the test program on the NASA airplane. Each crack area is given an identifying number from 1 to 22 in the order of observation, and these numbers are repeated in figure 8 to show the general area of crack location. Of these crack locations, 12 are on the wing and 10 are on the fuselage. Also indicated in table 6 is the spectrum during or after which the crack was first observed, and, in general, there is a reference to a figure number showing a photograph of the crack. In cases where special disposition was made, such as stopdrilling or application of a doubler, the disposition is described. Such repairs were generally made in conformance with applicable structural repair instructions. (See ref. 4.) Cracks similar to those numbered 6, 10, and 12 occurred in similar locations on one or both of the other test airplanes. Repairs to the NASA airplane were coordinated with repairs to the other airplanes. Figures 9 to 21 are photographs of cracks or repairs, the more important ones being discussed in detail in the following paragraphs.

Cracks 1 and 2 existed in the airplane at the time it was received, and crack 3 which was discovered early in the program is considered to have been in the airplane as received. Cracks in the outboard shear ties could be detected only by drilling a special 1-inch-diameter inspection hole in the upper fuselage crown skin. Photographs of the crack area (item 3) showing its differing appearance under minimum and maximum load were made through the inspection hole and are shown in figures 9(a) and 9(b), respectively. Since these holes were covered by the upper-skin reinforcing plates installed in the longeron-modification program, crackpropagation information is not available on the outboard shear ties after spectrum 3.

7 * ++. .

Cracks in the fuselage forward of the front landing gear, such as cracks 4 and 7, are believed to result from the airplane support system in which the flight-type loads such as the high-gust and low-gust loading conditions are reacted to the floor through the landing gear.

Crack 6 which occurred in the fuselage crown skin 10 inches aft of the upper-skin reinforcement plate was the first crack to be observed which may be considered to be associated with the reinforcements. It occurred during the 13th spectrum, 10 spectrums after the longeron modification. The crack which is illustrated in figure 13(a) occurred on the right side. The reinforcement plate shown in figure 13(b) was also installed on the left side at the same time to determine whether it might forestall development of a corresponding crack on the left side. When this doubler was removed at the end of the program, a crack was found in the skin beneath the doubler similar to the one shown in figure 13(a).

Cracks 8 and 9 which involved the upper inboard shear ties on both sides were not repaired. Crack 8 is illustrated in figure 14.

Crack 10 at B.S. 648 involved both the right fuselage crown skin and the adjacent stiffener that supports the walkway door hinge. Crack occurrence was marked by a loud report, which was observed by one of the test personnel who happened to be standing in the vicinity on the floor beside the fuselage. The cracks occurred during the high-gust portion of the 20th spectrum, 17 spectrums after the longeron modification. The cracks and repairs are illustrated in figure 15.

During inspection 12, following spectrum 24, small cracks (item 13) were found in the upper-crown-skin reinforcing plate. Barely visible to the unaided eye in the inspection position, they were discovered during the night by the chance observation of disturbances in the reflection pattern from an overhead light bulb.

During spectrum 23 a special check of the aft lower drag angles was made because some cracks had been observed in the other test airplanes. No cracks were found at that time, but small cracks were found following spectrum 28, listed in table 6 as items 17 and 18.

Item 11 in table 6 records 20 distinct cracks in the leading-edge skin, all located between wing stations 114 and 389. Typical examples are shown in figure 16. These cracks were first observed during cycling in spectrum 20; they varied in length between 1/2 inch and 6 inches at that time. Easily visible under load, they were nearly all virtually invisible when the wing was in the inspection position. At the end of the program, cracks, frequently multiple, could be found at 22 distinct stations. At eight stations the leading-edge attach angle was involved, and at three of these stations it was failed completely. Inspection of

the leading-edge skin during spectrum 17 did not reveal leading-edge cracks; thus, it is virtually sure that these cracks appeared subsequent to spectrum 17. Their occurrence during the present program indicates that the life of the magnesium leading-edge sections may be less than the augmented life of the wing splices and that close inspection of the wing leading edge would be warranted as airplane flight time increases.

The first crack in a wing splice developed at the left B.L. 45 area in a rear outboard finger of the reinforcement. This crack area, item 15, is pictured in figure 19(a) and was found at spectrum 26. An additional crack, item 16, in this area was found at spectrum 28. No cracks were found in the wing splices at W.S. 354 during the program.

During the application of the 90 percent limit loading of spectrum 29, the right wing closeout panel failed. The failure was marked by a clearly audible report just as the applied load reached the load maximum. The wing was returned to the droop position by dropping the ram pressure to zero. Inspection of this crack area (item 19) showed that the whole of the lower closeout panel had failed at W.S. 179 between stiffeners 7 and 8 (see fig. 20), a distance of 21 inches, and that the inboard rivets at the ends of the fingers on the doubler of the hole for the waterinjection-pump access door were involved. The crack is clearly evident in the droop position because of the marked necking-down of the material at the lower surface. Preliminary inspection of spars and stringers in the crack area has revealed no secondary failures associated with this crack.

The B.L. 45 bolt hole inspection was repeated and two cracks, items 20 and 21, were found in the outboard aft fingers of the splice plate at B.L. 45 on the right side. These cracks were not present on the preceding inspection following spectrum 28. A crack (item 22) was also found in the closeout panel on the left side at the hole for the water-injection-pump-access door at W.S. 212. The crack, which is approximately 3.5 inches long, apparently originated in a tool mark in the radius of the cutout and propagated rearward to a bolt hole in stringer 7. (See fig. 21.)

