
College of Engineering

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

/°

October 1998

Analysis and Design of Variable Stiffness Composite Cylinders

Brian E Tattin_ 1
Zafer Gi.irdal _

Department of Engineering Science and Mechanics

NASA Grant NAG 1-643

Final Technical Report - October 1998

Prepared for: Structural Mechanics Branch

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23861-0001

l Ph.D. Candidate, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and

State University

2 Professor, Department of Engineering Science and Mechanics & Department of Aerospace and Ocean

Engineering, Virginia Polytechnic Institute and State University

https://ntrs.nasa.gov/search.jsp?R=19980235618 2020-06-15T23:19:18+00:00Z





Analysis and Design of Variable Stiffness

Composite Cylinders

Brian E Tatting

(ABSTRACT)

An investigation of the possible performance improvements of thin circular cylindrical shells

through the use of the variable stiffness concept is presented. The variable stiffness concept

implies that the stiffness parameters change spatially throughout the structure. This situation is

achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite lami-

nate, though the possibility of thickness variations and discrete stiffening elements is also

allowed. These three mechanisms are incorporated into the constitutive laws for thin shells

through the use of Classical Lamination Theory. The existence of stiffness variation within the

structure warrants a formulation of the static equilibrium equations from the most basic princi-

ples. The governing equations include sufficient detail to correctly model several types of nonlin-

earity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due

to nonlinear bending of long cylinders. Stress analysis and initial b.uckling estimates are formu-

lated for a general variable stiffness cylinder. Results and comparisons for several simplifications

of these highly complex governing equations are presented so that the ensuing numerical solu-

tions are considered reliable and efficient enough for in-depth optimization studies. Four distinct

cases of loading and stiffness variation are chosen to investigate possible areas of improvement

that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened
structures.

The initial investigation deals with the simplest solution for cylindrical shells in which all quanti-

ties are constant around the circumference of the cylinder. This axisymmetric case includes a stiff-

ness variation exclusively in the axial direction, and the only pertinent loading scenarios include

constant loads of axial compression, pressure, and torsion. The results for these cases indicate that

little improvement over traditional laminates exists through the use of curvilinear fibers, mainly

due to the presence of a weak link area within the stiffness variation that limits the ultimate load

that the structure can withstand. Rigorous optimization studies reveal that even though slight

increases in the critical loads can be produced for designs with an arbitrary variation of the fiber

orientation angle, the improvements are not significant when compared to traditional design tech-

niques that utilize ring stiffeners and frames.

The second problem that is studied involves arbitrary loading of a cylinder with a stiffness varia-

tion that changes only in the circumferential direction. The end effects of the cylinder are ignored,

so that the problem takes the form of an analysis of a cross-section for a short cylinder segment.

Various load cases including axial compression, pressure, torsion, bending, and transverse shear

forces are investigated. It is found that the most significant improvements in load-carrying capa-

bility exist for cases which involve loads that also vary around the circumference of the shell,

namely bending and shear forces. The stiffness variation of the optimal designs contribute to the



increasedperformancein two ways: loweringthestressesin thecritical areasthroughredistribu-
tion of thestresses;andprovidinga relativelystiff regionthataltersthebucklingbehaviorof the
structure.Theseresultsleadto anin-depthoptimizationstudyinvolvingweightoptimizationof a
fuselagestructuresubjectedto typicaldesignconstraints.Comparisonsof thecurvilinearfiber for-
mat to traditional stiffened structuresconstructedof isotropic and compositematerialsare
included.It is found that standardvariablestiffnessdesignsarequite comparablein terms of
weight and load-carryingcapability yet offer the addedadvantageof tailorability of distinct
regionsof thestructurethatexperiencedrasticallydifferentloadingconditions.

The last two problemspresentedin this work involve the nonlinearphenomenonof long tubes
underbending.Though this scenario is not as applicable to fuselage structures as the previous

problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by

the variable softness concept. This is due to the fact that the dominating influence for long cylin-

ders under bending is the ovalization of the cross-section, which is governed mainly by the stiff-

ness parameters of the cylindrical shell. Possible improvement of the critical buckling moments

for these structures is investigated using either a circumferential or axial stiffness variation. For

the circumferential case involving infinite length cylinders, it is found that slight improvements

can be observed by designing structures that resist the cross-sectional deformation yet do not

detract from the buckling resistance at the critical location. The results also indicate that bucking

behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution

of finite length cylinders under bending that contain an axial stiffness variation. For these struc-

tures, the only mechanism that exhibits improved response are those that effectively shorten the

length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at

the ends. It was found that the use of curvilinear fibers was _ot able to achieve this effect in suffi-

cient degree to resist the deformation, but that ring stiffeaers produced the desired response

abmirably. Thus it is shown that the variable stiffness concept is most effective at improving the

bending response of long cylinders through the use of a circumferential stiffness variation.
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Nomenclature

Standard mathematical conventions are followed. Subscripts using latin letters (ij) represent

numbers, while greek letters (c_13) stand for coordinate (x, 0, z) designations. Derivatives for each

surface direction are expressed through either nondimensional operators (dx, do) or primes and

dots. Normalization is usually denoted by an overbar or a change to lowercase, while a carat (^)

signifies an average (constant) quantity of the skin. Overbars can also represent quantities applied

at the ends of the cylinder, as noted below.

Shell Geometry
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L

R

X, yZ

x,y,z

0

Or,/

u,,, Uy, U_

_,rl,_
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r,y(X), r_(x)

Strain-Displacement Relations
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0 0
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Ex, EO, "YxO,]txz, 'YOz' _z
0 0 0 0 0 0

£x, 80, "YxO' "Yxz' 'YOz' £z

total thickness of shell skin

length of cylinder

radius of cylinder

global Cartesian coordinates

cross-sectional Cartesian coordinates (nondimensional)

cross-sectional cylindrical coordinates

angular coordinate of cross-section (0 = y/R)

reference angle to locate material centroid of cross-section

global Cartesian displacements

cross-sectional Cartesian displacements ,(nondimensional)

cross-sectional displacements in cylindrical coordinates

Lam6 parameters of surface

Gaussian radii of curvature of surface

deflection of beam axis (for each transverse direction)

angle of rotation of cross-sectional plane about each axis

curvature of beam axis for each direction

end rotation of beam about each axis

increment of arc length

middle surface cylindrical displacements

rotations of normal, measured at the middle surface

total nonlinear strains

nonlinear strains measured at middle surface



0 o 0

Kx, K 0, Kx0

ec_l_,kal3

CO

P

Constitutive Theory

(Yl, (_2, 1712,1713,1723,tY3

el, e2, Yl2, 3'13, Y2s, es

Q0

Et, E2, vlz, v2t, G12

Ox, Cre,17_0

q_

tp_, Zk

-_j

u,

N. No, N_o

M_, Mo, Mxo

P.. Qo

A_j, B_j, Dgj

e.

x,,

MF

r,s

d)

Ti,-li

N_,g

Eo, V_o,Vo. G_

xc, r,,rc, S

_min

tp, tpp

w_,As, 1_,J_,zs, ts

E_, Gs

F,,M,,T,,es,r,,,O,

Nomenclature

changes of curvature at vaiddle surface

linear strains and changes of curvature

inextensional rotation of cross-sectional shell element

radius of curvature for deformed cross-sectional shell element

nonlinear stresses in principal material directions

nonlinear strains in principal material directions

reduced stiffnesses of orthotropic lamina

stiffness properties of orthotropic material

nonlinear in-plane stresses in surface coordinates

orientation angle of orthotropic lamina

ply angle and distance to middle surface for/d h layer

transformed reduced stiffnesses of orthotropic lamina

invariant material properties of orthotropic lamina

middle surface force resultants

middle surface moment resultants

middle surface shear force resultants

extensional, coupling, and bending stiffness terms

integrations of orientation angle through the laminate thickness

effective stiffness measures for laminate

strength properties of orthotropic material

multiplication factor for material failure criteria

surface coordinates for fiber orientation angle variation

angle of rotation between r: and xy coordinates

orientation angle and location of linked line segment approach

number of segments in linked line segment approach

minimum radius of curvature under manufacturing constraint

thickness and orientation angle of added ply

geometric properties of stiffener cross-section

elastic properties of stiffener"

loads and deformation quantities of stiffeners
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Nomenclature

Equilibrium Equations

U

V

W

Al

P

Vy(X),vz(x)

My(x ,Mz x)

F,T

U,V

Vy, Vz, My, M z

[K],EM]

A

S 1-$4, C 1-C4

internal energy of elastic shell

total potential energy of system (with variations V1, Vz)

work done on shell by outside forces

area of deformed cross-section

internal pressure of cylindrical vessel

beam shear forces in horizontal and vertical directions

beam moments about horizontal and vertical axes

axial compressive force and torque applied at ends of cylinder

axial displacement and rotation of cross-section at ends

beam loads applied at ends of cylinder

stiffness and geometric stiffness matrices for eigensystem

eigenvalue representing live load level

vector of perturbed displacements and strain quantities

boundary conditions for perturbed displacements

Classical Buckling Estimates and Eigenvalue Calculations

m, n

_min

l_:l, fi[Col, f_:lo

v,,

[K,I, [Ka], [67

INs],[Ua],IS]

[Vs], [Va], [Ms], [Ma]

Nondimensional Parameters

l

Zb

X

Z,

_t

axial half wave and circumferential full wave numbers

axial frequency (nondimensional)

minimum axial frequency for finite length cylinders

classical buckling values for constant stiffness cylindrical shell

classical buckling frequencies for axial and shear buckling

classical buckling values for infinite length cylindrical shell

mode I-/V displacements for assumed buckling deformation

sub-matrices of stiffness matrix for eigenvalue calculation

symmetric sub-matrices of geometric stiffness matrix

anti-symmetric sub-matrices of geometric stiffness matrix

axial wavelength parameter

Batdorf parameter

collapse parameter

tube length parameter

shear length parameter
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Nomenclature

Nondimensional Load Factors

u,f

v,t

m_, In.

Vy, Vz

(_max

--tim --lira d)lim
, my , "rraax

a',my,,:.x

Cross-sectional Parameters

Ose

//v,,, llw
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l, Iz

axial end displacement and compressive force

cross-sectional rotation and torsional load

internal pressure

beam bending moments about each axis

transverse beam shear torces in each direction

curvature (infinite length) or end rotation (finite length)

measure of ovalization of cross-section

values at limit point of nonlinear load curve

buckling values for infinite length shell

average stiffness quantities of shell skin

reference angle to locate material centroid of cross-section

angle to locate shear center of cross-section

warping displacement functions

global stiffness parameters associated with cylindrical beam

normalized bending stiffnesses for cylindrical beam

Variables for Axial Stiffness Variation Solutions

U.O, VO, Wo

Uo, Vo, Wo

U2, 1,'2, W2

U 2, W2

O_

displacements for axisyntmetric deformation

normalized displacemenls for axisymmetric deformation

Brazier-type displacements for cos20 deformation

normalized Brazier-type displacements for cos20 deformation

nondimensional curvature of beam axis

Numerical Solution Techniques

A

f,

N

cno,s.0, cx,sx
i ""

XIA, k_A, JB
k

a 0

distance between finite difference points

value of functionf(x) at ith finite difference point

number of variables in numerical technique

vectors denoting unknown1 and forcing term for linear system

shorthand for trigonometric functions

notation for vector and matrices in Rayleigh-Ritz solution

Fourier series coefficient for stiffness terms

°°.
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Nomenclature

_p

[A], ._:

_l,s, _, s

iterated eigenvector for power method

matrix and kth eigenvector for typical eigensystem

shift and calculated eigenvalue for power method

Fuselage Design Study Variables

g

W

n
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P,

SF,

b,h, r,t,,tt,
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Oc, Ok

gravitational constant representing unit of acceleration

weight of aircraft

load factor compared to weight of aircraft

moment and lift of wing, measured along chord length

vertical force at tail wing

safety factor for ith load case

dimensions of inverted hat stiffener and tear strap

effective width of shell computed by smearing stiffeners

number of pairs of equally spaced longitudinal stiffeners

angles to locate transition regions for crown and keel
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Chapter 1.0 Introduction

The intended objective of this investigation is set forth in this chapter, and then a review of rel-

evant published work is presented to provide further details of the subject matter. The discussion

is then used to define the detailed approach of the present study.

1.1 Objective of Current Study

The goal of this investigation is to explore the effectiveness of the variable softness concept as

applied to cylindrical shell structures, such as an aircraft fuselage. The term "variable stiffness"

implies that the stiffness parameters vary spatially throughout the structure. The principal mecha-

nism to produce this stiffness variation will be through the use of curvilinear fiber paths in fiber-

reinforced composite laminates, though thickness variation by means of added/dropped plies and

the addition of discrete stiffeners are also implemented. The use of these curvilinear fiber paths in

a design environment promises great reward, for the novel laminate construction format offers

more diverse tailorability opportunities than simply choosing the best stacking sequence for the

given loading conditions. A variable stiffness laminate can change its stiffness and strength prop-

erties spatially to adapt to the existing stress field and provide the greatest resistance to the local

conditions, thereby increasing the load-carrying capability of the structure when compared to con-

stant stiffness laminates. To investigate this fully, some basic problems involving cylindrical

shells are studied. However, the presence of the varying stiffness parameters dramatically

increases the complexity of the analysis, therefore another goal of this research is to develop solu-

tions that accurately model the physics of the problem while also being efficient numerically so

that in-depth design and optimization studies can be conducted. During the development of some

of these preliminary analysis tools for cylindrical shells, additional scenarios for which the vari-

able stiffness concept promised improvement were realized, so that the scope of the investigation

began to grow. However, the main goal is still based on the effectiveness of curvilinear fiber paths

when compared to traditional laminate construction, therefore the analysis techniques will focus

on a limited number of cylinder geometries and loading cases that are intended to encompass the

most fundamental scenarios for a practical cylindrical structure. In particular, these representative

cases include a cylinder with an axial stiffness variation that undergoes axisymmetric loads only, a

short cylinder segment with a circumferential stiffness variation that is subjected to arbitrary
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beam loads, and long cylinders undergoing predominantly )ending loads with a possible stiffness

variation in either the axial or circumferential direction. These last two cases both involve some

estimation of the Brazier effect, which is a nonlinear phenomena associated with bending of long

tubes that can dramatically decrease the failure load of the cylinder. The impact of the Brazier

effect on the instability loads of longer cylinders is exceedingly significant yet often miscon-

strued, therefore the governing shell equations are formulated from first principles so as to cor-

rectly model the response due to this highly nonlinear phenomena. Application of the Brazier

analysis to realistic cylindrical structures will also be considered.

1.2 Literature Review

This section familiarizes the reader with the relevant topics alluded to in the statement of the

Objective, namely the variable' stiffness concept, modern analysis of cylindrical shell structures,

and the Brazier effect. The ensuing information will be used to define the approach of the current

study in greater detail, and to provide an idea of the motivation behind this research.

1.2.1 Variable Stiffness Structures

It has long been known that the distribution of the stresses within a structure has a dramatic

effect on the structure's load carrying efficiency. As a simple example, a traditional I-beam is

designed so that the flanges carry the bulk of the bending loads, while little material is wasted

within the web. This results in a structure that carries beam bending loads efficiently while main-

taining low weight and material costs. For more complicated structures, such as thin plates and

shells that are subject to a greater variety ef loading conditions, the possibility of an analogous

design surely exists, though the optimal distribution of the stiffness may not be so apparent. Fur-

thermore, the stress analysis for these structures is generally more complex than for a beam, so

that determining the best design is not as straightforward. Thus this subsection reviews some ear-

lier work aimed at analyzing structures that contain stiffness variations produced by a variety of

methods. The possibility of curvilinear fibers within composite laminates is discussed in greater

detail, since it is the primary mechanism that is used in this study.

History of Variable Stiffness Analysis and Design

The earliest use of the variable stiffness concept for shell structures could probably be con-

strued as the analysis of variable thickness plates and shells made from isotropic materials. For

instance, Timoshenko & Woinowsky-Krieger's text I concerving the theory of plates and shells

contains references to variable thickness solutions from as early as 1918. The connection of this

work to the variable stiffness concept lies in the relation of the shell thickness to the flexural rigid-

ity (a typical stiffness parameter). For the most part, the solutions were quite simple and assumed
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basic variations of the thickness so that direct integration could be performed. Since the materials

in use at the time were isotropic, not much investigation into the variation of the material stiffness

properties was conducted. However, the work of Mishiku & Teodosiu _-considered the possibility

of inhomogeneity of isotropic materials that could result from damage, imperfections, and tem-

perature changes, and a solution was completed within the theory of elasticity using complex vari-

ables. A numerical example of a planar disk under radial tension was included, with the

nonhomogeneity being introduced through an idealized variation of the elastic parameters, and it

was shown that the stiffness variation produced significant quantitative and qualitative changes in

the resulting stress states.

The emergence of composite materials in structural applications during the 1960's lead to new

possibilities of stiffness variations within a structure. Traditional composites are usually con-

structed of a material with high strength and stiffness properties embedded in a resin matrix. The

configuration and volume ratios of the two constituents determine the stiffness and strength

behavior of the resulting material. For instance, a typical composite material used in the aerospace

industry is graphite-epoxy, which contains graphite fibers laid parallel to one another and held in

place by an epoxy matrix material. This produces an orthotropic material (one with different stiff-

ness and strength characteristics in orthogonal directions) with higher strength and stiffness prop-

erties per unit weight than corresponding isotropic materials (such as aluminum). The most

practical application of these composite materials was found to be in the form of laminates, in

which a structure is constructed of many layers (laminae) of these directional materials and

defined by the ordered layup, or stacking sequence, of its individual plies. Using these composite

materials, the potential for stiffness variation increased tremendously, for besides the possibilities

of thickness changes due to changing the number of plies throughout the structure, there also

existed manufacturing variability with respect to material ratio (volume fractions), fiber spacing

and fiber orientation, not to mention unintentional variations of the material properties by way of

voids and imperfections within the composite material.

With regards to the most basic stiffness variation for composite materials, the analyses incor-

porating thickness changes of isotropic shells could be directly applied to their orthotropic coun-

terparts that could be manufactured by adding or dropping plies throughout the structure. For

instance, Ashton 3 was one of the first to present a general anisotropic plate analysis technique that

allowed for the spatial variation of bending stiffness terms, and as an example suggested dropping

plies to produce a tapered plate with variable stiffness coefficients. The analysis relied on approx-

imating the stiffness variation through a series expansion in the spatial directions, where the coef-

ficients for the expansion were determined through integration. Analyses of this type did not
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address the fact that the edge effects near the termination of the ply greatly affected the local

three-dimensional stress state and often led to decreased failure loads for the structure. However,

Dinardo & Lagace 4 showed that where buckling of the structure was concerned, these local stress

concerns were not as significant as the global effects due to the large change in stiffness. They

substantiated their claims by comparing the buckling loads of laminated composite plates with

dropped plies to ones that contained regions with different stacking sequences without thickness

changes. Though the relative change in stiffness when using dropped plies was larger and also

easier to fabricate (consisting of merely adding plies on the outside of an existing laminate), the

buckling and postbuckling response for both cases was analogous, therefore the presence of the

ply termination did not provide a significant change in behavior. This result is fortunate, for

including the local stress effects due to added/dropped plies in the buckling analysis would lead to

extremely complicated and inefficient solutions. Therefore, within this investigation it will be

assumed that the effects of the ply termination can be ignored.

Additional methods to achieve spatial variations of the stiffness parameters using composite

materials were also investigated, and subsequently new analysis techniques were formulated. Pao 5

found a solution for the momentless design of cylindrical pressure vessels by assuming that the

Poissons ratio of the material could be tailored by altering the volume fraction of a composite

laminate. An analysis technique by Leissa & Vagins 6 proposed using variable stiffness concepts in

terms of a variation of the material properties to produce a homogeneous stress field for certain

shell structures constructed of fiber-reinforced composite materials, though they did not propose a

suitable method to manufacture these materials. Muser & Hgff 7 provided a closed-form solution

for the stress concentration around a hole for a infinite plate s abjected to uniaxial tension that con-

tained a radial variation of the compliances (which are the inverse of the stiffness parameters).

Their example revealed that a gradual variation of the compliances defined by designating the

laminate stacking sequence at two different radial locations produced a reduction of the stress

concentrations near the hole and significantly altered the ensuing stress field. Martin & Leissa 8

allowed the fiber spacing (and thus the fiber volume fraction) of the laminae to vary and analyzed

composite sheets using the theory of elasticity and the Ritz method, while Kuo et al. 9 were the

first to investigate the change in elastic moduli of composites with curvilinear fibers. Hyer &

Charette _° developed this curvilinear fiber concept even fi_rther by proposing that improved

designs could be developed by aligning the fibers with the principal directions of the stress field.

They provided a finite element solution for a plate with a central hole, and found that the material

failure loads did show marked improvement over traditional straight fiber formats, but the variable

stiffness designs showed no advantage when buckling was considered. A follow-up work by Hyer
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& Lee 11 aimed at improving these buckling loads by using sensitivity analysis and a gradient

search method to determine the optimal fiber orientation angles in different regions of the plate.

Their results revealed substantial improvements in the buckling load, mostly through the mecha-

nism of transferring the major stresses from the interior region to the edges of the plate.

Curvilinear Fiber Path Definitions

Further investigation into the potential of curved fiber laminates was required, since it seemed

obvious that the use of curvilinear fibers would surely result in an efficient and desirable method

to improve the performance of shells. The main advantage of this concept is that the stiffness and

strength parameters, which both depend on the fiber orientation angle, can be altered spatially to

tailor the structure to the expected loads and stresses. Furthermore, it may be possible to improve

the performance of the structure without an increase in weight over traditional laminates, since the

volume and weight of a variable stiffness ply should be the same as a constant stiffness layer.

However, two questions regarding this variable stiffness concept remain: can we analyze such

structures accurately and effÉciently?; and can these variable stiffness laminates be manufactured?

As an attempt to answer the first of these questions, the development of an analysis tool for

composite panels and cylindrical shells with a spatially varying fiber orientation angle was initi-

ated by Gtirdal m3.14 of Virginia Tech in the early 1990's, before the manufacturing techniques to

produce such structures had even been firmly established. The original idea was that the response

of fiber-reinforced laminates could be significantly altered by allowing the fiber orientation angle,

which defines the stiffness and strength properties of the laminate, to vary spatially throughout the

structure. Such a variation of the fiber orientation angle automatically produces curvilinear fiber

paths. The numerical technique to calculate the stress distribution and buckling loads for these

variable stiffness plates was subsequently refined during the completion of the M.S. degree by

Olmedo _5.t6. Further work by Waidhart 17utilized the analysis tool to study the possible improve-

ments in performance of the curvilinear fibers over traditional composite laminates. During this

investigation, attention was also focused on the producibility of the prototype laminate designs,

which generated additional restrictions regarding the variation of the fiber orientation angle.

For instance, the first step of the variable stiffness concept was to conceive of a way to

describe a realistic curvilinear fiber path in terms of general variables. The most basic function for

the stipulation of the variation of the fiber orientation was used, that being a linear variation in one

direction only. Thus the fiber orientation angle for a baseline path was defined as

¢p(r) = (T1- To)_ + T o O<r<ll (1.1)
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Here tp is the fiber orientation angle, r is the distance along the direction of stiffness variation, TO

is the value of _ at r = 0, and Tj is the prescribed value at some predefined distance 7I. This defini-

tion is also assumed to be symmetric about the origin and periodic with a wavelength of 2lt

(resembling a sawtooth function) so that the full range of the r-axis can be encompassed. As an

example, shown in Figure 1.1 is the path for a curvilinear fiber with To = 0 ° and T I = 30 ° at 71 -- 1.

1

I I I

-1

_ ½ ½ r-direction

Figure 1.1: Baseline Path for To = 0 °, Tl = 30 °, il = 1

Note that the linear variation of the fiber orientation angle given in Eq. (1.1) actually produces a

curvilinear fiber path, and that the path is smooth and contir uous even though it is defined by the

non-smooth sawtooth function. It should also be mentioned that the r-axis can be aligned at any

angle • with respect to the xy-axes of the plate, so that the preceding definition of the baseline

path actually allows a wide range of possible stiffness variations. The notation for the representa-

tion of a single layer in the stacking sequence of a variable stiffness laminate using this linear

variation is defined as • <T01Tl>.

The production of a complete variable stiffness ply was assumed to be accomplished by the

laying down of additional finite width strips of material that referenced the baseline path. It was

found that the definition of such a ply could be divided into two strategies, termed the "shifted

fiber" and "parallel fiber" methods. Both rely on an initial specification of a baseline path for the

variable stiffness ply as given in Eq. (1.1). The shifted method assumes that each additional path

has the same shape as the baseline case, but that it is shifted in a direction perpendicular to the

stiffness variation so that the whole ply area is covered. An example of a shifted method ply is

shown in Figure 1.2a, where the stiffness variation is in the vertical direction and the shift is

applied in the horizontal direction. The thick solid lines represent the centedine of each individual

path, while the thinner dashed lines denote the edges of the firite width strip of material. Note that

due to the variation of the fiber orientation angle, considerable overlap occurs at the edges of the

plates. The analysis tool ignored this overlap and assumed a constant thickness for the entire ply.

The presence of this overlap condition is quite significant, and its ramifications will be discussed
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(a) Shifted Fiber Method

¢-

°_

J .....
,,'.

(b) Parallel Fiber Method

Figure 1.2: Shifted and Parallel Fiber Methods for 90<30175> Ply

later when the manufacturing of the laminates is described. The parallel fiber method is shown in

Figure 1.2b. It is based on laying the subsequent material strips exactly parallel to the preceding

path, so that no overlap occurs. The additional paths need to be determined using a numerical pro-

cedure, therefore the simplicity of the equation defining the fiber orientation variation for the

baseline path is lost. Not shown in detail here is the fact that the parallel method produces stiff-

ness variations in both directions, and also that certain curvilinear fiber definitions using the paral-

lel fiber method are infeasible for they produce paths with infinite curvature.

With the basic definitions of the variable stiffness plies in hand, an analysis tool was devel-

oped by Olmedo _5to calculate the stress state and buckling loads of variable stiffness rectangular

panels. The static solution utilized a numerical solver called ELLPACK is, which is based on Her-

mite collocation techniques for elliptic partial differential equations, and the buckling estimate

was carried out using traditional Rayleigh-Ritz techniques. Specialized computer codes were pro-

duced that were able to solve the differential equations accurately and efficiently. Subsequently,

design studies were conducted by Waldhart 17 to determine if any performance improvements

could be found using these curvilinear fibers for fiat plates under compression. The results indi-

cated that the shifted fiber method produced the greatest improvements in load carrying capability

(up to 75% increase) when the load was applied to the plate in a direction perpendicular to the

stiffness variation. Therefore, the first question concerning curvilinear fibers was answered in the

affirmative: the variable stiffness plates could be analyzed effectively and also showed marked

improvement over traditional composite laminate designs.
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Coordination of these idealized fiber paths with realistic manufacturing tools was completed

under the funding of Boeing Helicopters by Gfirdal and this author with the help of Cincinnati

Milacron and their state-of-the-art fiber tow placement system, VIPER 19,2°.21. Correspondence

between the variable stiffness definitions used in the Virgirfia Tech analysis tools and the control-

ling software of the tow placement system (ACRAPLACE) was completed by constructing

numerical programs that translated the parameters of the analytical designs into appropriate data

files that could be interpreted by the ACRAPLACE software. For the shifted method, the coding

amounted to defining the centerline path (the dark lines in Figure 1.2a) for each pass of the fiber

head individually. The overlap regions were also dealt with as part of this work. The ACRA-

PLACE programming contains a parameter which determines how much overlap is allowed

between successive passes of the tow placement head. If set to 100%, then the overlap regions will

produce thickness changes within the variable stiffness plies as expected from Figure 1.2a. How-

ever, setting the overlap to 0% introduces the cut-restart capability of the tow placement machine,

and it was found that this feature can be used to produce constant thickness plies that maintain the

stiffness variation prescribed by the analytical models, though some slight voids do exist within

the plies. For the parallel fiber method, perfect correlation was found between the analytical and

ACRAPLACE ply constructions and only the baseline path definition was required.

Additionally, the coordination of the theoretical paths with the existing manufacturing tech-

niques revealed that a curvature constraint must also be implemented within the design process.

This limit on the change of the fiber path variation exists because for paths with a large curvature,

the inner section of the band of fiber will buckle during the placement of the tow. According to

tests done with the fiber placement machine by Enders & Hopkins 2° as well as discussions with

the Cincinnati Milacron personnel, the minimum radius of carvature that can be allowed without

this crimping of the fiber tow (for the specific dimensions ot the VIPER machine) is 25", though

in the future this constraint may be decreased. Therefore, the availability of the tow placement

manufacturing process affirmed the producibility of the prototype parts," as well as providing a

realistic constraint on the designs. Similar work using manufacturing constraints of the tape-lay-

ing process in a design environment has also been completed by Eschenauer et al.22, where they

incorporated the potential constraints of ply drops and tow path curvature within a finite element

analysis package, and Nagendra et al.23, who employed generic path definitions based on splines

that could be inserted into finite element codes for analysis.

One major difference between the manufacture of flat pazlels and cylindrical shells using the

tow placement system is that the cylinder surface is continuous in the circumferential direction.

This has a specific impact on the definition of the curvilineax fiber paths. To illustrate this point,
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recall that a cylindrical surface can be developed from a flat sheet merely by rolling the sheet into

a tube and aligning the opposite edges of the panel. Therefore, if one constructed a variable stiff-

ness ply for a cylindrical shell using the shifted and parallel methods defined for the flat plate, the

result would be similar to the transformation of the two dimensional planar figures shown in

Figure 1.2 into corresponding three dimensional cylindrical structures. For the shifted fiber

method, this would seem to work admirably, for when the opposite edges are joined the centerline

paths are virtually continuous with respect to orientation angle and curvature. This is true for the

development of a cylinder using either a horizontal or vertical rolling action, which would corre-

spond to either an axial or circumferential stiffness variation depending on which way the opera-

tion is performed. If no overlaps are allowed in the manufacturing process, the stiffness variation

can be regarded as one dimensional, in that the stiffness will change along only one axis. Contrast

this to the results for a ply constructed using the parallel fiber method shown in Figure 1.2b. The

ply now possesses two dimensional stiffness variation due to the construction process of the paral-

lel method. Furthermore, there is no continuity between the fiber orientation angle or curvature at

opposite edges of the plate in either direction. This implies that a seam would be present if the ply

were constructed using this method, and the stiffness properties would exhibit a distinct change in

character across this boundary. Obviously, this is not a favorable occurrence. Therefore, for cylin-

drical structures it will be assumed that the shifted fiber method is always used in the construction

of the variable stiffness plies, and that the overlap is eliminated (if desired) by using the

start/restart capabilities of the tow placement machine. Using the shifted method for cylinders, in

essence, ensures that the stiffness change varies only along one axis, which is desirable here since

the analysis tools for cylindrical shells is much more complicated than the corresponding solution

for fiat plates. Further details regarding the definition and constraints of the curvilinear fiber for-

mats for cylindrical shell structures will be presented in Section 2.2.2.

1.2.2 Analysis and Design of Cylindrical Shell Structures

The application of a cylinder as a structural component has been used for centuries, due to its

efficiency as a pressure vessel and as a beam or truss element. Static and stability analyses of a

cylindrical structure first began appearing in scientific literature in the late 1800's. In the decades

that followed, the solutions became more refined and complex, and helped lead to the formulation

of various shell theories, which often differed significantly in terms of complexity and accuracy.

The richness of the potential avenues for research using the cylindrical shell as a subject has lead

to a bountiful collection of investigations throughout history. However, for the purposes of this

study, the main topics under investigation are limited to the practical application of cylindrical

shell structures in the aerospace industry and how these designs can be enhanced through the use
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of the variable stiffness concept. As such, this subsection cf the literature review will concentrate

on two areas: classical solutions for the stability of cylindrical shells, which are used as illustra-

tions of possible failure mechanisms and later as a compzLrison to our numerical solutions; and

modern analysis and design of stiffened and unstiffened cylindrical shells constructed from com-

posite materials, which serves as a background to the optimization work that will be performed to

determine the worth of the variable stiffness concept.

Classical Buckling Estimates for Unstiffened Cylindrical Shells

The term "classical" used as a qualifier for shell theories and analyses indicates that the results

originated through the work of the early researchers of the late 1800's and early 1900's. Most

modem texts on shell theory or stability will ordinarily have some discussion of the history and

evolution of these results (for instance, see Brush & Almroth 24 for a discussion of the various shell

theories applied to shell stability equations), and it has generally been acknowledged that three

distinct (linear) shell theories for cylindrical geometries evolved from this work. In order of

decreasing complexity, these shell theories are referred to as Fliigge 25, Sanders 26.27, and Donnell-

Mushtari-Vlasov 28'29 in deference to their originators. The relative accuracy of these theories have

been debated for some time, and in summary it has been established that the Fliigge equations,

though considered exact to the level of their initial assumptions, contain some terms which are not

significant for practical problems. Conversely, Donnell-Mushtari-Vlasov theory (also referred to

as "shallow shell" theory and denoted hereafter as DMV) has been found to be inaccurate for

longer cylindrical shells that do not possess high stress variabiliiy in the circumferential direction.

However, DMV theory has the advantage that the equations a_e simple enough so that closed form

solutions can often be found (as will be shown shortly). In between these two extremes lies Sand-

ers theory, which does not possess the complexity of Fltigge yet resolves the inaccuracies inherent

in the shallow shell assumptions, and which is often considered the best first approximation the-

ory for thin shells. Since the forthcoming investigation often deals with long cylinders but also

attempts to use the most efficient and accurate solution techniques, the resulting equations of

Chapter 2.0 correspond in essence to the Sanders type.

As an illustration of possible failure modes of cylindrical shells due to instability, some classi-

cal buckling estimates for unstiffened cylindrical shells under fundamental loads will be devel-

oped here. "Buckling" and "instability" are often used iaterchangeably, and represent the

transition from one equilibrium state of the structure to a new radically different form due to the

slight increase of a load. The calculation to find the loads that produce such changes is usually in

the form of an eigenvalue problem. As mentioned earlier, the standard DMV equations used to

estimate the stability of cylindrical shells can actually be solved analytically for the basic loadings
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of axial compression, external pressure, and torsion. Without going into too great of detail, we

will present similar results for orthotropic shells, while also augmenting some aspects of the equa-

tions to include the terms of Sanders so that the results are still accurate for longer shells. Classi-

cal buckling estimates for finite and infinite length shells will be formulated for each type of basic

loading. These solutions, along with some additional assumptions, will later be used to generate

estimates for the failure loads of variable stiffness cylinders under loading conditions including

bending and transverse shear forces.

First buckling of a cylinder under axial compression is considered. The classical solution

assumes that under this type of loading, the shell will buckle from an undeformed surface into one

with sinusoidal waves in both the axial and circumferential directions. This is represented as:

• ['mnx'_w(x, o)o sm/--- jcos(n0)
\/., /

(1.2)

where x and 0 denote the axial and circumferential coordinates, w is the radial displacement,

and L is the length of the cylinder. The parameters m and n,represent the number of half-waves in

the axial direction and the number of full waves in the circumferential direction, respectively. The

mode shape given in Eq. (1.2) implies that the surface of the shell buckles into a checkerboard-

shaped pattern. For example, shown in Figure 1.3 is the buckled shape of a cylinder with m = 4

Figure 1.3: Example of Buckling Mode under Axial Compression

and n = 19. However, this mode shape is not necessarily the one that the shell will deform into

when it becomes unstable, for there actually exists an infinite number of mode shapes correspond-

ing to any integer value (with a few restrictions) for the parameters m and n. For each of these pos-
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sible combinations of m and n, there is also an associated buckling load (calculated from an

eigenvalue problem) which depends on the values of these wave numbers, and the critical buck-

ling load and mode shape are thus defined from the smallest eigenvalue among these possibilities.

To illustrate, it can be shown that using DMV theory for a cylindrical shell constructed from

an orthotropic laminate, the buckling load under axial compression can be estimated as

(__rx) [34bI1 + 2_2n2(b12 + 2666) + n4622 132_'0H= + (1.3)
 2R: /r___&0_ 4k'o

_4+2_2n 2 2Gx0 _'°x) +n

Most of these symbols will be defined later in more precise terms, so that for now (-/_x) is

defined as a measure of the compressive axial load and is called the axial stress resultant, R and H

are the radius and thickness of the cylindrical shell, 13replaces the axial wave number m through

the relation 13= rnrt,RIL and is often referred to as the axial frequency, and the rest of the terms

with a carat represent some stiffness quantity and are constants that can be determined from the

shell material and geometry. Therefore, the only unknowr_ variables on the fight hand side of

Eq. (1.3) are the wave number parameters 13and n, and the critical buckling value is determined

by finding the minimum value of the eigenvalue (-/_x) within all these possibilities. Since, in

general, this cannot be done analytically for unknown values of the stiffness parameters, the value

of n is chosen to be zero, which corresponds to an axisymmetric state in which the deformed

shape varies only in the axial direction, and assume that 13can attain any positive value. Finding

the critical axial wave number and eigenvalue is then easily accomplished through basic calculus:

n = 0 = (-_:x)= 132D11+/_oH
R2 _2

(1.4)

ff._ ,,[-_oHR 2 2._/b _7oH(-/_x)=Of°rminimum _ _x='_ b,l ' (_/_c/)= g

The superscript cl denotes the classical estimate, while the carats will later be defined to designate

an average quantity related to the shell skin.

To check the accuracy of the n - 0 assumption, the level curves of Eq. (1.3) for (-/qx) using

an isotropic material are plotted as functions of the wave number parameters 13and n, which are

assumed to be continuously valued numbers as opposed to ones based on discrete valued integers.

The result is shown in Figure 1.4, where normalization with respect to the values of Eq. (1.4) are

used for the load and both of the wave number parameters t this figure was actually constructed



Chapter 1.0 Introduction 13

N
°N

E

I,'-

._ 0.5
E
e.-,

0o

fWH =50f

_I_4

0.5 I

Axial wave number parameter _ (normalized)

Figure 1.4: Contour Plot of Axial Buckling Values for Isotropic Material

using the Sanders theory solution so as to be accurate for all values of n). Figure 1.4 reveals that

these contour lines are in the approximate shape of semi-circles, first described by Koiter 3° in his

doctoral thesis in 1945. In fact, if Eq. (1.3) based on DMV theory is used instead of the Sanders

theory solution, then it can be shown that for isotropic materials the level curves are exactly semi-

circles. Each level curve represents a constant value of the eigenvalue, so that multiple buckling

modes exist for each load level. Note that the critical (lowest) value of the normalized buckling

load is near one, yet no definite minimum exists (except for the singular case near the origin,

which is not a realistic mode). Therefore the value of (-/_x) at n = 0, where the parameter 13and

the eigenvalue correspond to their classical values, gives a fair estimate of the critical eigenvalue

of the isotropic skin, so that the assumption used to find the classical buckling load for isotropic

materials under axial compression can be considered reliable. Of course for realistic cylinders, the

value of 13is not infinitely valued but depends on the number of half-waves along the length of the

structure (since [3 = m_r2_lL). However, since the magnitude of _x is large for most thin shells,

there usually exists some value of m which ensures that the number of half-waves is an integer

without unduly changing the amplitude of the buckling load. This occurrence also implies that the

classical estimate is just as accurate for infinite length shells, since the additional length of the

shell will not alter the critical axial frequency or influence the value of the buckling load.

