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Abstract development of electrical components and systems

Low temperature electronics are of great interest for space
exploration programs. These include missions to the outer
planets, earth-orbiting and deep-space  probes,
remote-sensing and communication satellites. Terrestrial
applications would also benefit from the availability of
low temperature electronics. Power components capable
of low temperature operation would, thus, enhance the
technologies needed for the development of advanced
power systems suitable for use in harsh environments. In
this work, ceramic and solid tantalum capacitors were
evaluated in terms of their dielectric properties as a
function of temperature and at various frequencies. The
surface-mount devices were characterized in terms of
their capacitance stability and dissipation factor in the
frequency range of SOHz to 100kHz at temperatures
ranging from room temperature (20 °C) to about liquid
nitrogen temperature (-190 °C). The results are discussed
and conclusions made concerning the suitability of the
capacitors investigated for low temperature applications.

Introduction

Advanced electrical systems and electronic circuits
emphasize compactness, lightweight, increased energy
density, reliability and highly efficient operation. In
addition, exposure and operation of these power systems
in hostile environments, where extreme temperatures are
encountered, is anticipated in many applications. For
example, in NASA future missions, which include
planetary exploration, space probes, and communication
satellites, high power electrical components and systems
must operate reliably and efficiently in very cold
environments. Electronic instrumentation and power
systems deployed near planet Pluto, for instance, will be
exposed to temperatures as low as -229°C [1].
Commercial remote-sensing satellites, and those used for
military applications, typically employ electro-optical
sensors and associated readout circuitry that must operate
at cryogenic temperature levels approaching -200 °C in
order to mitigate the effects of dark current and thermal
background radiation.

Low temperature encounters will also exist in many
terrestrial applications. These include superconducting
energy storage media, magnetic levitation transportation
systems, cryogenic medical rescarch and instrumentation,
as well as arctic and antarctic exploratory missions. The

capable of extreme temperature operation represents,
therefore, a key element to meeting the technological

challenges and to fulfilling the requirements of advanced
space and terrestrial power systems. For space-based
power subsystems, power electronics capable of low
temperature operation will not only survive the harsh
environments, but will reduce system size and weight by
eliminating the need for radiocactive heating units and
associated equipment needed to keep the on-board
electronics warm in order to maintain operation [2]. The
benefits of reducing a system’s size and weight will have
a great impact on improving reliability and increasing
lifetime [3], increasing energy densities, increasing
payload capability, and reducing launch costs.

For space-based imaging systems, such as the Space
Based Infra-Red System (SBIRS) currently under
development by Northrop Grumman, cryogenic detector
arrays, and analog/digital processor units must be
interconnected in such a way that heat transfer to the IR
detectors is minimized. In order to minimize the thermal
parasitic load on the passive cooler for the arrays, cable
interconnects having low thermal conductivity (and
relatively high DC resistance) must be used between the
cold detectors and the warm analog/digital processor
units. However, in order to meet the dynamic load
demands of the detector’s digital command interface and
cable driver stages at the cold end of the interconnect,
local reservoir or bypass capacitors, capable of retaining
adequate charge storage ability and low loss tangents at
cryogenic temperatures, are essential. Alternative cooling
schemes and more conventional cabling would relax this
requirement. Thus, the successful use of these capacitors
at cryogenic temperatures will permit system-level trades,
such as those involving heat leakage and detector thermal
performance, to be made with less impact on the
performance of constituent electronic subassemblies.

Research and development efforts are underway at the
NASA Lewis Research Center to develop lightweight,
reliable wide temperature power systems for space
missions and aerospace applications [4]. Development
efforts are underway at Northrop Grumman on infra-red
imaging platforms, where the use of passive cryogenic
components would greatly enhance system-level design
flexibility [5). During the course of this work, ceramic
and solid tantalum capacitors were evaluated in terms of



their dielectric properties as a function of temperature and
at various frequencies. The results obtained are presented
and discussed in this paper.
Experimental Procedures

Five different capacitors with different ratings, selected by
Northrop Grumman Corporation, were investigated in
this work. These surface-mount devices included two
ceramic multi-layer chip capacitors manufactured by
Presidio Components, and three solid tantalum chip
capacitors manufactured by Sprague Division of Vishay
Intertechnology. Five samples of each capacitor were
providled Some of the manufacturers’ capacitor

designed anc: fabricated. The contact pads on these boards
were uniformly tinned before mounting the capacitors and
the wire attachments. Three capacitors of each type were
subjected t¢ characterization. This procedure was
necessary to check for data reproducibility and to
determine whether similar or different trends exist in the
behavior of the same type of capacitors. Note that all of
the capacitor types tested may be interconnected on
printed wiring boards or substrates using thermo-
compressior: or thermo-sonic wire-bonding techniques,
depending upon the composiion of the end-cap
metallization. The integrity of these wire bonds at
cryogenic temperatures will have to be investigated

