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ANALYSIS OF TRAJECTORY PARAMETERS FOR PROBE AND

ROUND-TRIP MISSIONS TO VENUS

By James F. Dugan_ Jr._ and Carl R. Simsic

SUMMARY

For one-way transfers between Earth and Venus 3 charts are obtained

that show velocity_ time s and angle parameters as functions of the

eccentricity and semilatus rectum of the Sun-focused vehicle conic. From

these curves# others are obtained that are useful in planning one-way and

round-trip missions to Venus. The analysis is characterized by circular

coplanar planetary orbits_ successive two-body approximations_ impulsive

velocity changes 3 and circular parking orbits at i.i planet radii. For

round trips the mission time considered ranges from 65 to 788 days,

while wait time spent in the parking orbit at Venus ranges from 0 to 467

days. Individual velocity increments_ one-way travel times 3 and departure

dates are presented for round trips requiring the minimum total velocity

increment.

For both single-pass and orbiting Venusian probes_ the time span

available for launch becom2s appreciable with only a small increase in

velocity-increment capability above the minimum requirement. Velocity-

increment increases are much more effective in reducing travel time for

single-pass probes than they are for orbiting probes. Round trips com-

posed of a direct route along an ellipse tangent to Earth's orbit and an

aphelion route result in the minimum total velocity increment for wait

times less than i00 days and mission times ranging from 145 to 612 days.

Minimum-total-velocity-increment trips may be taken along perihelion-

perihelion routes for wait times ranging from 300 to 467 days. These

wait times occur during missions lasting from 640 to 759 days.

INTRODUCTION

In planning any space missionj a trajectory analysis is a prerequi-

site for deciding upon specific features of the mission. The analysis

presents interrelations among such parameters as departure date 3 elapsed

time for separate phases of the mission_ total mission time 3 individual
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and total velocity increments_ and Earth-vehicle separation distance at

different times during the mission. The velocity parameters influence

the choice of propulsion system and permit yreliminary estimates of

propellant requirements. Time and separatica-distance parameters have a

bearing on reliability and communication considerations.

Some of the trajectory information needed to plan various missions

to Venus is found in references i to 6. In this report 3 charts of the

kind suggested by Vertregt in reference 7 ale presented for one-way

trajectories between Earth and Venus. Thes_ charts facilitate the pre-

liminary planning of one-way missions and g_ve approximate values of

launch date_ duration of voyage_ and required velocity increments.

Modifications of these charts were used to find the interrelations among

trajectory parameters of interest for many one-way single-pass_ one-way

orbiting_ and round-trip missions between Earth and Venus.

The equations of reference 7 and several additional equations needed

to obtain parameters useful in round-trip calculations were programmed

for a digital computer. Tables of trajectory-parameter data were then

obtained for trips between Earth and Venus. The trajectory charts sug-

gested by Vertregt were constructed from these tables. The velocity_

time_ and angle parameters were plotted as Junctions of the semilatus

rectum and eccentricity of the Sun-focused _ehicle conic.

Working curves 3 in which the parameter of interest appears as the

ordinate_ were then used to obtain information for a wide range of one-

way and round-trlp missions between Earth and Venus. For single-pass

and orbiting Venusian probes_ the relations among departure date_ travel

t_me 3 total velocity increment 3 and Earth-V_nus separation distance when

the probe arrives at Venus are presented. ]Tobe and round-trip missions

requiring minimum velocity increment are discussed. Variations of

travel time 3 departure date_ and individual velocity increment with

mission time are presented for round trips _ith 0-_ 50-_ and lO0-day
wait times at Venus.

Because of the simplifying assumptionsj these results should be

used only during the preliminary planning o_' a particular Venus mission.

An analysis based on the n-bodyequations o_'motion and a three-

dimensional model of the solar system must ],e used for more exact results.

In spite of their approximate nature_ the r_sults of this report do show

the interrelations among the important traj_ctory parameters_ and they

should serve as a useful guide in making more precise calculations.

A similar analysis and set of working c_urves for probe and round-

trip missions to Mars are presented in refe_'ence 8.

l

!

_O



o]
!