For orthotropic materials or composite laminates with arbitrary stacking sequences, the level

curves of (-_x) are not necessarily circular, since the orthotropy of the laminate leads to different

stiffness characteristics in each direction. For instance, the level curves for buckling under axial

compression using an orthotropic material with properties corresponding to a typical fiber-rein-

forced composite (see Table C.2 in Appendix C) are shown in Figure 1.5. Note that now a definite

minimum exists, and that its location is nowhere near the assumed values of (_ = 1, fi = 0), nor
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Figure 1.5: Contour Plot of Axial Buckling Values for Orthotropic Material

is its normalized eigenvalue near the classical estimate. However, the actual location and magni-

tude of this minimum for an arbitrary laminate is a complicated expression involving the roots of

high order polynomials, and cannot be expressed as succinctly as Eq. (1.4). Therefore, even

though the orthotropic skins may possess distinctively different critical buckling modes as in

Figure 1.5, the n = 0 case will still be used as the classical value due to its simplicity, while noting

its inaccuracy for highly orthotropic laminates. Moreover, the values used here for the orthotropic

material case are quite extreme, in that practical laminates p,)ssess stacking sequences which tend

to reduce the orthotropic effect displayed in Figure 1.5.

It should be mentioned here that it is quite significant that for an isotropic material so many

modes exist which possess similar eigenvalues when compared to the critical one. This property

Of coincident modes is a major factor in the imperfection sensitivity of cylinders under axial com-

pression, for it increases the likelihood that a geometric imperfection will coincide to the shape of

a possible buckling mode and lead to catastrophic failure. Canversely, the contours of Figure 1.5

reveal that such an orthotropic laminate may be comparably imperfection insensitive, since fewer

modes that correspond to the critical eigenvaiue exist. The _mportance of this point has a direct

correlation to the fact that the classical solution for axial compression of cylindrical shells is not

considered accurate for practical design. This topic will be discussed in more detail in the review

of modem analysis techniques for cylindrical shells and also in the results of Chapter 3.0.
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For a cylinder under external pressure, the calculation of the critical circumferential stress

resultant/Vo can be performed in a similar manner. First the classical estimate is derived for buck-

ling of an infinitely long cylinder. With this specification, the end conditions can be effectively

ignored and the ensuing problem exactly corresponds to a ring buckling under the action of a cen-

trally directed pressure, where the ring represents the cross-section of the cylinder. The buckled

shape does not change along the length of the cylinder, therefore the axial frequency 13is zero.

The form of the radial displacement is assumed as in Eq. (1.2) with the sin(m_x/L) term removed.

Using Sanders shell theory, the eigenvalue calculation can be reduced to

(-/Vo) = b22 (n 2- 1) (1.5)
R 2 ( 1 + b22/A22 Rz)

To determine the critical buckling value, notice that increasing the wave number n also increases

the eigenvalue, so that the lowest permissible value of n should correspond to the critical value.

Here n = 0 is not a possibility since it does not represent a realistic buckled shape. The case for

n = 1 conforms to a translation of the cross-section, which is a degenerate case and is not present

once the cylinder is constrained against rigid body motion. The critical eigenvalue is then for

n = 2, so that the classical estimate for an infinitely long cylinder under a circumferential stress is

= 3622 1
R 2 (1 +b22/,422 R2) (1.6)

The superscript now designates the classical value for an infinite length cylinder. This answer con-

forms exactly to the theoretical value for the ring under external pressure, as opposed to the DMV

shallow shell solution which differs from this exact answer by a factor of 4/3.

The classical buckling value for a constant circumferential stress given in Eq. (1.6) is valid for

infinitely long cylindrical shells which act as a ring under external pressure. However, for finite

length cylinders with realistic end conditions, the axial frequency [3 is not zero since the end con-

ditions restrain the radial displacement of the cylinder, therefore an estimate involving the axial

frequency must be developed. This is accomplished by again assuming the deformed shape to be

of the form given in Eq. (1.2), and applying a constant circumferential stress instead of an axial

stress. Thus an analogue to the stability equation (1.3) for cylinders under axial compression can

be found for buckling under external pressure using DMV shell theory:

(--/_r0) = 114/_)11 + 2_2n2(b12 + 2666 ) + rt4622

n2R 2

_4t_oH/n2
+

1_4+ 2132n2(2_x ° - 90x/+ n4___0

(1.7)
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For shorter cylinders, it can be shown that the correct value of 13will be determined by the condi-

tion that only one axial half-wave is present along the length of the cylinder. Then 13= rcR/L and

the number of circumferential waves is not necessarily two. However, choosing the correct value

of n for the polynomial given in Eq. (1.7) so as to produce the smallest eigenvalue cannot be com-

pleted analytically, though it can easily be accomplished numerically once the shell parameters

are determined by merely calculating the eigenvalues for each possibility of the wavenumber. In

practice, this is the method used here to determine the classical buckling value for finite length

shells under external pressure, though the buckling equation is based on Sanders theory as

opposed to the shallow shell assumptions. Therefore the classical estimate for external pressure

loading for finite length cylinders is represented as:

'(-fil(_ t) = minimum[-fge(n)] (1.8)

To illustrate the dependence of the buckling value on cylinder length and the circumferential

wave number, the level curves of the circumferential stress resultant normalized with respect to its

infinite length value in Eq. (1.6) are shown in Figure 1.6 as a function of 13and n for an isotropic

\

1
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Figure 1.6: Contour Plot of Circumferential Buckling Values for Isotropic Material

material. This contour plot is based on the Sanders theory solution. Note that for vary small values

of 13 (corresponding to an infinite length shell), the critical e_genmode corresponds to a buckled

mode shape of n = 2 and the normalized eigenvalue is equal to one, as expected. For a finite length

cylinder with a known value of 13= 7zR/L corresponding to one axial half-wave, it is easily seen in
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the figure that the minimum eigenvalue and the number of circumferential waves increase dramat-

ically as the length decreases. The number of circumferential waves in the eigenmode can be sur-

mised from Figure 1.6 by imagining a vertical line located at the particular value of 13= rrR/L, and

determining where the eigenvalue is a minimum along the vertical line. For instance, if 13= 4, the

critical mode would correspond to n = 8 with a normalized eigenvalue equal to around 40. Since

decreasing the length of the shell increases the number of circumferential waves, which implies

high variability in the circumferential direction for the resulting stresses and strains, the DMV

shallow shell estimate given in Eq. (1.7) can be considered accurate for cases involving longer

shells. Incidentally, the level curves for an orthotropic material follow the same general shape of

the contours of Figure 1.6, so that the preceding discussions hold true for a general cylindrical

shell. Therefore, for a cylindrical shell under external pressure, two classical estimates are used:

Eq. (1.6) for an infinite length shell; and a solution for finite length shells based on Eq. (1.8).

For a cylinder under a constant shear load (torsion), the solutions closely follow that of the

external pressure load. However, the assumed doubly periodic function of Eq. (1.2) no longer cor-

responds to a realistic buckled shape. Instead, the radial displacement is assumed to vary in the

form of a spiral so as to produce a twisted buckled shape. This eigenfunction is defined mathemat-

ically as

w(x, 0)_ sin(-_ + nO) (1.9)

An example of such a shape is displayed in Figure 1.7 with n = 2. The surface can be construed as

Figure 1.7: Example of Buckling Mode under Torsion

being composed of successive cross-sections with n circumferential waves that are being rotated

about the axis of the cylinder with frequency 13.However, it should be noted that at each end of the

cylinder, the cross-section still contains n circumferential waves and does not satisfy the boundary

condition of radial restraint that is typically enforced at the ends. This is due to the assumed form

of the radial displacement, given in Eq. (1.9). A proper form that does satisfy the end conditions is

usually represented by a summation of sine terms in the axial direction. Comparison of such a



Chapter 1.0 Introduction 18

solution to the estimate generated by the assumption of Eq (1.9) is detailed in Section 3.5.2.

Using the assumed displacement field given in Eq. (19), a closed form estimate of the tor-

sional buckling load can again be developed. For DMV theory, this expression is given as:

(-_xO) 134DI l + 2132n2(D12 + 2666) + nnb22 133'_°n/(2n)= + (1.10)

213nR2 134+ 2_2n2(2_x e 90x) +n4_O_,x

Here (-_xe) is defined as the shear stress resultant, and the negative sign appears due to the defi-

nition of the direction of the assumed mode shape in Eq. (1.9). A similar Sanders theory solution

exists, though it cannot be exPressed as succinctly as Eq. (1,10). As with the circumferential case,

estimates for infinite and finite length shells can be formulated independently based On the

assumption of the value of the axial frequency.

For infinite length cylindrical shells, the axial frequency 13is assumed to be small. Then the

higher order terms associated with small values of 13in Eq. (1.10) can be ignored, especially when

multiplied by the factor (H/R), which is small for thin shells. The Sanders theory solution for the

torsional buckling load using this approximation can then be shown to be

_xH133
(-_xO) = t)22n(n 2- 1) + (1.11)

R 2 2[3 2n3(n 2- 1-)

Note that this expression differs slightly from a direct reduction of Eq. (1.10) assuming small 13

due to the different shell theory that is used. Direct minimization of Eq. (1.11) with respect to the

axial frequency 13yields

[ b22
I]x0 = _x_ 2n4(n2-1)23 __/ _ (1.12)

As in the circumferential case, the minimum eigenvalue corresponds to a value of n = 2 for a long

cylinder, so that the classical values for torsion of a long cylirdrical shell become

(1.13)

This solution agrees exactly with the classical solution for iso:ropic cylinders derived by Timosh-

enko & Gere 31, whereas the solution using the approximate DMV shallow shell equations would

overestimate the buckling load by around fifteen percent.
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For finite length cylinders, the value of 13is not necessarily small. Furthermore, since the end

conditions using the assumed shape of Eq. (1.9) are not rigidly satisfied, an accurate solution for

shorter cylinders actually requires a more general shape for the eigenfunction in the form of a lin-

ear combination of similar sinusoidal functions, as mentioned earlier. This solution is beyond the

scope required for a simple classical estimate, but it is of some interest to investigate the solution

of (-_x0) for larger values of 13, which corresponds to torsional buckling of shorter cylinders

which allow warping at the ends. Under these assumptions, it can be shown that the value of 13

again corresponds to the existence on only one half-wave along the length of the shell, therefore

the finite length solution is based on finding the correct value ofn in Eq. (1.10) with 13= r_R/L.

This estimate cannot be expressed in closed form. Therefore, in practice the classical estimate is

found from the Sanders theory solution as:

(-_xC;) = minimum[-_tx0(n)] (1.14)

For completeness, the level curves for the critical torsional load using Sanders theory are

shown in Figure 1.8, where the axial frequency 13has been normalized with respect to the value in

11
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Figure 1.8: Contour Plot of Shear Buckling Values for lsotropic Material

Eq. (1.13). Note that the critical value for n = 2 is located at _ = 1, and that increasing the value of

the axial wavelength parameter increases the buckling load and the number of circumferential

waves, much like the case of the constant circumferential stress. The relative increase in the buck-

ling load and number of circumferential waves by decreasing the length of the cylinder is not as
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great for torsion as compared to the external pressure case, however the basic mechanisms that

produce this effect are identical. It should be again noted that this estimate for torsion is somewhat

unreliable for shells with any type of end restraint, and that the inclusion of this effect requires a

more thorough analysis. A comparison of such a solution to the rough estimate represented by

Eq. (1.14) will be performed in Section 3.5.2.

The preceding calculations have provided classical buckling solutions for axial compression,

external pressure, and torsion of an unstiffened composite cylindrical shell. The estimate for axial

compression, Eq. (1.4), applies to cylinders of arbitrary length, while the solutions for external

pressure and torsion, Eq. (1.8) and (1.14) respectively, are only correct for finite length cylinders.

However, history has shown that these estimates may not be accurate when compared to the

experimental buckling loads of actual cylinders. The next subsection discusses some improve-

ments to the analysis that may be needed to provide better c,_rrelation to the experimental results.

Modern Analysis and Design of Shell Structures

As with all analytical predictions, the accuracy of the classical buckling estimates must be

measured by comparisons to experiments performed on actual cylinders. Such results for isotropic

cylinders under the three basic loadings of axial compressic,n, external pressure, and torsion can

be found in the references by Batdorf 3z or Brush & Almroth 2_, and show that for the external pres-

sure and torsional loading the classical estimates are well within the bounds of engineering

approximation. However, experimental buckling loads for cylinders under axial compression are

well below the calculated estimate, sometimes as low as 15% of that value. As such, the design of

cylinders under axial compression had to take these discrepancies into account, and therefore sev-

eral design guidelines and knockdown factors were empiri,:ally formulated to avoid disastrous

failure scenarios. Of course, concurrent research in the field strived to explain these differences

between theory and experiment, and a thorough history of the studies performed can be found in

Hof-f 33, Brush & Almroth 24, and Bushnell 34. Some of the relevant discoveries of these studies that

apply to this investigation axe now discussed.

Many of the earliest hypotheses presented to account for the discrepancy between the theoret-

ical and experimental buckling loads involved the accuracy of the prebuckling state of stress of the

shell. In the classical solutions, this prebuckling deformation was approximated by membrane

theory, in which the bending of the shell wall was neglected and the surface was assumed to be

flat until the buckling load was reached. However, realistic shell problems usually possess some

kind of end restraint that produces a boundary layer that gr,)ws nonlinearly with respect to the

magnitude of the applied load. Therefore, increased accuracy of the eigenvalue problem was



Chapter 1.0 Introduction 21

accomplished by including the effects of various boundary conditions and the presence of the

nonlinear prebuckled state. Some landmark papers concerning these topics include the work of

Stein 35, Sobe136, and Almroth 37. Though these investigations did produce eigenvalues significantly

less than the classical results, the agreement with experiments was still not consistent. The issue

was finally resolved when it was accepted that the imperfection sensitivity of the shells played an

enormous role in the failure loads and postbuckling response of cylindrical shells. This was first

demonstrated experimentally by Donnell & Wan 38, while the theory of postbuckling response had

first been formulated within the doctoral work of Koiter 3°. Shape imperfections of actual speci-

mens often resulted from the inherent inaccuracies of manufacturing techniques. It was discov-

ered that shape imperfections that loosely corresponded to the mode shape of the critical buckling

load produced drastic reductions in the load carrying capability of the structure. Since the axial

buckling load for isotropic cylinders possessed so many coincident modes (as revealed in

Figure 1.4), then the chance that a slight imperfection of the cylinder would correspond to one of

these shapes was high. Postbuckling theory also explained why the assumed checkerboard pattern

given by the classical eigenmode was rarely seen in experiments. This deformation state is unsta-

ble, and when a bifurcation point is reached the configuration of the shell follows a stable path

that corresponds to a different postbuckled state. Further details of postbuckling theory applied to

elastic structures can be found in Hutchinson & Koiter 39.

Though postbuckling theory and the imperfection sensitivity phenomenon explained the dis-

crepancy between theory and experiment for cylinders under axial compression, it offered no

immediate help to the designer, since the determination of the imperfection sensitivity and the

possibilities of the manufacturing flaws of a given shell configuration were not easily calculated

because of the complexity and enormity of the problem. Due to this setback, most optimization

work for stiffened and unstiffened shells utilized analyses that only determined the bifurcation

load for the perfect structure and never delved into the postbuckling regime. However, it was dem-

onstrated by several authors (Singer & Baruch 4°, Tennyson & Hansen 'u) that designing a structure

for the maximum bifurcation load often lead to designs with increased imperfection sensitivity,

since the optimizer tended to find structures with many closely spaced eigenvalues. For our pur-

poses, we will ignore this aspect within the optimization studies, since our main goal is to deter-

mine the applicability of the variable stiffness concept to the improvement of shell structures. If

sufficient improvement is discovered, then more detailed analyses and optimization studies that

include these aspects of imperfection sensitivity may need to be addressed.

A remark must also be made concerning the modern analysis of shell structures that contain

stiffeners. For cylindrical structures that are subjected to possible destabilizing loads, both cir-
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cumferential and longitudinal stiffeners are typically used, for they are structurally efficient and

often contribute to the postbuckling strength of the structure. The earliest solutions incorporating

stiffeners usually relied on "smearing" their effect throughout the shell so that the structure could

be considered an unstiffened shell and could be analyzed by techniques that already existed. How-

ever, it was subsequently determined that this practice was often too crude for the accurate repre-

sentation of the buckling of stiffened structures, since complicating factors such as modal

interaction between the skin and stiffener played an important role in the instability modes of the

structure. A discussion regarding the levels of complexity that the stiffeners can possess, and their

relative merits and drawbacks, can be found in the survey paper of Bushnell 34. In general, the level

of detail in present day analyses ranges from the smeared approach to representing the stiffener

with nonlinear shell elements, lthough for most problems this high level of detail is not required. It

will be shown in Section 2.2.2 that the variable stiffnessconcept possibly provides a suitable

method of incorporating stiffeners without increasing the level of complexity of the analysis.

1.2.3 The Brazier Effect for Long Tubes

One phenomenon that the modem solutions for cylindrical shells often fail to address is the

Brazier effect, which is a nonlinear phenomenon that applies to long tubes subjected to bending.

In truth, this is quite understandable, for most realistic cylindrical shell structures possess end

restraints or closely spaced ring stiffeners which render the effect insignificant. Possible excep-

tions include underwater pipes and medical tubing. However, recent advances in the aerospace

industry have considered increasing the spacing of the ring stiffening elements along the length of

the fuselage to save weight, and in such a case the Brazier effect becomes an important consider-

ation with regards to the optimal construction of the fuselage skin and the size and spacing of the

stiffeners. Since most existing analysis techniques do not consider the Brazier-type deformation

for cylindrical shells, this study also attempts to produce an accurate, efficient solution to the Bra-

zier problem that can be used as a guideline for relevant strmtural designs. The spacing of ring

stiffeners for a long cylinder under bending also provides another area in which the variable stiff-

ness analysis can be used, since the modelling of the ring stiffeners is easily incorporated into the

solution techniques.

The Brazier effect can be easily demonstrated by simply bending a drinking straw or rubber

hose by hand. As the curvature of the tube increases, one ,:an feel that the additional applied

moment needed to produce this extra curvature begins to lessen, and often a change in the shape

of the cross-section of the tube may be observed. Finally, the tube will form a kink and collapse.

This phenomena was first investigated by L.G. Brazier in 192642, and he formulated a solution to

explain the flattening behavior of infinite length isotropic circular cylinders under bending. The
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Brazier phenomena differs from usual nonlinear shell problems in that the nonlinear response is

induced by the macroscopic rotation of the structure, as opposed to classical boundary layer

effects due to the local rotations of shell elements near the boundaries. To illustrate, shown in

Figure 1.9 is an exaggerated view of an infinitesimal section of a deformed circular cylinder along

Figure 1.9: Mechanism of Brazier Effect to Produce Ovalization

with the linear stress state associated with pure bending. Due to the curvature of the tube axis, the

compressive and tensile stresses act at an angle to the lighter cross-section and deform the original

circular shape into an oval. This ovalization, in turn, decreases the moment of inertia of the cross-

section and leads to a nonlinear load-displacement relation. Additionally, the deformation of the

cross-section increases the axial bending stresses and lowers the structure's buckling load.

The investigation of this nonlinear behavior for an infinite length cylindrical shell is the prob-

lem originally studied by Brazier a2,43. His approximate solution determined that the cross-sec-

tional displacements varied as a function of cos(20), and with this result the nonlinear moment-

curvature relation could be expressed as a succinct third-order polynomial. Over thirty years later,

Wood 44 expanded the results of Brazier to include the possibility of internal or external pressure.

Within the next few years, the renowned mechanician E. Reissner attacked the problem in a series

of papers 45,46,47and generated a more exact solution using variational energy methods. The result

was a highly nonlinear equation that he could not solve analytically, though some attempts using

perturbation techniques and simple numerical solutions were performed. Attentive simplification

of Reissner's equation converges to the approximate solutions of Brazier and Wood. By 1975,

numerical techniques had developed that could accurately solve the nonlinear equations, and this

was first completed for the Brazier problem in an excellent paper by Fabian 4s. His numerical solu-

tion of Reissner's equation is compared to Brazier's solution for the moment and cross-sectional

deformation versus end rotation in Figure 1.10. The ovalization is a measure of the radial dis-

placement at the top and bottom of the cross-section, and one can see that Brazier's approxima-
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Figure 1.10: Moment and Ovalization vs. Curvature for Long Isotropic Cylinder

tion underestimates the deformation by around 12% at the limit point, while overestimating the

moment by approximately 3%. However, the gains in analytical simplicity and computational effi-

ciency for the approximate solution are well worth the small errors. In fact, Brazier's original

solution is often considered quite serendipitous, for the gross assumptions that he invoked do not

seem to warrant the resulting accuracy for such a highly nonlinear problem. Throughout this

investigation we refer to these original approximations to jusdfy neglecting certain terms, such as

powers or derivatives of certain functions. It can be shown that retaining these higher order terms

will resu|t in significant disagreement between Brazier's solution and the accurate nonlinear solu-

tion of Reissner. For example, Bannister 49 studied the load-displacement response and vibrations

of a long cylindrical shell subjected to whipping loads (bending) and used a variational approach

analogous to Wood's formulation that included all the quadratic terms that are usually neglected

as per the original approximate solution. The resulting momeat-curvature relations underestimate

the nonlinearity considerably and predict a limit moment with over 30% error. The reasons for

discrepancies of this nature can be found in the discussion by Catladine 5°.

Additional work regarding the moment-curvature relationship for infinite length cylinders

incorporating the Brazier effect was completed by several auttaors. Kedward 5_ extended Brazier's

analysis to include orthotropic materials. Spence & Toh 52 investigated elliptical cross-sections

under bending, and also included experimental results which verified the nonlinear moment-cur-

vature relationship yet revealed that the structures failed due to buckling and at a lower load than
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expected. Birman & Bert 53 calculated the vibrations of a long cylindrical beam using Brazier's

solution. Stockwell & Cooper 54 also attempted to incorporate orthotropic materials into Brazier's

solution, though their results were not consistent with the correct solutions of Kedward 5_ and this

author 55. Baruch et al.56 examined the sensitivity of the limit moment to circumferential imperfec-

tions, while Li 57 and Molyneaux & Li 58 investigated the dynamic instability of elastic tubes under

pure bending.

Some of the aforementioned papers dealing with the Brazier effect contain one common flaw:

the assumption that the limit moment of the nonlinear load-displacement curve (as shown in

Figure 1.10) is the determining collapse load of the structure. However, it was originally noticed

by Brazier that the characteristic of the failure mode more properly resembles local bifurcation on

the compressive side of the shell. This failure mode was first investigated by Aksel'rad in 1965 59,

who employed Brazier's approximate solution to determine the effect of the cross-sectional defor-

mation on the structure's buckling load. Fabian 4s also included this local bifurcation possibility

(as well as some postbuckling estimations) in his robust numerical solution of Reissner's equa-

tion, and he concluded that for thinner isotropic shells, bifurcation always occurs before the limit

moment is reached. This observation lead other researchers, most notably Reddy 6°,6z, Calladine 50,

Aksel'rad & Emmerling 62, and Corona & Rodrigues 63 (who also included a material failure con-

straint) to re-evaluate the failure characteristics of cylindrical shells under nonlinear bending, and

their results revealed that the major contribution of the ovalization of the cross-section toward fail-

ure was the lowering of the critical local buckling stress. These conclusions were later reaffirmed

through experimental testing by Ju & Kyriakides 64 and Karam & Gibson 65. Similar analytical

results and conclusions will be presented in this investigation.

The investigation of the Brazier effect forfinite length cylindrical shells was initiated with the

original work of Aksel'rad 59. To obtain solvable equations, he employed semi-membrane consti-

tutive theory to reduce the order of the analysis, and along with his follow-up work 62 he deter-

mined the prebuckling deformation and an estimation of the buckling moment for cylindrical

shells of finite length. Stephens et al.66 also contributed toward the finite length solutions through

the use of the emerging nonlinear finite element code STAGS, and subsequent finite length solu-

tions utilizing the semi-membrane assumptions by Libai & Bert 67 and this author 68,69 used the

finite element results as a comparison to their solutions. It should also be noted here that Libai &

Bert were the first to notice the importance of shear deformation due to the Brazier effect for finite

length shells.

Most of the concerns discussed here regarding the Brazier effect will be included as part of

this investigation. Both the exact nonlinear solution and an approximate solution based on the
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assumptions of Brazier will be used, and the collapse loads for infinite and finite length cylinders

will be fully investigated. Applications of these results for practical structures will also be

addressed.

1.3 Approach of Current Study

With reference to the previous discussions in this chapter, the approach for this investigation

will focus on the application of the variable stiffness concept to the design of cylindrical shells

under various types of loading. The stiffness variation will predominantly be defined through the

use of curvilinear fibers, though discrete stiffening elements and thickness changes may also be

employed. When these additional stiffening mechanisms are employed, basic assumptions are

used so that they can be incorporated into the variable stiffness concept without adding significant

complexity to the solution techniques. Specific restrictions on the geometry and loading Condi-

tions will be made in order to reduce the stiffness variation to be in either the axial or circumferen-

tial direction, since this will facilitate the ensuing analysis techniques by transforming the two

dimensional problems into one dimensional ones. Particular boundary conditions, application of

the loads, and the degree of nonlinearity for each load case will be determined independently for

each case. In general, each problem will contain a static solution to determine the prebuckling

stress state and estimate material failure loads, and a stabilit_ analysis based on bifurcation loads

that takes the form of a numerical eigenvalue problem. Po_tbuckling phenomenon will not be

investigated, however the final designs will be analyzed with the most rigorous nonlinear solu-

tions available to give some insight into the higher order details of the response. Rigorous optimi-

zation studies for practical cylindrical structures will be [,erformed using the most efficient

analysis techniques to determine the relative worth of the variable stiffness concept.

To understand the motivation behind this work, a quick sketch of the evolution of the analysis

techniques is necessary. It was originally believed that the added tailorability that the variable

stiffness concept provides should produce designs that exhibit increased performance compared

to traditional constant stiffness laminates. This idea applies not only to cylindrical shells, but to

any structure constructed of thin laminates. The earliest work was actually applied to flat plates,

and the positive results discovered for compression of square panels lead to the application of the

concept to shell structures. The initial attempt for the analysis of variable stiffness cylinders con-

sisted of a simple investigation of the deformed shape and stress state of an axisymmetric cylin-

der. This analysis was subsequently expanded to include the buckling response of a cylinder with

a stiffness variation in either the axial or circumferential diret:tion. The preliminary results indi-

cated that the most significant by-products of the stiffness variation were the redistribution of the

loads and the production of deformed shapes that were quite atypical when compared to standard
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structures. This second finding created a desire to find realistic problems for which the resulting

deformation was quite large, so that the stiffness variation could be designed to control the defor-

mation and improve the performance of the cylinder. Such a scenario existed for long cylinders

under bending, thus the investigation was broadened to include many aspects of this interesting

problem. However, the main motivation of this research remains focused on determining if the

curvilinear fiber format is a viable alternative for the design of cylindrical shell structures, and

thus four major cases encompassing the most basic loading conditions of a variable stiffness cyl-

inder are included.

A summary of the particulars for each case are presented in Table i. 1, where the case designa-

tions correspond, respectively, to a cylinder with an axial stiffness variation that undergoes axi-

symmetric loads only, a short cylinder segment with a circumferential stiffness variation that can

handle arbitrary beam loads, and long tubes undergoing predominantly bending loads including

the Brazier effect with a possible stiffness variation in either direction.

Case

designation

Axisymmetric

Short Segment

Infinite Length
Brazier

Finite Length
Brazier

Stiffness

variation

Axial

Circum-

ferential

Circum-

ferential

Axial

Level of analysis

Nonlinear solution

with bifurcation

analysis

Linear membrane

prebuckling solu-
tion with bifurca-

tion analysis

Nonlinear prebuck-

ling solution with

bifurcation analysis

Nonlinear semi-

membrane solution

with approximate

stability analysis

Load cases

Axial force,

pressure,
torsion

General

beam loads

Nonlinear

effects

Boundary

layer, shell
rotations

None

Bending,

pressure,
axial force

Bending,

pressure

Exact Bra-

zier effect

Approximate
Brazier effect

End

conditions

Exact

Warping
allowed

None

Membrane

Table 1.1: Organization of Analysis Scenarios
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Variable Stiffness Cylindrical Shells

The governing equations for composite circular cylindrical shells are derived in this chapter

along the lines of classical nonlinear shell theory, together with the assumption that the material

properties may vary as a continuous function throughout the surface of the shell. The first section

investigates the physical aspects of the problem by defining the geometry of the shell structure

and the assumed relationship between strain and displacements. The second section outlines the

constitutive theory for the stiffness response and stress analysis of thin shells constructed from

laminae of orthotropic materials. This leads to the introduction of the variable stiffness concept,

which allows for the stiffness characteristics to vary spatially in the structure by means of curvi-

linear fiber paths, dropped plies, and discrete ring stiffeners or stringers. The assumptions of clas-

sical membrane and semi-membrane constitutive theory are _dso discussed, which are utilized to

simplify the governing equations for special cases by applying limiting assumptions to the consti-

tutive equations. The last section combines the geometric and stiffness concepts of the first two

sections to develop the governing equations for the static response and stability estimations of

composite cylinders with stiffness characteristics varying in both the axial and circumferential

direction. Thus the goal of this chapter is to formulate the governing equations for general loading

of a cylindrical shell with arbitrary stiffness variations. The specialization of these equations into

four distinct sub-problems is implemented in the succeeding chapters.

2.1 Strain-displacement Relations

This section presents the physical geometry and kinematics for a circular cylindrical shell.

The three-dimensional structure is expressed as a two-dimensional surface through the application

of the geometry of surfaces for thin shells. The strains are deined through the use of first-order

transverse shear deformation shell theory, and are formulated in terms of the displacements and

rotations at the middle surface of the shell. The Kirchhoff-Love hypothesis is then introduced,

which reduces the number of field variables of the problem by lssuming that deformation through

the thickness of the shell can be ignored. In addition, circumferential inextensionality of the cross-

section, which is a typical deformation state for several of the 1_ad cases considered, is discussed.

28
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2.1.1 Geometry of the Cylindrical Shell

The structure under study is a thin cylindrical shell of length L, radius R, and skin thickness H

(see Figure 2.1), where we assume H/R <<1. The shell can be constructed of any combination of

Z_ u z

L

Uy

!

i 0 Z, w

I

!

Figure 2.1: Geometry of Undeformed Shell

-._,rl

isotropic or orthotropic materials, including either longitudinal or circumferential stiffeners, and

is required to have "material symmetry" about two vertical planes: X = L/2 and Y-- 0. The skin is

assumed to be composed of a symmetric, balanced composite laminate which may contain curvi-

linear fibers and dropped or added plies. Due to these construction possibilities the cross-section

is not necessarily symmetric about the horizontal plane, therefore the material centroid of the

cross-section is located at some angle 0,_f which defines the reference line of the cylinder axis.

The three dimensional structure can be referenced in terms of several coordinate systems

using a Lagrangian, or "material", frame of reference: a global Cartesian system defined by

(X, Y, Z); and two local systems for the cylinder cross-section in terms of rectangular (_, _, _) and

cylindrical (x, y, z) coordinates. These directions are displayed in Figure 2. l, along with their cor-

responding displacements. For this work, the circumferential arc-length coordinate y is usually

replaced by the polar angle 0, where y = R0, and it should also be noted that the Cartesian cross-

sectional coordinates (_, _, _) and displacements (_, 1"1,_) are normalized with respect to some

cylinder dimension. Then with regards to the undeformed shell, the coordinates are related by

X 0 = (L/2)_ = x Y0 = R_ = (R+z)sin0 Z 0 = -R_ = (R+z)cos0 (2.1)

where the zero subscript denotes the undeformed configuration. Since the shell is assumed to be
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thin (H/R _, 1), the three-dimensional body can also be represented as a two-dimensional structure

through the theory of surfaces (see, for instance, NovoshilovT°). For this purpose, the skin middle

surface is chosen as the reference surface, and the coordinates (x, 0) are used to define any point

on this surface. The Lam6 parameters and Gaussian curvatures (which are parameters measuring

the arc-length and radii of curvature at each point in terms of the surface coordinates) using this

coordinate system are

A x = 1 A 0 = R Axo = 0

1/R x = 0 1/R o = 1/R 1/Rxo = 0
(2.2)

which qualifies the chosen directions as principal coordinates, since they are orthogonal (A,,0 = 0)

and conjugate (1/Rxo = 0). The benefit of these surface coordinates is that they transform a three-

dimensional body into a two-dimensional surface. Since the shell is thin, standard shell theory

assumptions regarding the functional form of displacements and strains through the thickness of

the shell can be utilized, thereby decreasing the complexity of the equations.

As mentioned in the introduction, the basic equations of classical nonlinear shell theory have

previously been derived by many authors in terms of arbitrary curvilinear surface coordinates, in

varying degrees of complexity, nonlinearity, and notation (this was first completed by

Novoshilov 7°, while other authors that have employed tens_r analysis to formulate these general

shell equations include Leonard 71, Sanders 27, Naghdi & Nordgren 72, and Budiansky73). To utilize

these derivations, all that is needed is the calculation of the Lam6 parameters and Gaussian curva-

tures for the specific geometry. However, it will be shown that using the typical expressions of

Eq. (2.2) for a circular cylindrical shell does not correctly model the nonlinear bending response

of longer shells. To this end, the governing equations will be derived for the specific geometry of

a long cylindrical shell, and the differences between these equations and standard cylindrical shell

equations will be discussed.

To formulate the relationship between the strains and the displacements of the cylindrical

shell, the current state of the structure must be defined in terms of general variables that accurately

represent all the desired details of the deformation. For the distorted state of the cylindrical shell,

we therefore assume a general displacement field (u, v, w) along with a rotation of the cross-sec-

tion due to beam bending. The tube axis, taken at the centroid where Y0 = 0 and Z9 = Rcos(0ref),

undergoes deflection and curvature due to the bending of the cylinder as a "classical" beam

(see Figure 2.2). Here the "classical" stipulation implies tha: warping of the beam cross-section

due to shear is not included, so that planes normal to the axis remain fiat and perpendicular to the

axis after deformation. Therefore, for classical beam bending the cylinder cross-section translates
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Figure 2.2: Geometry of Deformed Shell with Axial Curvature

an amount az(x ) while undergoing a rotation D.y(x), where the two functions axe related by

_z

tan_(x) = Txx (2.3)

Furthermore, the curvature of the beam is defined as the derivative of the angle of rotation, and its

sign is chosen so that a positive end rotation produces positive curvature (a prime denotes a deriv-

ative with respect to x)

M

• --a z

W,y(X) -" --_-_y(X) -- [ l + a_ ] 3/2 (2.4)

The angle of rotation at the ends is denoted by _ and the assumption of symmetry about X =/./2

generates its definition in terms of the angle of rotation or curvature:

L/2

_r_y(O) - -_y(L) = _2y E2y = _ W.y(x)dx (2.5)

0

Note that these expressions for a z, D_, and _:y axe derived for a beam rotation about the Y-axis,

which is the customary state of bending for our shell structure. Similar equations arise for beam

bending about the Z-axis (using the variables a_, f_z, and _), however we need not include that

possibility here for the nonlinear bending cases will be assumed to be symmetric about the Z-axis.
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The expression for the deformed state of the cylinder stbjected to classical beam bending is

X I = x + ucoSf2y(X) - [(R + z + w)cos0 - Rcos0re f - vsin0] sin f_y(X)

YI = (R+z+ w)sin0 + vcos0 (2.6)

Z 1 = az(X ) + usin_y(X) + [(R +z + w)cos0-Rcos0re f- vsinO]coS_y(X)

where the displacements (u, v, w) are all functions of (x, 0, z). The deformed state can also be

expressed in terms of the Cartesian cross-sectional displacements through the vector relations

Rrl = vcos0 + wsin0

RO = vsin0-wcos0

so that Eq. (2.6) becomes

v/R = 1"1cos 0 + _ sin 0
¢:* (2.7)

w/R = rlsin0-_cos0

X 1 = x + ucOS_y(X) + R(_ + _ + coSOre/)Sin_y(X )

Y1 = R(_¢ +'q) (2.8)

Z 1 = az(X) + usinf_r(x) - R(_ + _ + cosOref)COSf_y(x )

The global displacements can be simply calculated as the change from the undeformed condition,

Eq. (2.1), to the deformed state, Eq. (2.6) or (2.8).