specifications are listed in Table 1. during future tests.
Type/# Capacitancey Capacitance | Voltage | Dissipation | Temperature | Manufacturer
iy Tolerance (%) { (VDC) | Factor (%) (°C)
Solid Tantalum (C1) 6.8 10 20 <6 -55 to +85 Vishay/Sprague
Solid Tantalum (C2) 47 10 10 <6 -55to +85 | Vishay/Sprague
Solid Tantalum (C3) 10.0 5 15 <6 -55 to +85 Vishay/Sprague
Ceramic-CRX (C4) 0.1 +80/-20 25 0.06 -0.95 | -196 to +20 Presidio
Ceramic-CRX (C5) 1.0 +80/-20 12 0.06 - 0.95 | -196 to +20 Presidio
Table I. Capacitor Specificatiors.
The surface-mount capacitors were characterized as a Results

function of temperature from 20 °C to -190 °C in terms of
their dielectric properties. These properties, which
included the capacitance and dissipation factor (DF), were
obtained in the frequency range of 50 Hz to 100 kHz
using a GenRad Model 1689 Precision RLC Digibridge.
The test frequencies are listed in Table II.

S0Hz | 400Hz | 5kHz | 20kHz | 70kHz
100Hz | 500Hz | 10kHz | 30kHz | 100 kHz
200Hz | 1kHz | 15kHz | 50kHz

Table II. List of Test Frequencies.

The tests were performed as a function of temperature
using a Sun Systems Model EC12 environmental
chamber utilizing liquid nitrogen as the coolant. A
temperature rate of change of 10°C/min was used
throughout this work. The capacitors were tested at the
following temperatures: 20; 0; -25; -50; -75; -100; -125;
-150; -160; -170; -180; and -190°C. At every test
temperature, the components were allowed to soak at that
temperature for a period of 30 minutes before amy
measurements were made. After the last measurement
was taken at -190 °C, the capacitors were allowed to
stabilize to room temperature and then the measurements
were repeated at room temperature to determine the effect
of thermal cycling on the devices.

The capacitors were handled very carefully throughout
the tests. Due to the size of the these surface-mount
devices, circuit boards with different spacings were

Three capacitors of each type (C1-C5) were subjected to
characterization. All capacitors of the same type displayed
similar behavior with temperature as well as with test
frequency and showed good reproducibility. Therefore,
the data presented and discussed in this paper was
obtained for one capacitor of each type. This data was
representativz of all the three units tested of the same
type.

The capacitance and dissipation factor of the solid
tantalum and ceramic capacitors as a function of
temperature at four different frequencies are shown in
Figures 1 ard 2, respectively. All samples of the same
capacitor type display very similar behavior with
temperature. The solid tantalum capacitors exhibit a
decrease in their capacitance and an increase in their
dissipation factor as the temperature is decreased. These
changes, however, tend to be more profound at
temperatures below -100 °C and at high frequencies.
Unlike their solid tantalum counterparts, the ceramic
capacitors exhibit an increase in their capacitance with
decreasing temperature. In fact, while the initial
capacitance measurements of the ceramic capacitors at
room temperature had amounted to about two-tenths of
their reported nominal values, the capacitance increases
significantly as the temperature is lowered. At -190 °C,
the capacitance of these capacitors tends to approach their
reported norrinal values. This is due to the fact that these
custom-designed capacitors are fabricated utilizing new
ceramic formulations that attain optimal capacitance
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Figure 1. Capacitance and dissipation factor of solid tantalum capacitor (C1, C2, C3) as a function of temperature.

values at temperatures around 200 °C. The dissipation
factor of these devices display modest increase only at
test temperature below -125 °C.

The effect of frequency on the dielectric properties of the
solid tantalum and ceramic capacitors is depicted in
Figure 3. The capacitance as well as the dissipation factor
of these capacitors are shown as a function of frequency at
five different test temperatures. It is clearly evident that
while the capacitance of the ceramic capacitors, at any
given temperature, remains very stable with frequency,
this property of the solid tantalum capacitors tends to
mimic this behavior until a test frequency of 10 kHz is
reached. Beyond this frequency, the capacitance exhibits a
decrease in its value which becomes appreciable at the
very low temperatures. While the effect of frequency on

the dissipation factor of the solid tantalum capacitors is
well defined, the ceramic capacitors display inconsistent
behavior. For example, the dissipation factor of the solid
tantalum capacitors, at any given temperature, increases
continuously as the frequency is increased The
dissipation factor of the ceramic capacitors, however,
exhibits a slight decrease, increase, and sometimes
showing a peak characteristic, which indicates strong
dependency on the test temperature. Although these
trends are inconsistent and occur with varying degrees,
the changes in the actual values of the dissipation factor
of the ceramic capacitors are not as significant as they
appear to be. There were no measured dissipation factor
values above 0.01 at -190 °C and with 100 kHz excitation
for any ceramic multi-layer chip capacitor under test. In
fact, these capacitors, which outperform the investigated
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solid tantalum ones, possess low dissipation factor values
that are comparable to those of dielectric film capacitors.