!

o

ANALYSIS

Assumptions

The foliowing simplifying assumptions were made:

(i) The planets describe circular orbits around the Sun. The orbits

of Earth_ Venus, and the space vehicle are coplanar.

(2) The vehicle is attracted by only one inverse-square central

force field at a time. When "near" a planet_ the vehicle is attracted

by the planet; when "far" from the planets_ it is attracted only by the

Sun.

(3) The impulsive-velocity-increment concept is used_ that is3 the

time during which thrust is applied to the vehicle is insignificant

compared with the total duration of the voyage.

(A) The travel time spent under the influence of the planets is

negligible compared with the travel time spent under the influence of

the Sun.

Possible Heliocentric Trajectories

In traveling between Earth and Venus (or any two planets); an infi-

nite number of Sun-focused conic sections may be traversed. For a given

ellipse_ which will in general intersect the orbits of Earth and Venus

at four points, four alternative routes can be considered (fig. l(a)).

(A list of symbols appears in appendix A] fig. l(b) aids in defining

some of the trajectory angles.) The direct route D from Earth to

Venus is along i-2] the perihelion route P along I-2-S] the aphelion

route A along 4-i-2] and the indirect route I along 4-i-2-_. If the

ellipse is tangent to Earth's orbit (fig. l(a)), routes D and A

become identical_ and also routes P and !. Similarl_ if the ellipse

is tangent to Venus' orbit; routes D and P become identical_ and

also routes A and I. For a given parabolic or hyperbolic path 3 only

direct and perihelion routes are possible.

Charts of Eccentricity Against Semilatus Rectum

In reference 7_ Vertregt shows how interplanetary trajectory param-

eters along all possible conics may be expressed as functions of the

eccentricity and the semimaJor axis of a Sun-focused conic_ and of the

radius of the destination planet's orbit. An addendum in reference 7

indicates that a considerable simplification results from constructing



diagrams for constant values of trajectory p_rameters as functions of
eccentricity e and semilatus rectum p (in_tead of semimajor axis).
However3 only one of these diagrams is included by Vertregt to illustrate
the advantages.

The equations from reference 7 and several additional equations3
needed to obtain parameters useful in round-trip calculations 3 were pro-
grammedfor a digital computer. Tables of trajectory-parameter data were
then obtained for trips between Earth and Ve_Lus. The equations and the
procedure for constructing these tables are found in appendix B. From
the tables were constructed e-p trajectory charts such as those shown
in figures 2(a) to (c). A wide range of useful trajectories is shown
within the arbitrary boundaries of Pmax= Z,0 A.U. and emax= 2.0. A
set of 22 e-p charts for Earth-Venus traJec_tories maybe obtained upon
request from NASA3 Washington253 D. C. The trajectory parameters included
in these charts are: _VE, _Vv_ (AvE + AVv), VE, VV_ (VE + VV), T_ Tp_
TA, TI, 4D, 4_ 4A, 41 , XIF h F hA, h!3 ql' c_23 _ and _2"

!
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Probe l_issions

To find the interrelations among trajec<ory parameters of interest

for specific Earth-Venus missions_ it was fo_md convenient to use working

curves in which the various parameters were plotted against eccentricity
for constant values of semilatus rectum. These curves are not included

in the report; since they depict the same in:'ormation as contained in the

c-p charts. Because the procedure for anal:_ing the one-way single-pass

missions is very similar to that for the one way orbiting missionsj only

the former is discussed. Four trajectory pm'ameters of special interest

are: (i) velocity increment required near Earth when starting from a

circular parking orbit of i.i Earth radii 3 (:_) travel time 3 (S) configu-

ration angle at departure 3 and (4) Earth-Vemm separation distance at

arrival. The configuration angle at departure defines the launch date

(fig. 2(d)). The Hohmann date is defined as that date on which Venus'

heliocentric longitude is less than Earth's ]_y 5A. 1% this being the con-

figuration angle required for a Hohmann tram;fer from Earth to Venus.