Because of the magnitude of the crack at right W.S. 179, and because of the number of cracks which had developed in the fingers of the B.L. 45 splice, as well as in the fuselage crown-skin reinforcing plate, it was considered that further cyclic loading would not contribute to the objectives of the program. Cyclic loading was, therefore, terminated.

CONCLUDING REMARKS

A cyclic load test has been completed on a B-47 airplane as part of a program to evaluate reinforced wing splices designed to increase the fatigue life of the airplane.

During the course of the tests no cracks were found in the area of the wing splice at wing station 354. Small cracks developed in the fingers of the splice area outboard of buttock line 45 after spectrum 26. Testing was terminated by the sudden development of a 21-inch crack in the right closeout panel at wing station 179 during the application of the 90 percent limit loading of spectrum 29.

Cracks were found in the magnesium leading-edge skin after spectrum 20. These cracks indicate that the fatigue life of the leadingedge skin may be less than the augmented life of the wing splices, and that close inspection of the wing leading edge would be warranted as airplane flight time increases.

Because of crack development in the upper fuselage longeron splice area of other airplanes in the test program, a longeron modification was made during the third spectrum. During the application of spectrums 13 and 20, secondary cracks developed in the upper fuselage skin which appear to be associated with this longeron modification. These cracks were repaired using standard aircraft structural repair procedures. When the tests were terminated, 25 complete spectrums had been applied to the modified longeron splice and no cracks had been revealed during inspections.

Because of the necessity for installation of the wing-splice reinforcements prior to the start of cyclic testing, stress measurements could not be obtained on the original configuration. Wing stress measurements after reinforcement are given for comparison with the stresses measured on the other airplanes in the program. Longeron stress measurements obtained before and after installation of the longeron modification showed that the modification produced more uniform stress distribution across the longeron and reduced the maximum values of stress measured.

Langley Research Center, National Aeronautics and Space Administration, Langley Field, Va., January 26, 1959.

APPENDIX

EXTRACTS FROM LOG AND MAINTENANCE REPORTS OF AIRPLANE

The following data pertinent to airplane assignments and structural history have been abstracted from the historical records carried on the airplane:

RB-47E-26-RW SERIAL NUMBER 52-736A

Prime Contractor - Boeing Airplane Company

Acceptance Date: 16 July 1954

DATE	FLIGHT HOURS ON AIRCRAFT	REMARKS
16 July 1954	10:50	Boeing delivered aircraft to 90th S.R. Wg. at Forbes AFB, Kansas
25 January 1956	511:50	Aircraft transferred to Douglas-Tulsa at Tulsa, Oklahoma, for IRAN
15 May 1956	519 : 05	Aircraft returned to 90th S.R.Wg. at Forbes AFB, Kansas, and assigned to 320th S.R. Sq.
l November 1957	907:35	Aircraft transferred to Arizona Air- craft Storage Branch, Davis Monthan AFB, Arizona, for storage
2 June 1958	915:40	Aircraft transferred to AMC for cyclic loading tests
4 June 1958	917: 55	Aircraft delivered to NASA at Langley Research Center

	

Technical Order Compliance (TOC) Record

DATE OF TOC	DATE COMPLIED WITH	TOC NUMBER	TITLE
29 June 54	9 Aug 54	1B-47-534	Reinforcements of bulkhead at sta- tion 329.28 B-47
27 Sept 54	18 Sept 54	1 B- 47 - 605	Inspection of wing-body drag angles
15 July 55	15 May 56	18-47-606	Replacement of wing-body angle (drag angle) B-47 series aircraft
28 Apr 58	15 May 56	1B-47-1022	Inspection of lower skin of wing center section at buttock line 35 for cracks
15 May 58	Unknown	1B-47-1024	Inspection of lower wing skin inter- spar area, wing station 354

Correspondence with the Air Force relative to any details on the service history of the airplane indicated that, in general, this aircraft was used predominately for high-altitude navigation and bombing missions. Also, no low-level bombing was accomplished. The only intentional unusual maneuvers which the aircraft possibly experienced were demonstrated stalls, control crossover demonstrations, and "hi-jinks" breakaway involving an approximate 1 g turn with moderate buffeting.

13

REFERENCES

- 1. Hickok, Ted V.: Test Program Evaluation of B-47 Structural Life. Doc. No. D3-1646, Boeing Airplane Co., Apr. 30, 1958.
- 2. Lee, Lawrence D.: Procedure for Structural Inspection B-47 Series Airplanes. Doc. No. D3-1634, Boeing Airplane Co., Apr. 29, 1958.
- 3. Knight, J. Homer, and Woodin, Charles J.: Inspection and Structural Rework of Wing Sta. 354, Buttock Line 45, and Body Sta. 515. Doc. No. D3-1663, Boeing Airplane Co., May 25, 1958.
- 4. Anon.: Handbook, Structural Repair Instructions USAF Series B-47A, B-47B, TB-47B, B-47E, RB-47E, RB-47H, RB-47K, DB-47B, YDB-47E, Aircraft. T.O. IB-47A-3, U. S. Air Force, Jan. 30, 1957 (rev. Jan. 15, 1958).