2.1.2 Definition of Strains in Terms of Displacements

The expressions for the undeformed and deformed configurations are now used to calculate

the strains of the shell. Normal strains are defined as an elongation per unit length, while shear

strains measure the change in shape of a shell element. Thus, _ome measure of the arc lengths and

angles of a typical shell element is needed. A suitable method is to calculate the incremental

change as the shell deforms from its original undeformed state to a distorted geometry. As such,

an increment of arc length defined through the use of differential geometry is

dS 2 = dX 2 + dY 2 + dZ 2 (2.9)

The original arc length for the undeformed case using Eq. (2.1) is

dS 2 = dx 2 + (R + z)2d0 2 + dz 2 (2.10)

The strains are defined by the change of this quantity during deformation. The strains are assumed

to be small when compared to unity, and are calculated using a Cauchy concept of strain:

dS 1 - dS 0

_-- aS ° _ dS 2 = dS2(1 +e)2=dS2(1 +2e) (2.11)
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Therefore, all that is needed to derive expressions for the strain-displacement relations is the

calculation of dS_ in terms of the displacements. However, first an assumption is used to decrease

the complexity of the equations. The displacements (u, v, w) in terms of the three dimensions

(x, 0, z) are replaced by a linear approximation in the transverse (z) direction, such that

u(x, 0, z) =

v(x, 0, z)

w(x, 0, z)

O O

u (x, O) + Ztox(X, O)

0

= v°(x, O) + ztoo(x, O)

0

= w (x, O) + zezz(x, O)

(2.12)

The superscript o denotes quantities at the middle surface of the shell (z -- 0), while the variables

(too, otoe, ezz ) represent a rotation of the normal in the x-direction, a rotation of the normal in the

0-direction, and the linear transverse normal strain, respectively. Eq. (2.12) in terms of the six

middle surface field variables conforms to first-order transverse shear deformation, where the lin-

ear transverse normal strain ezz is usually considered to be negligible. Insertion of these relations

into Eq. (2.6) and collecting terms according to powers of z yields:

X 1 -- {u°cos_'2y(X) - [(R + w°)cos0 -RcosOre f - v°sin0] sinf_y(X) } +

{ to ° cos fy(X) - [ ( 1 + ezz) cos 0 - tog sin 0 ] sin fly(X) }z

Y1 = {(R+w°)sin0 + v°cos0} + {(1 +ezz)Sin0 + togcos0}z (2.13)

Z 1 = {u°sinf_y(X) + [(R + w°)cos0 - RcosOre f - v°sinO]cOSfy(X)} +

{ to° sin fy(X) + [ ( 1 + ezz) cos 0 - tog sin 0 ] cos fy(X) } z

The expression for the deformed arc length using Eq. (2.9) has the form:

dS 2 = dS 2 + 2[exdx2 + eoR2dO 2 + 7xodxRdO + Txzdxdz + TozRdOdz + ezdz 2] (2.14)

where terms involving products of z are neglected since H/R _ 1. This limits the shell theory to

first-order, since the omission of any powers of z greater than one maintains that the strains are at

most linear in z. Also note that this implies that the transverse strains must be constant through the

thickness. The transformations from the actual strains to their middle surface counterparts are

ex(x, O, z) = e°(x, O) + Zrx(X,°O)

0 0

%(x, O, z) = co(x, O) + zKo(x, O)

_xo(X,O, z) o o= _xo(x, O) + ZKxo(X, O)

Vxz(X,O, z) = V°xz(X,O)

yoz(x, O, z) o= _oz(x, O)

0

ez(X, O, z) = ez(x, O)

(2.15)
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The middle surface strains and curvatures are generall7 nonlinear functions of x and 0, and

can be expressed in terms of the six unknown field variables (plus the beam deflection az(x ) and its

associated derivatives) through linear counterparts, denoted by eal_ and kctp. Thus the expressions

for the middle surface strains are written as

o exx

E x -

coSf2y

1 2
+ -_(exx + tanZf2y + e20 + e2z)

o 1 2 e2z) 7x0-_-o = %0 + _(eox + e2o + o eox
COS _'_y

oTxz = exz + +exx x

+ exo + exxeox + exoeoo + exzeoz

o

+ exo0_ 0 + exzezz

o o o o " 1. 02 02 e2z)]'ez = eoz+eoxCOx+(1 +eOO)O_o+eozezz _'z = ezz+_°_x +°_0 +

(2.16)

where the linear strain expressions are

OU ° _V ° o

exx = _ + _,y[(R + w°)cos0 -RcosOre f- v°sin0] exo = -_ + u _:rsin0

(2.17)

_wO o l bu ° l (O__v° ) l (_w ° )exz "_x - u _:ycos0 eox R30 %0 R_,'_'6 + w° == = -_ = e°z R_,'3-6 - v°

The middle surface curvatures become

o kxx o

_:x - cosf2y + exxkxx + ex°kx° + exzkxz Ko = eexkox + ( 1 + eoe)kee + eezkoz + eeo/R
(2.18)

O_xO = + exx Ox+ ( 1 + eoo)kxo + eoxkxx + exokoo + exzkoz + eozkxz + ex---?
R

and the linear curvature functions (kap) are

+ Ky[ezzCOSO -_gsin0] + _:yCOS0

o
_030 o . Oezz o

kx° = _xx +°_x_sm0 kxz = _xx -C°xCyC°S0 (2.19)

kox = k_-'O ko0 = R_'_ + ezz
±(Oe__zzo)_Oz = R_,OO - %
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These expressions, Eq. (2.16)-(2.19), are accurate up to the error of the qualifying assumptions of

small strains, moderate rotations, and a first-order (linear) variation of displacements and strains

through the thickness of the shell. These shell equations conform roughly to the type first pro-

posed by Fltigge 25, except that these equations also contain the possibility for the nonlinear

response of the cylindrical shell acting as a beam. For the problems investigated here, these strain-

displacement relations are unduly complex, and therefore will be slightly simplified.

One notable feature concerning a cylindrical shell under beam loading is the possibility for the

flexural stiffness of the structure to change under large axial curvatures. This capability actually

exists for any long structure designed to carry large bending loads that is constructed of a cross-

section that can deform easily in its own plane. Therefore, for this investigation the nonlinear

strain-displacement equations are simplified as much as possible without omitting this possibility

of large distortion of the original circular cross-section. To this end, the following assumptions

regarding the deformation of the cylindrical shell are employed: (a)the beam rotation fay(X) is

considered small; (b) any products of axial strains, rotations, or displacements may be ignored;

(c) nonlinear terms involving strains not dealing with cross-sectional deformation are neglected;

and (d) axial rotations are considered small in comparison to circumferential rotations. Applica-

tion of these simplifying assumptions to the expressions of Eq. (2.15)-(2.18) yields the final form

of the strain-displacement relations according to first-order transverse shear shell theory:

o 1 o
e,x = exx +r2(e2xz) r, x = kxx

o 1 2 _00)
e'o = %0 + _( eoz +

0

r, o = (1 + eoo)koo + eozkoz + eoo/R

0 0

'YxO = eox + exo + exzeoz W'xO = kox + kxo

0 0 0

Yxz = exz + COx Y0z = eoz + ( 1 + e00)o3 _ + eozezz o 1. 02 e2z)Ez = ezz+ _t.o 0 +

(2.20)

The linear expressions are reduced to:
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_bl °

exx = _-_ + _cy[(R + w°)cos0 - RcOS0re./- v°sin0]

_C0x°

kxx -- _-.-_ Jr KyCOS0

Ov° _030 Ow° Oezz

ex° = _x kx° - Ox exz = O-"x kxz = O-'-x

k.o 0 =

The terms with

10u ° 10co°x 1 :Ov ° )eox = RO'O k°x = RO--'O %0 = _'_ + w°

(2.21)

nonlinear shell theory and need to be retained when the cross-sectional deformation is large.

Additionally, the presence of the beam curvature icy in the definition of the axial strain is required

for the accurate modelling of the nonlinear Brazier effect. Removal of these two types of terms

results in the level of approximation used by Sanders theory when in-plane nonlinear rotations are

neglected.

It should be noted here that the derivation of these nonlinear strain-displacement relations,

Eq. (2.20) and (2.21), represents a significant deviation from the classical cylindrical shell equa-

tions used by most authors. As mentioned previously, the formulation of the nonlinear strain-dis-

placement relations using the standard Lam6 parameters and Gaussian curvatures of Eq. (2.2) will

not correspond to the equations just presented. The main difference between the two sets of equa-

tions lies in the inclusion of the beam curvature icy in the de finition of the linear axial strain e=.

However, for the specific problem of a longtube under bending, the beam curvature does become

significant and is the primary contributor to the mechanism known as the Brazier effect. Failure to

properly include the effect of the beam curvature in the axial strain relation leads to an erroneous

factor of 2/3 in the resulting governing equations. Mathematically, this considerable inaccuracy

can be traced to an incorrect definition of the Lam6 parameters for a cyiindrical shell when the

magnitude of the beam curvature becomes significant (in particular, the equation for A z in

Eq. (2.2) should also contain a term due to r_ as shown in an article by this author55). Therefore, a

significant result of this investigation is the presentation of the correct governing equations for the

solution of a cylindrical shell of arbitrary length under bendir g, since our formulation is accurate

for both long and short cylinders.

2.1.3 The Kirchhoff-Love Hypothesis and the Condition of Inextensionality

The Kirchhoff-Love hypothesis is a theory used for thin shells to reduce the number of field

] oR_O +ezz eoz = R_,_O v°) k°z = R_,_O -COo)

an overbar in Eq. (2.20) and (2.21) denote deviations from classical first-order
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variables of the problem by invoking assumptions about the state of deformation through the

thickness of the shell. Its application is for very thin shells, or ones in which the transverse stiff-

ness of the shell wall is roughly of the same order as the other stiffnesses (e.g. sandwich structures

with a pliable inner core often require the inclusion of shear deformation). The Kirchhoff-Love

hypothesis states that (a) the shell remains inextensional in the transverse direction, and (b) that

normals to the middle surface remain straight and normal to the surface after deformation. The

first assumption stipulates that the length of the normal remains the same, and is customarily

invoked when thin shells are being considered, while the latter is only used when transverse shear

effects are not considered. Physically, these two assumptions imply that the three transverse

strains must be zero, and reduces the number of unknown variables by the application of these

constraints. This is expressed mathematically as

O

Ez(X, O, z) = 0 _ ez(X, O) = 0

0

Txz(X, O, z) = 0 _ Txz(X, O) = 0

0

T0z(X, 0, z) = 0 =:, T0z(X, 0) = 0

(2.22)

These constraints can be manipulated such that they relate the linear transverse strain (ezz) and the

rotations of the normal (to °, too ) to the middle surface displacements. Standard first-order shell

theories typically only satisfy the above equations in the linear sense. However, certain circum-

stances regarding large distortion of the cylinder cross-section require the Kirchhoff-Love hypoth-

esis to be applied to the nonlinear equations to be consistent with the omission and inclusion of

certain terms.

The nonlinear transverse strains from Eq. (2.20) are

O O

Txz = exz + tox

0 0

T0z = eoz + ( 1 + e00)to 0 + eozezz (2.23)

o 1. 02 e2z)e'z = ezz + _ttoO +

Applying the assumptions of the Kirchhoff-Love hypothesis, Eq. (2.22), and solving for the rota-

tions and linear strain yields

O O

tox = -exz too = sinto ezz = costo-1 (2.24)

where the intermediate variable to is created for ease of expression and is defined as
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-eoz
tanco = (2.25)

1 + e00

When the cross-sectional deformation is considered small, the linearized version of Eq. (2.24) can

be used, which states

o o = 0 (2.26)0.)x = -exz 0.,)0 = -eoz e zz

Therefore, the strain-displacement relations of Eq. (2.20) must be augmented by the relations of

Eq. (2.24) or (2.26), according to the level of nonlinearity present. This results in the middle sur-

face strains and curvatures being expressed completely in terms of the middle surface displace-

ments (u °, v°, w °) and the beam curvature r_y(X).

One final assumption that remains to be discussed Ibr the strain-displacement relations

involves the inextensionality of the cross-section. Typically, cylindrical shells are loaded through

the ends of the cylinder (on planes perpendicular to the axis), thereby resulting in axial and shear

strains from the action of these boundary conditions. Shells with "closed contours" for cross-sec-

tions do not contain any boundary conditions on a circumferential face, since the cross-section is

continuous in the circumferential direction, thus circumferential strains due to applied loads at the

circumferential boundaries do not exist. Therefore, the presence of circumferential strain can

most often be attributed to two other sources: (a) the Poisson effect when large axial strains exist;

and (b) surface tractions acting on the shell surface in the form of pressure or circumferential

shear traction. Whenever these two contributions can be con:hdered small in comparison to other

strains, the shell is said to be inextensional in the circumferential direction because the length of

the perimeter of the cross-section does not change. The instances where this inextensionality con-

dition can be invoked will be discussed elsewhere, so that this section will only detail the simplifi-

cations to the strain-displacement relations that can be achieved through this assumption.

To envision the concept of an inextensional cross-section, imagine a thin circular ring of a stiff

elastic material lying on a fiat surface. The shape of the ring as a circular contour represents the

original undeformed cross-section. If the ring is compressed between points across its diameter, it

deforms into an oval shape, yet the length of the ring (the perimeter of the contour) remains the

same in that there is no appreciable circumferential extension. The oval shape is developed merely

through individual rotations and changes of curvature of th(: ring elements. Thus, the inexten-

sional circumferential rotation of the shell element has the praperty of changing the curvature of

the contour without changing its length, and therefore this Iotation (defined here as o) will be

used as the desired field variable of the derivation. Much like the Kirchhoff-Love hypothesis elim-
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inated variables from the governing equations by expressing the rotations of the normal in terms

of middle surface displacements, as in Eq. (2.24), this inextensionality condition decreases the

number of unknown variables by one, either as a parametric representation in terms of the inex-

tensional rotation, or by a direct substitution in terms of a middle surface displacement.

The derivation of the inextensionality condition is performed on an arbitrary slice of the cylin-

der cross-section. An increment of the undeformed cross-secti0nal contour is shown as arc AB in

Figure 2.3. Note that the reference system is in terms of the rectangular cross-sectional coordinate

rl)

RbV

(e+_)-

Figure 2.3: Derivation of Inextensionai Displacements

system, and that the sign of the vertical axis is in the downward direction. The original coordi-

nates of the end points of the arc (normalized with respect to the radius R) are

A = (_g, 4) B = (V +/hg, _ + D_) (2.27)

The close-up of the geometry, where Dy = RD0, reveals that

cos0 = D_.___ sin0 = D__ (2.28)
DO D0

During inextensional deformation, the original circular arc length AB displaces to a new position

A'B', which is rotated at an angle (0+o_) to the vertical axis and has a different center and radius of

curvature. Since the deformation is assumed as inextensional, the length of the differential arc

remains the same, and can be calculated for each case.
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0y = RO0 = pO(0 + co) (2.29)

The coordinates of the new end points in terms of the rectangular displacements are

A' = (_+'q,_+0) B'= (_+3_+rl+3rl,_+b_+O+b_) (2.30)

and the close-up gives the geometric relation as

cos(0+co) = O(_g+T1) sin(0+co) - _(_+¢)
O0 _0 (2.31)

Expressions for the middle surface displacements and circumferential change of curvature can

now be derived in terms of the inextensional rotation o_

The curvatures of each arc in Figure 2.3 are readily found from the inverse of the radii of cur-

vatures, and naturally the change in curvature is simply the difference of the deformed state with

respect to the undeformed configuration, so that, using Eq. (2.29)

o 1 1 1 _9co
_:0 - - (2.32)

p R R30

The inextensional displacements can be found from the solution of Eq. (2.31), whereby

3'rl cos(0 + to) - cos0 bO sin ({, + co) - sin0 (2.33)= =

Enforcing symmetry and measuring the vertical displacement from the reference surface

rl(x, 0)10 _-0 = 0 ¢(x, 0)10 = 0r,j 0 (2.34)

results in integral equations for the rectangular displacements:

0 0

_(x, 0) = f[cos(0 + co)- cos0]d0 ¢(x, 0) = f [sin(0 + co).- sin0ld0 (2.35)

0 0,,1

These parametric expressions can also be obtained for the cylindrical displacements (v °, w °)

by using the usual vector transformation of Eq. (2.7). Of more interest, however, is the representa-

tion of some of the linear strain quantities of Eq. (2.21) in telms of this inextensional rotation

For instance, the combination of Eq. (2.35) and (2.7) gives

eoo = _,-_-_ +w ° = cosco-1 eoz = _,-_ -v ° = -sinco (2.36)

These expressions on the right hand sides should look familiar, since they correspond (except for
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a sign change) to the parameterization used to satisfy the nonlinear Kirchhoff-Love assumptions

of Eq. (2.24). In fact, insertion of the solution for these linear strain quantities into Eq. (2.25) pro-

duces an identity, proving that the inextensional rotation co is equivalent to the parameter used in

the Kirchhoff-Love hypothesis (which of course is why it was chosen to have the same symbol).

Furthermore, calculation of the nonlinear circumferential strain and curvature at the middle sur-

face, Eq. (2.20), reveals

o o 1 b_

e 0 = 0 _¢0 = ._/)"-'_ (2.37)

which exactly corresponds to the original assumption (zero circumferential strain) and partial

solution, Eq. (2.32), of the inextensionality condition. The results of Eq. (2.36) also substantiate

the use of the nonlinear application of the Kirchhoff-Love hypothesis, since the assumption of

inextensionality equates the order of the circumferential and transverse strains. Therefore when-

ever this inextensional condition is considered relevant, the simplifications to the strain-displace-

ment relations, Eq. (2.36) and (2.37), will be employed.

2.2 Constitutive Theory

This section defines the physical laws of the shell material that relate the structure's stresses to

the strains. The material is assumed to be linear elastic and constructed of either isotropic materi-

als or fiber-reinforced orthotropic composite materials, which usually consist of a high-stiffness

fiber surrounded by a soft polymer matrix. The cylindrical shell is constructed of multiple layers

(laminae) of these materials, and the resulting structure is defined by the orientation angle of each

orthotropic layer. Since the shell is assumed to be thin, we neglect the strains and stresses through

the thickness of the laminate and formulate the stiffness and strength characteristics for the sur-

face directions only. This is the basic premise of Classical Lamination Theory (CLT). The vari-

able stiffness concept is an extension of this theory which allows for the orientation angles to be a

function of spatial location (in terms of the surface coordinates) in addition to the transverse

direction through the thickness (the stacking sequence), tt also includes other types of construc-

tion techniques which can be regarded as a variation in stiffness, such as thickness changes,

dropped plies, or directional stiffeners attached to the skin laminate. The various modifications of

these variable stiffness concepts to the equations of CLT are subsequently detailed. Additionally,

the assumptions of classical membrane and semi-membrane theory are discussed, which are sim-

plified constitutive theories that are employed for specific problems in later chapters.

2.2.1 Classical Lamination Theory

In Section 2.1.2, the strains in terms of the three dimensions (x, 0, z) were transformed into
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two-dimensional quantities evaluated at the middle surface through the assumptions of first-order

shell theory. Additionally, the Kirchhoff-Love hypothesis was introduced, which maintains that

the strains in the transverse direction are relatively small. Classical Lamination Theory uses simi-

lar premises to represent the stiffness properties of a three-dimensional body in terms of middle

surface quantities only. The effect of shear deformation in the transverse direction will be ignored

in the derivation of these constitutive laws. However, it should be noted that the strain-displace-

ment relations of Section 2.1.2 and, subsequently, the equilibrium equations of Section 2.3.2 are

formulated in terms of general first-order shell theory. Therefore, if transverse shear effects are to

be included, only this section outlining the stress-strain relations need be augmented. A more

thorough discussion of the assumptions and details of Classical Lamination Theory can be found

in the text of Jones TM, while a general review of transverse shear deformation (applied to fiat

plates) is presented by Reddy 75.

Stiffness Response

For our purposes, we begin with the definition of the three-dimensional state of stress for a

thin shell constructed of an orthotropic material. The Kirchhoff-Love hypothesis states that the

transverse strains are negligible, and it can be shown that these constraints provide an estimation

of the relative size of the corresponding transverse stresses with respect to the surface stresses. In

particular, the stipulation that the transverse shear strains zre zero implies that some transverse

shear stresses (though small) must exist to ensure this condition. Furthermore, the thinness of the

shell, which led to the assumption that the transverse normal strain was negligible, can also be

used to determine that the magnitude of the transverse normal stress is small when compared to

the other stress quantities. Therefore, regarding the transverse quantities:

'Yi3 = 0 :::¢, "[7137_ 0

_23 = 0 _ "U23:;t 0

E3 = 0 =:_ ¢_3=0

(2.38)

With regard to the constitutive equations, the results of Eq. (2.38) greatly simplify the stress-

Note that the subscripts of Eq. (2.38) now correspond to the principal material directions of an

orthotropic material, with "3" representing the transverse direction. These principal material

directions are not necessarily parallel to the surface coordinates (x, 0), but depend on the proper-

ties of the orthotropic material. Traditionally, the 1 direction represents the maximum stiffness in

the plane of the surface, while the 2 direction is aligned to the minimum value. For a material to

be orthotropic, these directions are necessarily perpendicular, and the stiffnesses in an arbitrary

in-plane direction can be found through a standard tensorial rotation of these properties.
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strain relations since the transverse stresses, even though they are non-zero, can be effectively

removed from the constitutive equations due to their relative magnitude (if transverse shear effects

are to be included, additional constitutive laws must be used to relate the transverse stresses to

their respective strains). Thus, the only significant stresses are those that occur in the plane of the

middle surface. Using the notation of the principal directions, these stresses are related to the cor-

responding strains along the principal material directions of the orthotropic material as

(Y2 = 2 Q22 E2

I 0 Q6 1

(2.39)

The quantities Qij are referred to as the reduced stiffnesses of an orthotropic lamina, and are

related to the engineering stiffness quantities measured along the principal directions:

E 1 v12E z E 2
- Q12 - Q22 - Q66 = G12 (2.40)

Qll 1 - vl2v21 1 - vl2v2j I - v12v21

To project the principal stresses and stiffness quantities along the directions of the surface coordi-

nates, a tensorial rotation about the normal to the surface is performed. For example, the transfor-

mation from the stresses in the material coordinates to the surface coordinates is represented as:

ril [ c°s2cP sin2q)
_0 = / sin2cp cos2q)

x lsincpcoscp -sincpcos_p

2sincpcoscp | _2

c°s2q )- sin2cpJ 1

(2.41)

The sign of this rotation is displayed in Figure 2.4, where the principal directions of the orthotro-

0

2

1 x

Figure 2.4: Orientation of Principal Directions of Orthotropic Material
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pic material are aligned at some orientation angle q_ to the surface coordinates. Similar transfor-

mations can be applied to the strains and material properties of the shell.

Tensorial rotations such as Eq. (2.4 I) are applied to both the stresses and strains in the princi-

pal material directions in Eq. (2.39), thereby producing the stress-strain relations for an arbitrary

lamina in terms of the surface coordinates:

_0 = 1.012 Q22 QI61/_o/ (2.42)

x LQI6 016 a66J Lqtx0.J

The transformed reduced stiffness Qq are dependent on the reduced stiffnesses Qq and the orienta-

tion angle cp of the orthotropic material. For ease of representation, Tsai & Pagano 76 have formu-

lated these relations in terms of invariant material properties, such that

011 ---- UI + U2cos2_ + Uacos49 a12 - U4- U3cos49

022 = UI - U2cos2tp + U3c°s4t'P 066 = U5 - U3cos4t, P (2.43)

016 = -(U2/2)sin2tp- U3sin4_o 026 = -(U2/2)sin2tp + U3sin4tp

The invariant properties Un-U5 are defined in terms of the reduced stiffnesses:

U I = (3/8)Qi I + (3/8)Q22 + (1/4)Q12 ÷ (1/2)Q66

U 2 = (1/2)QI 1 -(1/2)Q22

U 3 = (1/8)Qll + (1/8)Q22- (1/4)Q12- (1/2)Q66 (2.44)

U 4 = (I/8)Qnl + (I/8)Q22 + (3/4)QI2--(1/2)Q66

U 5 = (I/8)Qj I + (1/8)Q22-(1/4)QI2-- (1/2)Q66

For an isotropic material, the invariants 0"2 and 0'3 are zero.

The stress-strain relations of Eq. (2.42) lead to the definition of middle surface stress result-

ants that correspond to the middle surface strains and curvatures derived from first-order shell the-

ory. Since the surface strains are assumed to vary linearly tluough the thickness of the shell, the

surface stresses for each lamina should also conform to such a linear variation. Throughout the

total thickness of the laminate, the stresses actually vary in a piecewise linear function, since each

layer may possess different stiffness parameters due to a rotation of the principal material direc-

tions. Determining the possible variation of the transverse quantities in this way enables integra-

tion to be performed through the thickness. Resultant forces _d moments are therefore defined as
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N x = fnOxdZ

N O = fnCodz

Nxo = _n_xodz

M x = _HOxZdZ

M o = fHt_oZdZ

Mxo = fH'CxOZdZ

(2.45)

where the integration expressed as _N represents limits from -H/2 to H/2. The resultant stress

quantities are functions of the surface coordinates (x, 0) only, and their units are force per unit

length and moment per unit length, respectively. They represent an equivalent force and moment

from the stress distribution through the thickness of the shell, and their signs and orientation are

displayed in Figure 2.5. Also included in the figure are the shear force resultants Q_ and Qo, which

Mx Qx

Nx __ "l/lxO Qo

\Mxo I

Av 0

Figure 2.5: Stress Measures of Shell Element '

do not follow a constitutive law (since we are neglecting transverse shear deformation) and are

derived from consideration of the equilibrium equations in Section 2.3.1. The force and moment

resultants are related to the middle surface strains and curvatures through the integration of the

general constitutive law of Eq. (2.42), which

N O =

x

M 0 =

x

results in:
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(2.46)
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[A], [B], and [D] are referred to as the extensional, coupling, and bending stiffness matrices,

respectively. The stiffness terms are calculated by the integration of the material properties

through the thickness (the z-direction) of the laminate

{ aiJ' Bi)' DO} = _n Q.i){ 1, z, z2}dz (2.47)

The integration of the transformed reduced stiffnesses Qi: through the thickness of the shell

wall is easily accomplished when typical composite laminates are used. Laminated composites

are constructed from multiple layers of orthotropic materials, called laminae, that are bonded

together on their faces. Each individual lamina can be constructed of isotropic or orthotropic

materials, and can have unequal orthotropic orientation angles as well. Usually the construction of

a composite laminate is defined by its "stacking sequence" or "layup", which lists the various ori-

entation angles of the chosen 0rthotropic material as it changes through the thickness (starting

from the top layer). For example, a laminate denoted as [0/+45/90]s is constructed of eight layers,

consisting of {0°,+45°,-45°,90°,90°,-45°,+45°,0 °} plies through the thickness (the subscript S

denotes symmetry about the middle surface). Other conventions for the definition of stacking

sequences include numbered subscripts, indicating multiple layers of the same orientation angle,

and the subscript T, which denotes that the total layup of the laminate is listed, as opposed to a

partial list for symmetric laminates.

If each layer is composed of the same material, the integration of Eq. (2.47) can be performed

for the stiffness matrices in terms of the orientation angle alone. The following notation for the

stiffness matrices is attributed to Tsai & Pagano 76 and Miki 77, and expresses the stiffness terms

through the invariant material properties and some stacking sequence parameters, such that:

[A,B,D] =

U 1V 0 + U2V I .'1- U3V 3
-UzV 2

U4V°- U3V3 2 U3V4

U4 V O- U3 V 3 UI V O- U2 V ! + U3 V 3

-U2V 2 -UzV 2

2 U3 V4 T + U3 V4

-U2V. 2

T + U3 V4

Us Vo - U s V3

where the integration of the stacking sequence is represented _s:

VO{A,B,D} -- {H,O, H3/12}

VI{A,B,D} = _HCOS2tp{1, Z, Z2}dz V2{A,B,D} = _Hsin2cp{1, z, z2}dz

V3{A,B,D} = fltcos4tp{1, Z, z2}dz V4(A,B,D} = fftsin4tp{1, z, z2}dz

(2.48)

(2.49)
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These integrated quantities are termed in-plane stiffness coefficients. Furthermore, for typical

composite laminates, the integration is made even easier since the material properties are constant

throughout the thickness of each individual lamina, so that the integration can be replaced by a

summation in the z-direction. For example, the integration of V_D can also be represented as

K,o,,,,_ z3._z3_,

V1D = _HCOS2Cp z2dz = _ c°s2q)k 3 (2.50)
k=l

where Ktayer s is the total number of plies, (zk, Zk-l) are the distances from the middle surface to the

faces of the kth layer, and _0k is the orientation angle of that layer.

By restricting ourselves to shells constructed of balanced, symmetric laminates we can further

simplify some of the terms of Eq. (2.49). A "balanced" laminate implies that for every non-

zero +_0 angle of the stacking sequence, there exists a corresponding-q) angle to balance the

anisotropic nature of a rotated orthotropic layer. If such is the case then the integrals Vza and V4A

are equal to zero, since they do not depend on the location of the layers but only the value of the

sine of the orientation angles, which cancel if the laminate is balanced. "Symmetric" means that

the layup is a reflection of itself about z = 0, and since in Eq. (2.49) any odd function as an inte-

grand is equal to zero, all terms V,.B vanish. Incidentally, the combination of balance and symmetry

for a multi-layered laminate stacking sequence often renders V2o and V4o small when compared to

the other V/o terms, and often these terms are ignored, though they will not be for this investiga-

tion. Therefore, the contribution to the laminate stiffness for multi-layered composites under these

restrictions becomes:

IN_ 0] FAIAo1AI2__°°c
No = 2 A22 E;

x 0 A 700
. °

- O':

x LD16 026 D66_ 15:0

where the stiffness terms are calculated as per Eq. (2.48).

Lastly, we define the effective moduli and Poisson's ratios of the laminate in terms of the

extensional stiffness measures as:

AliA22 - A22 A iiA22 - A 212
E x = E 0 =

A22H AIIH

AI2 A12

Vx0 = 32---_ V0x = A1---_

(2.52)
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These quantities provide a method of comparing the principal stiffness measures of multi-layered

composites to traditional single-layered orthotropic or isotropic materials. Additionally, these

stiffness expressions often appear in certain cases of the governing equations and will be used

extensively to make the notation more concise.

Stress Analysis

Along with the stiffness concepts just discussed, Classical Lamination Theory contains infor-

mation about the assumed stress state in each layer of the laminate due to the assumptions of the

Kirchhoff-Love hypothesis. Thus the strains in terms of the three dimensions (x, 0, z) as defined

by Eq. (2.15) can be used to determine the state of strain at any location in the body. The stresses

can likewise be found through the orthotropic constitutive relations of Eq. (2.42). Orthotropic

materials, along with their directional stiffness characteristics, possess unequal failure characteris-

tics along perpendicular material directions. Therefore, to fully analyze the feasibility of a given

stress state, the stresses and strains along the principal material directions need to be calculated.

Note, however, that the neglection of the transverse shear stresses in the constitutive laws does

limit the accuracy of the stress analysis, for multi-layered composites often fail due to interlami-

nar stresses which Classical Lamination Theory cannot account for. This topic will not be

addressed in this study. Instead, the failure loads for the in-plane stress components will be the

only criteria used to investigate the strength of the laminated structure.

For orthotropic materials, failure will be based on a first-ply-failure mode in conjunction with

maximum stress or maximum strain failure criterion. This means that the laminate is considered

to have failed in a material sense when a stress or strain in a plincipal material direction attains its

strength value. Though first-ply-failure does not usually impy total collapse of the structure, it

does produce a substantial drop in performance and is often used as a design criterion. To estimate

the load to achieve first-ply-failure, the state of stress for a given load level must be determined,

i.e. the governing equations must be solved. Once this is completed, the most direct method to

extract the actual stresses and strains for each lamina is to calculate the total surface strains from

the middle surface quantities as in Eq. (2.15). The value of z in this equation determines for which

layer the strain is being calculated. Since each layer can have a different orthotropic orientation

angle, the strains in the surface coordinates must be transformed to principal material directions

for each ply. This is accomplished through a tensorial rotation as before:
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7 el 2] I C°s2Cp sin2cp
e2 = / sin2_ c°s2tp

/
12 / L-sintpcos_p sintpcos q)

2sin c°s xJ-2 sinq_costp / e°

cos2_- sin2tp] xO/

(2.53)

The stresses can be found through the orthotropic relations of Eq. (2.39), if required. To determine

when failure is imminent, each laminae must be examined separately. Since the stresses and

strains vary linearly within each layer, the critical values of these quantities must be located at the

interface between layers, thus the first-ply-failure criteria is applied at each of these boundaries.

To determine the critical load for which failure is likely, the stresses or strains must be com-

pared to the material failure estimates for the material. For most cases, a "dead" load is initially

applied to the structure, such that the magnitude of these applied dead loads does not change. Sec-

ondly, proportional "live" loads are applied, which need not be of the same load type as the dead

loads. Proportional loading means that the magnitude of the different live loads are assumed to

increase at proportional rates, where their ratio is determined beforehand. For example, fuselage

structures must usually withstand a dead load of interior pressure, while live loads including

bending, torsion, and shear vary throughout flight and their relative magnitudes are determined by

the global geometry and loading of the structure. Therefore, to determine the critical load for fail-

ure, two stress states must be determined: the initial state due to the dead loads (denoted by a

superscript d), and a progressive state which increases linearly and is proportional to the live loads

(superscript/). Once the stresses (or strains) are known throughout the structure for these condi-

tions, a material failure estimation (using maximum stress or maximum strain criterion) can be

determined using the formula:

- d d d d d
Xt-(Y 1 Xc-(Y 1 Yt-(Y2 rc-(Y2 S 1712 ]

MF minimum t ' 7 ' _" ' _ ' T ] (2.54)
(Yl (Yl (Y2 (_2 "C12 ]

where the material failure parameter MF is usually positive and represents the amount of increase

of the live loads to produce failure. The five possible modes of failure in Eq. (2.54) correspond to

tensile (Xt) and compressive (Xc) failure in the fiber direction, tensile (Yt) and compressive (Yc)

failure in the transverse direction, and shear failure (S) for in-plane shear deformation. These five

modes of failure must be investigated at all locations in the structure. The material failure load can

also be formulated in terms of the strains, in which case the failure constraints would correspond

to maximum strains in each direction. If the value of MF is less than or equal to zero, the laminate

has failed due to the dead loads only. This case often occurs for nonlinear problems, in which the

dead loads are calculated at equilibrium of the static solution, and the live loads are represented by
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the rate of change of these loads along the nonlinear load path. For highly nonlinear problems, the

material failure analysis should be performed at each load step to be considered accurate.

For isotropic materials, no principal material directions exist, therefore the preceding calcula-

tions have no relevance. Instead, the traditional Tresca criterion (see a basic strength of materials

reference such as Gere & Timoshenko TM) will be used to determine material failure, which

depends on the magnitudes of the principal middle surface stresses for a given stress state. Using

this criterion, a similar calculation for MF representing the yielding of the isotropic material can

easily be formulated.

2.2.2 Variable Stiffness Concept

One distinguishing aspect of this work is that the solution of the cylindrical shell problem

includes the effect of variable [A, B, D] matrices throughout the shell. By considering cylinders

with this feature, we should be able to design the stiffness characteristics to take full advantage of

the orthotropic material properties in regards to the applied loading and improve the performance

of the structure as a whole. The mathematical modelling employed for this endeavor is to define

the orthotropic stiffness parameters at discrete spatial locations along the variation, and then to

use these representative values to formulate the stiffness tea-ns and their derivatives along that

direction. To simplify the solution techniques for this preliminary investigation of the variable

stiffness concept, stiffness variations are constrained to be in only one direction. We thus present

the three techniques used in this investigation to produce stiffness matrices which are functions of

the surface coordinates x and 0.

Curvilinear Fiber Paths

The stiffness variation within a composite laminate is bas_d on the fiber orientation angle _ of

each ply. This is the basic building block of each stiffness term of Eq. (2.51), which are usually

calculated through the in-plane stiffness coefficients of Eq. (2.49). When the fiber orientation

angle for each lamina is the same for all locations within the _;tructure, these coefficients are con-

stants for the given stacking sequence of the laminate. These "constant stiffness" laminates can be

referred to as straight fiber formats, since the path of an individual fiber is a linear function of the

surface coordinates. The path of the fiber is found by simple iategration (here we will employ r-s

coordinates which are rotated by an angle • with respect to the x-0 surface directions to remain

consistent with the curvilinear fiber discussion presented in Section 1.2.1):

ds

dr = tancp _ s(r) = (tan_)r + C (2.55)

The constant C merely represents a shift in the s-direction that is incremented as successive fiber
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paths are laid down alongside each other. Since each path is a straight line, the edges of the paths

will be aligned perfectly and no overlap will occur.

Within the variable stiffness concept, the fiber orientation angle tp is allowed to vary along the

r-direction, thus the stiffness terms are no longer constants but become a function of location.

Now the path of an individual fiber is not a linear function of the r-s coordinates. For instance,

consider the standard linear variation of the fiber orientation angle mentioned earlier, with TO

being the value of tp at the origin and T_ being the value at some distance 71:

_(r) = (T l - To) _ + T O 0 < r < Ii (2.56)

The fiber path for this equation is again found through integration:

ds -21 ln(cos [tp(r)])
m = tan_(r) _ s(r) = + C (2.57)
dr (T 1 - To)

Examples of the curvilinear paths produced by this equation have previously been displayed in

Figure 1.1 and Figure 1.2. The constant C in Eq. (2.57) is chosen so that no gaps exist between

adjacent fibers for each successive pass of the tow placement machine. However, since the fiber

path is not a straight line, some overlap will occur unless ply drops are allowed, as seen in

Figure 1.2a. For this study, we will assume that this capability of the tow placement machine is

used, so that the curvilinear fiber paths produce the desired stiffness variation without any thick-

ness change in the laminate.

To include an arbitrary variation of stiffness, several functions were considered to serve as a

basis for representation of the fiber orientation angle, such as an expression of the variation in

terms of an expansion by Legendre polynomials or trigonometric (Fourier) functions. However, it

was found that the best general representation of the fiber orientation angle is in terms of the lin-

ear variation of Eq. (2.56). Two reasons motivated this choice: (a) to represent the stiffness terms

in a Fourier expansion, functions similar to cos[9(r)] must be integrable, and this can only be done

analytically for a linear function of 9; and (b) to include the possibility of multiple constant stiff-

ness areas that are connected at their edges, for instance a crown/side/keel arrangement around the

circumference in which each component is allowed a different stacking sequence. This leads to a

"linked" line segment approach shown in Figure 2.6, where the fiber orientation angle for each

segment is defined by its endpoint values (the rs subscript denotes the rotated coordinate system).

The ply angles and endpoint locations are both variable, and can approximate any function if

enough segments are used. Within the total range, the fiber orientation angle is thus defined as
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Figure 2.6: Linked Line Segment Approach of Fiber Orientation Angle
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- )'1"-/--_ + Ti- 1 li- 1 <--r < li (i = 1, Nseg ) (2.58)Qrs(r) = (Ti Ti- 1 -- "li- 1

The endpoint values l, are typically normalized with respect to some meaningful distance in the

direction of the stiffness variation. For a cylinder, a stiffness variation in the axial direction will

have 70 = 0 at one end and lN,q = 1 located at x = L/2, and tht: definition will be symmetric about

the half-length to cover the entire cylinder axis. Similarly, for a circumferential variation the fun-

damental distance will be equal to _ measured in the 0-direction, so that the stiffness variation

will be symmetric about the Y = 0 line in Figure 2.1. Typically, the locations of the endpoint will

be at regularly spaced intervals within the appropriate domaia, and the designation of a variable

stiffness ply in the stacking sequence will be of the form

_<TolTIIT21...ITN,,> which implies li = i/Nseg tp = _+tpr s (2.59)

Here _ is the rotation angle between the direction of the stiffness variation and the x-axis, and it is

equal to 0 ° or 90 ° for an axial or circumferential variation, respectively. The fiber orientation

angle in x-0 coordinates is then equal to • + 9rs. Additionally_ for circumferential stiffness varia-

tions a crown/side/keel arrangement is often considered, in wh_ch there are three areas of constant

(but possibly different) stiffness characteristics. This can be constructed using the notation of

Figure 2.6 with the stipulation that To = Tl, 75= 72, T2 = 7"3,13 = 74, and T4 - Ts.

Finally, there also exists a limit on the variables of the lirked line segment approach due to

manufacturing considerations. In the introduction it was mentioned that one such constraint dealt

with the minimum radius of curvature of the fiber tows for fiat panels. A similar constraint will be

used here for cylindrical shells, and takes the form of
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(li - li_ 1)
Pmin < Ti_ Ti_llCOS[q)rs(r)] for li_l <r<li, i= 1, Nseg (2.60)

The value of Pmin, the minimum radius allowable by the tow placement machine, will be assumed

to be the same as the fiat panel value of 25", though it is believed that smaller values actually exist

for curved surfaces.

Dropped Plies

Another mechanism to change the stiffness of a thin laminate is by adding or removing plies,

which changes the thickness as well as the stiffness characteristics of the shell. Since Classical

Lamination Theory integrates through the thickness to calculate the stiffness matrices, the effect

of this change is wholly contained within the [A, B, D] matrices. An argument against this

approach is that it does not apply at the end of the dropped plies, where the free edge effects will

produce three-dimensional stress states that lead to failure. However, the inclusion of these free

edge effects demands a more rigorous three-dimensional analysis that is beyond the scope of this

study, and therefore will be ignored.