For a given AVE; values of c and p are read from the working

curve of Av E against e for constant p. These values of e and p

permit values of 41 i and Ti to be read :Trom their respective working
#

curves. The configuration angle when the pr_)be arrives at Venus may be

calculated from the following equation:

42,± = +l,i + ($E - +iV) Ti (1)
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where

aE = 0. 9856 deg/day

4 : 1.6o21deg/ ay

Earth-Venus separation distance at arrival may then be found from figure

2(e), which is a plot of

d = (RE2+ 2R vcos (2)

where

and

RE = 92, 900, 000 miles (80, 750, 000 Int. naut. miles)

Rv = 67,200_ 000 miles (58, 395, 000 Int. naut. miles)

These data are then plotted as T against @i for constant

5(a)) and d2 against @i for constant Av E (fig. Z(b)).

Av E (fig.

Round-Trip Missions

For round-trip missions to Venus, it is convenient to introduce an

angle parameter h defined by

hi = _i - 6ETI (3)

Therefore, h is the angular difference between the vehicle's travel and

Earth's travel during a one-way trip between planet orbits. The relation

that must be satisfied during a round-trip mission to Venus with a wait

time Tw spent in a parking orbit around Venus is

bout + (eV - 8E)Tw+hback = (N)360 (4)

where N may be 0 or ± an integer.

To illustrate the technique employed for round-trip missions, con-

sider the combinations involving direct and aphelion routes. For a spe-

cific value of hi_ values of _D and PD may be read from the working

curve} TD and (Av E + AVv) D may then be read for one pair of eD and

hD values. For a specific Tw, the value of hA may be calculated from

equation (4). The hA working curve then yields pairs of values for

eA and PA" For each pair, values of (Av E + AVv) A and TA may be read



from their respective working curves. The t_tal velocity increment and
total mission time are calculated and then pLotted as Av T against TT.

Curves may then be drawn for each pair of CZD and PD values. The

envelope of these curves forms a single curve for a specific hD value.

This procedure is repeated for numerous hD values. An envelope of all

the individual envelope curves may then be d_awn for the complete direct-

aphelion round trip.

By repeating the entire procedure for o_her combinations of D_ P_

A_ and I routes_ the minimum total velocity increment required to

accomplish a round trip of given duration and wait time at Venus can be

found.

!
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RESULTS AND DISCUSSION

For all three types of mission considered, emphasis is placed upon

the interrelations among velocity parameters, travel times_ vehicle-

planet separation distance_ and planetary coafiguration angle at departure_

which is equivalent to departure date (fig. 2(d)).

Single-Pass Probes

The interrelations among trajectory parameters for a single-pass

Venusian probe launched from an orbit of l.l Earth radii are shown in

figure 3. The contours are lines of constant velocity increment. The

dashed lines, which converge at the point representing a Hohmann path,

separate the plot into four regions representing direct, aphelion_ peri-

helion 3 and indirect routes. Along each dashed line 3 the Sun-focused

conic section is tangent to either Earth's or Venus' orbit, and the route

is either direct or indirect (fig. l(a)). For example, the dashed line

between the direct routes and the aphelion routes represents direct routes

along Sun-focused ellipses that are tangent to Earth's orbit.

Figure 3(a) shows that, for a given velocity increment_ the minimum

travel time occurs along a direct route. Sdnce the Hohmann path is indi-

cated by a point_ departure along this route can occur only at one instant

of time during the synodic period of 584 da_ s. A small increase in probe

velocity increment above the Hohmann value lesults in an appreciable time

span during which launch is possible. For example_ a velocity-increment

increase of only 810 feet per second (0.26 km/sec) above the Hohmann value

gives a launch span of approximately 76 days. This same velocity-

increment increase can also diminish the Ealth-Venus separation distance

at arrival from 55 to 51 million miles (48 ±o 27 million International

nautical miles) (fig. 5(b)).

The routes requiring minimum velocity _ncrements for travel times
less than the Hohmann value of 146 days are of special interest (fig. 4).



7

Increasing the probe velocity-increment capability 5200 feet per second
(0.975 km/sec) above the Hohmannvalue will decrease the travel time from
IA6 to 70 days and decrease Earth-Venus separation distance at arrival
from 55.0 to 27.8 million miles (A7.8 to 24.2 million Int. naut. miles).