TABLE 1.- LOADING SCHEDULE

[Order of loading is given for each spectrum]

1	2	3	4	5	6
90 % 90 % GAG H1 Lo	Hi Lo GAG	Lo 90% GAG Hi	GAG Lo Hi	(*) Lo Hi GAG	Hi GAG Lo

7	8	9	10	11	12
GAG Hi Lo	Hi Lo GAG	90% Lo GAG Hi	GAG Lo Hi	Lo Hi GAG	Hi GAG Lo

13	14	15	16	17	18
90 % GAG Hi Lo	Hi Lo GAG	Hi GAG Hi	GAG Lo Hi	90 % Lo Hi GAG	Hi GAG Lo

19	20	21	22	23	24
GAG Hi Lo	Hi Lo GAG	90% Lo GAG H1	GAG Lo Hi	Lo Hi GAG	Hi GAG Lo

25	26	27	28	29
90% GAG Hi Lo	Hi Lo GAG	Lo GAG Hi	GAG Lo Hi	90 %

*90% omitted from spectrum 5 because of extra calibrate loading required after longeron modification in spectrum 3.

TABLE 2.- FIXED-WEIGHT LOADS, RAM LOADS, JACK LOADS, AND POSITIONS OF LOAD APPLICATION FOR LOADING CONFIGURATIONS USED

Loads in kips; positions in inches ahead of elastic axis (38 percent chord)

•				M	.s. 258				W.S.	515			W.S.	715		B.S. 1166
Type of loading	Load	Fixed	weight	-	Ram	ŗ	ack	1	Ram	ñ	BCK		Ram	C,	ack	- - -
p		Load	Position	Load	Position	Load	Position	Load	Position	Load	Position	Load	Position	Load	Position	Kam loso
	Max.	0	8	60.2	10.13		0 5 1 9 5	35.9	19.46			25.6	19.77			16.0
A bercent limit	Min.	0		0		0	8	0		0		0		0		ο
	Max.	1.3	131.36	64.0	15.04	 		23.0	16.28	1		16.4	19.77			10.8
nmorg-Tra-nmore	Min.	1.3	131.36	6.5	15.04	.6	49.05	0		0		0		0		0
	Max.	.85	131.36	57.4	15.04			26.0	16.28			18.5	77.61			9. 11
ang mgru	Min.	•85	131.36	26.0	15.04	11.6	49.05	0		1.9	12.13	0		5.3	19.90	2.5
4	Max.	0		6.64	15.04			20.7	16 . 28	1	1	14.6	19.77	1		8.9
a sub	Min.	0		38.6	15.04	4.7	49.05	0		13.2	4.31	0		9.2	19.90	5.2
Inspection		-95	131.36		1	14.425	49.05			5.8	12.13			3.675	19.90	0

,

TABLE 3.- ABSOLUTE VALUES OF WING BENDING MOMENTS AND TORQUES AND FUSELAGE

BENDING MOMENT FOR LOADING CONFIGURATIONS USED

[Moments and torques in millions of inch-pounds]

Type of	Load	W.S.	635	W.S.	354	W.S.	120	B.S. 508
Loading	level	Moment	Torque	Moment	Torque	Moment	Torque	Moment
90 percent limit	. xeM	1.755	0.4320	12.69	1.1385	31.05	0.9675	37.46
	Max.	1.0179	.2500	7.3602	.6412	21.0105	.6547	27.39
urouna-air-grouna	Min.	294	-•0742	-2.260	0572	-5.690	8810	-4.32
-	Max.	1.1876	.2919	8.5869	•7304	22.5630	.7031	28.46
tang ngu	.Min.	.1275	4150.	•9221	.0827	4.8645	.1516	8.39
	Мах.	.8775	.2153	6.345	.5693	17.2845	.5386	22.35
Dans dans dans dans dans dans dans dans d	Min.	LT##	.1087	3.1936	.2865	10.1948	.3177	14.47
Inspection	1	0		0		0		1.27

TABLE 4 .- WING AND LONGERON STRESS MEASUREMENTS AFTER WING-SPLICE REINFORCEMENT,

AND PRIOR TO LONGERON MODIFICATION

[All stresses measured from wing-drooped low-gust configuration, rams unattached, in ksi]