The construction of the added ply configuration is shown in Figure 2.7, where the thickness of

2t

LamOri_nal _ ..... 7_-: ............. :::: :::::::-: m
inate (H) _.:=_-a_ .... .._,

+

Figure 2.7: Geometry of Dropped Ply Construction

each individual ply is designated as tp. For reference purposes, the value of H for such a structure

is based on the original laminate without the thickness variation. The plies are assumed to be sym-

metric about the middle surface and composed of a +_pp and -% layer so that the structure remains

balanced. Then for all locations within the domain of the added ply, the addition to the stiffness

terms of the original laminate can be calculated as

m

Aq = 4tp. Qq(¢pp ) B 0 = 0 D O =

A O = 0 BO = 0 D O =

1
1--_[(H + 4tp) 3 - H3]. Q.ij(q_p)

2 2 7t 3] Qij(¢Pp)_[3Htp + •

j;_ 6

j=6

(2.61)

where the transformed reduced stiffnesses Qo are calculated from Eq. (2.43). Note that the plies

are constrained to be symmetric about the middle surface and therefore produce no contribution to

the [B] matrix, which facilitates the analysis though limits the applicability of the added/dropped
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ply analysis. Thus the effect of the thickness change is reflected in the value of the stiffness terms,

for they have been altered proportionally to the thicker structure. This method for dropped/added

plies can also apply to standard thickness changes using an isotropic material, where the thickness

can vary smoothly over a region by introducing multiple dropped plies of varying thicknesses.

Material failure can also be estimated by simply regarding the added material as a change in shell

thickness, and using the standard method to find the stress state at the given shell location.

Discrete Stiffeners

As discussed in Section 1.2.2, the inclusion of stiffeners for shell analysis has often been

accomplished by "smearing" the stiffness properties over the total structure so that the solutions

for unstiffened cylindrical shells can be applied. Since our premise is that the stiffness is automat-

ically a function of location, we can more accurately model the stiffeners by defining their, stiff-

ness characteristics at the point of attachment to the laminate skin. The stiffeners are treated as

discrete beams, which for the variable stiffness concept means the obvious: the stiffener produces

a discrete change in stiffness at the point of attachment equivalent to a one-dimensional beam.

Though this treatment of the stiffeners does contain some degree of approximation in the resulting

solutions (see Bushnell 34 for a discussion of the influence of nonlinear and prebuckling effects for

stiffened shell structures), the obvious inclusion within the variable stiffness concept is warranted

for the type of problems that we are investigating. The beam is assumed to withstand only axial

stresses and torsional loads, and the resistance to these loads is calculated from the stiffness of the

beam material as well as the shape of the cross-section, which is'arbitrary. Therefore, to incorpo-

rate the characteristics of the stiffener into the variable stiffness concept, an estimation of the elas-

tic behavior of a beam under extension, flexure, and torsion is required (see Figure 2.8). The

Figure 2.8: Physical Properties of Stiffeners
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relevant quantities required to calculate these attributes from elementary beam theory include the

extensional and torsional moduli E s and Gs, cross-sectional area A s, distance to the centroid Zs, and

the moment of inertia Is and torsional constant Js measured about this centroid. The stiffeners can

be attached on the exterior of the cylinder (for which zs > 0) or the interior (zs < 0). Also needed is

the maximum height ts, which is used for material failure considerations, and the width w s over

which the stiffener is attached to the laminate, since for wide attachments the stiffness properties

will be smeared over this distance. The stiffener material is assumed to be either isotropic or a

constant stiffness composite laminate defined by effective moduli parameters and corresponding

material failure characteristics. An example of a composite stiffener is outlined in Appendix C.

The cross-sectional parameters are used to relate the applied loading of the beam to strain

measures of the beam, including the axial strain es, axial curvature K:s, and angle of twist per unit

length Os (which are in the same direction as the force, moment, and torque in Figure 2.8):

F s = EsAse s M s = EsIsr, s T s = GsJs_ s (2.62)

These strain and force quantities of the beam must both be related to appropriate middle surface

shell quantities so that they can be "included in the stiffness characteristics of the shell. This is

accomplished by finding the equivalent shell force and moment resultants that are acting at the

centroid of the stiffener, as well as defining the beam strains at the centroid through the middle

surface strain quantities. For instance, the equivalent system acting on the centroid of a beam

aligned to the cylinder axis in terms of the axial stress resultants Nx, Mx, and M,,o acting at the mid-

dle surface of the shell and smeared over the width of the beam is

F s = Nxw s M s = (Mx+ Nxzs)W s T s = Mxow s (2.63)

Note that the shear stress resultant N,,0 is not included, since the beam is assumed to only with-

stand shear loads due to torsion. The axial strain, curvature, and twist at the centroid of the beam

are found from Eq. (2.15) in terms of the middle surface strain quantities, so that

0 0 0 0

es = e'x + Zsr'x Ks = r'x _s = r'xO (2.64)

Insertion of these transformations into Eq. (2.62) generates the appropriate additions to the CLT

stiffness matrices. The stiffeners are restricted to be either ring stiffeners, which alter the [A, B, D]

matrices along the length, or axial stringers, which are used for a circumferential variation of stiff-

ness. Therefore the additions to the stiffness matrices (for either ring stiffeners or longitudinal

stringers, respectively) for locations within the width of the attachment are calculated as
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A22(x) = All(0) =

D22(x) = D11(O) =

EsAs EsAsz s
B22(x) = Bll(0) -

W s W s

Es(I s + asZ2s) GsJ s
D66(xt = D66(0) -

W s W s

(2.65)

For material failure considerations, the axial stresses in the beams are calculated using the

beam constitutive relations

os = Es_s= es(E° + z_°) (2.66)

For the axial stress to attain its maximum or minimum value, the z-location in Eq. (2.66) should

correspond to either (///2) or (H/2 + ts). For the beam under torsion, the value of the shear stress at

these locations depends heaviiy on the shape of the stiffener cross-section. However it can be

shown that the magnitude of these shear stresses is small when compared to the axial stresses of

the beam, mostly due to the fact that the shell skin carries most of the shear loads, and therefore

the contribution of the shear stresses in the beam will be ignored for simplicity in the material fail-

ure analysis.

Combined Variable Stiffness Concept

The three mechanisms just presented can be combined into one general relation for the total

laminate constitutive laws, where each stiffness term is calculated from the sum total of

Eq. (2.51), (2.61), and (2.65), which correspond to curvilinear fibers, dropped plies, and discrete

stiffeners, respectively.

B]] 0 0

+ 0 B22 0

0 0 0

• n i

K:. !

II I

Y_oJ
No:a,22A22:Ji

x 0 A 6 ,.]too.

IlL:l° ioo _0iM0 B22 0 % + iDi2 D22Dz6]I ol

x o o to0 LD_D=_D_J,o°

(2.67)

These stiffness matrices are in general a function ofx and 0. Note that the stiffness coupling terms

Bt_ and B22 are only present for ring and axial stiffeners, respectively. The importance of these

coupling terms becomes apparent in the determination of the buckling loads.
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2.2.3 Classical Membrane and Semi-Membrane Constitutive Theories

This subsection introduces two common approximations to the constitutive laws of Eq. (2.67)

that result in signification reduction in the complexity of the governing equations. Both rely on the

assumption that the shell walls are thin enough to neglect certain stiffness terms. The first theory

is applicable to short shells and is employed predominantly for the analysis of Chapter 4.0, while

the second theory is used for longer shells that are subjected to inextensional deformation, such as

the problems involving the Brazier effect under bending.

Classical Membrane Constitutive Theory

Classical membrane theory is a simplified constitutive theory that is commonly used in the

analysis of shells because the solution can frequently be completed analytically. The results are

often quite accurate when compared to more rigorous analyses, especially when applied to very

thin and short shells. The basic premise of membrane theory is that the shell carries loads only

through the action of the surface stresses, and that the "membrane" is incapable of resisting

changes in curvature of the shell surface. The standard analogy for this constitutive theory is that

of a balloon, which resists stretching but deforms easily to any load applied normal to the surface.

The assumptions of membrane theory are enforced through the constitutive equations, whereby

the terms that represent bending of the shell wall, the [B] and [D] stiffness matrices of Eq. (2.67),

are assumed to be zero. Since these stiffness terms are of order (H/R) and (HIR) 2, respectively,

when compared to the in-plane stiffness measures, membrane theory is considered a reliable first-

order approximation for thin shells. However, any membrane solution should be tested for validity

by determining if the original suppositions of the theory hold. For instance, the solution of a shell

whose loading produces large curvatures but relatively small in-plane strains would not be appli-

cable under the guises of membrane theory.

Utilization of the membrane assumptions guarantees that the strains are constant through the

thickness of the shell, and that the moment and shear force stress resultants of the shell are negli-

gible. Since membrane theory effectively ignores localized bending of the shell, it also neglects

the boundary conditions at the ends which are related to this effect. These boundary conditions

correspond to the specification of the radial displacement, and either the shell rotation or moment

stress resultant present at the ends (this will be detailed further in Section 2.3.3). Furthermore, the

absence of the [B] and [D] stiffness terms in the governing equations reduces the order of the

equations from eight to four, thereby making the differential equations much easier to solve. The

reduced order of the equations corresponds to the neglecting of the boundary conditions just men-

tioned, so that the cross-section at the ends may deform from a non-circular state. This is one of

the major limitations of membrane theory: the inability to account for radial restraint.
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A second limitation of membrane theory is also a result of this reduction of order of the gov-

erning equations. It can be shown that under membrane theory, the system of equilibrium equa-

tions for a cylindrical shell maintains that the variation of the axial and shear stress resultants is

totally determined by the stipulation of these quantities at any location along the length. Thus the

stress distribution is not allowed to diffuse along the length of the shell, which contradicts the

intuitive result referred to as the St. Venant effect. Therefore, the membrane solution is only valid

for shorter cylinders which do not undergo drastic stress redistribution.

Bearing these limitations in mind, the constitutive laws of classical membrane theory under

the definitions of CLT are written here in terms of the effective stiffness measures of Eq. (2.52):

No
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(2.68)

Semi-membrane Constitutive Theory

Semi-membrane, or semi-moment, theory is an alternate form of membrane theory that

neglects bending of the shell wall in the axial direction only, thereby eliminating the boundary

layer present in usual shell problems. It was first introduced by V. Z. Vlasov 79, and its application

is for long shells or ones in which the variation of the stresses and strains is slow in the axial

direction. The difference between classical membrane theor}' and the semi-membrane approach is

that the latter includes the cross-sectional deformation associated with changes of curvature in the

circumferential direction. By including this additional contribution, the limitation involving the

variation of the stress distribution along the length is removed (though the inability to account for

radial restraint still exists). Semi-membrane theory also ignores the Poisson effect and assumes

that the circumferential strain is negligible, thereby making _he deformation inextensional in that

direction. Thus, the earlier derivation of the condition of circumferential inextensionality

(Section 2.1.3) has direct relevance here. Often the shear strata is taken to be zero as well, though

we will discover that this assumption may be invalid for some of our specific problems. Further

details of semi-membrane theory are discussed in the reference by Vasiliev s°. Our application of

semi-membrane theory will only be for the problem of nenlinear bending due to the Brazier

effect. The majority of the published research into this problem has utilized this constitutive the-

try to render the equations more manageable and often solvable for approximate systems.
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We first assume that Classical Lamination Theory has been used to express the force resultants

in terms of the middle surface strain quantities. The variable stiffness concept is also utilized, so

that the equations of the last two sections produce the general relations of Eq. (2.67). We now

invoke the assumptions of semi-membrane constitutive theory. First, shell bending in the axial

direction and twisting are ignored. This can be expressed mathematically as

Bll, B22, DI1, DI2, D66, DI6, D26 ----)0 (2.69)

Since semi-membrane theory neglects the Poisson effect, the in-plane stress resultants depend

only on their corresponding strain measures, and can be found from Eq. (2.68) by letting the Pois-

son's ratios go to zero:

ON x Exile. ° N O = EoHe.°o Nxo = GxoHTxo (2.70)

The inextensionality condition is satisfied at the constitutive level by the assumption that E 0 _ o,,.

Typical semi-membrane theory also often assumes zero shear strain (i.e. G_0 --* **), though for the

general problem of Brazier deformation this assumption is invalid. The importance of shear strain

for nonlinear bending with the Brazier effect was first surmised by Libai & Bert 67 for arbitrary

beam loading of finite length tubes. Though the shear stress is obviously significant when trans-

verse beam forces are present, it will be shown that its inclusion is also warranted for the pure

bending case, since shear deformation does exist near the ends of the structure due to the presence

of the end restraints which maintain the circular shape of the cross-section. In fact, the production

of shear stresses near this boundary is the driving force that transforms the deformed cross-sec-

tional shape into a circle at the ends. Therefore, the neglecting of the shear strain does not apply

for the nonlinear bending of finite length cylinders, and the necessary constitutive relations for

semi-membrane theory become

.- O ON x Exile. ° Nxo = GxoH'txO M0 = D22K0 (2.71)

One final remark is needed concerning the circumferential stress. Though the deformation is

assumed inextensional around the circumference, this does not imply that the stress resultant is

zero as well. Instead No is merely an intermediate stress measure that does not follow a constitu-

tive law, much like the shear forces Qx and Qo for shell theory that neglects transverse shear defor-

mation. However, calculation of the three-dimensional stresses for each layer must include the

fact that this circumferential stress exists. This is accomplished by assuming that each lamina car-

ties the circumferential stress proportional to its stiffness in that direction, thus
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G 0 = _922. No
A2"-"_ (2.72)

This applies to the semi-membrane solution of the Brazier problem only.

2.3 Equilibrium Equations

This section derives the equations for static equilibrium and stability for cylindrical shells in

terms of the middle surface stress and strain quantities. The derivation will be performed using

energy methods, which state that the total potential energy of the system must be a minimum to

achieve equilibrium. Variational techniques are employed to translate this condition into suitable

differential equations which must be satisfied for static equilibrium of the system. Boundary con-

ditions for the problem are also obtained in this manner. Furflaermore, a system to estimate the sta-

bility of the equilibrium state is generated by the assumption of a small perturbation from the

equilibrium solution.

2.3.1 Total Potential Energy of a Linearly Elastic System

The cylindrical shell under the action of end loads and surface tractions is chosen as the sys-

tem under study. The loads associated with this system are assumed to be conservative, which

means that the work done in moving from one configuration r.o another is independent of the path

taken. This implies that the state of the system can be represented in terms of a potential energy,

which is equivalent to the negative amount of the work done in displacing from some reference

configuration. For a linearly elastic body, the total potential energy is separated into an internal

energy portion, which represents the work done by the deformation of the elastic body (strain

energy), and a contribution from external forces acting on the system that produce displacements

at their point of application, so that

Total Potential Energy = Internal Energy - Work done by External Forces (2.73)

Furthermore, the principle of stationary potential energy states that for a conservative system, the

variation of this total potential energy must be a minimum f:gr the system to be in equilibrium.

Therefore, if the internal energy and external work are expressed in terms of the field variables of

the cylindrical shell, the application of the principle of statioaary potential energy will generate

the necessary conditions for equilibrium.

The internal energy of a linearly elastic cylindrical shell can be expressed (see Langhaar sl) as

1
u = =ffft xEx+ OEO+XxO xO+Xxz xz+xoz oz+ zE ]dxgdOdz (2.74)

._JJJ
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Using the assumptions of first-order shell theory, this integral can be evaluated through the thick-

ness and represented in terms of the middle surface stress resultants and strain quantities. The

strains are represented in terms of their middle surface counterparts through Eq. (2.15), and the

integration can be carried out for the stresses as defined in Eq. (2.45). Note that the stress-strain

relations and the Kirchhoff-Love assumption are not explicitly used, so that the following deriva-

tion could include any linear constitutive laws allowable under first-order shell theory, such as

transverse shear deformation. Actually, the equilibrium equations are formulated along these lines

so that the contributions from the transverse shear force resultants (discussed below) are more

apparent, yet this derivation also enables the theory to be easily expanded to include such trans-

verse shear deformation.

Returning to the integration of the strain energy, note that the last three terms of Eq. (2.74)

contain some expressions for stress which do not have a corresponding middle surface definition

under Classical Lamination Theory. This is due to the presumption that the transverse strains are

negligible under the auspices of the Kirchhoff-Love assumption. Since we are not employing this

assumption at this time, we define two new stress resultants, termed shear force resultants, as

ax = ft.t'_xz dz Qo = fn Xozdz (2.75)

With first-order transverse shear deformation theory, these force resultants will have a constitutive

law to relate them to their respective strain quantities, however under CLT these quantities are

merely intermediate variables that arise in the equations of equilibrium, though they also repre-

sent a physical quantity corresponding to the transverse shear force applied to the shell. For the

final term of Eq. (2.74), the evaluation through the thickness results in the expression:

_H _z dz (2.76)

It can be shown that integration of this term and application of the boundary conditions at the top

and bottom of the surface leads to a quantity proportional to the pressure applied to the surface,

but that the magnitude of the contribution to the internal energy is of the order of the square of

(H/R). Thus the small effect of this term, e,_en when compared to the other transverse quantities,

enables it to be effectively ignored. This result also substantiates the claim made in Eq. (2.38) that

the transverse normal stress is small when compared to the other stresses. Therefore, the expres-

sion for the internal energy for the cylindrical shell after integration can be represented as

_J"5 o o o o o o o oU = [Nx_'x + No_-o + NxoTxO + Mxr'x + Mo_Co + MxoV'xO + QxTxz + QoToz ]dxRdO (2.77)

The work done on the shell by external forces that produce displacements consists of surface





Chapter 2.0 Governing Equations for Variable Stiffness Cylindrical Shells 62

tractions and body forces in each of the three directions (x, 0, z). For this investigation, we limit

the contributions of these general loadings to only include transverse pressure applied perpendic-

ular to the surface. Furthermore, since we expect large cross-sectional deformation for some

cases, the transverse pressure is chosen so as to always act normal to the surface as it deforms.

Thus the total work done by this pressure is determined by the change in area of the cross-sec-

tional contour integrated along the length of the shell. The area of the undeformed cross-section

is, of course, ru_ 2. The deformed area is calculated through the use of a line integral in terms of the

rectangular cross-sectional coordinates (see Figure 2.1 for the coordinate definitions), such that

e 2

A I = --ff-_[llSld_l -_ldtltl] (2.78)

The deformed rectangular coordinates are expressed in terms of the middle surface cylindrical

variables using Eq. (2.1) and (2.7), which after employing the linear strain measures of Eq. (2.21)

become

_1 = (v°/R)c°sO+( 1 +w°/R)s inO d_ i = [(I +eoo)cosO+eozsinO]dO
(2.79)

_1 = (v°/R)sinO-( 1 +w°/R)cosO d_ I = [(1 +eoo)sinO-eozcosO]dO

Insertion of these relations into Eq. (2.78) and noting that

O

-_0 d0 -- 0 (2.80)

due to the periodicity of the function v° gives the final result for the deformed area as

A l = r_R2+_Iw° + _(wl Oeoo _vOeoz)]RdO (2.81)

Then the work done by the internal pressure on the surface (positive for an increase in area) is

_fl 1 o -v°eoz)]dxRdO (2.82)W = pf(A 1-_R2)dx = p w°+_2(w eoo

The total potential energy of the cylindrical shell under pressure loading is V = U - W, or

o o o o o o o o= [Nxl_x + Nol_o + NxoTxO + Mxlex + Mol% + MxolexO + QxYxz + Qo'Yoz] dxRdO -

(2.83)

V

pSflw ° + _(wl o%o -v°eoz)] dxRdO

This integral is in terms of seven independent field variables: the middle surface displacements
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(u °, v°, w°); the middle surface rotations cox, co_ ; the linear transverse strain e=; and the deflection

of the beam axis az(x ) and its derivatives. For an equilibrium state, the energy of the system must

be a minimum for any allowable change of the independent field variables. This can also be

expressed as the fact that the first variation of the potential energy must equal zero. This condition

of equilibrium is formulated mathematically using the calculus of variations. For example, a sur-

face integral in terms of an independent function and its first-order derivatives is expressed as

V = ffF[x, O, g, g', g]dxdO (2.84)

where the prime and dot represent derivatives with respect to the x and 0 coordinates, respectively,

and the function F is generally nonlinear. To calculate the first variation of this integral, a pertur-

bation to the dependent variable (Sg) and its derivatives is assumed, and integration by parts is

performed until the integrand involves only terms directly related to the perturbation 8g. This pro-

cedure also generates evaluations at the limits, which become the boundary conditions of the

problem. For a general nonlinear function as in Eq. (2.84), the calculus of variations states that the

supposition that the first variation of this integral must be zero is equivalent to the condition that

ag = o (2.85)

along with the boundary conditions which are expressed as

_)F

g=gt or _=0 on edge

OF

g = gt or _-_ = 0 on edge

x ----constant

0 = constant

(2.86)

The dagger denotes some known quantity at that location. The first condition of Eq. (2.86) is often

referred to as a "forced" or "geometric" boundary condition, which means that the variable there

is constrained to be a certain value (often zero), while the lwter choice istermed a "natural" con-

dition, implying that the resulting expression must be zero to correctly minimize the integral of

Eq. (2.84). These equations can be expanded in terms of several independent variables and/or

higher order derivatives in an obvious manner (see Langhaat al for details).

2.3.2 Nonlinear Static Equilibrium Equations

Applying Eq. (2.85) of the calculus of variations to the potential energy expression Eq. (2.83)

results in the following six differential equations of equilibrium for the shell variables. Much like

the strains of Eq. (2.20), the overbar signifies the highly nonlinear terms that are only needed for

drastic cross-sectional deformation:
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Axial displacement u°:

ONx 1 ONxo

+ ka--6 =o (2.87)

Circumferential displacement v°:

bNxo N___ 1 _rN , 1 No 1 _r_cool _"_x + exz+_'_-@t at +_00)]+-_'e0z+_--@t_e0 0J+ (l+e'-zz)+

l_r, (I )] M0_-j-@LMo_ + koo + --ff-koz + Nx_CySin0 - peoz = 0

(2.88)

Transverse displacement w°:

OQx 12 __cog l brM k '-M°( 1+_@[Qe (1 +_zz)] +_--@t 0 0zJ R LR +ke°l+

FO--Nxe lbN°'] Fbexz KyCOS0] Fbeoz lbexz]LFxx+ Jeo:+NxL x- +NxoL + J+

-R-L -(I +e--_o) + p(1 +%0) = 0

Axial rotation co°.

aMx 1 aMxo

_x + R'a'O -Qx = 0

(2.89)

(2.90)

Circumferential rotation cog"

aMxo 1 _ "M "1 -- M°
_--_ + _-@t o_ + eBB)] + "-_'eez - Qo( 1 + %0) = 0 (2.91)

Linear transverse strain ezz:

1 /)rM e " M°
_-@i 0 ozJ - "if'( 1 + %0) - aoeoz = 0 (2.92)

Eq. (2.87) - (2.92) are the equilibrium equations conforming to first-order classical nonlinear shell

theory. Together with the application of the Kirchhoff-Love condition, the constitutive equations,

and the strain-displacement relations, these equations define the equilibrium state of the cylindri-

cal shell system in terms of the middle surface displacements. Further simplifications will be

made in later sections for specific loading and material definitions.

In addition to the above system, a differential equation for the beam deflection az(X ) is derived

along the same lines. However, since the function az is only dependent on the axial coordinate, the
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integration in the circumferential direction can only be evaluated symbolically. This results in:

_- d 2
d2{_Nx[(R+w°)cosO-RcosOref-V°sinOlRdO} d---_[My(x)l = 0 (2.93)dx 2

This equation corresponds to the beam equation of the cylindrical shell. The integral involving Nx

is actually the definition of the beam moment M_, and the equation conforms to the classical beam

equation as expected. The beam shear force V_(x) will also be defined here as

Vz(X ) =- -_ffx[ My(x) ] (2.94)

which follows from classical beam theory. Note that Eq. (2.93) is actually a fourth-order ordinary

differential equation in terms Of the beam deflection az(x),, since Nx is proportional to Ky(x), the

second derivative of az(x). Similar equations for bending about the Z-axis exist, with the exception

that sine and cosine functions are interchanged.

2.3.3 Boundary Conditions

To generate the boundary conditions for the system, Eq. (2.86) of the calculus of variations is

employed in the same manner as was used for the equilibrium equations. The general equations

for the unknown shell variables which must be evaluated at x -- 0, L are then:

o u. t Nx = o =u = or 0 mx =c°xt or M x 0

o vt Nx 0 = o (2.95)v = or 0 t00=_0t or Mxo=O

o wt 0 ezz ezz _w = or Qx = =

The beam variable az(x ) requires two boundary conditions at each end, given as:

a z=az't or V z=O fly=f2yt or My=0 (2.96)

Corresponding equations for ay(X) are expressed by exchangirg z_..->yin Eq. (2.96).

The boundary conditions given above established for our particular problem are derived from

examination of Figure 2.9. Here the general loading consists of a simply supported beam under

arbitrary beam loading which is symmetric about x = L/2. The symmetric plane located at the

mid-length is assumed to be able to slide horizontally and vertically, but remain fixed for axial

translation as well as with regards to rotation in any of the t_ee directions. To formulate these

simply supported beam conditions in terms of the displacement variables, the horizontal and ver-

tical beam displacements (ay and a,) are zero at the ends, while the other displacement (U) and
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V

Z

v Symmetric Plane
X

Figure 2.9: Boundary Conditions for Cylindrical Shell

rotation quantities (V, [).y, _2z) are of opposite sign at each end, and are shown in the figure with

their corresponding load quantity and symbol. Also note that the end displacement U and axial

rotation V also contain a factor of one-half, so that the global deformation for the whole shell

equals the value of the applied displacement. Additionally, the shell is constrained to remain cir-

cular at the ends, so that any variables which would produce cross-sectional deformation must be

zero there. Under these stipulations, attention need only be focused on one half of the cylinder.

The specific boundary conditions for the shell variables are given as:

Shell variables at x = 0:

O _ O

u = U/2 or N x=O v =Vd/2

0

cox=-_ycos0-_zsin0 or M x=O

O

or Nxo = 0 w = 0

O

coo = 0 ezz = 0

(2.97)

Shell variables at x = L/2:

O O

u =0 v =0 Qx=O

O

cox = 0 Mxo = 0 ezz = 0

(2.98)

Note that these expressions come directly from the variational techniques in terms of the six

unknown field variables. Therefore if any supplementary assumptions are to be invoked, these

boundary conditions may also change slightly to accommodate these assumptions. For example,



Chapter 2.0 Governing Equations for Variable 7tiffness Cylindrical Shells 67

enforcement of the Kirchhoff-Love hypothesis results in th_ combination of the boundary condi-

tions for v° and co0 into one equation, as well as the conditic,n that ezz = 0. If a membrane constitu-

tive theory is being used, then the only relevant boundary conditions here would correspond to u °

and v°, which are termed the membrane boundary conditions. Semi-membrane theory also consid-

ers circumferential bending of the shell, so that the equation governing 6% will also be needed.

Concerning the boundary conditions for the beam variables in Figure 2.9, the problem has

heretofore been formulated in terms of the beam deflections and rotations, and the proper varia-

tional procedure generates boundary conditions in terms of these variables:

Beam variables at x = 0:

Beam variables at x = L/2:

az=O

ay=O

azlx _ L/2 + = azlx _ L/2.

aylx _ L/2 * = aylx _ L/2

(2.99)

V z = V' z f2 r = 0
(2.102)

Vy - V), _"2z = 0

2.3.4 Stability Equations from the Perturbation of the Equilibrium Solution

The preceding two sections supplied the necessary condptions for static equilibrium of the

Beam variables at x = L/2:

£2y=_), or My=O

f_z=_Z or Mz=O

Beam variables at x = 0:

The boundary conditions concerning the beam deflections in Eq. (2.100) are required to preserve

continuity of the beam across the discontinuity produced by the applied shear loads. However, for

most stress analysis problems, the actual values of the deflections need not be calculated, for the

resulting stresses and strains from the applied loads are wholly contained in the higher derivatives

of the deflections (the beam rotations and curvatures). Therefore the integration to find the deflec-

tions need not be performed and, subsequently, only three boundary conditions are required for

the beam structure. These are expressed in an alternate form in terms of the beam load variables:

(2.101)

(2.100)
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shell in the form of a boundary value problem, that is, a system of differential equations with spe-

cific constraints applied at certain locations. The solution of this system provides the displace-

ments, strains, and stresses of the loaded shell, and can be used to investigate the stiffness and

strength response of the cylindrical shell under arbitrary loading conditions. However, another

consideration that must be addressed is the concept of stability. In mathematical terms, stability

determines if the calculated equilibrium state is necessarily-a minimum of the total potential

energy of the system. In more physical language, instability implies that a small perturbation from

the equilibrium configuration may lead to a drastic change in the state of the structure. If the equi-

librium state is "stable", the effect of this small perturbation decays and the configuration returns

to the original static equilibrium solution. However, an "unstable" equilibrium state may bifurcate

to a new equilibrium solution, one which is of quite different character than the original, but

which also satisfies the equilibrium equations. This possibility is due to the nonlinearity of the

equilibrium solutions, such that more than one solution to the equations for a given loading condi-

tion may exist. Therefore, the stability analysis relies on determining the result when a small per-

turbation from the equilibrium state is introduced. Since this perturbation is arbitrarily small, we

use the equations already developed with the stipulation that the perturbed displacements, rota-

tions, and strains are small. This greatly simplifies the equations, as we shall see, and leads to the

formulation of an eigenvalue problem to determine the stability of the shell.

To determine stability, the equilibrium solution of the nonlinear boundary value problem is

perturbed through an amount _i. For example, the solution in terms of the cylindrical displace-

ments is represented by a vector such that

o wO} Tt_ = {u°,v , = /_0+_/_1 (2.103)

where the 0 subscript denotes the "0 state" configuration and the I denotes the perturbed displace-

ments. Insertion of the equations for the displacements and strains into the expression for the total

potential energy V of Eq. (2.83) yields a similar expansion expressed as

V = Vo+_V I +_2Vz+O(_3 ) (2.104)

The first term in this expansion is a constant for a given displacement configuration and is a mea-

sure of the total potential energy of the system at the 0 state. As stated earlier, for such a state to be

considered in equilibrium, the total potential energy must be a minimum. In mathematical terms,

the minimization of this quantity can be expressed as two necessary and sufficient conditions: that

the first variation is zero, and that the second variation is positive. The stipulation that the V_ term

in the above expansion will vanish produces the equilibrium equations for the 0 state variables,
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which was earlier derived using the calculus of variations. Thus the second variation V: measures

the stability of the equilibrium state for an arbitrary configuration of the 1 state variables, so that

as long as the quantity remains positive the equilibrium state is valid. However, for certain values

of destabilizing loads, there will exist some configuration of the perturbed displacements that will

render the second variation zero. In theory, at this point the third variation of the total potential

energy must be examined to determine the viability of the equilibrium state, however in practice

the load level at which the second variation first becomes non-positive is usually defined as the

critical load due to instability.

For the physical system derived in this investigation, the second variation of the total potential

energy takes the form of a linear system of equations in terms of the perturbed displacements and

the 0 equilibrium state variables. It is represented mathematically as

[K]_ 1 = 0 (2.105)

For a valid equilibrium state, the determinant of this matrix must be positive definite. However,

for a given structure and load condition the [K] matrix, termed the stiffness matrix, is strictly a

function of the magnitude of the loading, defined as the load level A. Therefore the determination

of the critical load level for the system of Eq. (2.105) consists of finding the zero of the determi-

nant as a function of the load level A. Numerically, this process does not lend itself to traditional

root finding methods. Instead, the method of finding the critical determinant is reformulated as an

eigenvalue problem. The initial equilibrium state is defined as the load A0. An incremental change

in this load level and a standard Taylor expansion of K(A) generates the eigenvalue problem:

{[K] + _5A[M] + O(8A2)} •/) = 0

[K] = [K(Ao)] [M] = d--_[K]] A l = A o+ 5A (2.106)
A= A o

The terms in the [M] matrix, referred to as the geometric stiffness matrix, are simply the terms in

the stiffness matrix [K] that change when the load is increased. The solution of the eigenvalue

problem produces an eigenvalue _SA which can be regarded as a correction to the load factor

which produces instability. The procedure is then repeated for an initial load value of Al+_iA until

the ensuing eigenvalue _iA is considered to be effectively zerc,, at which point it can be concluded

that the equilibrium state is unstable for the load level A i. This numerical procedure to find the

eigenvalue is much more reliable than finding the root of the determinant of [K] (see the work of

ThurstonS2). It should also be noted here that for some systerr_s, the stiffness matrix [K] is exactly

linear with respect to the load level A. These particular cases are much simpler to solve than the
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general problem, since the eigenvalue problem need be solved at only one load level to determine

the correct value of the destabilizing loads. In this investigation, this occurs when the prebuckling

analysis is linear and the stability estimation ignores the prebuckling deformations. These details

will be clarified in the formulation of the stability equations.

To generate the detailed mathematical form of the eigenvalue problem for the cylindrical

shell, we assume a small perturbation in the shell displacement variables as defined by

Eq. (2.103). Perturbations of the beam displacements will not be considered, so that the buckling

mode will consist of "local" buckling of the shell only. Though "global" buckling is a possibility,

the estimation of these critical modes can usually be expressed theoretically and need not be cal-

culated numerically. For this formulation, we also assume that the Kirchhoff-Love hypothesis has

been applied. The middle surface strains and curvatures after the perturbation of the displace-

ments given in Eq. (2.103) are represented as

=  g,v°o T= +5: 2
o T

(2.107)

Here the 0 subscripted quantities denote the expressions already derived for the nonlinear strain-

displacement relations as given in Eq. (2.20), while the others are defined as
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a°, = 0"7 +_Y(Wlc°sO-vlsinO)+_bx )v-_x e'x'- = 2L,Ox J

o [ (lbVo Wol](ibv, (_ lbW°o_v, laW,)

o __:v,,_w,,=_':_'_,_)=e°2 = 2\R R_--0 J + 2\Ra0 +

2 2

a wI o k(av] a w, "_
,:x,- ax_ _x_,==l-ax-_a-_)

7xO: = \ ax Ra0 )
(2.108)

I (,_vowo/]_(!v,ae=) l+_ +'=o},i_

o c___,v,w,u_(_v,_w,q
%= = \RaO + _ )R=_'_ bO= ,}

The overbars again signify the highly nonlinear terms that are only required for problems with

significant cross-sectional deformation. The expression for the, second variation of the total poten-

tial energy is found by retaining terms of order _2 after insertion of these expansions into

Eq. (2.83). After some manipulation the equation for V2 becomes

_ 02 o o o2 o 2 o o o oV 2 = [AllExl +2A12Ex,E01 +A22E0, +A66?xOI +2BllExjtCxl +2B22_o,_Zot +

o2 o o 02 o 2 o o o o
Ol I I_x z + 2Dl2_x_l_ot + D221_0_ + D66KxOt + 2D161_x KxOt + 29261_otl_xOt +

2

2MOo(laVl wl'(laVl laWl) 2MOo(laVl -

RaO )+ (2.109)

P(v 2 aWl av I + w21)ldxRdO
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The eigenvalue problem is formulated from Eq. (2.109) by maintaining that the variation of V 2

with respect to each degree of freedom for the 1 state variables is zero. For numerical techniques

such as the Rayleigh-Ritz method, the elements of the stiffness matrix are most easily calculated

through integration of the terms in this equation. This method is outlined in Appendix B. More

thorough expressions in terms of the perturbed displacements and the CLT stiffness terms can be

found in the succeeding chapters, when the general problem given above is specialized in terms of

loading conditions and the direction of the stiffness variation.

An alternative method of formulating the stability equations is to employ the calculus of vari-

ations to the integral to produce three differential equations in terms of the perturbed displace-

ments. This is often useful if closed form solutions exist or if numerical methods that operate on

differential equations are to be used. These equations are written here without the nonlinear cross-

sectional deformation terms (those with an overbar in the preceding equations) for brevity.

Axial direction:

__._[Nx, ] 1 3+ _b--_[Nxo,] = 0

Circumferential direction:

Radial direction:

a2
[Mx, 1 + -_ax 2

18wl)
J+

RaO ) R = 0

2 02 1 02, M , No,
ROxOO [Mx°,] + _-_---_-t o,J R Nxo[lC'Xl] -NO°[_:0'] +

(2.110)

(2.111)

rl0V, [_ N,0ol U0olt,v, 10w, 

"xotUx,1-"%tNo,1-",,ootUxo,]-( ax +,ao1E°'12=o

Here the perturbed resultant forces and moments (with a 1 subscript) are related to the perturbed

strain quantities using the standard Classical Lamination Theory equations, Eq. (2.57).

The presentation of the stability equations in this differential form also reveals some important

facts about the eigenvalue problem. Due to the fact that we neglected terms with order greater
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than _i2, the eigenvalue problem is linear with respect to the perturbed variables, as expected. The

loading of the prebuckled state is mainly introduced through the membrane stress resultants,

though prebuckling deformation in terms of rotations and curvatures is also present. When a non-

linear prebuckled state is used, the critical load must be calculated using the numerical technique

as outlined in Eq. (2.106), in which several eigensystems must be solved along the nonlinear load

path to obtain an accurate result for the buckling load. However, what is not as evident is that this

iterative technique for the eigenvalue problem must also be used whenever the effects of the preb-

uckling deformation are included. This is due to the presence of several terms that are quadratic

with respect to the prebuckling deformations, such as those in the last line of both Eq. (2.111) and

(2.112). The prebuckling rotations and curvatures are coefficients of the perturbed stress mea-

sures, which also contain multiples of the prebuckling rotations through the constitutive relations

and the perturbed strains of Eq. (2.108). Therefore, even if a linear prebuckling solution is

obtained, these quadratic terms generate a nonlinear eigenvalue problem that is most efficiently

solved using the numerical technique outlined earlier. Unfortunately, it was shown by Bushnell 83

that neglecting these nonlinear prebuckling terms while retaining their linear aspects can lead to

errors that may be greater than those resulting from neglectiag the prebuckling deformations alto-

gether. Therefore though it is advantageous from a numerical efficiency standpoint to ignore these

prebuckling rotations, the loss of accuracy that this generates may be prohibitive. This will be dis-

cussed in more detail in Section 3.5 when we compare the results for buckling under axial com-

pression using different prebuckling solutions.

The boundary conditions for the perturbed system are also found using the equations of the

calculus of variations. At the ends, it is assumed that the radial displacement is always constrained

to be zero, and the combination of the other three condition:; results in eight distinct possibilities

for end conditions. They are classified here according to the definitions proposed by Almroth37:

SI: u I = v 1 = Mxt = 0

$2: Nx_ = v I = Mx_ = 0

$3: u 1 = Nxo _ = Mx_ = 0

$4: Nx_ = Nxo z = Mx_ = 0

CI: u I = v I = w 1 = 0

C2: Nx_ = v I = w I = 0

C3: U1 = Nxo _ = w 1 = 0

C4: Nxt = Nxo _ = w 1 = 0

(2.113)

The 'S' denotes simply supported conditions, while 'C' implies clamped ends. Usually, these end

conditions correspond to the constraints imposed on the prebuckling solution. At the mid-length,

the buckled configuration is not necessarily symmetric in the axial direction. However, an arbi-

trary condition can be achieved by assuming a linear combination of a symmetric and anti-sym-
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metric portion. These are defined for each case as:

i

Symmetric case Ul = Nxo, = Qx, = wl

Unsymmetric case Nx, = v I = w I = Mx_

2.4 Summary of Governing Equations

=0

(2.114)
=0

The three basic building blocks governing the physics of a thin cylindrical shell subjected to

general beam loading have now been formulated, namely the strain-displacement relations, con-

stitutive laws, and equilibrium equations. Each portion contains some distinctive deviations from

the standard first-order cylindrical equations. Firstly, the strain-displacement relations were

derived by the combination of global displacements associated with beam bending along with the

more traditional variables representing the surface of the shell. Particular nonlinear terms were

retained that correctly model the nonlinear Brazier effect for all lengths of cylinders, which led to

a nonlinear enforcement of the Kirchhoff-Love assumption and the condition of inextensionality

of the cross-section. Secondly, Classical Lamination Theory was expanded to include three mech-

anisms to produce a structure with variable stiffness properties: curvilinear fibers; dropped/added

plies or thickness changes; and discrete stiffeners. The introduction of these concepts into the

equilibrium equations produced additional terms which do not exist in the standard cylindrical

shell equations. These include extra nonlinear terms that give the correct response for the Brazier

effect, and the presence of derivatives of stiffness parameters in the surface directions. Further-

more, the goveming equations still remain general enough so that transverse shear effects can eas-

ily be included by the definition of additional constitutive laws. The development of the particular

shell equations that correctly model these phenomena is quite a substantial work, and represents a

major percentage of this investigation. However, the actual solution of these governing equations

must also be performed so that the unique behavior of these concepts can be further investigated.