D_

O_
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Orbiting Probes

The relations among trajectory parameters for an orbiting Venusian

probe are shown in figure 5. The probe is assumed to be launched from a

parking orbit at 1.1 Earth radii with the terminal parking orbit at 1. 1

Venus radii. Because two impulses are required for such a mission_ the

velocity parameter used is the sum of the velocity increments required

to leave the orbit around Earth and enter the orbit around Venus. Fea-

tures of the orbiting probe trajectories are similar to those for the

single-pass probe. Direct routes result in minimum travel time for a

given velocity-increment capability. Increases in the probe velocity-

increment capability above the Hohmann value will lengthen the time span

during which departure is possible and can decrease the Earth-Venus

separation distance at probe arrival.

Minimum-total-velocity-increment data are shown in figure 6 for

travel times less than 146 days. To decrease travel time from 146 to 70

days_ the velocity-increment capability of the probe must be increased

from A.12 to 5.8A miles per second (6.65 to 9.40 km/sec) (fig. 6(a)).
This increase can also result in a decrease from 55 to 57 million miles

(48 to 52 million Int. naut. miles) in the Earth-Venus separation dis-

tance upon arrival (fig. 6(b)).

Round-Trip Missions

The round-trip mission to Venus begins with the space vehicle in

orbit around the Earth at i. i Earth radii. The first velocity increment

sends the vehicle on the outward trajectory from Earth to Venus. A sec-

ond velocity increment settles the vehicle into an orbit about Venus at

i.i Venus radii. After a specific wait time ranging from 0 to 467 days_

a third velocity increment sends the vehicle on its return trajectory

from Venus to Earth. The final velocity increment causes the vehicle to

enter an orbit around Earth at i.i Earth radii. The total velocity

increment is the sum of the four impulsive velocity increments_ while

mission time is the sum of the individual travel times for the outward

and return trajectories and the wait time spent in the parking orbit
around Venus.

The specification of parking orbits at i.i planet radii is arbitrary.

If atmospheric braking is used to attain these parking orbits 3 the pro-

pellant required for a round-trip mission can be greatly reduced. The

features of optimum round-trip missions employing atmospheric braking

will change markedly from those discussed in this report.



Variation of minimum total velocity increment with mission time. -

Outward and return trajectories may be combffned in an infinite number of

combinations involving direct_ aphelion_ pelihelion_ and indirect routes.

Particular combinations of these routes lead to envelope curves such as

those shown in figure 7 for a wait time at _enus of 0 days. For a given

mission time_ the total velocity increment _hown is the minimum value

required for the designated combination of outward and return trajectories.

An envelope of the curves shown in figure 7 shows the minimum total veloc-

ity increment required for mission times rarging from 65 to 650 days.

Direct-direct round trips possess minimum-total-velocity-increment re-

quirements for mission times less than 145 days. The single line in the

range of 145 to 439 days' mission time (DtA ] is a combination of a trip

along an ellipse tangent to Earth's orbit ard an ellipse tangent to neither

planet's orbit. The particular trip along the ellipse tangent to Earth's

orbit is a direct route or am aphelion route. But_ since these two

routes are identical (fig. l(a)), throughout the remainder of this report

this special trip will be called a direct route along an ellipse tangent

to Earth's orbit. In the abovementioned range of mission times_ this

direct route and an aphelion route must be taken for a minimum-total-

velocity-increment trip. A direct-indirect combination from 439 to 463

days_ an aphelion-aphelion combination from 463 to 482 days_ and an

indirect-indirect combination of routes for missions from 482 to 650 days

are required for trips of minimum total velccity increment.

It is interesting to note that the total velocity increment does not

decrease continuously as mission time increases. This indicates that_

for a wait time of 0 days_ missions longer than 439 days may be of little

practical value_ since they would require total velocity increments equal

to or greater than that required for shorte_' missions. A region of spe-

cial interest in figure 7 is around a missic,n time of 439 days. The

total velocity increment at this point is a minimum value of 10.3 miles

per second (16.6 km/sec).

The effect of wait time at Venus on tol,al velocity increment and

mission time is shown in figure 8. A portion of the curves from figure

7 is replotted along with selected envelope curves for PP and DtA round

trips. A combination of a direct route alorg an ellipse tangent to

Earth's orbit and an aphelion route will recuire the minimum total veloc-

ity increment for wait times less than i00 cays. Minimum-total-velocity-

increment trips may be taken along perihelion-perihelion routes for wait

times ranging from 300 to 467 days. For waft times between i00 and 300

days_ the direct route along an ellipse tan_ient to Earth's orbit and an

aphelion route will possess relatively low _elocity increments and long

mission times_ while perihelion-perihelion _rips yield higher velocity
increments for shorter mission times.