(a) Wing stress measurements

	Ŷ		مفضبت	-	नवलन	[4466	<u> </u>	
	64		E B B R O		8 - P		09784		10200000000000000000000000000000000000
	-6 1		0		0.00		- 00 - O		0100000000000000
	1-64		0.4-7-60 		0.0 4.0 6.0		1-10-1-1-		
	6-3		9.3		0.2 8.0 7.5		20.00 4.00 50.00 50	1	
	t6-2 1		2.5 1 2.6 1 2.6 1		4.0.0 F		4 1 0 5		· · · · · · · · · · · · · · · · · · ·
	+6-1 1		1.4.9 5.9 5.9 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				-1-7		odd&wwddawddwdd wurwurdaeeeee
	45-3		0 15.3 15.3		0.081 1.0.1.4.	1	6.0- 6.7- 4.6 4.6		40-4 40-4 40-4 40-4 40-4 40-4 40-4 40-4
	45-2		1.8 1.8 1.8		3.6 3.6 3.6		0 1 7 1 0 + 1 1 0		0110 <i>22</i> 00000000000000000000000000000000
	#5-1		044.44		0 1 9 4		- + +		·
dge -	E-44		0 15.2 16.5 19.1 19.1		0.1 1.5 22.5		23.02		
ge bri	7-11		0 2.5 3.1 3.8 2.7		4.0 4.0 4.0		-0.2 -1.6 -1.4		0
ln-ga	T-44		-2.4.0 -5.4.0 -5.4.0	50	-2.6 -2.1		0.2 -2.0 -5.6 -1.2		
stra	57-3	M	0 16.4 20.5 23.8 16.4	pading	-0.1 14.0 28.0	岁	20.2 20.9 20.4 20.4	ading	0821188848851000 200822888850000000000000000000000000
ed at	37-2	oadin	0 7.4 7.6 7.8 7.8	und L	6 6	load1	0 1.0 1.0 1.0	It lo	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ษรยาบ	37-1	ust l	4652 4657 5	r-800	0.3 -3.6 -7.2	gust		t Lin	04444666666666666666666666666666666666
ess B	36-3	Low-B	0 18.0 22.6 26.1 26.1 17.9	ind-aí	-0.1 15.5 20.7	Hgh-	-0.1 6.8 32.3 6.2	ercen	0 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sti	36-2		0 6.2 7.6 8.6 6.2	Gro	0 5.4 10.3		0 2.5 4.0 10.6 2.3	8	
	36-1		-5.6 -5.6 -7.0 -5.3		0 140		-2.1 -3.8 -9.8 -1.8		
	え		0 15.8 19.8 23.3 15.8		-0.3 -13.8 27.9		-0.2 6.2 59.4 5.4		
	&		0 4.9 6.1 3.7		0.5 4.6 8.9		0.2 2.1 2.2 7.6 1.8		ounaoroodooroo troourirroodooroo
	54		0 2.4 3.6		0.1.0		-0.2 1.0 6.8 6.8		0-1922 2022 2022 2022 2022 2022 2022 2022
	23		0 5.2 3.8				1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		00000000000000000000000000000000000000
	19		0 13.8 18.6 22.5 13.9		0.1 12.7 25.9		0.1 9.6 89.5 6.3		
	17		12.1 16.2 19.4 12.2		0.1 10.9 22.4		24.8 5.3		0.21200.888882.02200 0.01200.888882.02000 0.01200.000000000000000000000000
	9		0 14.2 22.8 22.8 14.3		0.6 13.0 25.9		0.6 8 9.1 6.9 6.9		- 0440%2%2%3%%2001 # 4.461.14.16.47.64.66.64.14.16.14.16.14.16.14.16.16.16.16.16.16.16.16.16.16.16.16.16.
Percent limit	load at W.S. 120		-18.8 29.5 39.9 29.0		-19.3 -16.5 22.2 60.9		-19.1 3 14.1 65.5		181 171 171 181 181 181 181 181 181 181
Load	level		Droop Min. 50% Min.		Droop Min. 50% Max.		Droop Inspect* Min. Max. Inspect		* 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

*Load held on rams. **Rams attached.

AND FRIOR TO LONGERON MODIFICATION - Continued

(a) Wing stress measurements - Concluded

	72	1	10.010	Γ	0.4 6.6 8.7		6.6 9.5 4.5 6.6	1	804-800-40-6000-80 804-800-40-60-80-40
1	6-6	1	1001	4			8960	1	
	-5 66		9.000	ł	19 19 19 19 19 19 19 19 19 19 19 19 19 1	-	10,000	-	
	1 69.		ONNNN D-+DD		5000	4			9
	-69			1	0049		0 1 1 1		044000040444044
	68-3		11.5 15.8 11.5		0.5 9.4 18.4		0-481 20.81 20.944		0.25 11111 11111 11111 11111 111111
	68-2		-0.4.0 		0 3.2 6.7		-0.1 1.5 1.0		0490400400400004 8990000400040040
	68-1	1	10.00 4 10.00 10.00		0 14 0 191		0.44.		<u>ᠳ</u> ᠳ <i>┪┙</i> ҶҶ <i>┪Ѡ┪ѽѽѽѽѽѽѽ</i> , <u>ѻ</u> <i>┪ӹѵ</i> ҄ <i>ҵӹҵ ² ² ² ² ² ² ² ² ² ²</i>
	67-3	1	0 13.7 13.8 13.8	İ	-0-11		+ 70 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 1 - 1		00404080000000
	57-2		1.6400 68-1.00		0.08		0401		04407801010800 10407001000000
ldge .	57-1 (0,0,0,0,0				01901 04001		
ge bri	50-3 (66.4 23.67		0	1	7 8 1 6 0 7 8 1 5 7	1	804545625476
n-ga	x0-2 6		0.0 0.8 0.8 1.6		0.1		0000000 1000 1000		
strai	0-1 6		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ding	5.91		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ant	
d at	9-36	ding	50.00 20.00 20.00	d loa	0.00.0	ading	5.2.2	load	44000000000000000000000000000000000000
8.5 UTC	9-5	t 108	0.81 0.81 8.62 8.62	grow	0 7.7 5.2	st lo	2.62	limit	0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
88 116	6-1 5	aug-v	3.0 L L	-air-	0.3 0.3 2.8 1 5.2	gh-gu	0.2 - 1.5 - 1.3 1	cent	
Stre	6-3 5	P.	00.00 0.00 0.00 0.00	round	0 00	Ħ	41-054	0 per	
	6-2 5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ü			1 6.9	æ	
	5-1 5t		1-40L-		0.10		0.3 (
	5-3 5(5		4.0,9				
	-5.5		2 1 1 1 1 0		<u>viv</u> 4		1440 741-84		
	-1 55		0110 4014		01400 01400		0 0 0		- 000000000000000000000000000000000000
	3 55-		1884		+ 10 + + 0 - 1		- + 0		014966499
	50-		17. 17. 19.		S31 9		- 5 - 0 - 0 - 5 - 0 - 5 - 0		
	Š.				5.6		0 0		OHHHOOWAAAWWO C
	<u>5</u> 0-1		0 ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-0.1		0.2 -2.3 -1.0		0-1-9-1-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
srcent imit	sad at S. 120		29.5 29.5 29.5 29.5		19.3 16.5 22.2 60.9		19.1 3 65.5		<u>ౙఀ౿౽౸ౘ</u> ౢౢౣౢౢౘౢౢౣౣౢౢౢౘౢౢౢౣౣౢౢౢౢౘౢౢౣౢౢౢౢౢౢౢౢౢౢ
27	ц м.						ייי קיני		*
Load	leve		Droop Min. 50% Max. Min.		Droop Min. 50% Max.		Droop Inspe Min. Max. Inspe		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