The system of governing equations derived in this chapter presents quite a formidable bound-

ary value problem, an eighth order nonlinear partial differential equation with variable coeffi-

cients. The numerical solution of such a system is quite laborious and time intensive. Since one of

the main goals of this investigation is the exploration of the variable stiffness concept as a design

environment, more efficient solutions that still accurately model the physics of the problem need

to be employed. The basic technique to achieve this end is to reduce the dimension of the solution

by transforming the partial differential equations into ordinary ones. This can be accomplished by

using two procedures: limiting the stiffness variation to be in one surface direction only; and uti-

lizing a simplifying assumption so that the solution can be performed analytically in the other

direction. Along these lines, the next four chapters specialize the general governing equations of a
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variable stiffness cylindrical shell derived in Chapter 2.0 into four distinct sub-problems with spe-

cific stiffness variations and loading conditions. These sub-problems consist of (a) the axisym-

metric problem, in which the stiffness variation and loading do not change in the circumferential

direction; (b) a linear membrane solution for a short cylinder segment, with the stiffness varying

in the circumferential direction only; (c) nonlinear bending of infinite length tubes, which utilizes

the highly nonlinear shell equations and a circumferential stiffness variation is allowed; and

(d) nonlinear bending of finite length cylinders, where the linearized Brazier solution is employed

along with an axial stiffness variation.



Chapter 3.0 Axisymmetric Solution with an

Axial Stiffness Variation

In this chapter, the governing equations will be simplified by assuming that the cylinder con-

tains a stiffness variation only in the axial direction, produced by the standard mechanisms of the

variable stiffness concept as outlined in the last chapter. Further specialization will be performed

by imposing the constraint that the loading and boundary conditions follow the nature of the stiff-

ness properties by being axisymmetric. The term "axisymmetric" implies that quantities do not

change around the circumference of the shell. Therefore, any quantities which indicate any varia-

tion in the circumferential direction cannot be considered. This includes bending of the cylinder

as a beam and shear forces acting transverse to the cross-section, since these loads manifest them-

selves as sinusoidal variations of stress and strain in terms of the circumferential coordinate 0. As

such the only loads that are considered axisymmetric include a longitudinal force, internal pres-

sure, and an axia/torque. The solution technique for these specialized conditions will consist of a

nonlinear static equilibrium solution which determines the stresses, strains, and displacements of

the cylinder due to these axisymmetric loads, and a stability estimate which can take into account

the nonlinear prebuckled state of the shell. A linear membrane solution, which is merely a subset

of the full analysis, is also detailed. Comparisons of this approximate technique to the full analy-

sis are presented, as well as some interesting results of the variable stiffness concept under axi-

symmetric loading. Initial optimization of variable stiffness cylinders with curvilinear fibers is

conducted using the membrane prebuckling stability solution to determine the loading cases

which offer the best possibilities for increased performance over constant stiffness laminates.

These results lead to optimization of the fiber path itself, which is accomplished using the linked

segment approach for the variable stiffness concept as explained in Section 2.2.2.

3.1 Static Equilibrium

Regarding the static solution under axisymmetric conditions, significant simplifications to the

governing equations exist. In mathematical terms, the stipulation of axisymmetry means that all

derivatives with respect to the circumferential direction equal zero. This implies that all variables

are only functions of x, and it transforms the partial differential equations into ordinary differen-

76
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Note that for a stiffened structure, this axial stiffness variation allows :ing stiffeners and frames

along the length of the cylinder which can produce a coupling stiffness _erm B22. The equilibrium

equations and boundary conditions under the axisymmetric conditions follow.

Equilibrium Equations, Eq. (2.87)-(2.92):

2

dN x dNxo dQx d w 0 N O dM x

dx - 0 d---x = 0 d---'x + Nxdx2 R + p = 0 Qx - dx (3.4)

Boundary Conditions, Eq. (2.97) and (2.98):

D

u0(0) = U or Nx(O) = 0 uo(L/2) = 0

v0(0 ) = V or Nxo(O) = 0 vo(L/2) = 0

wo(0) = 0 Qx(L/2) = 0 (3.5)

dw o dw o

_xx (0)=0 or Mx(O)=O _xx (L/2) = 0

The resulting configuration with its relevant loads, end displacements, and coordinate directions is

displayed in Figure 3.1, where the actual structure is a surface of revolution produced by the rota-

Z, W 0

L

0, v0

x,u o
2_R' 2 ,1 ,

2_R 2' 2 R

,_H

_ L_I LJ_

L/2

r

axisymmetry

Figure 3.1: Geometry of Axisymmetric Cylinder

tion of the slice of the shell around the line of axisymmetry. Symmetry al._o exists about x =/22,

so that only half of the structure need be considered. This axisymmetric cylinder corresponds to

the classical elasticity problem of a beam on an elastic foundation.

Basic substitution and integration of the governing equations enables further simplification.
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For instance, the first two equilibrium equations of Eq. (3.4) are easily integrated to reveal that the

axial and shear stress resultants are constants. Integration of these constant axial and shear stress

resultants around the circumference of the cylinder relates them to their corresponding beam

loads of axial force and torsion. These loads will be treated as unknown variables and will conse-

quently be determined from the end conditions in terms of the applied displacements.

_Nx(x)RdO = _P _ Nx(x) - -F
2rr.R

_N xo(x)R2dO = -_ _ Nxo(X) - -'T
2_R 2

(3.6)

The circumferential stress resultant N o expressed in terms of the constant axial load and the radial

displacement wo, utilizing the effective stiffness expressions of Eq. (2.52) and the definition of the

circumferential strain from Eq. (3.3), is

N0(x)= Eo(x)HW% x) Vox(X)_R (3.7)
6

Substitution of this relation, along with the remaining constitutive laws and the expression for the

intermediate variable Q,,, into the third equilibrium equation results in an ordinary differential

equation in terms of Wo:

lw01 p (,?w0)eo(x)H

Note that the only unknowns in this equation are the radial displacement and the applied loads.

Since the differential equation is fourth order, the stipulation of proper boundary conditions for w0

at each end provides the necessary requirements to solve the system.

Expressions for the axial and shear strains in terms of the middle surface stress resultants and

stiffness quantities, all of which are known once the differential equation of Eq. (3.8) has been

solved, are found through inversion of the constitutive relations, Eq. (3.3).

o Nx - Vx0N0 o Nxo

_-x - Ex H Tx0 = GxoH (3.9)

These strain quantities each contain an isolated derivative of one of the middle surface displace-

ments (u 0, Vo) as revealed by Eq. (3.2), and integration can be performed for each variable in terms

of the loads, stiffness terms, and radial displacement w o. The boundary conditions for uo and v0

from Eq. (3.5) are applied as part of the integral equations, so that the constant end displacements
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representing the total axial extension and twist of the cylinder can be expressed in a simple form:

Uo(X) = 2 f ! l - VxoVox) T" Wo l rdWo)h
x E'-_ 2rrR + V°X"R" + 2 dx u0(0) = U

(3.10)
L/2

7_ dx

Vo(X) = -_ _ GxoH v0(0) =
X

Note that the axial displacement u 0 still depends on the radial displacement w0, while the circum-

ferential displacement v0 is totally uncoupled from the other displacements and depends only on

the applied torque. The boundary conditions containing equations for the end displacements

and V can be treated in two different ways with regards to the application of the loads: the end

loads F and T can be prescribed (possibly zero) and the unknown end displacements can be found

using Eq. (3.10); or the displacements can be provided and the resulting forces found through

integration. Here the latter approach is used whenever loading is introduced, corresponding to

"displacement control", since nonlinear load-displacement curves often contain a limit load which

leads to difficulties if "load control" is used. Whenever loading is introduced this way, the bound-

ary condition will be classified as "fixed" since the value of the displacement of the end is prede-

termined. The alternative is a "free" boundary, where the axial force or torque is zero and the end

is allowed to displace in an unrestrained manner. For this condition, the free end displacements

are not determined and therefore replace the loads as an unknown in the solution.

Let us now perform some normalization. To remain consistent, notation for the nondimen-

sional variables will generally conform to that of the unnormalized variable by either an addition

of an overbar or a change to lower case. First the nondimensional axial coordinate _ is established,

and an average stiffness quantity is introduced which depends on the skin properties only. These

average skin values will be used in the estimation of classical backling parameters, as well as pro-

viding a global estimate of structural stiffness that can be compared to constant stiffness shells.

i

2x Aij skin= -- = fAij (_)d_ Aij =: Aij/)iq (3.11)
L

0

The compressive axial force, internal pressure, and torque, as well as their corresponding mem-

brane stress resultants, are normalized with respect to their ch ssical buckling values for a finite

length cylinder, found from Eq. (1.4), (1.8), and (1.14), respectively:

f_ P p = p_..RR i- T (3.12)

2r_RN ct N_ ! 2rcRZN ct
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The axial and circumferential displacements can also be normalized with respect to their classical

estimates by using the integral equations of Eq. (3.10) to find similar critical values at the end of

the cylinder, while the radial displacement will be normalized with respect to a parameter which

is proportional to the skin thickness.

_xH _xO H_o(_) - _ _._ciUo(X) _o(_) = _ Vo(X) _o(_) = Wo(X) (3.13)
LNx LNxo _4Dll

Insertion of these normalizing factors into the governing equation results in the generation of a

nondimensional parameter l involving the length-to-radius ratio and a measure of the boundary

layer near the ends:

[ _oHL 4 L _x (3.14)

Notice that this parameter is proportional to the classical estimate for the critical half-wavelength

for buckling under axial compression.

The governing equations for the axisymmetric cylinder with an axial stiffness variation are

displayed in their final form below, where a prime represents differentiation with respect to _.

[_x "2
! _ _x_0 ] ,,.

Uo(_) = f f + vx°'_ -
_---_-tt_ow 0 - Voxf) + _0212j----aq

t_
tt et

° _4"-fi + + _0_'° - vOxf = _ p
Nx

= -f =  (E0 0- V0xf)

The boundary conditions along with their relevant geometrical interpretations are

(3.15)

x-direction Fixed fi0(0) = fi or Free f = 0

0-direction Fixed 9o(0) = 9 or Free _ = 0

z-direction Radial restraint _0(0) = 0

t

Clamped _0(0) = 0 or Simply supported

t e*'e

symmetry _o(1) = 0 _0 (1) = 0

(3.16)
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This system is well-posed and consistent with standard derivations. For constant stiffness lami-

nates, the differential equation can actually be solved in closed form. This analytical solution is

instructive with regards to the expected response of the shell, and will also be used as a basis of

comparison for approximate techniques. It can be found by assuming constant stiffness quantities

in Eq. (3.15) and solving the ordinary differential equation for w0 using traditional methods. The

solution is

(A'J f)

{ 1 + C lcosh[l(l -f)_]cos[l(1 +f)_] + C2sinh[l(1 -f)_]cos[l(1 +f)_] +

C3 cosh [l( 1 - f)_] sin [/(1 + f)_] + C 4 sinh[l(1 - f)_] sin[l( 1 + f)_] }

The constants CI-C 4 are determined once the four boundary conditions for w 0 given in Eq. (3.16)

are applied. For a general variable stiffness cylinder, however, the problem must be solved numer-

ically. The numerical solution using a finite difference technique is outlined in Appendix A. Esti-

mation of stability of this equilibrium state is addressed in the next section.

3.2 Stability Estimate with Nonlinear Axisymmetric Prebuekling Solution

The equations of Section 2.3.2 that govern instability of a cylindrical shell can also be special-

ized for the case of axisyrnmetric loading. Here, the energy method formulation employing the

second variation of the total potential energy will be used. The perturbed strain quantities for an

axisymmetric prebuckled state are defined from Eq. (2.108) as:

o _u, (dwoV_Wl_ o l_V, w,

_x,: _x+_Zx_t_) _o,: r_ +-_ (_.,=)

o l°_Ul °3vl (dwi_vl l_Wl)

3w lo _ o : _w,] o l¢_,l
<', _x_ <0, =_t_ _o_ <x°:=t_-_x--_/

These expressions, together with the integral for the second variation of the total potential energy,

Eq. (2.109), generate a system of equations for the unknown perturbed displacements. As detailed

in Section 2.3.2, the determination of the critical mode shape and load that satisfies the resulting

system takes the form of an eigenvalue problem. An additional simplification to this technique

due to the axisymmetric prebuckling state involves the assumed form of the perturbed displace-

ments. It can be shown that the resulting system can be decouoled in the axial and circumferential

(3.17)
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directions by assuming that

ul(_, 0) =

vl(_, 0) =

wl(_, 0) =

Ul(_)cos(nO) + Ull(_)sin(nO)

VI(_) sin (n O) - VII(_ ) cos (n 0)

W1(_)cos(n0) + Wl1(_)sin(nO)

(3.19)

Using this form of the displacements, the periodicity condition of the cylinder is automatically

satisfied, and the integration in the circumferential direction can be carried out analytically. The

parameter n represents the number of circumferential waves in the buckled shape, and to preserve

the periodicity condition it must be an integer (including the n = 0 possibility). In reality, the gen-

eral form of the displacements should be able to represent any arbitrary function, so that the

assumed form in Eq. (3.19) should properly be an infinite sum of such functions in terms of the

integer values of n. However, for an axisymmetric prebuckling solution it can be easily shown that

the problem becomes separable for each value of n, therefore the assumed form given above is

sufficient with the stipulation that the wavenumber n is now a variable.

The specification of two modes for each displacement in Eq. (3.19) ensures that the assumed

form has the capability to accommodate any general function of the buckled shape. This is accom-

plished by prescribing each group of displacements specified by mode I or H to conform to the

symmetric and anti-symmetric mid-length boundary conditions of Eq. (2.114). For the axisym-

metric case, these mid-length conditions can be written as:

Symmetric case Ut(1 ) = Vt(1 ) = Wt(1) = W t (1)- 0

t •t

Unsymmetric case Ult(1) = Vii(l) = Wt](1) = Wtt(1) = 0

(3.20)

Both modes must also satisfy the particular end conditions from Eq. (2.113), which are repro-

duced here with respect to the modal quantities.

p

U;(0) = V;(0) = W;(0) = 0

Nx,(O) = Vi(O) = WI(O) = 0

Ui(O) = Nxo,(O) = WI(O) = 0

Nxi(O) = Nx0,(0) = WI.(0) = 0

(3.21)

Radial restraint for all cases Wi(O) = 0

SI: Ui(O) = Vi(O) = Mx_(O) = 0 CI:

$2: Nx,(O) -" Vi(O ) -- Mx,(0) = 0 C2:

$3: Ui(O) = Nx0,(0) = Mx,(O) = 0 C3:

$4: Nx,(0) = Nxo,(O) = Mxi(O) = 0 C4:

Insertion of the assumed form of the displacements into the expression for the total potential

energy and invoking the condition that the variation of this integral must be a minimum leads to a
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system of linear ordinary differential equations with variable coefficients, which now contain the

additional unknown parameter n. This system can be denoted as

+ = ( (3.22)
K N 11

where the uppercase letters represent 3X3 matrices of linear differential operators and the roman

numerals denote the modal displacements of Eq. (3.19). The full matrix in parentheses is a func-

tion of the load level of the equilibrium state as well as stiffness and geometric parameters, and is

divided into a stiffness and loading portion to make the notation easier to understand. The first

matrix represents the stiffness terms, where K s, Ka, and C symbolize the symmetric, anti-symmet-

ric, and coupling (Dl6 and D26 ) portions. The subscripts for K denote slight differences in the sub-

matrices resulting from either the symmetric or anti-symmetric stipulation for the pertinent buck-

ling mode. The loading matrix consists of N_ and N,,, which contain the normal loads acting on the

symmetric and anti-symmetric portions, and S, produced by the presence of a shear load. The

mathematical expressions for the linear operators are supplied in Appendix B. 1. The stability of

the equilibrium state can be numerically estimated through a perturbative technique as outlined in

Section 2.3.4, which requires a calculation of the change in the loading matrices with respect to

the given load level. This leads to a differential eigenvalue p_'oblem for the displacements, which

will be solved numerically using an iterative technique called the power method along with the

finite difference technique. These numerical methods are discussed in Appendix A.

3.3 Linear Membrane Approximations

The full solution of the equilibrium equations along with the estimation of the critical buck-

ling load can be completed analytically for constant stiffnes., laminates, as shown in Eq. (3.17).

However, insertion of this prebuckling solution into the stability equations produces a complex

system of variable coefficient equations that cannot be solved in closed form and thus require a

numerical solution. On the other hand, implementation of classical membrane constitutive theory

does provide a basic closed form stability estimate, for the eqt.ilibrium state can be represented in

a simpler analytical form and the eigenvalue problem can be _,.olved if appropriate boundary con-

ditions are used (as in the classical solution discussed in Sec'ion 1.2.2). Furthermore, the use of

this constitutive theory for the prebuckling solution generates a much simpler method for eigen-

value calculations than the one represented by Eq. (3.22). Thus an approximate solution to the

systems presented in the previous two sections using classical membrane theory is used for two

reasons: to provide a more efficient method for eigenvalue calculations so that rigorous optimiza-
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tion may be performed; and to serve as a comparison to the more complex nonlinear system, so

that the regions where the two solutions disagree can be determined.

The easiest way to apply the restrictions of classical membrane theory for static equilibrium is

to remove any terms associated with nonlinearity or shell bending in the full nonlinear systems.

Thus Eq. (3.15), with these terms removed, is rearranged and the unknown displacements and

membrane stress resultants are explicitly solved for in terms of the normalized loads:

=T +Nxp [ J

i d_ Vox(_) f+ N6t _ (3.23)-- -

n,,(_) = -f n0(_) = p nxO(_) = -_

As can be readily seen, once the stiffness distribution is defined, the displacements can be easily

calculated through integration. The applied end displacements are consequently related to the end

loads in an obvious manner once the membrane boundary conditions of Eq. (3.16) are applied:

= f +_cxc t/5 9 = t (3.24)

Note that the "fixed" versus "free" boundary conditions for the end loads can both be satisfied

using the above equation, and also that the boundary conditions for_ 0 in Eq. (3.16) are not

needed since a membrane state is assumed.

Using classical membrane theory for the prebuckling solution also provides some significant

simplifications of the stability equations. First, note in Eq. (3.23) that for traditional constant stiff-

ness structures, the radial displacement _0 is constant along the length since the stiffness parame-

ters do not vary. Thus the prebuckling deformation of the cylinder does not produce any rotations

or curvatures in the axial direction, as they are defined as axial derivatives of the radial displace-

ment. Therefore, the prebuckling rotations contained in the perturbed strain quantifies of

Eq. (3.18) disappear and the prebuckling state for the eigenvalue problem is introduced solely

through the simple definition of the stress resultants, as given in Eq. (3.23). For variable stiffness

structures, derivatives of the radial displacement do exist due to the axial variation of the stiffness

terms, therefore it is proper to retain the prebuckling deformation in the stability equations. How-

ever, to simplify the stability estimation using membrane prebuckling, this investigation will con-

form to the typical practice of neglecting these terms and introduce the prebuckled state only
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through the stress resultants. Though this may produce significant error for variable stiffness

structures with large prebuckling deformation, the simplification makes the formulation of the

numerical eigenvalue problem much more straightforward. Comparisons to the full nonlinear

eigenvalue problem, which retains the effect of prebuckling rotations, will be conducted in

Section 3.5.1 to determine if this simplification is warranted for variable stiffness structures.

The second significant simplification from the full nonlinear estimate is the fact that the preb-

uckling solution is linear. For the linear membrane solution the loading matrix, as given in

Eq. (3.22), can be determined analytically from Eq. (3.23) in terms of the loads of axial force,

pressure, and torsion which are applied proportionally. Thus, instead of the numerical algorithm

used to determine the point along the nonlinear load path that produces a "zero" eigenvalue, only

one eigenvalue calculation need be computed, and this result will always produce the same esti-

mation of the critical loads. For more complex loading cases, the proportional loading is also

divided into two parts: a "dead" and "live" portion, where the dead loads are assumed to be

applied up to their prescribed values using the membrane prebuckling solution, and the ratio of

the live loads designates the loads that will produce buckling. Thus the loading matrix can be

decomposed into these two portions as well, so that the resulting eigenvalue can be written in tra-

ditional form as

[K]. t_1 = A[M]. _1 (3.25)

The stiffness matrix [K] contains the stiffness sub-matrices and the dead loading, and the geomet-

ric stiffness matrix [M] contains the derivatives of the live loads with respect to the load level A.

These derivatives are calculated analytically once the ratio of the proportional loading for the live

loads is determined. For example, under hydrostatic pressure uith no torsion present, the ratio of

live loads is given as

d--_[Nxlo] = _ d--_[N0/o] = -R d_[Nxt0o] =0 (3.26)

so that the resulting eigenvalue problem solves for the critical buckling value under hydrostatic

pressure. The simplicity of these equations is even more evident when constant stiffness laminates

are used along with the $2 boundary condition, for in this case the buckling equations can be

expressed in closed form, such as the classical solutions presewed in Section 1.2.2. Further details

of the form of the linear stability equations for the membrane simplification are offered in

Appendix B. 1.
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3.4 Static Response and Stress Analysis

This section is intended to present the basic results of the equilibrium solutions for variable

stiffness cylinders under axisymmetric loading. As such, the prebuckling solutions with regard to

deformation and material failure considerations is investigated first, and the static response of par-

ticular variable stiffness structures is also examined to develop an understanding of the physical

mechanisms involved. It should also be mentioned here that these stress analysis results are pre-

dominantly based on the linear solution of the governing equations. This is considered accurate

and sufficient for two reasons. In the first case, the simplifications of classical membrane theory

should never be used for in-depth stress analysis, since the critical location for failure depends

largely on where the shell bending effects, which membrane theory neglects, are the largest. Sec-

ondly, linear analysis is also justified here, since the nonlinear effects for cylindrical shells

become most significant when the applied loads generate an unstable configuration. If non-desta-

bilizing loads such as tension or internal pressure are being applied, material failure is the limiting

constraint that governs the design of the shell. Though the development of the nonlinear boundary

layer does have some effect on the failure loads of the shell, its contribution can be neglected here

without loss of generality.

Material failure of most cylinders generally occurs because of the large bending moments

within the shell that are present due to the enforcement of zero radial displacement at the ends.

For instance, the radial displacement of a typical constant softness cylinder under axial compres-

sion is shown in Figure 3.2. Away from the restraint generated by the support at _ = 0, the radial

1 t Clamped
Simply Supported

....................... Membrane Theory
0.8

o4[/,, 7 ,:48..
R = 24"

l/J H= 0.12"

0.2 _/I Layup: [-I-4516 s

00 0.2 0.4 0.6 0.8

Figure 3.2: Displacement Profile of Constant Stiffness Cylinder under Axial Compression
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displacement is a constant as per the membrane solution of Eq. (3.23). However, as one

approaches the end, a boundary layer appears to facilitate the enforcement of the boundary condi-

tions for the fourth order differential equation of Eq. (3.15). As shown in Eq. (3.17), the variation

of the radial displacement within this boundary layer, for small values off, follows that of func-

tions like cosh(l_) sin(l_), so that the distance between successive intersections of the membrane

and boundary layer solutions can be expressed as a function of l, as shown in Figure 3.2. The non-

dimensional parameter I can also be regarded as an indicator of the relative length of the boundary

layer based on the attenuation of the hyperbolic functions. Within the boundary layer region, the

variation of the radial displacement will produce rotations and curvatures (and therefore bending

moments) of the middle surface. These moments produce high axial strains at the extreme sur-

faces of the laminate (z = +-///2.). Away from the ends, the shell response is dictated by the mem-

brane effect of the shell, which manifests itself as middle surface axial, circumferential, and shear

strains. Thus the highest stresses are generated where both the bending and membrane effects are

significant, and material failure usually occurs near the ends of the cylinder. With implementation

of the variable softness concept, the distribution of the stresses can possibly be altered, thereby

changing the critical location and perhaps the magnitude af the material failure load as well.

Therefore this section investigates the state of stress produced by various implementations of the

variable stiffness concept, and determines their worth when compared to conventional laminates.

3.4.1 Curvilinear Fiber Paths

The first study of strength properties for variable stiffness laminates will be based on a simple

one link linear variation of the fiber orientation angle. Two angles are needed to define the sOft-

ness variation: To being the value at each end of the cylinder, and/'1 which is located at the mid-

length. The stacking sequence will be assumed to be of the form [+tp]6s, so as to highlight the

maximum effect of the variable stiffness concept. As mentioned, failure of cylindrical shells most

often occurs near the ends, where the gradients produced by the boundary layer result in large

bending moments within the shell wall. However, by selectivt:ly varying the stiffness of the cylin-

der as it approaches the supports, the location of material failure can be altered by smoothing out

the displacement gradients that produce these areas of high st'ess.

As an illustration of this hypothesis, radial displacement profiles of some simply supported

cylinders under a unit load of axial compressive force are shown in Figure 3.3. Also shown are the

membrane theory solutions (as dotted lines), to provide an idea of the boundary layer length for

each cylinder. The solid line represents the radial displacemer_t versus axial location for a [+4516s

cylinder (L = 48", R = 24"). The filled circle represents the material failure site where the stresses

reach their critical strength value, and it is located where the membrane and bending effects are
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Figure 3.3: Displacement Profiles of Axisymmetrie Variable Stiffness Cylinders

under Axial Compression

both significant. The other two curves of Figure 3.3 represent variable stiffness cylinders using

two particular linear variations of the fiber orientation angle. The symbols for each denote the

material failure location, and the ultimate failure loads assuming a linear response are also

reported. Note that for the second case, the critical location has moved to the mid-length of the

cylinder.

The movement of the failure location can be attributed to two factors. First, the variation of the

stiffness can smooth out the large displacement gradients that occur near the ends of clamped and

simply supported cylinders. This relieves the high stresses produced by the bending moments at

the ends of the cylinder. The short dashed line in Figure 3.3 is an excellent example of this phe-

nomena. As is readily seen, the variation of the stiffness terms produce a membrane solution that

roughly approaches zero near the support, so that the effect of the boundary conditions does not

produce the large displacement gradients that are common to the other cases. Therefore, the

resulting bending moments within the shell wall that lead to failure are not as significant. Sec-

ondly, since the strength of an angle ply laminate is related to the fiber orientation angle (based on

the maximum stress or strain criterion), a change in the fiber orientation angle also changes the

laminate's resistance to certain types of stress (i.e. strength) as a function of the spatial coordi-

nates. This implies that for loads that produce constant stress along the length of the cylinder

(such as axial loads or torsion), failure will occur where the strength is the lowest as determined
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by the fiber orientation angle. For instance, if the stress state is axial tension, a 0 ° orientation will

be much stronger than any other fiber orientation angle, and therefore the cylinder will most likely

fail at the location that possesses the weakest resistance to the tensile stress state. This is also

illustrated in Figure 3.3. For the To = 0 °, Ti = 45 ° variable stiffness cylinder that exhibits no sub-

stantial boundary layer, the stress state is predominantly pure axial compression along the entire

length. The failure location (_ = 1) coincides with the weakest fiber orientation angle under com-

pression within the given configuration (tp = 45").

To determine the relative merits of optimum designs of variable stiffness cylinders, a simple

design study was performed to determine the material failure loads of variable stiffness cylinders

under the three basic axisymmetric loads using the one link linear variation of the fiber orientation

angle. The results are displayed in graphical form for axial compression (Figure 3.4), internal

pressure (Figure 3.5) and torsion (Figure 3.6). For each figure, the material failure load is plotted

_" _ Constant

_ 3E+06 _ o To= 0 °

_" ts _o zx TO = 15"
li.h_ \ v To=30 °

_' / l> To=45 °
"_ _ _ To=60 °2E+06

.O _'_1_ u To =90"rE

IE+@5 t

I _ I I _ I , I _ I
0_ 15 30 45 60 75 90

Tt

Figure 3.4:FailureLoads forCylinders under Axial Compression

as a function of the mid-length angle T t for a given value of .:he end point angle To, and denoted

by symbols. Note that the manufacturing constraint limiting the allowable variation of the fiber

orientation angle is not implemented here. The solid line in each figure represents the failure loads

of constant stiffness laminates for which To = T_. For each case, the results indicate that the high-

est material failure load is achieved by a constant stiffness laminate. Combined loadings including

various ratios of tension, internal and external pressure, ant torsion were also investigated to

determine the advantage of the variable stiffness concept compared to the constant stiffness lami-

nates. It was discovered that if material failure is the biggest concern, the variable stiffness cylin-
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Figure 3.5: Failure Loads for Cylinders under Internal Pressure
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Figure 3.6: Failure Loads for Cylinders under Torsion

ders exhibit no improvement over the straight fiber format. Often the variable stiffness concept

can change the location and/or mode of failure, but a significant strength increase over the opti-

mum constant stiffness laminate does not exist.

These results can be explained though the use of a "weak link" analogy. For axisymmetric

loads applied to a cylindrical shell with an axial stiffness variation, one distinguishing aspect of

the solution is the fact that the dominant membrane stress resultants do not vary along the length

of the shell. This is evident in the solutions for the stress resultants in Eq. (3.15), where it is shown
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that the axial and shear stress resultant are both exactly a cc,nstant, and the circumferential stress

resultant is proportional to the constant pressure loading alo_g with some secondary effects due to

the variation of the radial displacement. Therefore, the stress state at any location along the length

is basically the same, the only exception being near the ends where the boundary layer effects are

significant, so that the axial variation of the stiffness does not actually redistribute the stresses at

all. This condition can be regarded as the variable stiffness cylinder carrying the loads in "series",

where each infinitesimal segment of the structure must be able to withstand the applied loads

independently. Of course, for the particular ratio of loads being applied, there exists some optimal

stacking sequence that is best suited to withstand the resulting stress state, as well as some layups

that are expected to behave quite poorly under the same conditions. For example, under axial ten-

sion a 0 ° orientation would be expected to be the strongest, since the fibers are aligned exactly

with the largest stresses, while a 90 ° ply would fail easily in this case since the tensile stresses

would be carried predominantly by the weaker matrix component of the composite material.

When curvilinear fibers are used, the failure location will generally occur where the stacking

sequence is least suited to carry the applied loads, and thus this "weak link" location will be the

limiting factor on the material failure load. To achieve the best performance, a designer would

avoid these weak links and replace them with a more favorable stacking sequence. Since there

exists some layup that withstands the stress state better than all others, the resulting optimal

design would be composed of a constant stiffness laminate with this particular stacking sequence.

Fortunately, the conclusion regarding the weak link aspect for the axisymmetric problem does

not imply that the axial stiffness variation is not useful. In the '_rst case, it is quite possible to load

the cylinder such that the axisymmetric loads do vary along the length, which is most easily

accomplished with an axial variation of the pressure or by external loads being applied at certain

axial location. For such loading, varying the fiber orientation angle along the length will enable

the optimal stacking sequence to be used for the specific loading at that location, and obviously

will produce designs that outperform conventional straight fiber cylinders. Investigation of these

types of loading cases will not be included here. Secondly, it mast be realized that for almost all of

the thin cylinders analyzed, the critical failure mechanism (for destabilizing loads) was buckling

and not material failure. Therefore, some performance improvements may still be attainable under

axisymmetric loading, which will be looked at in the nex_ subsection. Lastly, comparisons

between cylindrical shells are not always based only on strength but often include stiffness crite-

ria. Thus a cylinder design may need to have a minimum load capability as well as a required dis-

placement constraint or, conversely, be defined for a given failure load with the overall stiffness of

the structure being the quantity that is to be maximized. The variable stiffness cylinder can
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become advantageous in this instance because it can offer designs that exhibit the same stiffness

properties yet have different strength characteristics, or vice versa.

To demonstrate this last idea, the material failure loads under axial compression shown in

Figure 3.4 are plotted versus the overall axial stiffness of the cylinder structure in Figure 3.7.
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Figure 3.7: Failure vs. Stiffness for Axial Compression

Again the solid line represents the constant stiffness laminates, while the filled circles now denote

variable stiffness designs using the one link linear variation of the fiber orientation angle. The glo-

bal axial stiffness quantity is found through integration along the length using the appropriate

stiffness quantities, and relates the axial end displacement U to the applied end load ff as surmised

from Eq. (3.10). As expected from the earlier results, the best performance is exhibited by a con-

stant stiffness laminate with 0 ° plies only, and all variable stiffness designs fail at a lower load

level. However, if a particular stiffness response is desired, then any variable stiffness design that

is above the constant stiffness curve is considered advantageous because the variable stiffness cyl-

inder has a higher strength with the same stiffness characteristics. Similarly, if an exact failure

load is defined and the stiffness is meant to be maximized, than any circle to the fight of the curve

demonstrates improved performance. Examination of Figure 3.7 reveals that there is still no

noticeable improvement for a prescribed stiffness design, though some gains can be achieved for

the second (less practical) case. The results for a similar treatment of a cylinder under torsion are

shown in Figure 3.8. The torsional stiffness relates the overall twist of the cylinder to the torsional

load applied at the end, and is again found through integration as given by Eq. (3.10). Again, the
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Figure 3.8: Failure vs. Stiffness for Torsion

only noticeable gains exist for the case in which the failure load is prescribed and the stiffness is

maximized. Investigations of similar scenarios using combinations of the axisymmetric loads gen-

erate comparable results, though the magnitude of the possible improvements are never that sub-

stantial. However, the results do indicate tkat for some highly constrained designs, the variable

stiffness concept is valuable because of the greater flexibility that it gives to the designer.

3.4.2 Ring Stiffeners and Frames

Though the foremost objective of this investigation is determining the possible performance

improvements from using curvilinear fibers, the preponderanze of stiffeners as additional compo-

nents of cylindrical structures does warrant some discussion. With regards to the static response of

axisymmetric cylinders, the inclusion of stiffeners is limited to ring stiffeners and frames that do

not vary in terms of shape or stiffness characteristics around the circumference of the cylinder.

This results in the addition of a discrete jump in stiffness for some of the stiffness measures where

the stiffener is attached (see Section 2.2.2). The radial displacement profile from a linear solution

of the axisymmetric problem which now includes some basic stiffeners is shown in Figure 3.9.

The shaded portion shows the axisymmetric geometry of the stiffened shell, which is constructed

of a [-+4516s laminate skin. The cylinder is loaded by external pressure, and both the clamped and

simply supported cases are included (the simply supported case is shown by the dashed curve).

One can readily see that the major consequence of a ring stiffener is that it effectively divides the

long cylinder into a series of shorter ones, such that a ring stiffener or frame imitates an end

restraint (a clamped condition according to Figure 3.9). Of co_arse, this is only true if the stiffener
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Figure 3.9: Displacement Profile of Ring Stiffened Cylinder

is sturdy enough with respect to the rest of shell, since flimsier elements often deform signifi-

cantly in the radial direction as well. The point that is intended to be made here is that the addition

of ring stiffeners, much like the axial variation of the fiber orientation angle, does not actually

redistribute any of the axisymmetric loads, therefore an increase in material failure strength of the

resulting shell will not be observed. In fact, the failure load for some loading may decrease, since

the stiffeners produce additional boundary layer regions. However, ring stiffeners do serve a use-

ful purpose, for it will be shown later in this chapter that the division of long cylindrical structures

into a series of shorter elements can provide significant increases in buckling loads for certain

types of axisymmetric loading. Furthermore, a long cylinder under bending provides another area

where circumferential stiffeners become an efficient concept that improves performance by resist-

ing the ovalization of the cross-section. This will be investigated in more detail in Chapter 6.0.

3.5 Buckling Results

The failure of cylinders due to buckling by axisymmetric loading has been studied throughout

the evolution of modem shell analysis techniques. As mentioned in Section 1.2.2, the agreement

between the classical theoretical solutions and actual experiments has been excellent for cylinders

subjected to torsion and external pressure. However, no such correlation was found for the axial

compression case, predominantly due to the effect of geometric imperfections on the critical

buckling load. Though the inclusion of the postbuckling analysis required to thoroughly investi-

gate the imperfection phenomenon is beyond the scope of this study, some aspects of the nonlin-

ear buckling problem are addressed here. In particular, the development of the shell boundary
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layer for constant and variable stiffness cylinders is discussed, and conclusions are drawn regard-

ing the need of a full nonlinear prebuckling analysis for the initial investigation of the variable

stiffness concept. The buckling results for laminates with curvilinear fibers are then presented

along the same lines as the material failure results, in that a one link linear variation is utilized to

demonstrate the failure trends of the structure. Optimization of the curvilinear fiber path is com-

pleted in the next section for the load cases which show the most promise.

3.5.1 Effect of Prebuckling Solutions and Nonlinearity

The choices for the prebuckling state of the buckling calculation are determined from the level

of complexity used in the static solution of the governing equations for axisymmetric cylinders.

The simplest choice employs linear membrane constitutive theory, which in the classical formula-

tion also neglects the prebuckling rotations in the strain-displacement relations for the perturbed

displacements, displayed in Eq. (3.18). The main motivation for neglecting these rotations is that

it produces a linear eigenvalue problem which only needs to be solved once for each design, as

opposed to the nonlinear eigensystem, represented by Eq. (2.104), which must be evaluated at

successive points along the load path. Of course, for constant stiffness laminates the membrane

solution results in an unrotated deformation pattern anyway, so that neglecting the prebuckling

deformation is justified mathematically. However, as seen in Figure 3.3 the membrane solution for

variable stiffness cylinders does not necessarily produce ar equilibrium state without shell rota-

tions due to the variation of the stiffness parameters, yet the prebuckling deformation will still be

neglected to conform to the classical assumptions and to warrant using the simpler eigenvalue

solution technique. This clearly leads us to the next level of complexity for the prebuckling state

in which the prebuckling rotations of the equilibrium solution are considered in the buckling

equations. If this addition is included, then to remain consistent the end conditions of the prebuck-

ling solution should be identical to the ones used by the buckling estimate. Membrane theory does

not consider the boundary conditions in the transverse direction (related to w 0 and its derivatives),

therefore it should not be considered adequate if the prebuckling rotations are to be included.