!
aO
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As the wait time at Venus is increased from 0 days_ the envelopes

for the direct route along am ellipse tangent to Earth's orbit and an

aphelion route are displaced toward longer mission time and toward higher

velocity increments. However_ the effect of wait time on perihelion-

perihelion round trips is not the same. The envelopes for these routes

shift toward longer mission times and toward lower velocity increments

as the wait time at Venus increases. For example_ a mission time of 660

days may be flown on a direct route along an ellipse tangent to Earth's

orbit and an aphelion route at a total velocity increment of ii. 80 miles

per second (18.99 km/sec) and a wait time of 129 days. The same mission

time may be expended on a perihelion-perihelion trip, but at a total

velocity increment of only 9.92 miles per second (15.96 km/sec) and a

longer wait time of _67 days.

For a given mission time and wait time at Venus, other trajectory

parameters besides total velocity increment are of interest. Among these

are the individual velocity increments comprising the tota_ the time

required for outward and return trajectories_ and the configuration angle

required to begin the mission. The variation of these parameters with

wait time at Venus will be shown for round trips yielding the minimum

total velocity increment.

Round trips on direct routes along elli2se tangent to Earth's orbit
and aphelion route. - A breakdown of the various parameters for direct

routes along an ellipse tangent to Earth's orbit and an aphelion route

for wait times ranging from 0 to 200 days is shown in figure 9. Two of

the four velocity increments comprising the total are constant within

the given range of wait times (fig. 9(b)). Mission time is seen to in-

crease at a greater rate than wait time (fig. 9(c)). As wait time in-

creases from 0 to i00 days_ mission time increases 173 days. Since one

path of the round trip is along a Hohmann ellipse, one of the travel

times remains constant at i_6 days (fig. 9(d)). The other ranges from

287 to _0 days. Because either trajectory may be selected for the

outward path_ every round trip of this type could begin on a Hohmann

date. For a particular round trip of interest_ the Earth-Venus separa-

tion distance during the wait time spent in orbit around Venus can be

found from equation (i) and figure 2(e).

The effects of mission time on velocity increment_ travel time I and

configuration angle at departure for wait times at Venus of 0_ 50, and

i00 days are shown in figures !_ iI_ and 12_ respectively.

Round trips along perihelion-perihelion routes. - The effect of

wait time on velocity increment_ mission time_ travel time_ and configu-

ration angle parameters is shown in figure 13 for perihelion-perihelion

round trips to Venus. The routes shown are for round trips requiring

the minimum total velocity increment. Both the outward and the return

trips on this route are made along the same perihelion path. As the

wait time spent in orbit around Venus becomes longer_ the total velocity
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increment required for the complete round trip steadily decreases until
the Hohmannvalue of 8.24 miles per second i13.26 km/sec) is reached
(fig. 13(a)). The one-way travel time (fig- 15(d)) is seen to increase
as wait time at Venus increases until a wai_ of 525 days is reached. At
this point, the travel time begins to decrease until it reaches a value
of 146 days for a wait time of 467 days. A total velocity increment of
8.24 miles per second (13.26 km/sec) and a wait time of 467 days can only
be attained by following a Hob_mannellipse _long both the outward and the
return portions of the round trip.

CONCLUDINGREMA/_[S

The analysis of trajectory parameters for probe and round-trip
missions to Venus has revealed someinteresting features. For probes
that pass near Venus only oncej the time span for launching is appreciable
even for small increases in velocity-increment capability above the mini-
mumrequirement of ll, 190 feet per second (_.41 km/sec). A velocity-
increment increase of only 3200 feet per se]ond (0.975 km/sec) maybe
used to decrease the travel time from 146 t) 70 days and the Earth-Venus
separation distance at arrival from 55 to 21.8 million miles (47.8 to
24.2 million Int. naut. miles).