*Load held on rams. **Rams attached.

ř 19

TABLE 4.- WING AND LONGERON STRESS MEASUREMENTS AFTER WING-SPLICE REINFORCEMENT,

AND FRIOR TO LONGERON MODIFICATION - Continued

٠

(b) Right-longeron stress measurements

Load	Percent limit							Stress	measured	l at stre	dn-gage	bridge -						
level	load at W.S. 120	52	72	\$2	76	11	8 2	62	8	81	82	83	78	85	86	87	88	190
								Low-g	ust load	 भ								-
Droop Min. 50% Max.	-18.8 29.5 50.0 50.0	0 16.7 20.9 23.8	0 w 4 w N 4 H	0 12.7 1 7. 7	0 13.6 16.9 19.6	0 14.0 17.2 19.5	0 8.7 12.3 12.3	0 19.7 24.2 27.9	21.5.0 18.6 21.2	0 15.1 218.6 21.2	0 14.8 18.4 21.1	0 15.0 21.2 21.2	0 7.5 4.7	0.5 8.4 9.5	0 0 1 1 4 6 1 1 4 6 8 1	0 11.1 13.6 15.7	0 15.0 16.0	0.7 7.0 7.7
							9	round-a1:	r-ground	loading								
Droop Min. 50% Max.	-19.3 -16.5 22.2 60.9	0 14.6 28.2	0 1.8% 1.1.	0 11.4 21.4	0 8 12.1 23.4	0 ट.दा इ.स	0 7.5 14.8	0 .3 34.0	0 13.2 25.6	0 .8 13.2 25.7	0 13.1 25.6	0 8 13.2 25.6	0 .4 5.2 10.5	0 	0 .5 16.6	0.9.5 18.8.5 18.8.5	0.0 11.3 21.4	87. 0 6.4.5
								High-	gust load	Ing								
Droop Min. Max. Inspect	-19.1 14.1 65.5	0 12.2 29.1 5.2	2.7 6.2 1.0	0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 24-2 24-2	0 10.2 4.2	14.60 14.93 14.69	0 14.0 33.8 5.9	0 25.9 €.6	0 25.6 4.5	0 10.6 25.5	0 25.8 4.8	0.1 10.1 2.0	0 5.2 2.4	0 6.6 17.0 2.8	0 8.61 7.0	21.90 4.090	580 580 5850
							5) percen	t limit]	onding								
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		00000000000000000000000000000000000000	онам , ионономин і отти	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	00 1 1 1 1 1 1 1 1 1 1 1 1 1	6.9 6.9 7.1.1.1.0 7.1.1.2 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0 2	0 4 9 8 0 1 4 1 4 7 6 7 7 4 9 0 8 0 1 4 1 4 1 6 1 7 6 1 7 6 1 7 6 1 7 1 7 6 1 7 1 7	0 0 4 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0		0 - 0 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	० ५ ५ ५ ८ ८ २ ५ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४ ४	๐พพดดอนมีที่มีมีของ หล่อมอ่น นี่ พัดเหลื่ยังห	040041111000011111 2721212121212121212121212121212121	0 1 1 1 1 1 1 1 1 1 1 1 1 1	600 600 600 600 600 600 600 600 600 600	0 N4 NF F0 00 000 F NN N4 00 000 4 4 NN0 4 K
												2	-		!	,	:	

* Rams attached.