Instead the next choice of prebuckling states will be for a linear solution of the equilibrium equa-

tions that adhere to the same end constraints as the stabiJity estimate, where the prebuckling

deformation due to the stiffness variation and the boundary l_..yer effect is taken into account in the

stability estimate. As implied earlier, since the eigenvalue problem is actually nonlinear with

respect to the prebuckling rotations, the numerical computttion of the critical eigenvalue must

now follow the complex nonlinear method to be considered accurate. The final improvement to

the prebuckling state involves the full nonlinear solution of the equilibrium equations, along with

the effect on the bifurcation load due to the nonlinearity of :he deformation as the magnitude of
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the applied loads increases. Again an eigenvalue problem must now be solved at each step along

the load path to determine an accurate buckling load. This nonlinear stability solution is not con-

sidered numerically efficient when compared to the (linear) membrane solution. However, since

the more efficient stability estimate is planned to be used for optimization studies, some explana-

tion and error estimate is needed to justify using the simpler technique.

To this end, the radial displacement profile of the standard[+4516s constant stiffness laminate

under axial compression is shown in Figure 3.10 for several values of the load parameter (the last
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Figure 3.10: Nonlinear Displacement Profiles of Constant Stiffness Cylinder

under Axial Compression

load level actually corresponds to the critical buckling load). These results were formulated using

the full nonlinear solution of Eq. (3.15), and note that the radial displacement is also normalized

with respect to the value of the applied load. For small values of the load parameter, the linear

solution first shown in Figure 3.2 is considered adequate. As the magnitude of the compressive

load increases, the influence of the nonlinearity increases dramatically. The nonlinear character of

the boundary layer for a constant stiffness laminate can be surmised from the analytical solution

of the ordinary differential equation given by Eq. (3.15). As the load increases, the effect of the

exponential portion begins to spread further into the interior of the domain (since the frequency

for the hyperbolic functions decreases), while the sinusoidal terms begin to vary faster and

approach a frequency that corresponds to the classical buckling estimate ix, where the

parameters _x and I are related through Eq. (3.14). The resulting wavelength of the buckled pat-
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tern as 27 approaches one is shown in Figure 3.10. It is qmte evident that substantial differences

exist between the assumed "fiat" state from classical membrane theory and the actual deformation

from the nonlinear solution, therefore the effect of this prebuckling deformation on the critical

buckling load must be investigated in more detail.

Consideration of the nonlinear prebuckl:.ng solution when calculating an accurate estimate of

the bifurcation load has already been performed by other authors for constant stiffness laminates,

most notably by Almroth 37. His results (using Donnell-Mushtari-Vlasov buckling equations) indi-

cate that the calculated buckling load can be around 15% lower than the classical solution that

employs linear membrane prebuckling, though the general trends and characteristics of the buck-

led state remain the same. For comparison purposes, Almroth's results are displayed in Table 3.1

along with calculations based on the equations derived here (using Sanders shell theory)for all

possibilities of boundary conditions, designated in Eq. (2. I 13). To conform to Almroth's results,

the cylinder is assumed to be made of an isotropic material with v = 0.3, L/R = 3.2, and

Rill = 100. The buckling loads are normalized with respect to the classical value, and the number

in parentheses is n, the number of circumferential waves in the buckled shape.

Boundary
Condition

S1

S2

Almroth 37

(DMV Theory)

0.868 (9)

Membrane

(Sanders Theory)

0.9947 (9)

Linear

(Sanders Theory)

0.9950 (9)

Nonlinear

(Sanders Theory)

83 0.510 (2) 0.5064 (2) 0.5057 (2) 0.5072 (2)

$4 0.510 (2) 0.5044 (2) 0.5054 (2) 0.5072 (2)

C1 0.928 (9) 0.9950 (9) 0.9950 (9) 0.9262 (9)

C2 0.911 (8) 0.9618 (4) C_.9667 (4) 0. 9066 (8)

(23 0.928 (9) 0.9945 (9) 0.9949 (9) 0.9262 (9)

0.8480 (9)

C4 0.909 (8) 0.9605 (4) 0.9663 (4) 0.9050 (8)

Table 3.1: Comparison of Prebuckling Solutions on Axial Compressive Buckling Load

The first thing to note from these results is the close agreement between the DMV and Sanders

shell theory solutions. This is due to the fact that the mode shapes possess a large number of cir-

cumferential waves, so that the shallow shell assumptions invoked by DMV theory are acceptable.

Discrepancies between the two theories tend to increase for shorter cylinders. Also note the low

buckling value for the $3 and $4 cases. This has been attributt:d to the minimal support provided

0.844 (9) 0.9528 (4) 0.9565 (4)

0.8670 (9)



Chapter 3.0 Axisymmetric Solution with an Axial Stiffness Variation 99

by these idealized end conditions, in which the shell is simply supported and also free to displace

in the circumferential direction. The membrane prebuckling solution agrees remarkably well with

the full nonlinear solution for these cases, since the major factor producing this low buckling

value is not nonlinearity but the (unrealistic) conditions applied at the ends. For the other six

cases, the membrane and linear prebuckling solutions yield similar results, which tend to overesti-

mate the nonlinear calculation for all cases. This, in essence, removes the possibility of using lin-

ear theory for the prebuckling solution, since its accuracy is no greater than the membrane

solution while its decreased numerical efficiency is comparable to the more accurate nonlinear

case. Therefore the choice for prebuckling solutions comes down to a trade-off between the

numerical efficiency of the membrane case and the accuracy of the full nonlinear solution. If the

magnitude of the relative error when using the membrane solution could be shown to be bounded

by the results of Table 3.1, then its use would be considered acceptable. In fact, investigation of

constant stiffness cylinders constructed of composite laminates reveals that even greater agree-

ment exists between the membrane and nonlinear estimates for many cases. This is due to the fact

that for certain stacking sequences, the nonlinear boundary layer effect is greatly reduced when

compared to isotropic cylinders. However, when using variable stiffness cylinders conclusions

regarding the effect of the prebuckling state cannot be drawn as easily, since the membrane defor-

mation is no longer rotation-free. Thus it must be determined if the nonlinear effects are more or

less significant when applied to the novel variable stiffness designs.

As discussed in Section 1.2.2 and evidenced by Table 3.1, including the effect of the prebuck-

ling nonlinearity substantially increases the accuracy of the critical load calculation for most cyl-

inders. However, this improvement in the analytical estimation of the critical axial compressive

load does still not account for the discrepancy that exists with the experimental results. It is

believed that the reason for the disagreement is due to initial shape imperfections of the shell.

Though the rigorous postbuckling analysis to include the imperfection sensitivity of the critical

load is beyond the scope of this study, some conclusions regarding the effects of these imperfec-

tions can still be estimated. The motivation behind this is that the prebuckling deformation of vari-

able stiffness cylinders somewhat resembles an imperfection, and if this leads to greater

discrepancy between the membrane and nonlinear buckling estimates than the more complex

eigenvalue solution must be used, even if the cylinder is assumed to be imperfection free. Thus it

must be shown that the simpler membrane results will still convey the essence of the true buckling

load of the structure. This claim is substantiated in two ways: first it will be shown that the basic

character of the nonlinear boundary layer is the same for variable stiffness designs as compared to

conventional laminates; and secondly that the magnitude of this radial deformation of variable
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stiffness cylinders is small enough so that it does not re._emble a geometric imperfection and

therefore does not require a more thorough analysis. Substantiation of these facts implies that the

ensuing relative errors of the simpler analysis will be of comparable magnitude to those of Table

3.1, which will be acceptable for this investigation of the variable stiffness concept.

As an example of the nonlinear static solution of a variable stiffness cylinder, the radial dis-

placement profile for a [Ok_<15175>]6 s variable stiffness cylinder under axial compression is shown

in Figure 3. I 1 for various values of the load parameter. Again the last load level is the one at
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Figure 3.11: Nonlinear Displacement Profiles of [0"&_<15175>]_ Variable Stiffness

Cylinder under Axial Compression

which buckling occurs, though it should be noted that its relative magnitude when compared to

unity is mainly due to the normalization parameters used. Comparison of the nonlinear effects in

Figure 3.11 with the constant stiffness laminate of Figure 3.10 reveals that; except for the atypical

membrane response due to the stiffness variation, the influence and magnitude of the nonlinear

boundary layer is equivalent. For small load values, the linear solution can be considered accurate.

As the load is subsequently increased, the boundary layer extends further into the interior of the

shell and oscillates about the underlying membrane solution. Though some slight vestiges of

boundary layer effects do exist away from the ends, the relat;ve magnitude of the nonlinear end

effects appears to diminish its significance. Similar results were found for a variety of variable

stiffness designs, so that the conclusion stating that the nonlinear boundary layer effect has the

same influence as for constant stiffness laminates is considered justified.
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The other alternative that would produce a discrepancy between variable and constant stiff-

ness cylinders involves the non-flat prebuckling state of the variable stiffness laminates. If the

deformation acts as an geometric imperfection, then the membrane solution may be unacceptably

inaccurate for loading under axial compression. To determine if this scenario is present, a plot of

load versus displacement is displayed in Figure 3.12 for both the constant and variable stiffness

structures previously discussed. Three load curves are shown, which terminate at their calculated
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Figure 3.12: Load versus Displacement for Structures under Axial Compression

critical buckling loads. The first two represent the membrane and nonlinear prebuckling solutions

for a perfect structure. The dash-dot curve denotes a nonlinear analysis for a cylinder with an ini-

tial geometric imperfection. For both structures, the imperfection was assumed to be axisymmet-

ric with an axial frequency corresponding to the classical value ix for each cylinder, while the

magnitude of the imperfection was chosen to be 10% of the laminate thickness. First notice in

Figure 3.12 that for the perfect structures, the amount of nonlinearity for the constant stiffness

case seems greater than the variable stiffness laminate. This is due to the fact that the 45 ° plies in

the constant stiffness layup generate a more active boundary layer than the 15 ° plies that are

present near the supports for the variable stiffness case, leading to more significant nonlinear

effects when the load is increased. However, the relative magnitude of the nonlinearity for the per-

fect structures is largely overshadowed when a small imperfection is introduced. For the imperfect

structures, the drop in buckling load and increased nonlinearity are quite significant, and conform
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to the expected results of postbuckling analysis. It is thus ;urmised from Figure 3.12 that if the

prebuckling shape of the variable stiffness cylinder acted like an effective imperfection, the non-

linearity present in the load-displacement curve and the resulting decrease in the critical load

would be much more pronounced. Therefore, the added complexity to compute the buckling load

using the nonlinear prebuckled state is not warranted here, since the relative error when compared

to the membrane estimate should remain within the errors demonstrated in Table 3.1 for perfect

structures. Of course, using this approximate theory for design optimization of cylinders under

axial compression may lead to other problems, such as increasing the imperfection sensitivity of

the structure by finding structures with many coincident buc_ding modes, however these concerns

should be postponed until after the initial investigation into the possible improvements using the

variable stiffness concept is complete.

The results presented in this subsection have dealt exclusively with cylinders under axial com-

pression. This is due to the fact that it is under this loading condition that the nonlinear effects and

imperfection sensitivity have been found to be most influential on the calculated buckling toad.

Experiments have shown that cylinders buckling under external pressure and torsion agree with

the theoretical estimations that use either the membrane or nonlinear prebuckling solutions.

Therefore, the choice of the membrane prebuckling is warranted for all axisymmetric loading.

3.5.2 Curvilinear Fiber Paths

Now that the appropriate solution technique to use for the eigenvalue problem has been deter-

mined, the buckling response of laminates with curvilinear fliers can be investigated. As with the

material failure results, [:_],s stacking sequences will be used to highlight the variable stiffness

effects. A one link linear variation will be used initially with no manufacturing constraints consid-

ered, and the $2 boundary condition will be used unless specifically mentioned otherwise. The

discussion is divided into general results for various sizes of cylindrical shells under the basic

loadings of axial compression, external pressure, and torsion. Relative dimensions of cylindrical

shells are often defined in terms of the Batdorf parameter, whizh is given as

L4 "_ I 1_122 -- "_ 122 (3.27)

Z_ = 12R2 /,_11_22/_11622

This expression was originally derived for isotropic shells by Batdorf 32, and the definition above

in terms of orthotropic stiffness quantities was supplied by Nemeth g4. This parameter will be used

to define the sizes of the variable stiffness cylinders through the use of their average skin stiffness

quantities of Eq. (3.11). The actual dimensions for the cylindels are given in Table 3.2.



Chapter 3.0 Axisymmetric Solution with an Axial Stiffness Variation 103

Axial Compression

In general, a variable stiffness cylinder defined by a one link variation with TO and T z under

axial compression is found to behave like a constant stiffness cylinder with the fiber orientation

angle being the average of the two angles, especially for cylinders in which the axisymmetric state

is the critical buckling mode. For instance, the buckled mode shape of an axially compressed cyl-

inder with end angle TO= 15 ° and mid-length angle Tj = 45 ° is shown in Figure 3.13 along with

[+_30]_, Laminate, _:r = 242.9 xl03 lbs

[0-!--<15145>]6 s Laminate, _:r = 234.1 × 103 Ibs

0 0.5 1 1.5 2

Figure 3.13: Mode Shapes of Cylinders under Axial Compression (Zb -- 800)

the mode shape of a constant stiffness shell with _p = 30 °. Both cylinders buckle at similar load

levels and deform into a mode shape with m = 11, n = 0 being the dominant harmonic term, how-

ever the variable stiffness shell has other harmonic terms that also contribute to the mode shape.

For constant stiffness laminates under the $2 boundary condition, the harmonic frequencies in

terms of the axial wavenumber m are decoupled, much like the situation for the circumferential

wavenumber n. This produces mode shapes that are completely defined by the wave numbers m

and n, much like the classical solutions derived in Section 1.2.2, Eq. (1.3), (1.7), and (1.10). How-

ever for variable stiffness cylinders, the spatial variation of the stiffness terms couples the har-

monics to produce a mode shape with variable wavelengths in the x-direction. As one would

expect, the character of these wavelengths is dependent on the local values of the stiffness param-

eters. For example, the classical buckling frequency of a [+1516 s laminate is _x = 14.8, while for a

[+4516s layup it increases to 21.9. This is reflected in Figure 3.13, where the middle of the cylin-

drical shell experiences a higher buckling frequency due to the local stiffness properties. This

trend of the stiffness properties defining the resulting frequency is observed for nearly all variable

stiffness cylinders under axial compression. Since the buckling frequencies for most laminates are
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relatively high, the failure of axially compressed cylinders through instability is often character-

ized by the weakest areas dominating the buckling response. For instance, the critical load of the

[_-4-0<15145>]6s laminate in Figure 3.13 is analogous to the value for a [+45]6 s cylinder and the most

significant aspect of the buckled shape occurs in the middle of the cylinder. This buckling failure

characteristic somewhat resembles the "weak link" concept of the material failure results, though

the global nature of the buckling results somewhat alters the nature of the failure mode.

•To see this effect in greater detail, a contour plot of the buckling load under axial compression

with respect to the endpoint angles To and 7"1 is shown in Figure 3.14. The critical loads are nor-
g
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Figure 3.14: Contour Plot of Axial Compression Load for One Link Variation (Zn -- 800)

malized with respect to the optimal buckling load of the best constant stiffness laminate, so that

each contour line represents a change of 2.5% of this value. The dashed diagonal line indicates

designs that are constant stiffness laminates (To = 7"1) and the empty and filled circles represent

the variable stiffness and constant stiffness shells with the maximum buckling load found through

standard optimization techniques. As one can see from Figure 3.14, the optimum design for buck-

ling under axial compression (for this geometry) is actually a :;traight fiber cylinder with q) = 17".

so that the empty and filled circles are at the same location. The "weak link" phenomenon is best

represented by the top and right hand portions of the contour l:lot, where the horizontal and verti-

cal contour lines indicate that the critical load is determined by the least resistant areas of the stiff-

ness distribution. Furthermore, the diagonal contour lines at t_e bottom left region resemble the
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averaging property that was introduced through the results of Figure 3.13. Also note that the con-

tour plot is nearly symmetric about the constant stiffness design line. This indicates that the axial

variation of the stiffness does not improve the buckling load for axially compressed cylinders.

This proved to be the case for virtually all cylinders under axial compression due to the two meth-

ods of failure just discussed.

External Pressure

Perhaps the greatest possibility for an improvement in the buckling load by using an axial

variation of the stiffness exists for cylinders under external pressure. This is surmised from the

fact that the effective length of the cylinder has an enormous influence on the critical pressure, and

also through the belief that the stiffness variation can be designed to imitate the response of a

shorter cylinder and therefore improve the buckling load. This has been most easily accomplished

in the past through the use of ring stiffeners. It was mentioned in the introduction that constant

stiffness cylinders under external pressure will always buckle into a mode with one axial half

wave (m = 1). The largest deflection for this mode shape occurs at the middle of the cylinder. Also

proven in Section 1.2.2 (in the discussion of Figure 1.6) was that shorter cylinders always have a

higher critical pressure load than longer ones because of the smaller distance between the

restrained ends. One way to improve the buckling performance under this loading condition is to

include ring stiffeners, which in essence decrease the span between supports by separating the

long cylinder into shorter ones. This is demonstrated in Figure 3.15, where the mode shapes are

displayed for an unstiffened and stiffened cylinder subjected to external pressure. The geometry

No stiffener, p_¢'= 0.9975 (7)
One stiffener, pC,= 2.5005 (10)
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Figure 3.15: Mode Shapes of Ring Stiffened Cylinder under External Pressure
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of the shell corresponds to the one of Figure 3.9, except that only one stiffener located at the mid-

length is included, and the number in parentheses in the legend represents the number of circum-

ferential waves in the buckled shape. The unstiffened shell buckles into one axial half wave as

expected, with the critical value being close to the predicted classical value (the slight deviation

from unity is due to the presence of the D16 and D26 terms that the classical estimate ignores).

Placing a sturdy ring stiffener at the location of the largest displacement cuts the effective length

of the cylinder in half, and significantly increases the critical load and the number of circumferen-

tial waves in the buckled mode shape. It then logically follows that if the variable stiffness shell is

designed to have a high circumferential stiff,aess near the middle (90 ° plies) this area will approx-

imate a ring stiffener, and the buckled cylinder should behave as if it had a central ring stiffener.

The mode shape should then change from a m = I configuration to m = 2 because the stiff center

will not permit large deflections.

To see if this actually happens, several geometries of cylinders were investigated to determine

if such a change in mode shape could be produced through the use of curvilinear fibers, and if any

other mechanisms exist that can improve the buckling performance of cylinders loaded by exter-

nal pressure. The results are again displayed in the form of a contour plot for the end and mid-

length angles, as shown in Figure 3.16. Note that the contour lines are basically diagonal, which

again represents the averaging concept for the one link variable stiffness designs. Also note that
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Figure 3.16: Contour Plot of External Pressure Load for One Link Variation (Zb = 800)
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the maximum value now occurs as a variable stiffness design (shown by the arrow), with a relative

increase over the straight fiber format of around three percent. However, the desired mechanism to

improve the performance of laminates under external pressure, namely the reduction of the effec-

tive length of the cylinder, was not found to occur for any of the geometries investigated. The

main reason for this is that the axial variation of the stiffness parameters through the use of curvi-

linear fibers is not able to produce a drastic enough stiffness change that will act as a ring stiffener.

Instead the stiffness variation produces a buckling mode that is still predominantly an m = 1

mode. However, the results shown in Figure 3.16 do provide some hope, since there does exist

slight improvement over the constant stiffness laminates even with the simple one link variation.

Optimization of designs with more general variations of the fiber orientation angle will be per-

formed in Section 3.6.2 to determine the extent of the possible improvements.

Torsion

For cylinders with an axial stiffness variation loaded by torsion, the results are expected to be

similar to the pressure loaded case due to the sensitivity of cylinder length on the buckling load.

Though the dependence on the length is not as considerable for torsion (as noted in the discussion

of Figure 1.6 and Figure 1.8 in Section 1.2.2), there still exists similar promise for improvement

by decreasing the effective length of the structure. However, this conclusion is based on the results

of the classical estimate of the torsional buckling load as presented in Section 1.2.2, which

ignores the boundary conditions at the ends and allows warping of the cross-section. Neverthe-

less, since the solution in the next chapter does allow warping at the ends, the relative error asso-

ciated with this non-realistic mode shape must be determined.

Our classical estimation for buckling under torsion is briefly reviewed here for ease of com-

parison. In essence, the solution assumes that deformed shape is composed of successive cross-

sections with n circumferential waves that are rotated about the axis of the cylinder with an axial

frequency 13.For short and intermediate length cylinders, the axial frequency can be shown to cor-

respond to one half wave along the length of the axis, while the value of n is chosen so that the

resulting eigenvalue is a minimum. Mathematically, such an assumed shape for the radial dis-

placement (from Eq. (1.9) with 13= mnR/L) can be written as

mn_ _ cos (m2__)sin (n0)wl( _, 0)= sin(--_--]cos(n0) (3.28)

Comparison of this result to Eq. (3.19) supplies the classical solution for the perturbed displace-

ment functions W t and Wtl. Note that Eq. (3.28) does not satisfy any realistic boundary conditions

at the ends of the cylinder, since W u does not equal zero there.
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The rigorous and classical solutions for the radial d'splacement functions W I and W. are

shown in Figure 3.17 for a typical intermediate length cylinder with the $2 end condition. The

Correct application of boundar_ conditions
Classical approximation of boundary conditions

0

w,,(_,) i
I--- - - "4 I L=48" i

R = 24" ]
H= 0.12" I

/ Layup: [+4516' ]
I , , , I , , I , , , I , , , I

0 0.5 1 1.5 2

Figure 3.17: Comparison of Classical Mode Shape under Torsion

dashed lines represent the classical estimate, which for this geometry produces a mode with one

axial half wave (m = 1) and six circumferential waves (n = 6). Note that the radial displacement is

not zero at the ends for the W n solution. Conversely, the rigorous application of the boundary con-

ditions for the deformed shape, using a membrane prebuckling solution as outlined earlier in this

chapter, is denoted by the solid lines in Figure 3.17. Now the buckled mode shape contains nine

circumferential waves, and the critical load is calculated to be greater than the classical estimate

by a factor of 2.05. Also notice that though the shapes of the curves basically resemble the classi-

cal approximation, the differences near the ends are quite substantial and lead to the large error

between the solutions. Because of this discrepancy, most of the literature devoted to torsion of

cylindrical shells uses some form of the rigorous solution to calculate the "classical" buckling

load. Usually this is accomplished by an assumed form of the displacements as an expansion of

sine functions in the axial direction which automatically satisfy the end conditions. The rigorous

solution shown above agrees exactly with these results.

As the length of the cylinder increases, the effect of the end conditions should diminish and

the rigorous solution should approach that of the infinite length solution with n = 2 and the axial

frequency corresponding to the classical value _x0. The relat:ve error between the classical esti-

mate and the rigorous solution should also diminish. This is demonstrated in Figure 3.18, where

the torsional buckling load is plotted as a function of the Batdorf parameter for two isotropic cyl-
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Figure 3.18: Relative Error of Classical Estimate for Torsion

inders with different RIH ratios. Note that both axes are logarithmic, and that the critical shear

stress resultant is normalized with respect to the infinite length value of Eq. (1.13). As the length

is increased, the relative difference between the two solutions decreases, though the effect is defi-

nitely more apparent for the thicker shell. For the thinner shell, the error seems to remain at a fac-

tor of around two, while for very short cylinders the correct application of the boundary

conditions tends to overshoot the classical estimation by a factor of three, irrespective of the

radius-to-thickness ratio. Therefore, it can be concluded that the effect of the end conditions is

quite significant for short and intermediate length cylinders, and that it increases for thinner

shells. The classical estimation can be regarded as following the basic trends of the rigorous solu-

tion, though when used for analysis its inherent error due to the neglection of the end restraints

must be considered.

Returning to the application of the variable stiffness concept as applied to torsion, the results

of Figure 3.17 and Figure 3.18 indicate that the dependence on length may offer some improve-

ment possibilities over constant stiffness laminates. Firstly, as opposed to the pressure loaded case

that possess a maximum displacement at the mid-length of the cylinder, the cyclic nature of the

torsional buckling mode generates a large area over which large deformation occurs. Therefore an

axial stiffness variation that can resist deformation in these areas have a greater possibility of

improving the buckling load. Also, the exl_ected sensitivity of length on the torsional buckling

load implies that artificial ring stiffeners should also add to the resistance to instability. For curvi-

linear fibers using a one link variation, the results are displayed in Figure 3.19, which is the typi-



Chapter 3.0 Axisymmetric Solution with an f xial Stiffness Variation 110

90 0 15 30 45 60 75 9090

75 75

60 60

b'- 45 45

301 30

15 15

0 0 15 30 45 60 75

To

Figure 3.19: Contour Plot of Torsional Load for One Link Variation (Z_ ---800)

cal contour plot of the critical load in terms of the end point angles. Again note the averaging

effect for the designs at the bottom right of the figure, however now there also exists a definite

maximum which occurs as a variable stiffness design. The mode shapes for the radial displace-

ment for both of the maximum designs, variable and constant stiffness, are shown in Figure 3.20.

Notice how the stiffness variation forces the maximum deformation to be concentrated in the mid-

[0!<29.1183.4>]_, _"= 2.01 xl0 _ Ibs-in (8)

[_+69.4]_ Laminate, _v_ = 1.94 xl06 Ibs-in (7)

w,(_) .. -/f"_. _.-_

Lk/ /- \'. "-,
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Figure 3.20: Mode Shapes of Optimal Designs under Torsion (Z b -- 800)
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die of the cylinder even more than usual. This, in essence, shortens the cylinder and thereby pro-

duces the higher buckling load, though not to the extent desired. Further improvements may be

possible for more general variations of the fiber orientation angle, which is investigated in the next

section.

3.6 Optimization under Axisymmetric Loading

The basic trends and optimization results demonstrated in the last section for curvilinear fibers

under axisymmetric loading is expanded in this section to more practical design problems. In the

first subsection, the one link variation is used for several geometries of cylinders to determine the

sizes that show the most promise for the use of curvilinear fibers. These results lead to optimiza-

tion of the critical loads using a more general variation of the fiber path. Emphasis for this design

study is on the longer cylinders, which give the curvilinear fibers more freedom to vary within the

manufacturing constraints. Also included in this portion is stacking sequence optimization, since

the general [_+tp] symmetric layup may not be the best choice. Finally, a quick comparison

between the curvilinear fiber designs and a constant stiffness laminate with a central ring stiffener

is conducted to determine which mechanism has a greater effect on improving the performance of

composite laminates.

3.6.1 One Link Variation for Various Cylinder Sizes

The general material failure and buckling results presented in the last two sections dealt pri-

marily with a specific size cylinder constructed with a [+tp] stacking sequence. This subsection

extends on these results by finding the optimal configurations for several geometries of variable

stiffness cylinders that utilize the one link curvilinear fiber path definition. The results should

indicate general trends about the usefulness of the variable stiffness concept as applied to cylinder

sizes under particular axisymmetric loading conditions. For these design studies, the [:£_tp],s stack-

ing sequence will be the only layup considered, and the manufacturing constraints will be

ignored. These considerations are implemented to highlight the stiffness variation and to fully

explore the possibilities of the curvilinear fiber format. More practical laminate constructions that

fall within the manufacturing guidelines for curvilinear fibers will be utilized in the next subsec-

tion for the geometries that show the most promise using these simple guidelines.

Six representative values of the Batdorf parameter Zb are chosen for the initial study. The opti-

mization is designed to find the configuration of the one link fiber orientation angle that produces

the greatest value of the critical load (that being the smaller of the material failure load and the

buckling load) for the cases of axial compression, external pressure, and torsion. The curvilinear

fiber path is defined by two variables: the fiber orientation angle at the end of the cylinder (To),
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and at the mid-length (Tl), and these quantities are constraiaed to remain between 0 ° and 90 °. For

such a simple optimization problem, traditional gradient-based strategies are used to find the opti-

mal designs. These techniques are likely to only find local optima, therefore for problems with

multiple optima such as these (note the several optima in Figure 3.14) various starting points for

the optimization process are used, and the ultimate designs are determined as the best design from

these local optima. The results of the design studies are reported in Table 3.2:

R = 24" for

all cylinders

Z b =2
L = 2.4", 24 plies

Z b = 50

L = 12", 24 plies

Z b -- 300

L = 24", 16 plies

Z b = 800

L = 48", 24 plies

Z b = 5,000

L = 120", 24 plies

Z b -- 20,000

L= 170 _, 12 plies

Axial Compression

(x 103 lbs)

To = 0 °, Tt = 0 °
T rr = 724.0

Increase = 0.0%

TO= 21.0% T l = 18.6 °
/xr _ 284.3

Increase = 0.0%

To = 73.3 °, Ti = 73.3 °
1

/xr = 120.3

Increase = 0.0%

To = 17.0 °, Ti = 17.0 °

F rr = 269.7

Increase = 0.0%

To = 72.3 °, Ti = 72.3 °
bx_ = 269.2

Increase = 0.0%

To = 71.7 °, T_ = 71.7 °
F cr = 65.71

Increase = 0.0%

External Pressure

(psi)

To = 43.2 °, Tt = 32.2 °

pCr = 400.9

Increase = 4.5%

To = 37.6 °, Ti = 90 °

pCr= 34.66

Increase = 8.7%

To = 61.4 °, T1 = 90 °

pCr = 5.675
Increase = 4.6%

To = 64.7 °, Tl = 90 °

pcr= 7.821
Increase = 3.2%

To = 90 °, T1 = 90 °

pcr _--3.201
Increase = 0.0%

To = 90 °, Ti = 90 °

pC_ = 0.3997
Increase = 0.0%

Torsion

(x 106 lbs-in)

To = 45.0 °, TI = 45.0 °
_cr= 72.10

Increase = 0.0%

To = 41.7 °, Ti 52.4 °
T =r= 5.273

Increase = 0.48%

To = 30.7 °, TI = 71.2 °

7rr= 1.168

Increase = 4.7%

TO= 29.1 o, T1 = 83.4 °
'_rt:r "- 2.005

Increase = 3.4%

To = 69.2 o, T 1 = 90 °
_cr_. 1.266

Increase = 0.88%

To = 90 °, T| = 90 °
1

Tc_ = 0.2294

Increase = 0.0%

Table 3.2: Results of Optimization of Linear Variable Stiffness Cylinders

For only two cases (Zb = 2 for pressure and torsional loading) is the material failure load signifi-

cant. Buckling is the critical failure mode for all other by cases by a considerable margin.

The first conclusion from the results shown in Table 3.2 concerns the lack of improvement of

an axial stiffness variation for the load case of axial compression, in which the optimal configura-

tions correspond to constant stiffness laminates for all cylinde: sizes. This result can be explained

through the known behavior of constant stiffness laminates under axial compression. As discussed

in Section 1.2.3 with regards to the Koiter circles of Figure 1.a, there exist numerous possibilities

for the buckled shape of an axially compressed cylinder in terms of the axial frequency 13and the
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circumferential wavenumber n. Furthermore, many of these eigenmodes possess similar eigenval-

ues, especially for thin laminates in which the buckling frequencies are relatively high. As a con-

sequence of these multiple possibilities for the dominant mode shape, axially compressed

cylinders that contain an axial stiffness variation deform into a linear combination of these coinci-

dent modes, thereby generating a buckled shape that reflects the local stiffness properties (as evi-

denced by Figure 3.13) but does not increase the resultant buckling load. Therefore it is concluded

that an axial stiffness variation will do little to improve the buckling load under axial compres-

sion, since the stiffness variation will neither redistribute the applied load nor alter the buckled

shape in an advantageous manner.

The foregoing explanation of the buckling characteristics for the axial compression case also

offers insight as to why there is relative improvement for an axial stiffness variation under loads of

external pressure and torsion. As discussed earlier, the critical mode shape for both of these trans-

verse loads ordinarily contains only one half-wave (m = 1) in the axial direction. Furthermore,

eigenvalues corresponding to mode shapes that contain multiple axial half-waves (m > 1) are sig-

nificantly higher than the critical buckling value (as exemplified in Figure 3.15). Therefore, when

a cylinder with an axial stiffness variation is subjected to external pressure or torsion, the resulting

critical eigenmode attempts to deform into the m = 1 shape with some local variations due to the

local stiffness properties. This, in effect, activates the modes corresponding to m > 1 and thereby

increases the buckling load by altering the deformed shape of the buckled cylinder. Though the

relative increases for a one link variation are not that significant for either load case, as evidenced

by Table 3.2, their improvements can be attributed to this mechanism. More general variations of

the fiber orientation angle should produce even greater increases in buckling performance. This

will be addressed in the next subsection.

A few remarks are also needed to explain the poor results in Table 3.2 for the longer cylinders

under external pressure and torsion. On one hand, the one link variation of the fiber orientation

angle is not that effective at varying the stiffness over such a long span. More general variations

need to be included. Furthermore, constraining the stacking sequence to [:L-t,p]_ laminates is

severely limiting for optimization purposes. For instance, the buckling of longer cylinders under

external pressure and torsion is dominated circumferential bending, therefore the layup that pro-

duces the highest buckling load should contain many 90" plies that best resist this type of defor-

mation. This leaves very little room for the variable stiffness effects to work. Employing arbitrary

stacking sequences should alleviate this problem, since without the [+tp],s layup constraint several

(constant stiffness) 90 ° plies can easily be included in the stacking sequence. Both of these con-

siderations are investigated in the next subsection.
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3.6.2 Fiber Path Optimization for Selected Cylinders

The results of Section 3.6.1 have indicated that the best hope to improve the performance of

cylinders under axisymmetric conditions is to find an axial stiffness variation that effectively

alters the shape of the resulting eigenmode to increase the buckling load. The load cases of exter-

nal pressure and torsion show the most promise, and longer cylinders are intuitively believed to

offer the greatest improvement since they provide more opportunity for the curvilinear fiber paths

to vary. Therefore, this subsection utilizes a more general definition of the fiber orientation angle

through the use of the linked line segment approach, defined earlier in Figure 2.6, and investigates

the possible gains in failure loads for two specific geometries from Table 3.2. The specific cylin-

der sizes correspond to Zb = 300, which showed the greatest consistent increase for the relevant

loading conditions, and a longer cylinder with Z b = 5,000 (it was chosen over the Zb _ 20,000 case

due to the greater number of possibilities for stacking sequences). Though increased failure loads

are only expected for the transversely loaded cases, axial compression is also investigated for

completeness.

The optimization problem is represented as:

maximize critical load(T/, q_k) (3.29)

such that manufacturing constraints are satisfied

The design variables are the endpoint values of the fiber orJentation angle using the linked line

segment approach, and the designation of each laminae within the stacking sequence. The end-

points of the line segments are evenly spaced within the half-length of the cylinder, and the design

cases are arranged so that each successive scenario increases the number of line segments in the

definition of the fiber orientation angle. The possibilities for each ply include a positively or nega-

tively aligned variable stiffness ply (denoted as +cp or -cp, respectively) and a constant stiffness

layer with either a 0 ° or 90 ° ply angle. The laminate is assumed to be symmetric so that only half

of the stacking sequence need be considered, and the two outermost plies of the laminate are stip-

ulated to be :k-c0 so as to provide the greatest effect of the variable stiffness concept. The discrete

nature of these ply designation variables precludes the use of standard gradient-based optimiza-

tion techniques, therefore the numerical optimization will be performed through the use of a

genetic algorithm, which is ideally suited for problems involving discrete variables. Details of this

optimization technique are provided in Appendix A, Section A.6.2.

The manufacturing constraints alluded to in the statement of the optimization problem include

two criteria: a stipulation that the laminate be balanced; and a curvature limit on the curvilinear

fiber path. The balancing constraint is enforced through the use of a penalty function within the
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optimization scheme, in which laminates that do not have an equal number of +_ and -_0 plies are

penalized to lower their relative worth. The latter constraint, based on the limit on the curvature of

the fiber path due to the manufacturing process, helps to define the form of the endpoint design

variables within the optimization scheme. Traditional methods would suggest that each endpoint

angle should be designated as a separate design variable, and the manufacturing limit on curvature

would then be incorporated as an inequality constraint within the optimization problem. However,

it was found that when using a genetic algorithm, this technique produced many designs that were

infeasible due to the curvature constraint, thereby wasting computing time. Therefore, an alternate

method to define the values of the fiber angle variables is used.

The procedure is predicated on establishing a base angle as one independent variable, and then

defining the subsequent fiber orientation angle variables as positive or negative changes from the

reference value. The base angle is chosen as TO, and it is limited to discrete values to remain con-

sistent with the genetic algorithm technique. Each remaining endpoint angle T,. is given the possi-

bility of either no change from its predecessor, or a positive or negative step. The size of the step

is limited to remain within the manufacturing constraints, thus every design is feasible in a manu-

facturing sense. For longer cylinders or designs using only a few line segments, the curvature con-

straint may not be significant, therefore an upper limit of 15 ° is also prescribed for the step size.

This is expressed mathematically in Eq. (3.30):

T O _ {5 °, 15 °, 30 °, 40 °, 45 °, 50 °, 60 °, 75 °, 85 ° }

Ti = Ti-! +-step i = 1, Nseg

step_{ O'min[15° 180°.L .]_ (3.30)
' 2 rr,Nseg_minC'OS Tmi _ J

Here N_,g is the number of line segments in the half-length, which increases for each optimization

case to track the evolution of the fiber path. Also note that when N,,g = 0, the problem reduces to

standard (constant stiffness) stacking sequence optimization with the value of the fiber orientation

angle for the +_0 plies being limited to the choices shown in Eq. (3.30).

The results of the fiber path optimization for the axial compressive case corroborate the

expected outcome. The final designs when using the linked line segment approach are constant

stiffness laminates that produce the best resistance to buckling under axial compression. The

stacking sequence optimization also provides a significant increase over the basic [:_],s layups

reported in Table 3.2. In detail, the solutions for each geometry under axial compression are:
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Z b -- 300 --->[+45/0/902/0/+45]s pcr= 175.9×1031bs

Z b- 5000 ---->[+45/90/02/90/+452/90/0] s pcr = 395.7×1031bs

(3.31)

The results for external pressure and torsion for each geometry are reported in Table 3.3 and

Table 3.4. The stiffness variation for each case is defined by a small plot of the fiber orientation

angle (marked at 15° intervals) versus location within the half-length.