For orbiting probes, a small increase in the velocity-increment capa-
bility will provide a long time span for la_mching. However_the effec-
tiveness of velocity-increment increases in reducing travel time and
Earth-Venus separation distance is less pro_ounced. An increase of 38
percent above the minimumvelocity increme_ will cause a 50-percent
decrease in travel time and a corresponding 31-percent decrease in Earth-
Venus separation distance at arrival.

In the range of wait time from 0 to i00 days_ round trips using a
direct route along an ellipse tangent to Earth's orbit and an aphelion
route must be taken to keep the total velocity increment at its minimum
value. A mission time of 365 days with no _ait time at Venus maybe
flown for a total velocity increment of 10.1_Omiles per second (16.9
km/sec). If a total mission time of 465 dalrs with 100 days' wait at
Venuswere considered, the minimumvelocity increment required would be
14.96 miles per second (24.08 km/sec). Mission times ranging from 640
to 759 days should be flown along a perihelion-perihelion route to
obtain missions of minimumtotal velocity i_Icrement.

!
_O

Lewis Research Center

National Aeronautics and Space Administration

Clevelandj Ohio_ June 22, 1960
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SYMBOLS

aphelionroute(fig.l(a))

direct route (fig. l(a))

Earth-Venus separation distance, miles (or Int. naut. miles)

indirect route (fig. l(a))

an integer (eq. (A))

ratio of mean radius of destination planet's orbit around the Sun
to that of Earth

perihelion route (fig. l(a))

semilatus rectum of heliocentric conic section, A.U.

semimajor axis of heliocentric ellipse or hyperbola, A.U.

mean distance of planet from Sun, miles (or Int. naut. miles)

heliocentric travel time, days

waiting time in parking orbit at Venus; days

ratio of hyperbolic velocity to mean orbital velocity of Earth,

(miles/sec)/(i8.$ miles/see) (or (km/sec)/(29.77 km/sec))

velocity, miles/see (or km/sec)

velocityIncrement, iles/sec(orm/sec)

heliocentric trajectory angle relative to circumferential direction

(fig. l(b)), deg

eccentricity of heliocentric conic section

angular velocity of planet_ deg/day

angular difference between vehicle's travel and Earth's travel

during one-way trip between planet orbits (eq. (S)), deg

angle (eq. (BSc)), radians
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angular position of vehicle measured _ounterclockwise from peri-
helion of heliocentric conic sectio_ (fig. l(b)), deg

_0 change in angular position of vehicle, deg

configuration angle (fig. l(b)), deg

G Earth' s position

Venus' position
_O

Subscripts:

A aphelion route

c circular

D direct route

E Earth

e escape

I indirect route

i index signifying A_ D_ Ij or P

j index signifying i or 2

max maximum

rain minimum

P perihelion route

T total

t tangent to Earth's orbit

V Venus

i instant of space vehicle's departure :,tom Earth's orbit

instant of space vehicle's arrival at Venus' orbit
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CALCULATION PROCEDURE

The trajectory-parameter calculation procedure is based mainly on

the equations in reference 7. These and several additional equations

were programmed for a digital computer to yield trajectory-parameter

tables with p and e as arguments for values of n _ i. 0. The value

of n for Earth-Venus trajectories is 0.7233. The initial value of p

is set equal to O.i. The minimum value of e is calculated from equa-

tion (Bla) or (Blb), whichever yields the larger value:

-%

emi n = +(p - I) If+-for n > 1.0 (Bla)or for n < i. 0

= (Bib)

pair of values (0. i, emin) defines a specific Sun-focusedThe p, E

conic sectio% and all trajectory parameters can be expressed as functions

of p and e. The nondimensional hyperbolic velocities are calculated
from

1- _)1/2p (B2a)

1 -p e2) 1/E (B2b)

vI : (3-2_/_

v2= (3- n2_-/_

The velocity increments required to leave the parking orbit around Earth

and to enter the parking orbit around Venus are calculated from the fol-

lowing equations derived from the constant-energy property of two-body
motion:

( Vl)2 (Ve,E)2]1/2Av E = 18.50 + - Vc 3E
(B2c)

( V2)2 (re, V)2] I/2Av V = 18.50 + - Vc, V (B2d)

At both Earth and Venus_ parking orbits of i.i planet radii were assigned.