TABLE 4,- WING AND LONGERON STRESS MEASUREMENTS AFTER WING-SPLICE REINFORCEMENT,

AND PRIOR TO LONGERON MODIFICATION - Concluded

(c) Left-longeron stress measurements

Load	Percent limit							Stress	measure(l at stre	ain-gage	bridge .						
level	load at W.S. 120	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	191
								I.ow-gus	t loading	~								
Droop Min. 50≸ Max.	-18.8 29.5 59.9	0 16.8 20.9 24.0	0 0 0 0 4 0 0 0 7 0 0 0	0 17.7 17.7	0 12.7 16.1 18.7	0 13.6 16.8 19.3	0 7.2 10.6	0 25.0 28.8	0 19.4 22.3	14.9 18.5 21.2	0 12.7 16.0 18.4	0 13.9 17.5 20.0	6 8 6 0	0 8.0 12.5	0 9.3 11.9 13.7	0 9.8 14.3	0 12.5 17.6	0 6.3 8.6 8.6
							Gro	und-air-	ground lo	ading								
Droop Min. 50% Max.	-19.3 -16.5 22.2 60.9	0 1.5 15.7 29.2	0 5.0 0.9	21.6 21.6	0 12.3 23.7	0 12.7 23.4	0 .4 13-5	0 1.6 18.1 35.1	0 14.4 27.0	25.9	0 8.11.9 22.7	0 13.0 24.4	0.14 2.1.6	0 8.8 15.3	0 .6 8.8 17.2	0 8.6 18.0	0 11.3 21.3	0.6 6.7 10.5
								High-gu	st loadi	8								
Droop Min. Max. Inspect	-19.1 14.1 65.5	0 15.1 32.5 5.4	0 5.2 8.6 1.3	0 12.6 23.5 4.3	0 12.7 4.7 4.7	0 13.1 26.5 4.3	0 8.4 16.5 2.4	0 17.7 39.5 6.3	0 14.4 30.3 5.0	0.450 50.4 60 6 7	25.8 25.8 4.4	0 13.0 4.8	0 15.4 2.4	0 0 0 0 1 0 0 0 2 0 0	0 20.6 3.0	0 21.5 2.8	0 11.6 3.8 3.8	13.5 2.65 2.65
							8	percent	limit lo	uding								
5 5 5 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.6 8.6 9.14.5 7.15 8.6 7.17 8.6 8.5 8.5 9.14 8.6 9.14 8.6 9.14 8.6 9.14 8.6 9.14 8.6 9.14 8.6 9.14 8.6 9.14 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.00 0.00	141-60 140-60 14	1+0.02730000000000000000000000000000000000	0408012288444 000008078004498000	004888843738483 66666666666666	8644949600 86447446900 8664946900	0,41,51,52,52,52,52,52,52,52,52,52,52,52,52,52,	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	04 - 04 - 04 - 04 - 04 - 04 - 04 - 04 -	0420011200011004 00001100010010000000000	40000000000000000000000000000000000000	61125588351860419 611815588351860419 612869419	0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
* Rems	attached.		_			!	,	!	:	!	:	2	•	+	:	:	ł	>

Droop Min. 25% 50% Max. Min. Luspect

Load level

	t skin bridge	103		0 10 8 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	
	sured s n-gage	102		0.001110000 0.00100000 0.00000000000000	
	ess men	IoI		0.141.00	
	Stre	10		0 00 0 1 I	
		76		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		96		00.10.10000 00.100.400 00.100.400	
		95		04081240 200000	
		46		040880 240880 200880 200880	
		88		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		87		04000000000000000000000000000000000000	
	ldge -	86		04400	
	age br	85		00011600 25.57 25.57 26.02 26.	P
510e	rein-g	48	oading	0 15.8 15.8 15.8 15.8 2.9 2.9	
าธริบ	ron st	83	gust l	0 15.8 15.8 15.8 19.1 8.1 8.1 8.1 8.1	
(B)	longe	82	H1gh-	215.0 15.0 218.2 21.6 21.6 21.6 21.6 2 21.6 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	
	red at	81		000 114-00 00.8 00.8 00.8 00.0 00 00 00 00 00 00 00 00 00 00 00 0	
	measu.	80		00 112.5 5.6 118.2 7.3 6.6	
	Stress	79		0 114.6 114.6 21.1 6.9 6.9 3.3	
		49		0 7.8 7.8 7.8 7.8 7.4 7.6 7.7 7.6	
		#		0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0	
		76		0 1.5.1 1.2.5 1.2.5 1.2.5 1.2.5 2.5 2.5 2.5 2.5	
		4		000 111 100 00 00 00	
		7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		52		-18+61+++ 50-14-50 50-14-50 50	
	Percent limit	W.S. 120		-19-1 27-0 22-1 265-7 1-1-1 1-1 1-1-1 1-	