Constant

Stiffness

1 Segment

2 Segments

4 Segments

8 Segments

External Pressure

[+85/90/+85/03]s

per = 6.9131 psi

Increase = 1.84%

F

[+¢p/90/-+¢P/03]s
Increase = 4.27%

[-!'cp/90/+cP/03 ]s
Increase = 5.79%

/

[+cp/90/+cP/03] s
Increase = 6.57%

Torsion
i i

[+60/90/-+60/03] s
_r = 1.419×106 lbs-in

u.P

[+_/90/--+q)/03] s

Increase = 1.05%

]

Increase = 1.07%

E
/

, _ ,

[_q)3/02]s

Increase = 0.92%

[---+_3/02]s

Increase = 0.78%

Table 3.3: Results of Shape Optimization for Zb = 300 Variable Stiffness Cylinder
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Constant

Stiffness

1 Segment

2 Segments

4 Segments

8 Segments

16 Segments

sLP
v

9-

9-

_LP

9-

External Pressure

[+85/905/05]s

per = 4.0885 psi

fJ

J I I

[ +--'(p/902]+--tP]06] s

Increase = 1.23%

t i I

[-----(P3/06]s

Increase = 2.16%

_LP

9-

xld"

9-

Torsion

[--+75/903/--+q)/05] s
_r = 1.924×106 lbs-in

t I I

[:L_/-_/90/-_/07] s
Increase = 2.92%

['l'¢p/+Cp/902/-_/06] s

Increase = 3.98%

S

i
i I |

[+(P3/O6]s

Increase = 4.54%

I I a

[++-¢p19031+--cp105]s
Increase = 0.78%

[:t:_/903/:L'tP/05] s
Increase = 0.00%

[:_/902/'1"_/06] s

Increase = 1.30%

[+ 2/9o/z o/Os]s
Increase = 1.30%

_=_

9-

I t I

[+(I)/902/+(I)/06]s
Increase = 0.99%

9-

Table 3.4: Results of Shape Optimization for Z b -- 5000 Variable Stiffness Cylinder
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As evidenced by the tables, the relative increase over constant stiffness laminates is not overly

impressive. The optimal designs are typified by a gradual change from the value at the ends to a

fiber orientation angle in the middle that shows the best resistance to the applied load. The tor-

sionally loaded cylinders exhibit the least amount of improvement, while the case of external

pressure does show slight promise. The buckling mode for the best constant stiffness laminate and

the optimal variable stiffness design (8 segment case) for the Z b -- 300 geometry are displayed in

Figure 3.21. Notice that the variable stiffness design still buckles in the basic mode corresponding

Constant Stiffness Laminate, ._L_= 6.9131 (9)
Variable Stiffness Laminate, p_r= 7.3676 (10)

"...

, , , I , , I , , , I , , ,

0 0.5 ! 1.5 2

Figure 3.21: Mode Shapes of Optimal Designs for External Pressure (Zb = 300)

to one axial half-wave. The stiffness variation does slightly change the deformation pattern by

limiting the maximum deformation to the middle area of the cylinder. The number of circumfer-

ential waves also increases, albeit slightly, so that the buckling frequencies of the variable stiff-

ness laminate are higher than the constant stiffness design and thus the variable stiffness cylinder

require a larger load to become unstable. The curvilinear fiber path mechanism does not seem to

be able to produce enough stiffness variation that could actual y generate a critical eigenmode that

contained two axial half-waves as the dominant mode. A mote traditional mechanism to produce

this effect is through the use of ring stiffeners and frames. In fact, the inclusion of only one ring

stiffener for the constant stiffness design shown in Figure 3.21 produces an increase in the buck-

ling frequency of over 90%, with the mode shape deforming into two axial half-waves much like

the example of Figure 3.15. Therefore, it is concluded that in a practical manufacturing environ-

ment, the use of ring stiffeners is much more effective than th._ curvilinear fiber format, since the

buckling performance is substantially increased without the added complexity of the manufactur-

ing process required for curvilinear fibers.



Chapter 4.0 Linear Membrane Solution for a

Circumferential Stiffness Variation

This investigation now changes direction ninety degrees by examining the response of cylin-

drical shells with a circumferential stiffness variation. Besides the standard curvilinear fiber for-

mat, the variable stiffness concept now can also incorporate longitudinal stiffeners, including

stringers and longerons, but does not contain ring stiffeners or any variation which will produce

different characteristics of the cross-section anywhere along the length. Since the stiffness now

varies circumferentially, the resulting analysis will contain greater detail in this direction and sim-

plifying assumptions will be used in the axial direction so that one-dimensional solution tech-

niques are still applicable. Unfortunately, the possible simplifications associated with the analysis

in the axial direction are quite limited, with the results that the response is assumed to be basically

constant along the length. At first glance, this severely limits the practical applications of the anal-

ysis, for real structures almost certainly have end conditions which contribute significantly to the

stiffness response. By neglecting these effects, we limit the scope of the problem to either very

long cylinders that do not depend on the boundary conditions, or an approximate solution of only

a thin slice of the cylinder cross-section in which the end conditions are ignored. Fortunately,

there exist opportunities within these restrictions that can still be considered worthwhile for a cyl-

inder with a circumferential stiffness variation. These include (1) the nonlinear Brazier effect for

infinitely long cylinders; and (2) linear stability analysis of cross-sections of short cylinders sub-

jected to general loading that can be considered constant along the length. Of these two options,

the latter choice is the simpler and will be investigated first, while the former case will be studied

in the next chapter.

Therefore, this chapter investigates the linear membrane solution for general loading of a short

cylinder segment with a circumferential stiffness variation. Several remarks regarding the chosen

restrictions for this specific problem should be addressed. Firstly, linear membrane theory is used

since it was shown that it was a good first approximation for the axisymmetric problem in the pre-

vious chapter. The property of membrane theory to disregard the end conditions can also be uti-

lized so that an accurate solution in the axial direction need not be performed. This also removes

the nonlinearity associated with the boundary layer near the ends, so that a linear solution is con-

119
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sidered adequate. Secondly, since the solution method mu,_t already be more complex in the cir-

cumferential direction due to the stiffness variation, loads which produce non-axisymmetric stress

distributions can easily be included. This includes bending moments and shear forces in each

direction. Finally, the restriction that the cylinder segment be short is regulated by the use of clas-

sical membrane theory (discussed in Section 2.2.3), and we can therefore choose a segment that is

so short that any beam loads that change along the length can be considered constant. The preb-

uckling solution and stability analysis of such a shell are detailed in the next two sections, and

numerical results and design studies using these analyses are also presented.

4.1 Static Equilibrium

This section presents an analytical solution for the stress state of the shell in terms of the

applied beam loads. Linear membrane constitutive theory is used, and equations for the stress

resultants and average cross-sectional displacements are developed and normalized with respect

to their classical buckling estimations. These quantities represent the prebuckling state of the

shell, which is used to calculate the material failure load and is also needed to estimate stability.

4.1.1 Linear Membrane Solution

The linear membrane solution begins with the specialization of the general governing equa-

tions of Chapter 2.0. All expressions are stipulated to be linear, and the constitutive laws follow

classical membrane theory which assumes that the shell only deforms under extension and shear

within the middle surface of the shell. We also include the possibility of beam bending and trans-

verse shear loads in both directions. Under these constraints, the system of equations becomes:

Strain-displacement relations, Eq. (2.20):

o _U °

£x = "_X + l¢,y(X)R( cosO - COSOref) + rz(x)RsinO
(4.1)

o I (bv ° ) o _au° av°% = _,-_ + w° _txo= )iX + _

Membrane constitutive theory using effective stiffness measu-es r Eq. (2.68):

ExH

N O = VxoEoH

x 1 - Vx0V0x

0

voxExH

1 - Vx0V0x

EoH

1 - VxeV0x

0

0 o
£x

O

0 £e
0

TxO
G xelU - .

(4.2)
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Equilibrium equations, Eq. (2.87)-(2.94):

3Nx 13Nxo 3Nxo 13No No

+ R =o =° = p

d 2

-_x2 [My] = 0

d d 2

V z - _-_[My] d--_[Mz] "" 0 Vy = J-_[Mz]

(4.3)

Boundary conditions Eq. (2.97)-(2.102):

u°(0, 0) = _r/2 or Nx(0, 0) = 0 u°(L/2, O) = 0

v°(O, 0) = V/2 or Nxo(O, O) = 0 v°(L/2, O) = 0
(4.4)

_"_y(0) = _y or My(O) = 0 Vz(Z/2) = F/z _y(L/2) = 0

f_z (0) = _z or Mz(O) = 0 Vy(L/2) = Vy _z(L/2) = 0

We need not include the boundary conditions for the radial displacement since membrane theory

neglects these constraints. The sign conventions for the possible loads applied to the cylinder seg-

ment are displayed in Figure 4.1 for a generic cross-section of a short cylinder segment. Note that

these loads correspond to the assumed directions shown in Figure 2.9, where the short cylinder

section is located within the region to the left of the symmetric plane.

i
I

I

i

Figure 4.1: Geometry and Loading for Short Cylinder Segment
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The one-dimensional beam equations, given in Eq. (J..3), along with their boundary condi-

tions, Eq. (4.4), can be solved quite simply. These equations conform to a shear force-bending

moment analysis of elementary beam theory:

My(x) = My- Vzx Vz(x) = _'z

Mz(x) = Mz + _'yX Vy(x) = Vy (4.5)

Note that the moments My and M z represent the constant values applied at the ends of the cylinder,

and that Eq. (4.5) holds only for the region to the left of the symmetric plane in Figure 2.9. There-

fore, according to Eq. (4.5), the inclusion of transverse shear forces implies that some quantities

must vary in the axial direction. For now, this axial variation of the loads will be allowed, though

later the beam moments will be treated as constant values which exist at a particular axial location

of the beam. These load quantities can also be related to the end rotations applied to the beam,

however to develop these expressions the membrane equations must first be solved.

The solutions for the shell stress resultants are found from the integration of their equilibrium

equations, which are also relatively simple. The third equetion of Eq. (4.3) reveals that the cir-

cumferential stress resultant No depends only on the pressure, which is considered a constant for

this investigation. Then the derivative of No with respect to 0 in the second equilibrium equation is

zero, so that the shear stress N_e must be only a function of 0. This fact enables the integration

of N x in the first equilibrium equation, so that the total solution for the shell stress resultants is:

x dN xo

No(x, O) = pR Nxo(X, O) = Nxo(O, O) Nx(X O) = R"dO + Nx(O, 0) (4.6)

The only membrane stress that varies in the axial direction is Nx, which is expected since this

stress resultant is directly related to the beam moments of Eq. (4.5). As such, we will assume that

this linear variation of the axial stresses is present only fo;" the beam bending response of the

structure, so that the expression for the axial strain eo in Eq. _4.1) varies in the axial direction due

only to the variables Ky(X) and _z(x). Thus the derivative involving u °, representing axial extension

of the cross-section, must be only a function of the circumferential coordinate, and for now this

term is assumed to be a constant so that the cross-section displaces uniformly without warping.

This is expressed mathematically as an assumption for the form of the axial displacement:

u°(x, O) = Z x (4.7)

The middle surface axial strain is then:
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o U

£x = - -_ + Ky(x)R( cosO- cOSOref) + _Cz(x)RsinO (4.8)

The axial stress resultant Nx is found through manipulation of the constitutive equations given

in Eq. (4.2). N x is expressed in terms of the middle surface axial strain E° and the circumferential

stress resultant No, equal to pR from Eq. (4.6):

m

o]Nx(x, O) = Ex(O)H _ + _:y(X)R(cos0- cosOref ) + _z(x)Rsin + Vxo(O)pR (4.9)

Calculation of the total compressive force T results in the following expression:

-F = _Nx(x, O)RdO = - _Ex(O)HRdO + _y(X)HR2_Ex(O)(cosO - cos0re.r)d0 +
(4.10)

r,z(x)HR2_Ex(O) sin 0d0 + pR2_Vxo(O)dO

For integrals around a closed contour such as these, simplifications can be made when the inte-

grand is known to be "odd" or "'even" with regards to a periodic coordinate. An "odd" function,

such as sin0, has opposite sign about 0 = 0 and n, while an "even" function is a mirror image

about these points, like cos0. An integral around the entire closed contour for an odd function is

always zero, while for an even function it is a constant (possibly zero).

For this investigation, the circumferential variation implies that all stiffness terms are even

functions since they are symmetric about 0 = 0 and rr, therefore the third integral on the right-

hand side of Eq. (4.10) is zero. Furthermore, the designation of the neutral surface is defined so

that bending (through the beam curvature _y) does not produce an axial force, therefore the sec-

ond integral must be zero. This defines the reference angle that locates the material centroid of the

cross-section:

_Ex(0)(cos0-cosOref)dO = 0 _ cOSOre f = _Ex(O)cosOdO
_Ex(O)dO (4.11)

The final two integrals on the right-hand side of Eq. (4.10) contain even functions as integrands

and therefore are non-zero, so that Eq. (4. I0) becomes

P
= L(EA)-pR2_Vxo(O)dO (EA) = _Ex(O)HRdO (4.12)

The symbol (EA) represents a measure of the global axial stiffness of the variable stiffness struc-

ture, and is a constant for a circumferential stiffness variation. Eq. (4.12) thus relates the global

end displacement of the cylinder to the loads F and p. Of course, only one of the parameters
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or F can be stipulated at the end of the cylinder, and the other must be found according to

Eq. (4.12). Some special cases also deserve mentioning. If the force F is zero the cylinder pos-

sesses a "free" end, since the axial stresses at the end are absent, and the displacement of the

cross-section due to the Poisson effect is found from Eq. (4.12). Alternatively, a "fixed" end con-

dition may be present, which corresponds to a prescribed v',due of U, and the axial force is deter-

mined using the same equation. Closed ends cylinder.,, also possess the possibility of a

"hydrostatic" pressure, which generates a circumferential stress as well as an axial stress due to

the resultant force acting on the ends. For this case, the end condition is considered "free" and the

value of the axial (compressive) force with respect to the internal hydrostatic pressure is found

from elementary mechanics as F = -p_R 2. Due to these possibilities of load definition, and since

the end displacement U and end load T can be easily interchanged using Eq. (4.12), the loading of

the cylinder for the linear membrane solution will usually be defined by a given value ofT, and

the global displacement calculated only when needed.

Using the expression for the axial force T just derived, the axial stress resultant is

Nx(x, 0)= Ex(O)H[_ + Ky(x)R(cosO- cos0r, f)+ Kz(x)RsinO] +

PRFxo( 0 )Lv Ex(O)HR- "1 (4.13)  xo 0 a0j

The last term in this equation, containing pR, deserves some discussion. For cylinders without

stiffness variation, the expression within the brackets is zero, so that the axial stress resultant does

not depend on internal pressure, as expected (the discussion here is distinct from the "hydrostatic"

case discussed earlier, which introduced the axial load due to pressurization through the force D').

For variable stiffness structures, however, a general circumferential stiffness variation may pos-

sess a contribution of axial stress from this pressure. This is due to the stipulation that the cross-

section displaces uniformly without warping, as assumed in Eq. (4.7). If an internal pressure is

applied to the cylinder, the Poisson effect produces a "free" st_'ain in the axial direction which var-

ies circumferentially following the definition of v_(0). However, this "free" axial strain is not

necessarily constant around the circumference, so that demarding that the cross-section does not

undergo warping requires the presence of axial stresses to produce a constant axial strain around

the circumference. These axial stresses introduce a complicttion, for they also may produce a

resultant beam bending moment for the simple case of internal pressure. Therefore to remove this

unwanted possibility, the cross-section will be allowed to warp in violation of Eq. (4.7). This

effectively removes the last term involving the pressure in Eq. (4.13) without changing any other

expressions, except that the end displacement U should now be considered the average end dis-
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placement of the cross-section.

The calculation of the global beam response is now completed in a similar manner. The defini-

tion for My(x) in terms of Nx, as given in Eq. (4.13) with the pressure terms removed, yields:

My(X) = _Nx(x, 0)(cos0 - cos0ref)R2d0 = (-_Ai_Ex(O)H(cosO - cosOref)R2dO +
(4.14)

r,y(x)_Ex(O)HR3 (cos 0 - cos Oref)2d0 + Kz(x)_Ex(O)xHR3 (cos 0 - cos Oref) sin 0d0

The first integral on the right-hand side is zero according to the definition of 0ref in Eq. (4.11),

while the third term has an odd function as an integrand and therefore vanishes when evaluated at

the limits. A similar situation arises for the calculation of _:zand M z, so that the curvatures become

My(X)

lgy(X) = (Ely)

Mz(x)

r,z(x) = (EIz)

(Ely) = _Ex(O)HR3(cosO- cosOref)2dO

(Elz) = _Ex(O)HR3sin2OdO

(4.15)

The bending stiffness terms (E/y) and (EIz) introduced in Eq. (4.15) are constants for a given cir-

cumferential stiffness variation, and represent the global bending stiffnesses of the cylindrical

structure about each axis. If desired, the definitions for the cross-sectional rotations (D.y, _z) and

beam deflections (a z, ay) can be found through straightforward integration using Eq. (2.3)-(2.5)

along with their associated boundary conditions from Eq. (4.4). For our purposes in this problem,

we will use the force quantities to introduce the loading, so that the definition of the axial stress

resultant Nx is now fully defined along the length of the shell as

- (My- rCzx) (Mz + PyX)_
Nx(x'O)=Ex(O)H[_@A)+ _EI_ R(c°sO-c°SOref)+ ?EI 5 /_ sin 0] (4.16)

The first equilibrium equation of Eq. (4.3) can now be used to determine the shear stress

resultant N_o, which is only a function of 0.

1 dNxo _Nx r Vz R VyR sin 0] (4.17)

Basic integration yields:

V HR2° V,HR2°,
Nxo(O) = JEx(O)(c°sO-c°sOr f )dO JEx(O)sinOdO+C 1o (tZiz) o

(4.18)
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Cn is a constant of integration and represents the value of the shear stress at 0 = 0. Note that the

periodicity of the function Nx0(0) is satisfied since both integrals evaluated around the whole cir-

cumference are zero, as shown earlier, so that Nxo(O) = N_0(2n). The unknown constant must be

evaluated through the application of the integral equations involving the torque:

_'zHR4 "_" O]-7" = _Nxo(O)R2dO = (-'_y) _oEx(O)(cosO--cOSOref)d d0-

(4.19)

PyH R4 "['_" ]_l JEx(O)sinOdO dO + CiR2_dO
(eIz) Uo

Integration by parts is performed on the first two integrals. The first is found to be zero, while

the second becomes a constant expressed as

_Ex(O) sinOdO]dO =-_Ex(O)O sin 0d0
(4.20)

Therefore the value of Cn, which represents the shear stress resultant present at the top of the cyl-

inder (0 = 0) is

-T VyHR2 _Ex(O)O sir, 0d0 (4.21)
C 1 = 27tR 2 2_(EI) z

This answer is somewhat expected, since the shear stress produced by the horizontal force Vy

should be non-zero at the top and bottom, while the contribution there from the vertical shear

force Vz should be zero. In fact, the integral involving thc: horizontal force in Eq. (4.21) has

another meaning: it determines where the shear stress due to a horizontal force is zero. This loca-

tion is termed the shear center of the cross-section, and is cefined as the point through which a

transverse shear force must act so that it does not produce an3" twist, muchlike the reference angle

0,_,iseparates the force and moment of the axial loading. For many structures (most typically ones

with material symmetry about 0 = _2), the location of the centroid and the shear center coincide,

though for general circumferential stiffness variations they raay have unrelated values. Determi-

nation of the location of the shear center is accomplished by i asisting that the shear flow produced

by a transverse beam force does not produce a resultant twi.,t of the cross-section. For a vertical

shear force, this location is found to be at Y = 0 due to symmetry, while for a horizontal force the

shear center reference angle must follow the relation:
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05c

Ex(O)sinOdO = l _Ex(O)OsinOdO (4.22)

Then the location of the shear center is (Y= 0, Z = Rcos0sc). Though not as concise as the defini-

tion of the neutral surface reference angle, it is still a solvable equation once the stiffness distribu-

tion is defined. Using this notation, along with the value for CI, yields:

_7' V,z e - o

V vNxe(e) - 2-_2 +(-_) Ex(e)(cose-cOSeref)ttR2de ,_-¢-. , _ Ex(e)sineHR2dO (4.23)
tLlZ) o, c

Eq. (4.23) can be made even more concise by noting that the integral equations actually repre-

sent the first moments of area, weighted by the axial stiffness, of the variable stiffness cross-sec-

tion. Therefore, we can define these quantities much like the global axial stiffness and moment of

inertia parameters:

0 0

Qz(O) = fEx(0)(cos0- cosOref)HR2dO Qy(O) = _ Ex(O)sinOHR2dO (4.24)

0 e,c

so that the equation for the shear flow N,,o can be written in the traditional form of elementary

beam theory as:

-7" VzQz(O) VyQy(O) (4.25)
Nx°(O) - 2rcR 2 + (Ely) (Elz)

It can be shown that this shear stress distribution also correctly satisfies the relations:

Vz = _Nxo(O) sin0Rd0 Vy = _Nxo(O) cos0Rd0 (4.26)

which represent the resultant shear forces applied to the beam in each direction.

The final equation to consider involves the relationship between the applied torque and twist

of the cylinder. Here we again will use the average amount of twist of the cross-section, since

local warping does exist due to an applied pressure discussed earlier as well as shear warping

from the transverse beam forces and torsional loads. For this simple result, however, we will

ignore these secondary effects to find the torsional stiffness of the structure. The torque defined in

terms of the shear stress resultant has already been used, and is given in Eq. (4.19) as

-7' = _Nxo(O)R2dO (4.27)
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To relate this to the twist of the cross-section, the constitative relations are used to express the

shear stress resultant in terms of the middle surface shear strain, which is a function of the circum-

ferential displacement only since we are neglecting the ability to warp:

0

= _ _-x (4.28)

These equations correspond roughly to Eq. (4.7)-(4.12) for the compressive load and end shorten-

ing, and are expressed in their final form after integration as

P__= _L (GJ) = _Gxo(O)HR3dO (4.29)
R (G J)

This equation is merely the elementary mechanics solution for a cylinder under torsion, where

(G J) represents the torsional stiffness of the variable stiffness cylinder.

To review the linear membrane solution derived in this section, the expressions for the middle

surface stress resultants and global displacements of the cross-section are repeated here in terms

of the fundamental loads and stiffness measures:

- _ Mz(x) ...
Nx(x, O)= Ex(O)H[_A ) + "---Y" R( cosO - cosOre/) + (-_z) t_slnO ]

VzQz!O). VyQy(0) (4.30)N0(0) = pR Nxo(O) = -7" +
2nR z (EI_) (Elz)

- FL pR2Lr ,, P TL

U = (EA"-"')+ (-_ _vxO(t_)dO R = (GJ-'--_

4.1.2 Normalization with Respect to Classical Buckling Estimates

Normalization of these expressions is completed in the traditional manner with respect to their

classical buckling values. However, it should be pointed out here that many buckling estimates are

formulated by assuming a "smeared" skin with constant stiffness parameters that include the

effect of the closely spaced stiffeners. This method tends to overestimate the stiffness of the shell

and leads to poor estimates of the buckling load. In this inve,tigation, the estimates are based on

the average stiffness quantities of the skin only. For general stiffened shells, the buckled mode

shape usually occurs with the skin buckling between stiffene_, so that smearing the effective stiff-

ness of the stiffeners into the parameters determining the cla_,sical buckling estimates will surely

provide significant error. Therefore, to accurately estimate when such a stiffened structure reaches

its critical value due to skin buckling, we assume that the (a) the axial strain of the structure is the
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same as that of the skin, and (b) longitudinal stiffeners do not carry any of the circumferential and

shear loads. These assumptions makes it possible to compute the corresponding stresses in the

skin in relation to the stresses of the total structure. The applied loads become unstable when the

maximum skin stresses attain their critical values as calculated from the classical solutions of

Section 1.2.2. Of course, since it is assumed that only the skin buckles, this critical stress must be

located where no stiffener is present. However, for the purpose of normalization it is merely

assumed that such a location is present, and the buckling values can then be calculated for the

structure in terms of its global stiffness and geometric parameters. The classical buckling esti-
,, cl_ cl

mates for the middle surface stress resultants are given by Eq. (1.4) [N x ], Eq. (1.8) [_0 ], and

Eq. (1.14) [fvc_ ] in terms of the average skin stiffness, denoted by a hat, which for a circumferen-

tial stiffness variation is calculated as:

^ 1 skin

Dij = _-_Dij (0)d0 (4.31)

The first calculation is for buckling due to a compressive axial force. The axial strain for the

structure is given in brackets in the first equation of Eq. (4.30), and according to assumption (a)

above this strain must be equal to the strain in the skin. The critical buckling value for this strain

occurs when the stress resultant in the skin reaches its classical value, where the stress-strain rela-

tionship between the skin stress resultant and strain is approximated using the average values. The

solution for the critical end displacement for an unpressurized cylinder is also included:

cl l_Cl --O ct
m

_'x - l_,xH L (4.32)

The value of the critical force is then easily calculated by equating the strains:

-F _[Cxl _cl (EA ) ^ cl

- ExH _ = _x H(-Nx ) (4.33)(EA)

For buckling of a cylinder due to pure bending, an approximation first introduced by Seide &

Weingarten s5 is utilized. By solving the eigenvalue problem associated with bending of unstiff-

ened isotropic circular cylinders of various radius-to-thickness ratios, they discovered that the

buckling value of the moment occurs when the maximum bending stress is equal to the critical

value of the cylinder under axial compression. A detailed discussion of the implications of this

discovery will be presented in Section 4.4.1, so that for now this generalization will only be used

to find the critical bending load. Therefore, applying the results of Seide & Weingarten in terms of

the maximum compressive strain of the structure results in a similar method to find the critical
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moments that was used for the axial force. Equating the ma_.imum compressive strain of the struc-

ture (which occurs at the top, bottom, or one of the sides of the cross-section according to the

direction of the beam bending moments) to the corresponding critical value for axial compressive

strain from Eq. (4.32) results in the following classical estimates for the beam bending moments:

M_' !Ely)(__ct) --cl (El z)-- = M z = 7--'--(-/_/cl) (4.34)
ExHR ExHR

To make this expressions more concise, nondimensional moments of inertia are defined as:

(EI z )
= l_TEx(0)sinZ0d0 (4.35)]y = _x _HR3(EIy) -- I_x(0)(COS0_ coSOref)ZdO i z - _x--_R3

where the effective longitudinal modulus has been normalized with respect to the stiffness proper-

ties of the skin:

_'x(0) = Ex(O)
/_x (4.36)

Thus the final form for the critical moments is

_Cyt - ^ cl _l - ^ cl= _R2Iy(-Nx ) = rcR2lz(-Nx ) (4.37)

Note that for constant stiffness laminates the normalized moments of inertia are equal to unity.

Buckling due to an external side pressure ("side" implies that the pressure produces only cir-

cumferential stress, so that the axial stress associated with hydrostatic pressure for a closed end

cylinder does not exist) can be found easily from the second equation of Eq. (4.30). Since the skin

is assumed to carry all of the circumferential loads, the classical buckling pressure is merely

ct _cot

p = _ (4.38)

Lastly, for torsion and shear force loading, the skin is assumed to carry the majority of the

shear stresses, which vary as per Eq. (4.30). Furthermore, since the effect of the laminate

stiffnesses Dl6 and D26 are ignored due to the use of membrmle constitutive theory, then the sign

of the applied loads does not matter. Thus for a constant sheal stress produced by the application

of an axial torque, the classical buckling value of the load and end twist is simply

_cl 2^cl vcl 2_R3 l_lCloL= 2_R Nxo - (4.39)
(G J)
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For the vertical and horizontal beam forces, the shear stress of Eq. (4.30) is not constant but

varies around the cross-section of the shell. To determine when this stress state becomes unstable,

an assumption similar to the one used for cylinders under pure bending must be introduced. Few

studies of a cylinder buckling under a constant beam shear force have ever been presented in the

literature, for the most basic reason that the presence of the beam force produces an axial bending

moment that increases linearly along the length and which kusually dominates the buckling

response. However, for very short cylinders under such a loading condition, Schr6der s6 has shown

that the critical buckling mode is dominated by these shear stresses. Further investigation of the

resulting eigenvalue problem for an unstiffened cross-section under a constant beam shear force

reveals that its formulation very closely resembles the one originally used by Seide &

Weingarten 85 for the study of buckling under pure bending. Therefore, it is conjectured here that a

similar result should occur for shear loading: that instability due to a transverse shear force occurs

when the maximum shear stress is equal to the critical value of the same cylinder under a constant

shear stress. As will be shown in Section 4.4.1, this hypothesis does hold true for short cylinders.

Therefore, all that is needed for the calculation of the critical buckling load due to a transverse

shear force is to find the maximum values of the resulting shear stress from Eq. (4.30), and equate

it to the critical shear stress resultant for skin buckling. The maxima occur at 0 = 0,_f and 0 = 0 for

a vertical and horizontal shear force, respectively, and nondimensional first moments of inertia are

also defined for ease of expression. Thus the classical estimates are expressed mathematically as

- cl
--cl (EIy) l_cl _eIyl_xo -cl

V z Qz(Oref) - _Z(Oref) Vy Or(O) Or(O)

where the normalized first moments of inertia are

(Elz)l_c; - clrCR l z_l xe
= = (4.40)

Qz(O) i Qr(O) i _x(O)sinOdO(4.41)
az(e) - _x--_2 - _'x(O)(cos0-cOSOref)dO ay(0) - _x--_ 2 -- O.tc

Thus the solution for the stress resultants and end displacements using classical membrane

theory for cylinders with a circumferential stiffness variation is expressed as:

n 0) =

he(0) = p

fi

Ex(0) [- f + my(_) ( cos 0 - cos 0ref) ÷ _lZ(_) sin 0]

az(0) _ ay(0)

nxe(0) = - t + zO_.z-_ref ) Vy_------Qy(O)

  o  Vxo(O)dO
= jr + p. v =

(4.42)
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4.2 Stability Estimate using Membrane Prebuckling Solution

The equations governing the stability of the equilibriunt state represented by Eq. (4.42) are

derived in this section. The energy method formulation, outlined in Section 2.3.4, will be used

with the specialization of a circumferential stiffness variation with constant loads in the axial

direction. Since the equilibrium equations are based on classical membrane theory, the prebuck-

ling deformations are neglected and the stability estimate takes the form of a linear eigenvalue

problem in terms of the perturbed displacements. The strain-displacement relations for these per-

turbed variables are:

o OUl o 1 OVl Wi o 1 Out /3vl

E_, = a_ Eo, = _ +_- _'xe, = _ + _-_

2 2 2 (4.43)

Wl o / o

These expressions, along with the prebuckling stress resultants given in Eq. (4.42), are inserted

into the integral for the total potential energy, Eq. (2.109). Integration is then carried out analyti-

cally using the Rayleigh-Ritz technique to form the matrices for the eigenvalue problem. Even

though the loads are considered constant in the axial direction, the mode shapes are assumed to

vary sinusoidally along the length, much like the buckled state of the axisymmetric problem pos-

sessed harmonic waves in the circumferential direction. The assumed displacement field is:

v,(x, 0)= Vt(0)sin(-_)+ Vt/(0)cos(-_)+ V/t,(0)cos(-_)+ Vtv(O)sin(_-_) (4.44)

w, (x, 0)= W,(0)sin(-_)+ Wt/(0)cos(-_)+ Wttl(0)cos (-_)+ Wry!O)sin(-_)

The parameter 13corresponds to the axial frequency, and it can be infinitely valued or depend on

the number of half-waves along the length of a finite length shell. Its value must be chosen so that

the resulting eigenvalue is a minimum. Also note that for the expansion of Eq. (4.44), four modes

must now be used (instead of two for the axisymmetric stability problem) due to the presence of

anti-symmetric terms for the general loading of a cylindrical shell. When the integral for the total

potential energy is evaluated, it can be easily shown that the a_ial variation of the mode shape is

sufficiently represented solely by the parameter _. Thus any albitrary mode shape with an axial

frequency [3 can be completely defined through the form of Eq. (4.44), with the appropriate

boundary conditions applied for each function of 0. These circumferential boundary conditions
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are chosen so that modes I and III represent a symmetric mode about the vertical line (0 = 0, n),

while modes H and IV are anti-symmetric about this line.

In the axial direction, the possibilities for the boundary conditions are not as general. For most

cases (those without shear loading and with small D16 and D26 stiffness terms), modes I and/V

dominate the response, resulting in the perturbed radial displacement wl varying as a sine func-

tion in the axial direction. If the value of 13is constrained to be an integer multiple of a fundamen-

tal frequency, which depends on the geometry of the shell, then for this mode shape the end

conditions can be shown to adhere to the $2 condition at x = 0, L. The choice of 13for this scenario

implies that an integer number of half-waves exist along the length, and can be written as:

:_-p'x
13=

m_:_-aJ= m_]nfi n m = 1,2,3 .... (4.45)

However, for the most general case, the buckled mode shape consists of (at least) two modes with

equal magnitude, for instance II/il = IIHll for a cylinder under torsion. Thus the perturbed radial dis-

placement is not zero at x = 0, L as it is for loading by normal stresses. Therefore, for loads

involving shear (and laminates with large coupling terms through the DI6 and D26 stiffness param-

eters), the end conditions do not restrict the radial deformation of the cross-section at the ends and

allow substantial warping. This analysis therefore provides a lower bound of the buckling load,

which should increase with the added constraint of the end restraint. An estimate of the error asso-

ciated with this warping violation was presented in Section 3.5.2 within the discussion of buck-

ling under torsion. These results must be taken into account whenever shear effects are a

significant part of the loading. Further discussion concerning the correct choice of 13and its appli-

cability to realistic boundary conditions is presented in Section 4.4.1.

Insertion of the assumed form for the displacements into the stability equations generates a

system of linear ordinary differential equations with variable coefficients, which is denoted as

('K s C 0 0 -N s S Vs M _ " I" "Ns S Vs M l

C T K a 0 0 S T N a M a V a II S r N a M a V II

+ T T = -A T T (4.46)
0 0 K s C V s M a N s S II1 V s M a N s S III

T sT IV ]T T sT Na IV MT Va Na live
0 0 cT Ka Ms Va dead .

Note that the loading matrices have been separated in terms of the dead and live loadings, which is

allowable since the prebuckling solution and the eigenvalue problem is linear. The 3x3 sub-matri-

ces are similar to the ones given in Eq. (3.22) for the axisymmetric buckling problem, and their
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mathematical expressions are supplied in Appendix B.2. "l'he normal stress loading sub-matrices,

symbolized as Ns and Na in Eq. (4.46), now also include the beam moment about the horizontal

axis, while the shear sub-matrix S similarly contains the load attributed to a shear force in the hor-

izontal direction. These loads, along with the axial force, pressure, and torque, are symmetric

about the vertical line (0 = 0, _:), and can thus be fully defined by modes I and H of the buckled

shape. The addition of the Va and Ma sub-matrices in Eq. (4.46) need to be included for the anti-

symmetric loading introduced by a vertical beam force and a bending moment about the vertical

axis, respectively, and thus require additional modes III and/V to fully model the behavior. If a

stiffness distribution that was not symmetric about the line (0 = 0, n) was allowed, additional

terms in the stiffness portion of the matrices would appear in place of the zeroes.

The eigenvalue problem foi" the general loading of a circumferential variable stiffness cylinder

is represented by Eq. (4.46). The numerical solution of this large system is completed using the

power method along with either the finite difference technique or the Rayleigh-Ritz method. A

discussion of both of these numerical methods, along with a comparison between the two solu-

tions, is presented in Appendix A.

4.3 Material Failure Results for Curvilinear Fiber Paths

The results for the material failure loads of cylinders utilizing a circumferential stiffness vari-

ation that is produced by curvilinear fiber paths are presented in this section. These results are

meant to mimic the analysis of Section 3.4.1 concerning the material failure loads of cylinders

with an axial stiffness variation. However, one discrepancy exists between these two discussions.

In the last chapter, the axisymmetric static equilibrium solution was robust and considered the

correct application of the boundary conditions and the subsequent generation of a boundary layer

near the ends. When a circumferential stiffness variation is used, the analysis is limited to mem-

brane constitutive theory, thus the static solution represented by Eq. (4.42) does not include the

boundary layer effect. This results in slight deviations between the critical values of the material

failure loads. Fortunately, these errors do not significantly detract from the basic nature of the fail-

ure scenarios, even though the membrane theory solutions usually underestimate the correct mate-

rial failure load.

The material failure results will be conducted for a one link curvilinear fiber path definition

that is symmetric both vertically and horizontally within the _ross-section. This translates into the

existence of two variables to describe the circumferential stiffness variation: TO, the fiber orienta-

tion angle at the top and bottom of the cross-section; and T_, which is the value at the sides

(0 = -Z'90°) In the parlance of the linked line segment definitic, n displayed in Figure 2.6, the varia-
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tion can be described mathematically through Eq. (2.58) as:

Nseg = 1 11 = ___RR (4.47)
2

The zylindrical shell is assumed to have a ["l-(P]6s layup with R = 24". Besides the basic axisym-

metric loadings of pressure, axial force, and torsion, the circumferential analysis can also incorpo-

rate beam-type loads applied to the cross-section, therefore this section will also include the

results for a bending moment about the horizontal axis and a vertical shear force.

4.3.1 Axisymmetric Loading

For a cylinder cross-section with a circumferential stiffness variation, the stress resultants in

terms of the three basic axisymmetric loads are expressed in nondimensional form as

fix(_, O) = -F.x(O)f fie(0) = /7 fixo(O)= -t (4.48)

For an axial compressive force, the stress resultant varies circumferentially according to the local

values of the axial stiffness parameter. For stiffer regions, the axial stress is larger than for areas

with a low axial stiffness so as to produce the same axial strain for all locations. This can be

thought of as carrying the loads in "parallel", as opposed to the case of an axial stiffness variation

in which the axial stresses resisted the loading in "series". Intuitively, this implies that the circum-

ferential stiffness variation possesses a greater chance of improving the load-carrying perfor-

mance of a shell under an axial load, since the stiffer regions, which are usually the strongest as

well, carry a greater fraction of the loads. This is demonstrated by the results shown in Figure 4.2,
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u. ,x ,, _ Lx To=15 °I_ -_ _, 1"o=3O°
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\
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Figure 4.2: Failure Loads for Cylinders under Axial Compression
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which plots the material failure loads for axial compressiolt versus the fiber orientation angle def-

inition for both constant and variable stiffness cylinders. _'his figure is the analog to Figure 3.4,

which employed an axial stiffness variation for the same cylinder geometry and loading. The

"weak link" philosophy that dominated those material failure results is no longer evident. Instead,

Figure 4.2 reveals that the addition of stiffer regions (corresponding to a 0 ° fiber orientation

angle) always increases the material failure load of the structure by transferring a fraction of the

stresses away from the weaker regions. A corresponding plot of strength versus axial stiffness is

shown in Figure 4.3, revealing that both the strength and the stiffness are improved for most

Constant Stiffness

_, • Variable Stiffness /

3E+06 _ /

_ 2E+06

c_

00 , I , , I , I , I , I0.2 0.4 0.6 0.8 1

Axial Stiffness, (EA)/(E_2nRi_I)

Figure 4.3: Failure vs. Stiffness for Axial Compression

designs (compare the results to Figure 3.7). Unfortunately, the results of Figure 4.2 and Figure 4.3

indicate that a constant stiffness laminate with 9 = 0 ° is still the stiffest and strongest when com-

pared to the variable stiff ess possibilities, however this result is considered a major consequence

of the simplistic stacking sequence and the unsophisticated o_ae link variation of the fiber orienta-

tion angle. Slightly improved results have been found for mote general designs that utilize curvi-

linear fibers for cylinders under axial compression.

For the remaining cases of a cylindrical shell under the axisymmetric loads of internal pres-

sure and torsion, Eq. (4.48) reveals that the corresponding stress resultants are constant around the

circumference of the shell. It should be noted, however, that this is the correct solution for variable

stiffness shells only when the boundary conditions in the axal direction allow warping (as dis-

cussed in Section 4.1.1). When warping is negated, some secendary effects are produced for both

load cases, predominantly in the form of non-axisymmetric _txial stresses. These effects will be
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ignored here. Consequently, the circumferential and shear stress resultants can be considered con-

stants, which implies that no redistribution of the stress field is produced by the variation of the

stiffness parameters. Under this scenario, the results for the material failure loads correspond

closely to the solutions obtained with an axial stiffness variation, which are displayed in

Figure 3.5 and Figure 3.6. Since the loads are the same for all locations around the circumference,

the fiber orientation angle that is most susceptible to material failure for the given loading condi-

tion limits the strength of the laminate. Thus the "weak link" concept holds true, and no improve-

ment is exhibited by the variable stiffness concept under these loadings.