Measurements of the capacitance and dissipation factor at
the test frequency of 100 kHz of the investigated
capacitors before, during, and after exposure to low
temperature are tabulated in Tables IIT and IV. As
discussed earlier, room temperature measurements were
also made after testing the capacitors down to -190 °C to
determine the effect of thermal cycling on the devices.
These post-exposure data are indicated by the last 20 °C
listed in the corresponding tables. Because of the
similarity in the behavior of all samples of same
capacitor, the data listed are only those pertaining to one
sample of each device tested. It is important to note that
the dielectric properties of all the capacitors, solid
tantalum as well as the ceramic, fully recover to their
initial wvalues upon stabilization to the ambient
temperature at all test frequencies.
Conclusions

Three solid tantalum chip and two ceramic multi-layer
chip capacitors, manufactured by Vishay/Sprague and
Presidio Components respectively, were characterized in
terms of their dielectric properties as a function of
frequency in the temperature range of 20 °C to -190 °C.
The temperature-induced changes in the capacitors
appear to depend mainly on the dielectric medium being
used. For example, while the solid tantalum capacitors
experience a slight decrease in capacitance with decrease
in temperature, the ceramic capacitors, on the other hand,
exhibit a significant increase in this property as the test
temperature is decreased. The dissipation factor of both
types of capacitors, in general, seem to increase, with
varying degrees, as the temperature is lowered. These
changes were more noticeable in the solid tantalum
capacitors. The frequency was also found to influence the
dielectric properties of the solid tantalum capacitors more
than those of the ceramic ones. Post-exposure
measurements reveal that thermal cycling has no effect on
the devices as the investigated properties of all capacitors
recover to their original values.

The preliminary results of this work along with further
evaluation on other properties such as leakage current,
breakdown voltage, and multi-stress testing will greatly
contribute to the eventual development of efficient,
reliable, and long-life systems qualified for space-borne
and other harsh environments.
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TeOL Cl C2 C3 C4 C5

20 577 | 3.76 | 7.70 | 0.023 | 0.172
0 544 | 355 | 7.47 | 0.025 | 0.187
-25 520 | 3.24 } 7.02 | 0.027 | 0.207
-50 376 | 2.85 | 634 | 0.031 | 0.231
-75 414 | 242 | 556 | 0.036 | 0.264
-100 | 2.56 | 1.89 | 4.67 | 0.042 | 0.309
-125 276 | 144 | 3.68 | 0.052 | 0.374
-150 | 2.06 | 0.99 | 2.84 | 0.067 | 0.470
-160 187 | 085 | 2.60 | 0.075 | 0.518
-170 173 | 075 | 235 | 0.084 | 0.570
-180 154 | 065 | 2.19 | 0.095 | 0.635
-190 157 | 0.67 | 2.24 | 0.113 | 0.726
20 582 | 371 | 794 | 0.022 | 0.170

Table III. Capacitance (uF) versus Temp. at 100 kHz.

TCOf) Cl c2 C3 c4 Cs
20 JC.7222]1.2430] 0.8959| 0.0008 | 0.0011
0 6.8073 1.4350 | 1.0260 | 0.0007 [ 0.0011
-25 1G.9370]1.6520| 1.1710| 0.0008 } 0.0011
-50 J C.8684| 1.8680| 1.3000 | 0.0008 | 0.0011
=75 |} 1.1720] 2.0940 | 1.4410 | 0.0008 | 0.0008
-100 | C.8532|2.2470] 1.5690 | 0.0009 | 0.0008
-125 § 1.3000]2.4200 | 1.6380 | 0.0011 | 0.0011
-150 § 1.3250]2.5730 | 1.8080 | 0.0019 ] 0.0013
-160 f 1.3670]2.6390| 1.9010 | 0.0032 | 0.0030
-170 |} 1.3830]2.6700 | 1.9680 | 0.0056 | 0.0054
-180 | 1.4070]2.7210{ 2.0400 | 0.0076 | 0.0081
-190 § 1.3730|2.7710{ 2.0240 | 0.0036 | 0.0026

20 §0.7285[1.21901]0.9266] 0.0008 | 0.0011
Table IV. Dissipation Factor versus Temp. at 100 kHz.
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