៰៷*៰*៰៷ឣ៓៹៰៴៓៷៷៵៰៷៰ ៰*៰*៷៷៰៰៷៹៷៷៰៰៰

๏๙๚๛๏๚๚๚ฃฃฃฃ๚๛๛ ๚ฃ๚๛๛๚๚๚๚ฃฃ๚๛๛

TABLE 5 .- LONGERON AND SKIN-PLATE STRESS MEASUREMENTS

AFTER LONGERON MODIFICATION

All stresses measured in ksi

(a) Right side

TABLE 5.- LONGERON AND SKIN-PLATE STRESS MEASUREMENTS

AFTER LONGERON MODIFICATION - Concluded

Load	Percent limit	Stres	s me a s	ured a	it long	geron s	strain-	gage t	oridge -
level	load at W.S. 120	193	194	198	199	214	215	216	217
			High-g	ust lo	ading				
Droop Min. 25% 50% 75% Max. Min. Inspect	-19.1 14.1 27.0 39.8 52.7 65.5 14.1	0 6.7 9.4 12.2 14.8 17.9 6.1 2.7	0 3.7 5.8 7.3 9.1 11.0 4.3 1.7	0 3.3 5.2 7.0 8.8 10.7 3.5 1.5	0 9.4 12.9 16.5 20.0 23.5 8.5 3.8	0 4.8 7.0 9.2 11.4 13.7 4.9 2.3	0 4.4 6.6 8.8 11.0 13.4 4.8 2.2	0 6.8 9.4 12.1 14.6 17.3 6.0 2.7	0 7.6 10.5 13.6 16.3 19.3 6.7 2.8
		90 p	ercent	limit	loadi	ng			
Droop 10 20 30 40 50 60 70 80 90 80 90 80 70 50 30 10	-18.8 -6.7 5.4 17.5 29.6 41.7 53.7 65.8 77.9 90.0 77.9 65.8 41.7 17.5 -6.7	0 2.4 5.0 7.6 10.5 13.3 15.9 18.5 21.1 24.0 21.5 19.1 13.6 8.0 2.5	0 2.8 4.2 5.7 7.4 8.8 10.3 12.0 13.5 12.0 10.9 7.8 4.3 .9	$\begin{array}{c} 0 \\ 1.5 \\ 3.1 \\ 4.6 \\ 6.1 \\ 7.8 \\ 9.5 \\ 11.2 \\ 13.1 \\ 14.9 \\ 13.2 \\ 11.7 \\ 8.4 \\ 4.9 \\ 1.5 \end{array}$	0 3.2 6.5 10.0 14.0 17.6 21.0 24.2 27.4 31.0 27.9 25.0 17.7 10.4 3.4	0 2.0 3.9 5.7 7.6 9.6 11.8 13.7 15.8 18.0 16.1 14.3 10.3 6.0 2.0	0 1.9 3.8 5.6 7.3 9.3 11.3 13.3 15.5 17.8 15.9 14.0 10.1 5.8 1.9	0 2.2 4.8 7.5 10.3 12.9 15.6 17.8 20.3 22.9 20.6 18.2 12.9 7.7 2.3	0 2.3 5.3 8.3 11.4 14.6 17.4 20.2 23.0 25.8 23.3 20.6 14.7 8.8 2.8

(b) Left side

TABLE 6.- SUMMARY OF CRACK OCCURRENCES AND REPAIRS

	T		
Operation		Crack occurrence	Repair
Preliminary inspection	1.	1/16-inch vertical crack was found in lower skin in aft countersunk portion of bolt hole 99 at left W.S. 554.	Cracks were removed by reaming 1/32 inch. The ving reinforcement plates were installed as a result of this inspection. Reference 3.
	2.	<pre>1/4-inch vertical crack was found in lower splice plate in bolt hole 24 at left W.S. 354.</pre>	
Spectrum 1	3.	1/2-inch crack was found at the fillet of right out- board shear tie at B.S. 442.5. See figure 9.	The initiation of this crack occurred before the testing had commenced. No repair was made.
Spectrum 3			The longeron modification was installed on the right and left sides of fuselage during the low gust loading phase of this spectrum. See figure 10.
Spectrum 6	4.	4-inch crack was found at the forward corner of bomb bay section and the adjacent bulkhead at left B.S. 425. See figure 11.	This crack was stop drilled, but the growth con- tinued with the test operation. It was necessary to stop-drill this crack on three additional occasions.
Spectrum 9	5.	1/2-inch crack occurred at the edge of screw hole in the trailing-edge skin at left W.S. 122. See figure 12.	No repair was made.
Spectrum 13	6.	1-inch crack occurred at a rivet hole in right fuse- lage crown skin at B.S. 601.	Crack was found during the cycling of the low-gust load condition and stop-drilled at each end. See figure 15(a). The reinforcement plate was instal- led on the area of crack 6 on both sides of fuse- lage during inspection 9. See figure 13(b).
Inspection 7	7.	Four 1/2-inch to 1-inch cracks occurred in bottom skin of fuselage at B.S. 425.	No repair was made.
Inspection 9	8.	1/2-inch crack was found in fillet of the left upper inboard shear tie at B.S. 442.5. See figure 14.	No repair was made.
	9.	1/16-inch crack was found in fillet of the right upper inboard shear tie at B.S. 442.5.	No repair was made.
Spectrum 20	10.	12-inch crack occurred in the fuselage crown skin and the adjacent stiffener at right B.S. 648. See figures 15(a) and 15(b).	The crack occurred suddenly with an audible report during the cycling of the high-gust load condition of this spectrum. A reinforcing plate was added to the area. See figure 15(c).
	11.	Twenty 1/2-inch to 6-inch cracks were found in the magnesium skin of the leading edge between W.S. 114 and W.S. 389. Twelve cracks occurred in the left wing and eight occurred in the right wing. See figure 16.	The cracks were stop-drilled after reaching 0.75 inch in length.
Spectrum 23	12.	$1\frac{1}{4}$ - inch crack occurred in the fuselage skin at the edge of the filler neck opening on right side at B.S. 550. See figure 17(a).	The crack was stop-drilled as a temporary repair. A reinforcement plate was installed to the area during inspection 12. See figure 17(b).
Inspection 12	13.	0.1-inch and 0.2-inch cracks were found at the Jo- bolt holes in the fuselage skin reinforcing plate at left B.S. 560 and right B.S. 567, respectively. See figure 18.	No repair necessary. Additional cracks occurred in this same region during the remainder of the test.
Inspection 13	14.	1/4-inch crack found at rivet hole in left fuselage crown skin at B.S. 600.	No repair was made.
	15.	1/4-inch crack found in the outboard finger of the reinforcing plate at bolt hole 406 at left B.L. 45. See figure 19(a).	The hole in the finger was enlarged to include the crack and hole left open. See figure 19(b).
Inspection 14	16.	1/4-inch crack was found in the outboard finger of the reinforcing plate at bolt hole 410 at left B.L. 45.	No repair was made.
	17.	1-inch crack was found in the drag angle at bolt hole 77 at left B.L. 45.	No repair was made.
	18.	1/2-inch crack was found in the drag angle at bolt hole 77 at right B.L. 45.	No repair was made.
Spectrum 29	19.	21-inch crack occurred in the right wing closeout panel between stringers 7 and 8 at W.S. 179. See figure 20.	This crack occurred suddenly with a loud report at the 90-percent-limit-load level. Testing ter- minated at this point.
Inspection 15	20.	1/8-inch crack was found in the outboard finger of the reinforcing plate at bolt hole 406 at right B.L. 45.	
	21.	0.015-inch crack was found in the outboard finger of the reinforcing plate at bolt hole 407 at right B.L. 45.	
	22.	3.5-inch crack was found in the left wing closeout panel at W.S. 212. See figure 21.	This crack apparently originated in a tool mark in the radius of the cutout.