The values of Ve_F2 Vc_E, re, v, and Vc_V used in the calculations are

6. 624, 4.685, 6. 045, and 4. 275 miles per second, respectively (i0.680,

7.537, 9. 725, and 6. 877 kin/see, respectively).

While the velocity parameters are independent of route, the travel

times are different for direct, perihelion, aphelion, and indirect
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routes. Moreover, the equation for travel t:_mefor a direct route
changes form, depending on whether e is lens than, equal to, or
greater than 1.0.

For e < i. 0,

E( - )]{+ for n < 1TD = !58.15 q3/2 _i T2) - e(sin T1 - sin _2 - for n > 1

where

(B3a)

q - P (B3b)

(B3o)

The equation for e = 1.0 was not programmed. As a result of

using p rather than q in the diagrams (fig. 2), the curves run con-

tinuously from the area of ellipses (e < 1. 0), through the line of

parabolas (e = 1.0), to the area of the hyperbolas (e > 1.0).

For e > 1. O,

TD = _-58.13 qZ/2[e(sinh TI- sinh T2)- (TI -T2)]{+ forfornn <I>i

(BBe)

where

(B3f)

(B3g)

(B3h)

The travel times for perihelion, aphelion, and indirect routes are
calculated from

= 116.26 q5 _ Tj){Jj = i for n > i (BSi)Tp TD + /2(Tj ¢ sin 2 for n < i

!
<O

-q
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|

q3/2 (,_ { j = lTA = TD + 116.26 - Tj + e sin Tj) j 2

sT = 36s.26(q3/2 _ _D)

for n > I

for n < i (B3j)

(B3k)

Because aphelion and indirect routes are not possible for hyperbolic

orbits_ travel times for these routes are calculated only for values of
e < 1.0.

The change in heliocentric angle also depends upon the route:

_i = c°s-l[ q(l - c2)e - i] (B4a)

_2 = c°s-i [q(l-nee2) - n] (B_b)

= - (B4c)

_p = ml + m2 (_d)

ZkPA = 360 - _p for e < 1.0 (B4e)

f_Pl = 360 - f_0D for e < 1.0 (B4f)

Since the configuration angle depends on both travel time and change

in heliocentric angle, it depends on the routej also:

_ O. 9856

_'l,i -7/_- Ti - _i (BS)

Another trajectory parameter depending on both T and _ is h,

which is useful in round-trip calculations (eqs. (3) and (_)):

Xi = ZkPi - 0.9856 Ti (s6)

The trajectory parameter _ is calculated from

±c sin ml (BTa)
_i = tan-i i + e cos _i

_2 = tan-i me sin _2 (BTb)
i + e cos q01

where plus is for n > 1.0 and minus is for n < 1.0.
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Having calculated all trajectory parameters of interest for p = 0. i
and Cmin, the value of e is increased just enough to make it divisible
by £e. In the present calculations, 2_ is _et equal to 0.1. With
p = 0.1 and e increased, all trajectory parameters are calculated.
This procedure is repeated, the last calculation being for p = O.1 and

= 2.0. At this point the value of p is increased by Ap. Again, the
increment is set equal to O.1. For p = 0.2, Cmin is calculated and all
trajectory parameters are computedfor this p_ir of p, 6 values. The
procedure is repeated until a stipulated range of the arguments p and

is covered. For the Earth-Venus calculations_ p ranges from 0.1 to
2.0 in increments of O.1, and e ranges from emin to 2.0 in increments
of 0.1.

!

_O

_d
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Figure 13. - Path parameters for perihelion-

perihelion rotund trips to Vet_us starting,

waiting, and ending in circular orbits at

i.i planet radii. Data for minimum velocity

increment. Outward and return paths are the
same.
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Figure 13. - Continued. Path parameters

for perihelion-perihelion round trips to

Venus starting, waiting, and ending in

circular orbits at i.i planet radii.

Data for minimum velocity increment.

Outward and return paths are the same.
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Figure 13. - Concluded. Path parameters

for perihelion-perihelion round trips to

Venus starting, waiting, and ending in

circular orbits at i.i planet radii.

Data for minimum veloclty increment.

Outward and return pat_ s are the same.
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