- CUDINI

Figure 1. - Wing-splice reinforcements on lower surface.

(a) Wing station 354. L-58-1309a.1

25

Figure 1.- Continued.

Figure 1.- Concluded.

(a) General view of airplane mounted for testing. L-59-173

Figure 2.- Views of test setup.

(b) View of outboard loading towers. L-59-174
Figure 2.- Concluded.

Figure 3.- Landing-gear tic-downs.

Figure 3.- Concluded.

(b) Longeron prior to modification.Figure 4.- Continued.

(c) Longeron after modification.

Figure 4.- Continued.

Figure 4.- Concluded.

(b) Gage 10; wing station 375.

(d) Gage 60; buttock line 31.

(b) Gage 74.

Figure 6.- Longeron stress measurements before and after repair at body station 508.

38

(d) Gage 79.

Figure 6. - Concluded.

(a) Top view of wing center section.

(b) Left-side view of fuselage near wing root.

Figure 8.- Location of crack areas. Refer to table 6 for detailed descriptions of crack areas.

Figure 9.- Crack in fillet of right outboard upper shear tie at body station 442.5.

.....

- **.** .

Figure 9.- Concluded.

Figure 10.- Upper longeron modification.

L-59-177 (a) Fuselage crown-skin reinforcing plate. Body station 425 to body station 591.

Figure 10.- Continued.

L-58-220a.1 (b) Right-longeron splice after modification showing strain gages.

GDEIL

L-58-221a.1 (c) Left-longeron splice after modification showing strain gages.

L-59-178 Figure 11.- Cracks in lower left fuselage skin forward of bomb bay door. Body station $^{4.25}.$

: 47

.

(b) Reinforcement plate installed during inspection 9. L-59-55.1

Figure 13.- Concluded.

L-59-181 Figure 14.- Crack in fillet of left inboard upper shear tie at body station 442.5.

L-59-182 (a) Fuselage crown skin, 12 inches long. Crack did not extend beyond bottom rivet hole.

(b) Vertical stiffener in life-raft compartment. L-59-183

Figure 15.- Continued.

Figure 15.- Concluded.

(c) Fishtail-doubler repair to backbone skin. L-59-184

Figure 17.- Crack at filler neck opening on right side at body station 550.

56

Figure 17.- Concluded.

Figure 18.- Typical crack in lower leg of upper-fuselage crown-skin reinforcing plate, discovered during inspection 12 following spectrum 24.

-

Figure 19.- Crack in outboard finger of splice at hole 406 at left buttock line 45.

india deterra

Figure 19.- Concluded.

L-58-1060a Figure 20.- Crack in right wing closeout panel at wing station 179. Spectrum 29.

×ו

L-59-343 Figure 21.- Crack in left wing closeout panel at wing station 212, found during inspection 15.

NASA - Langley Field, Va. L-495

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 3-15-59L

for the

U. S. Air Force

RESULTS OF A CYCLIC LOAD TEST OF AN RB-47E AIRPLANE*

COORD. NO. AF-AM-171

By Wilber B. Huston

ABSTRACT

An account is given of the NASA phase of a laboratory fatigue test on a B-47 airplane. The loadings used composed a spectrum of four levels. Stress measurements made on the wing and on the upper fuselage longerons are tabulated. A description is given of all cracks which developed during the tests.

INDEX HEADINGS

Airplanes - Specific Types	1.7.1.2
Connections, Bolted	4.3.6.1
Loads and Stresses, Structural - Bending	4.3.7.3
Materials, Properties - Fatigue	5.2.5
Materials, Airframe - Operating Stresses	5.3.1