4.3.2 Non-axisymmetric Loading

The most likely scenario that will produce significant improvement through the use of the

variable stiffness concept is for loads which vary spatially throughout the structure. Until now, the

only loads considered have been axisymmetric in nature and have not been allowed to vary in

either the axial or circumferential directions. Inclusion of non-axisymmetric loads, such as basic

beam loading that produces normal stresses on the top and bottom of the cross-section and shear

stresses on the sides, provides an excellent avenue for improving the performance of the structure

by designing a variable stiffness laminate that can respond optimally to the local stress state. For

instance, Figure 4.4 shows the material failure loads of constant and variable stiffness laminates
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Figure 4.4: Failure Loads for Cylinders under Horizontal Bending Moment

under a pure bending moment about the horizontal axis. As with the axial compression case, the

constant stiffness laminate with tp = 0 ° generates the highest critical load since the stresses pro-

duced from the loading are exclusively axial. However, now there are several variable stiffness
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designs that rival the material load value of this optimal case. For the variable stiffness designs in

general, significant improvement is exhibited by laminates that possess relatively stiff regions at

the top and bottom of the cross-section (represented by smaller of values of To). This is to be

somewhat expected, since it is well known that a structure designed with axially stiff regions posi-

tioned farthest from the neutral axis will perform excellently under bending. A comparison of the

material failure loads in Figure 4.4 with respect to the global bending stiffness of the structure is

supplied in Figure 4.5. Note that now there exists some laminates that have equivalent stiffnesses
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Figure 4.5: Failure vs. Bending Stiffness for Horizontal Bending Moment

to constant stiffness structures, yet higher material failure loa,ts. This is quite an advantage for the

designer, for it allows greater freedom to satisfy possible stiffness and strength constraints that

may exist for a typical optimization problem.

As a final example, the material failure loads for a vertical shear force are displayed in

Figure 4.6 as a function of the fiber orientation angles. FoJ this loading case, the stresses are

exclusively shear and are a maximum at the sides of the cross-section (the T, location). The best

resistance to the shear stress is a layup constructed of +45 plies, as exhibited by the curve for the

constant stiffness laminates. However, the distribution of the shear stresses, calculated using the

membrane solution of Eq. (4.42), depends heavily on the variation of the stiffness terms. For some

of the variable stiffness designs, the circumferential stiffness :ariation redistributes the stress and

lowers the value of the shear stress at the sides, thereby produzing a design that possesses a larger

material failure load when compared to the constant stiffness laminates. This is an excellent

result, for it proves the effectiveness of the variable stiffness concept when applied to loads that



Chapter 4.0 Linear Membrane Solution for a Circumferential Stiffness Variation 139

5OOOOO

_ 400000

I>

._ 3ooooo
0

-= 200000

tL

_ 100000i

O O
n O V
V V

_ V

O To = 75 °
O TO= 90 °

00 , i , I , I , I , I , t15 30 45 60 75 90

Tz

Figure 4.6: Failure Loads for Cylinders under a Vertical Shear Force

vary spatially throughout the structure. For loading of this type which depends heavily on the val-

ues of the stiffness parameters, the dominant loads can be effectively spread out across a larger

area of the cross-section, so that the resulting stresses arc reduced and the structure can withstand

greater loads until material failure.

4.4 Buckling Results

The results in the previous section have shown that with regard to material failure, a circum-

ferential stiffness variation does exhibit improvement over constant stiffness laminates for load

cases in which the stiffness variation is able to redistribute the stresses. Such results must also be

demonstrated for buckling failure, since for many structures stability is the determining failure

mechanism. Therefore, this section investigates the buckling behavior of short cylinder segments

with a circumferential stiffness variation. Firstly, some general discussion regarding the correct

choice of the axial buckling frequency _ and its importance on several load cases is discussed.

Variable stiffness laminates utilizing curvilinear fiber paths are then considered to determine their

relative worth under all loading cases. Lastly, the stability of stiffened structures that utilize

stringers and longerons is discussed to provide a comparison of these traditional structures to the

novel designs of the variable stiffness concept. An in-depth optimization study is subsequently

performed in the next section that utilizes all of the variable stiffness concept possibilities.

4.4.1 General Loading of Constant Stiffness Structures

This section discusses the basic nature of the buckling mode shapes for the five basic types of

loading shown in Figure 4.1. Some of the introductory and background information on this topic
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appears in Section 1.2.2, since the classical buckling solutions use analytical methods on which

these numerical solutions are based. However, there are some additional details that deserve full

discussion so as to illustrate the applicability and reliability of the stability estimations presented

in this section. Recall that in the formulation of the buckling eigenvalue problem, the axial

frequency 13is an additional unknown and must be determined by the numerical technique. It was

shown in Eq. (4.45) that the choice of the parameter 13in the assumed axial variation of the dis-

placements is often determined by the length of the cylinder section. This determination is largely

based on practical applications of the theory. For instance, shell structures usually possess end

conditions which restrict the radial displacement through attachments to sturdy ring stiffeners or

frames, therefore choosing a value of 13that guarantees a suitable boundary condition at each end

lends more credence to the solution. Similarly, there exists the theoretical concern that the mem-

brane prebuckling solution is only valid for short cylinder sections, which implies that the value

of 13must be large. However, the numerical procedure actually places no restriction on the value

of 13, so that the correct theoretical choice for the 13parameter is one which renders the eigenvalue

to be a minimum. Thus some investigation of the relationship between the critical eigenvalue and

the axial frequency 13is warranted.

A plot of the eigenvalues for the five major beam loading cases versus the axial frequency

parameter 13is shown in Figure 4.7. These results are for an isotropic skin with RIH _ 2000, and

....... Pressure / l/
/ ,t /

Axial Force / /
/

Moment / x/

.< '.\ .......... Torsion / z.-/i
o \ Shear Force / /./
= l0 t , /\ /./
_. "\ / /.. /
I_ ,, / /,/
0 \ I-./

\ / /.*". <..... j---
",,/ \1 /

• ,,_ \ '_. ?

I '. I .,,..7..,
"_ \
[,,,3 I • I/ "_--....._...

10 ° --.--/ ....

/

/ _xO

/

1 10 "l 10 ° 101 10 3

Axial Frequency 13= mrR/L

Figure 4.7: Critical Eigenvalue of Major Load Cases versus Axial Frequency 13
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the loads are normalized with respect to their infinite length values. For general loading, these

infinite length classical estimates can be formulated through the equations of Section 4.1.2 for
^ cl

each load case by using the infinite length values of Nx,/Vo, and/Vx0 given in Section 1.2.2 for

the classical stress resultant buckling values. For realistic (finite length) structures, the

parameter 13is expressed as

m m,.m = 1, 2, 3 .... (4.49)

where _min depends on the size of the cylinder and m is an integer representing the number of half-

waves along the length. For instance, the dotted vertical line in Figure 4.7 represents 13mi, for a

short cylinder segment with L/R -- 0.25, and thus the only possible values for 13would coincide

with integer multiples of the minimum value 13rain.

The first problem to examine is the effect that the parameter 13has on the buckling load under

the basic loading of external pressure. The curve denoted by the dash-dot line in Figure 4.7 repre-

sents this relationship, which begins at unity for small values of [3 and rises dramatically as the

axial frequency increases. The value of one for small 13is expected, for this is the normalized clas-

sical buckling solution for an infinite length cylinder corresponding to 13- 0. Increasing the value

of [3 is analogous to increasing the frequency of the mode shape, which can be construed here as

decreasing the effective length of the cylinder. It was earlier shown in Section 1.2.2 that for a pres-

sure load, the mode shape will always attempt to achieve the lowest value of 13- 13mi,, so that only

one half-wave will exist in the axial direction. It was also shown that decreasing the length tends

to increase the number of circumferential waves present in the buckled mode shape. This is

reflected in the series of ripples within the curve of Figure 4.7. Each ripple corresponds to a cer-

tain value of the circumferential wave number n, which increases as a positive integer as the value

of 13rises. When 13becomes sufficiently large, the distinction between successive modes of differ-

ing circumferential wave numbers disappears, so that the dependence of the eigenvalue on the

exact circumferential wave number n is eliminated. It should also be noted that the value of 13, and

thus the length-to-radius ratio of the cylinder, has a dramatic effect on the size of the eigenvalue.

Therefore, to determine the critical eigenvalue for buckling under external pressure, an estimation

of the length of the cylinder must be known. If the structure is sufficiently long, then the cylinder

can be approximated as a ring under external pressure and the eigenvalue will coincide with the

classical buckling estimate. For most practical structures, however, end conditions are present and

only one half-wave will exist along the length, thus the value of the axial frequency will be

13- 13mi, and the eigenvalue and number of circumferential waves are determined numerically.

Note that these conclusions substantiate the increased buckling performance of ring-stiffened cyl-
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inders under external pressure that was shown in the optimization results of axisymmetric cylin-

ders, since the ring stiffeners effectively reduce the length of the cylinder segment so that the

buckling load increases dramatically. However, these conclusions also reveal that a similar

increase for structures with a longitudinal stiffeners may not exist. This is due to two related rea-

sons: the fact that the circumferential stiffness variation has no effect on the effective length of the

cylinder; and the existence of eigenmodes with similar values of n that possess closely related

eigenvalues, so that altering the circumferential mode shape will not improve the buckling load.

The next basic loading case to consider is axial compression. The relationship between the

critical eigenvalue and the axial frequency 13for a compressive axial force is denoted in Figure 4.7

by a solid line. As with the external pressure case, the resulting curve is characterized by succes-

sive ripples that represent different circumferential wave numbers of the buckled mode shape.

Note that for the smallest values of 13, the curve begins as a monotonically increasing line. This

line actually represents classic Euler buckling of the cylinder as a column corresponding to one

wave in the circumferential direction. For such a mode shape, the structure does not undergo the

typical pattern involving wrinkling of the shell, instead the cross-section displaces in the trans-

verse direction as a rigid body and the cylindrical structure deforms globally as a buckled column.

It should be emphasized that classical cylinder equations using DMV strain-displacement equa-

tions cannot capture this "global" buckling phenomenon, but that Sanders shell theory can calcu-

late this possible mode of buckling due to its greater accuracy for deformations dominated by

slow circumferential variation. This fact is further demonsuated in Figure 4.7 for the next few

successive waves of the curve, where the inaccurate DMV theory would not predict the presence

of eigenvalues below the normalized value of unity. Of course, as 13increases, so does the number

of circumferential waves in the buckled mode shape, thus for larger values of the axial frequency

the two theories agree. For isotropic materials, the increase in the number of circumferential

waves in the buckled shape reaches a maximum near the point 13= _x/2, and then the variation in

the circumferential direction decreases until the point l] = _.: is reached. Above this value, the

resulting mode shape is axisymmetric, meaning that no circumferential waves exist in the circum-

ferential direction and the buckled cylinder is characterized by axial waves produced by the

expansion and contraction of the radius of the cross-section. The results for non-isotropic materi-

als may deviate slightly, as discussed in Section 1.2.2, since crthotropic materials possess differ-

ent qualities with respect to their critical eigenvalue and result ng mode shapes.

For realistic structures with 13> 13,nin,the eigenvalue versus 13curve for an axial compressive

force resembles a horizontal line up to a particular value of the axial frequency (which corre-

sponds to the classical buckling frequency _lx). This implie_, that many different mode shapes
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exist for nearly identical values of the buckling load. This feature of coincident modes is distinc-

tive to cylinders loaded under axial compression, and is a significant factor in the high sensitivity

of such structures to shape imperfections, as discussed in the last chapter. For our numerical tech-

nique of eigenvalue estimation, these coincident modes do not present a problem, since the solu-

tion process relies on finding the integer multiple of 13rain that produces a minimum value of the

eigenvalue, and therefore any of the closely spaced eigenvalues would suffice. For more compli-

cated variable stiffness structures, the resulting relationship between 13 and the numerical eigen-

value may not be as simple, therefore the search for the critical buckling load usually starts at

13= _x since that value is characteristic of the skin of the shell structure.

The foregoing discussion with regard to the buckling of cylinders under axial compression has

direct relevance to the next loading case: pure bending. As alluded to earlier in this chapter, land-

mark work in this area was first completed for isotropic cylinders by Seide & Weingarten s5 using

a numerical solution technique that conforms exactly to a Rayleigh-Ritz solution of the governing

equations that are presented here. Their conclusion was that buckling of a circular cylindrical

shell occurred when the maximum bending stress equaled the critical stress for a cylinder under

axial compression, and also that the variation of the deformed mode shape in the axial direction

corresponded to the classical frequency estimate under compression, namely I]x. This claim was

substantiated through the calculation of eigenvalues for pure bending in tabular and graphical

form as a function of 13, much like the curve shown in Figure 4.7 for an applied moment. Several

RIH values were investigated, with all cases producing similar curves as the one shown (though

their curves differed slightly for small [3 since they employed DMV theory instead of Sanders).

One can easily see in the figure that their claims hold true: the eigenvalue, which was normalized

with respect to this Seide-Weingarten criteria, has a minimum value of one at the point 13= _x.

These results are, in general, applicable to any general orthotropic shell (excluding, of course,

ones with any spatial stiffness variation), though the location of the minimum and the critical

value of the buckling load may differ slightly for some orthotropic laminates according to the dis-

cussion presented in Section 1.2.2. Further comparison of the relationships of an axial compres-

sive force and a bending moment with respect to the axial frequency 13reveals that above the value

of _x, the curves actually coincide. This property is quite useful in practical applications, since

determining the critical buckling load for axial compression, is, in general, simpler than calculat-

ing the eigenvalue for pure bending. This phenomena will be used extensively in Chapter 5.0 and

Chapter 6.0 to estimate the buckling load of complex structures under pure bending.

The final two cases to consider from Figure 4.7 involve shear loading in the form of torsion

and a transverse shear force. Of course, the results for shear loading must be augmented with the
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comments concerning warping allowed at the ends. It was shown in Section 3.5.2, Figure 3.18

that the correct application of the radial restraint at the ends produces an eigenvalue that can be as

much as three times the "classical" value that is calculated here. Therefore these general results

for shear loading must be considered inaccurate except for general trends and order of magnitude

estimations. Bearing this in mind, the relationship for torsion with respect to the axial buckling

frequency is denoted in Figure 4.7 by the dash-dot-dot line. The curve possesses a minimum value

at 13= _x0, where the cylinder deforms into the traditional shape of two circumferential waves (as

displayed in Figure 1.7). The value of the critical load then steadily increases with the familiar

rippled pattern, with the increased value of _ again producing higher values of the circumferential

wave number, much like for the external pressure case. This is expected from our earlier discus-

sions and results. Though not as significant as for the external pressure loading, the presence of

frames that effectively increase the value of 13m,, does lead to a similar increase in the buckling

load under torsion.

The last load case of Figure 4.7 represents buckling by a transverse shear force, and is desig-

nated by the shorter dashed line. For small 13,the estimated buckling load approaches zero, which

represents a numerical anomaly associated with the rigid body displacement of the cross-section.

However, these results are immaterial, for buckling under a transverse shear force should only be

considered for short cross-sections (large values of 13), since it can be shown that longer cylinders

are invariably unstable due to the beam moment produced by the transverse shear force. Thus, the

only realistic results for this case are for values of 13greater than 13min, and the figure reveals that

this relationship approaches that of torsion as the axial freqt_ency is increased. This discovery is

directly analogous to the axial compression and bending moment relationship first discovered by

Seide & Weingarten. In fact, the formulation of the numerical equations for the determination of

the buckling loads for both of these pairs of load cases is quite similar, so that these results are, in

fact, expected. To illustrate the correlation further, the buckling modes under torsion and a vertical

shear force are shown in Figure 4.8 for 13= _min" Note that the cylinder section is short (the figures

are actually elongated slightly to highlight the features along the length), and that the simple sup-

port boundary conditions at the ends are not satisfied and allow significant warping (as explained

in Section 4.2). The mode shape for the cylinder under torsion is characterized by a number of

helical waves traversing the length of the cylinder, where the number and spacing of the waves are

uniform around the circumference of the cross-section. Conversely, the cylinder loaded by a verti-

cal shear force produces a mode shape that only has a few of these circumferential waves, located

where the shear stress is the highest. Also note that the frequency of the buckled mode shape for

the shear force corresponds to that of the torsional case in both the circumferential and axial direc-
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Figure 4.8: Buckled Mode Shapes for Torsion and Vertical Shear Force, 13= _min

tions. Thus it can be deduced from these re_oults that the calculation of buckling of short cylinder

sections under a transverse shear force can be approximated by determining when the maximum

shear stress reaches the critical value for buckling under torsion, since the local area containing

the maximum shear stress is identical for both load cases. This discovery corresponds to the

Seide-Weingarten criteria for cylinders under bending. An example of this for a more complicated

stiffened structure is presented in Section 4.4.3.

4.4.2 Curvilinear Fiber Paths using One Link Variation

The possible improvements of the buckling loads for a cross-section using a circumferential

stiffness variation are investigated in this section. The results are presented in the form of contour

plots of the five basic buckling loads as a function of the endpoint fiber orientation angles using a

one link variation. Specific examples of the deformed cross-section are also included for each

case to highlight the relevant mechanism that governs the behavior. The particular geometry of the

cylindrical shell is as follows:

Stacking sequence = [+tP]6s R

¢p(0) = T O+ 2-ff0(T I - To) 0 < 0 < rc
/I,

=24" L= 12"

(sawtooth function )
(4.50)

This corresponds to the Zb ---50 size used in the last chapter. The basic trends of the results should

apply to all short and thin cylinders, so that individual optimization of the buckling loads is not

deemed necessary.
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External pressure. The level curves of the buckling pressure (normalized with respect to the

best constant stiffness laminate) are shown in Figure 4.9 as a function of the endpoint angles To
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Figure 4.9: Results for External Pressure using One Link Circumferential Variation

and T I . The optimal design is for a constant stiffness laminate with tp = 90 °. The plot is symmetric

about the diagonal constant stiffness line, which is to be expected since the periodic nature of the

cylinder in the circumferential direction generates a solution that should be interchangeable with

respect to the endpoint values To and Tj. This symmetry sl:ould also be exhibited for the axial

compression and torsion cases, since none of these scenarios have a bias for any direction perpen-

dicular to the cross-section. The external pressure case offers no improvement over the constant

stiffness laminates, even for designs with a large stiffness variation. This can be attributed to the

fact that for shorter cylinders, the mode shape contains ma]y circumferential waves. Since the

pressure load is constant everywhere around the circumfereace of the cross-section, the critical

buckling mode produces the greatest deformation at the location with the least resistant stiffness

properties. This deformation can be quite localized, since the circumferential buckling frequency

is relatively high. For instance, the deformed cross-section for a typical variable stiffness cylinder

is shown to the right in Figure 4.9, along with its buckling load and the number of axial half-

waves in the mode shape (the buckled waveform also contains a sinusoidal variation along the

length of the cylinder, though only the cross-section is shown here for simplicity). Note how the

deformation is confined to the sides, where the 15 ° fiber ori_,ntation angle is the weakest under

pressure. This is a classic example of the weak link concept, where failure occurs at the location
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of least resistance. The presence of the weak link concept is also indicated by the shape of the

level curves in the contour plot. Due to this phenomena, it is concluded that there is no possible

improvement for short cylinders under a (constant) external pressure using a circumferential stiff-

ness variation.

Axial Compression. For the axial compressive case, the solution is similar but not as straight-

forward. Due to the variation of the stiffness, there is some redistribution of the axial stresses

since the stiffer regions carry a larger fraction of the loads. Failure still usually occurs where the

stiffness parameters offer the least resistance to buckling, however the value of the stress at this

critical location can now be altered since the stresses depend on the stiffness variation. For exam-

ple, the level curves of the axial buckling load for the variable stiffness designs in terms of the

endpoint angles is displayed in Figure 4.10. The critical values are normalized with respect to the
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Figure 4.10: Results for Axial Compression using One Link Circumferential Variation

maximum constant stiffness laminate, located near tp = 21 °. The results indicate that no variable

stiffness laminate exists that offers an improvement to this design, and the contour lines also show

quite a variation of critical load for designs with a large stiffness variation. The example variable

stiffness cylinder shown in Figure 4.10 would seem to indicate that the weak link phenomenon is

present, since the buckling deformation is localized to the sides of the cross-section. However,

examination of the contour plot reveals that the weakest constant stiffness design under buckling

occurs closer to cp = 45 °. If the weak link concept rules the response, this would result in the
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deformed cross-section having the largest deformation where the fiber orientation angle

equals 45 °, which is marked with the symbol x in the figure. Instead, due to the circumferential

stiffness variation the stiffer regions at the sides bear more of the axial load and becomes the crit-

ical buckling region, while the 45 ° areas are not as highly stressed and therefore do not buckle.

Therefore, the concept of carrying the loads in parallel tends to improve the performance of vari-

able stiffness laminates, though the relative increase shown for this specific geometry and lami-

nate stacking sequence does not exist.

Torsion. Under a torsional load, the results agree almost exactly with the external pressure

case. The weak link effect can be easily deduced from the plots shown in Figure 4.11. Again the
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Figure 4.11: Results for Torsion using One Link Circumferential Variation

high frequency of thebuckled shape coupled with the constantvalue ofthe shearload around the

circumference resultsin themode shaping itselfto the weakest linkinthe stiffnessvariation.The

deformed cross-sectionindicatesthe region with the largestbuckling deformation, where itis

implied thatthismode shape variesin a helicalfashionarourd the axisof the cylinder(asindi-

catedby Figure4.8).No improvements areexpected forthisloadcase.

The threepreviousloadcases indicatedno improvement possibilitiesforthe one linkcurvilin-

ear fiberdefinition.This was mostly due to theweak linkconeept and the factthatthe loadscon-

tainedno preferentialdirectionwithinthe cross-section.The next two load cases,pure bending

and a transverseshearforce,do possessa biasintheloadingdi-ectionwhich restrictsthe buckling
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deformation to a certain area. Therefore, correct variation of the stiffness parameters should pro-

duce a relative increase in load carrying capability by either redistributing the largest stresses

away from these critical areas or by significantly altering the buckling deformation.

Pure bending. The level curves and an example deformed cross-section for a one link vari-

able stiffness cylinder under pure bending is displayed in Figure 4.12. The first thing to notice is
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Figure 4.12: Results for Pure Bending using One Link Circumferential Variation

that the maximum buckling load corresponds to a variable stiffness laminate, and in fact there are

actually two distinct maxima with similar critical values. The example to the right represents one

of these optimal designs. The variation of the stiffness is such that the area with the largest stress

(at the bottom) possesses a fiber orientation angle TO= 75 ° that produces a stacking sequence that

is quite resistant to buckling. Meanwhile, the linear variation of the fiber orientation angle to 30 °

at the sides produces an area near the bottom that contains fiber orientation angles that are much

more susceptible to axial buckling, and therefore the maximum deformation of the critical mode

shape is moved away from the region of highest stress. As one would expect, this significantly

increases the global buckling value, since the stresses produced at the buckled region are not as

large as those at the bottom. This feature of restricting the deformation at the point of highest

stress is analogous to the presence of a "node" at that location. This will be discussed in a bit more

detail in Section 4.4.3, since the idea of a node to improve the buckling load is traditionally seen

through the use of stiffeners. It is actually quite promising that the curvilinear fiber format can
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approximate this phenomenon so easily, and this will be taken advantage of further during the

design of fuselage structures under bending. In general, the improvement under bending is

achieved through this aforementioned mechanism of limiting the deformation at the point of max-

imum stress along with constructing a design that possesses a high bending stiffness.

Transverse shear force. For this last example, the force is assumed to act in the vertical direc-

tion across the cross-section. The results are displayed in Figure 4.13. The optimal design is for a
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Figure 4,13: Results for Vertical Shear Force using One Link Circumferential Variation

variable stiffness cylinder. Also note the presence of many horizontal lines as level curves in the

plot at left. These indicate that for many designs the buckling load is independent of the value

of T0. This is somewhat expected, since the shear stresses are maximum at the T I location and the

fiber orientation angles tend to follow the weak link concept under shear loading (as shown by

load case of torsion). However, once the value of T I corresponds to a fiber orientation angle that is

resistant to shear buckling, the variable stiffness designs display improvements over their constant

stiffness counterparts. The reason is that the stiffness variation controls the distribution of the

shear stresses, therefore a proper variation should reduce the maximum stress at the critical loca-

tion and increase the load required to produce instability. This is evidenced by the example cross-

section at fight, in which the buckling deformation is spread out over a larger area than for typical

shear force buckling (see Figure 4.8). However, due to the helical type deformation pattern associ-

ated with buckling under shear, the curvilirlear fiber format zannot produce sufficient stiffness
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variation to enable a node to occur at the point of maximum stress. However, the results shown

here do represent a definite possibility for improvement over traditional straight fiber laminates.

4.4.3 Stiffened Structures

The distinguishing aspect of this study is the inclusion of spatial stiffness variations within the

shell structure, usually through the inclusion of curvilinear fiber paths. However, traditional stiff-

ened structures, such as the one displayed in Figure 4. I, can also be regarded as "variable stiff-

ness" due to the significant addition to the stiffness properties wherever a stiffener is present. Thus

a discussion of this traditional stiffening mechanism is included. For these examples, the structure

will contain fifty evenly spaced stringers around the circumference, and the skin will be con-

structed of an isotropic material. Though the inclusion of composite materials with ply drops and

curvilinear fibers may also be of interest, the basic concepts illustrated here remain the same.

The first example involves the application of a horizontal bending moment to the stiffened

structure. The resulting stresses within the shell structure are axial only, and are distributed

between the thin skin and the discrete axial stiffeners according to Eq. (4.30). This equation is

repeated here in its normalized version as

rt x(O) = nlyE, x(O)( cos 0 - cos Oref ) (4.51)

where the normalization is completed with respect to parameters associated with the skin. For the

structure under consideration, this relationship between the axial stress resultant and circumferen-

tial location is shown in Figure 4.14 for the critical buckling load of the structure. As expected,
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Figure 4.14: Axial Stress Resultant Distribution for Stiffened Fuselage under Bending
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the stringers act as discrete jumps in the stiffness distribution and produce spikes in the curve.

Meanwhile, the stress within the skin follows the basic cosiae relationship experienced by unstiff-

ened structures. These results lend credence to the use of the variable stiffness concept for these

types of membrane loading, for the stress relationship shown in Figure 4.14 corresponds correctly

to the most basic method of determining the ratios of stresses between stiffeners and skins for tra-

ditional stiffened structures. The buckled mode shape for this cylinder cross-section under a hori-

zontal bending moment is displayed in Figure 4.15. Note how the skin has buckled between the

Neutral axis

....... Symmetric axis
" .................... Undeformed
I

Buckled shape

I

I

I

Figure 4.15: Buckled Mode Shape for Stiffened Fuselage under Bending

axial stiffeners, but that the sturdy stringers, which carry the majority of the axial stresses, do not

undergo any substantial buckling deformation. This is a per'ect example of stiffeners acting as

nodes, and indicate why stiffeners are so effective in conjunct on with thin.shells.

Similar correlation between the variable stiffness membrane solutions and basic first-order

approximations can be exhibited under transverse shear loading: The governing equation for the

unnormalized shear stress resultant is given as

j'Ex(0)(cos 0 cOSOref)HR2dO (4.52)

0

This represents the shear flow of the cross-section under a tran_verse vertical shear force, and cor-

responds to the sheet-stringer analysis used in the field of mechanics of materials. Illustration of
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this relationship of the shear flow

Figure 4.16. The shape is roughly
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Figure 4.16: Shear Stress Resultant Distribution for Stiffened Fuselage
under Shear Force

attachments of the stiffeners. In the classical sheet-stringer solution, these discontinuities are rep-

resented as vertical lines, since the stringers are assumed to carry none of the shear stresses and

their attachment area with the skin is assumed to be infinitely small. However, the variable stiff-

ness analysis improves upon the theory with regard to both of these remarks. Firstly, though the

stiffeners are still assumed to possess negligible resistance to shear, the skin underneath the stiff-

ener can carry these shear loads. Furthermore, the area over which the stiffener is attached is eas-

ily modeled under the techniques of the variable stiffness concept, so that the variation of the

shear stress can be accurately portrayed within this region using the equations of Eq. (4.52).

The buckled mode shape for a short cylinder segment under the shear stress distribution of

Eq. (4.52) is shown in Figure 4.17. Again note that the sturdy stiffeners remain undeformed and

that the buckling is limited to the skin sections between the stiffeners. Furthermore, compare the

axial and circumferential wavelengths of the buckled skin to those of the unstiffened cylinder

under a vertical shear force in Figure 4.8. Though the skin is the same material and thickness for

both cases, the buckled mode shapes actually differ quite substantially. This is due to the fact that

the axial stiffeners tend to act as "nodes", which are points of zero displacement for the buckled

shape. It is easily apparent in the deformed shapes presented here, for both the applied bending

moment and the vertical shear force, that this conclusion is warranted. Therefore, the presence of

a sufficiently sturdy axial stiffener implies a node which, in general, alters the calculation of the

critical eigenmode and eigenvalue of the structure. For example, the mode shape shown in
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Figure 4.17: Buckled Mode Shape for Stiffened Structure under Shear Force

Figure 4.17 differs from the unstiffened case shown in Figure 4.8 since a higher frequency is

needed in the circumferential direction to take into account the closely spaced stiffeners. This

higher circumferential frequency, in turn, alters the value of the axial frequency parameter 13that

generates a minimum value of the buckling load. Therefore, though the stiffeners do not carry any

substantial amount of shear stress, their presence can contribute to the buckling resistance under

shear loading by serving as nodes in the deformed shape. This is also true under bending, where

the circumferential variation of the buckled shape must provide for nodes where stiffeners are

present, as revealed in Figure 4.15, which alters the desired buckling shape and increases the crit-

ical eigenvalue. This phenomenon of a stiffener acting as a n,ade also exists for basic axisymmet-

ric loading, however for these constant load cases there exht so many mode shape possibilities

that the presence of the stiffeners does not appreciably alter tae eigenmode and thus does little to

improve the buckling performance.

4.5 Design of Fuselage Cross-section for Minimum Weight

The analysis developed in this chapter is now applied to a realistic design problem that prom-

ises great possibilities for improvement. The specific problem to be studied is the design of a

generic narrow body fuselage cross-section/or minimum wei_:ht, where the cross-section is fabri-

cated using traditional skin/stiffener arrangements as well as the novel variable stiffness concept

utilizing curvilinear fibers. Optimization results for isotropic (aluminum) and composite materials
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(graphite-epoxy) are both included. Though this study is intended to be as realistic as possible to

actual loading conditions and design methods of aircraft fuselage structures, some inherent

approximations will also be invoked to facilitate the design study.

4.5.1 Design Criteria for General Aircraft Fuselage

The possible loading conditions experienced by aircraft components during flight is usually

defined by a "flight envelope" or "V-n diagram", which classifies various flight maneuvers in

terms of the airspeed V and a load parameter n. This load parameter represents the acceleration

imposed upon the airplane by the aeronautical maneuver, and is most often expressed in terms of

the gravitational constant g. Thus, "1 g" flight represents steady-state flight, whereas typical dives

and pull-ups are denoted as -1 g and 2.5 g, respectively. Usually, these accelerations are computed

from the dynamics of the moving body and are then applied as equivalent static forces on the

structure. This convention is also adopted here, and some simple assumptions concerning the

resultant forces are employed so that the loading conditions under various maneuvers can be cal-

culated from the load parameter n. Thus the design criteria for the flight envelope can be repre-

sented in terms of this load factor, and a linear relationship of the loading is assumed.

For example, the design criteria for a typical structural element of an aircraft in terms of the

load parameter n is expressed graphically in Figure 4.18. The horizontal axis represents some dis-

4

i 3
2

Displacement Parameter

Figure 4.18: Design Criteria for Flight Envelope

placement or strain quantity, such as curvature of the fuselage or deflection of a wing tip, and the

vertical axis denotes the load factor that is present due to the aeronautical maneuver. Note that the

load-displacement relationship is shown here to be bilinear, where the change in slope occurs at a

possible buckling point and the reduced stiffness of the post-buckled configuration produces a dif-
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ferent load-displacement relationship. If the structural comaonent is not allowed to buckle (for

example, an aerodynamic control surface), then the load-displacement curve will follow a straight

path denoted by the dotted line in the figure. To satisfy the minimum requirements of the aeronau-

tics industry, major structural components must be able to withstand a 2.5 g limit load without

inducing critical failure. For complete certification, the structure must also prove that a 3.75 g

load can be attained, however this requirement is seldom used in the design process and is usually

satisfied by a one-time static test of a complete aircraft. Therefore, for our purposes the limit load

of n -- 2.5 g is considered the actual design load of the aircraft.

However as implied earlier, for some structural components buckling is not considered critical

failure, thus enforcing a buckling constraint at this limit load of 2.5 g will result in significantly

heavier components and increased weight of the aircraft. Designers have therefore utilized the

post-buckling strength of stiffened structures for non-control surfaces of the aircraft, such as the

fuselage, so that the industry requirements are achieved while the component can be designed to

be as light and efficient as possible. It should be noted though that designing with respect to a

bifurcation load is quite dangerous when one is dealing with shells. This practice will often pro-

duce optimal designs which possess coincident buckling modes at the same load level, and this

can lead to increased imperfection sensitivity that can result in catastrophic failure of the structure

at loads well below the desired design levels. Thus, instead of the bilinear path shown in

Figure 4.18 that denotes a measure of post-buckling strength, some designs may exhibit a drastic

downward trend after the bifurcation point and will never attain ihe desired limit load. However,

to include a post-buckling analysis to accurately analyze this possibility is beyond the scope of

this investigation, as well as impractical for optimization studies since the nonlinear post-buckling

analysis is quite involved. Even using a first approximation for the post-buckling response, which

involves estimating the reduced stiffness of the buckled skin in the post-buckling region, is not

practical, for the tools to calculate the altered properties of the stiffened shells do not exist in a

practical formulation. For the most part, the designs presented here incliade stiffeners in most

cases, thus we can assume that some post-buckling strength exists for the structure (which is not

true for unstiffened shells). Once the optimization results are complete, the final designs can then

be analyzed using more advanced tools to determine if the assumed post-buckling strength actu-

ally exists.

With regard to these comments, the proposed design criteria for the fuselage structure will be

approximated in an extremely crude manner with respect to the post-buckling response. Designs

will be constrained to be resistant to bifurcation buckling up to I g flight conditions, and the post°

buckling response will not be estimated. With regards to material failure, the structure will be
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assumed to follow the dotted path in Figure 4.18 up to the 2.5 g flight condition, which assumes

that the post-buckling response of the structure has the same load-displacement relation and that

there is no redistribution of the stresses within the cross-section. This proposed method is consid-

erably non-conservative, in the fact that a design that can withstand the loads under these assump-

tions may very easily fail in the post-buckled regime due to the altered distribution of the stresses.

However, without a complete post-buckling analysis this solution is the best approximation avail-

able for the desired design criteria.

Lastly, the loading represented by Figure 4.18 constitutes a pull-up maneuver of the airplane.

To be complete, the fuselage must also be designed to conform to two other constraints, namely a

burst pressure due to the pressurization of the fuselage, and a backload of -1 g for a dive maneu-

ver. Other maneuvers that generate side loads and torque on the fuselage will not be considered at

this time, for experience has shown that it is the bending loads due to these symmetric maneuvers

that usually govern the design. This deviates considerably from realistic design, for these addi-

tional load cases contribute greatly to the non-bending aspects of the fuselage, yet they will be

ignored here since some limit on the case studies must be defined so that greater detail can be

directed toward the investigation of the variable stiffness concept.

4.5.2 Loading Conditions for Fuselage Cross-section

The last section determined the relevant flight conditions that will be used as constraints for

the fuselage design. However, these conditions must also be translated into effective loads that act

on the cross-section and that can be analyzed using the techniques developed here. To this end, we

will assume that the fuselage structure can be approximated as a beam, and the corresponding

shear forces and moments are calculated by traditional methods that will not be included here. For

this investigation, these methods are based on an approximate solution given by Niu g7 (example

problem 5 on pages 78-79 of his text) for a generic narrow body aircraft.

The basic loads on an aircraft that result from a symmetric pull-up maneuver are shown in

Figure 4.19, along with the corresponding shear and bending moment diagrams when the fuselage

is treated as a beam. The load denoted as nW in the figure corresponds to an equivalent static force

generated by the centrifugal acceleration of the pull-up, and is in terms of the weight of the air-

craft and the load factor n (a symmetric dive maneuver would be expressed with the centrifugal

force acting in the upward direction). This load acts at the center of gravity of the aircraft. There

also exists a lift and moment due to the aerodynamic characteristics of the wing. Their magnitudes

depend on many aerodynamic parameters including the airspeed, wing shape, angle of attack, and

altitude and are usually calculated from wind tunnel tests. They are assumed to act at 25% along
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Figure 4.19: Loads and Shear/Bending Moment Diagrams for Fuselage Structure

the major chord length of the wing, and are thus denoted by Lo.25 and )140.25,respectively. Finally,

the tail wing has an associated force Pt which must be present to. preserve equilibrium of the air-

craft. These are the major forces that contribute to the stress state of the fuselage. Of course, other

forces do exist, such as a tail wing moment and distributed torces along the fuselage due to the

weight of the aircraft and aerodynamic pressure, however due to their relative size they will be

neglected here.

In general, the fuselage is divided into three parts: the forward fuselage; the section connected

to the wing; and the aft fuselage which includes the horizonttl and vertical tail. Examination of

the shear force and bending moment diagrams of Figure 4.19 reveal that the nature of the loads

differ substantially for each section. Furthermore, it is obvioas that the forward fuselage is the

least critical, since there are no major flight loads that act on this section. The center section, on

the other hand, must withstand major loads due to the connectton with the main wing, and subse-

quently this section is designed to be more robust than the rest ,)f the fuselage so that the increased

stress states can be handled efficiently. This leaves the aft section, which obviously undergoes sig-

nificant bending due to the flight loads, and which will be the critical location for our study. Of

course, as mentioned elsewhere the analysis presented in this chapter is only applicable to "short"

cylinders with constant cross-section, so that performing an amdysis while taking into account the
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beam-like nature of the fuselage cannot be accomplished. Instead, we will concentrate on the

most critical location of the rear fuselage, which is just aft of the connection to the wing, and

apply the corresponding beam forces that exist there to a constant cross-section. In the future,

more advanced designs may be investigated by optimizing the fuselage cross-section at various

stations along the length of the aircraft, though that will not be attempted in this investigation.

The loading displayed in Figure 4.19 suggests that the major forces acting on the aft fuselage

consist of a moment about the horizontal axis and a vertical shear force. These loads are directly

related by the length between the wings, denoted by It, and their magnitudes for the design con-

straints can be found using the approximate analysis referred to earlier (see Niu87). Buckling is

allowed at 1 g as mentioned in Section 4.5.1. Additionally, the fuselage is assumed to be pressur-

ized and must also satisfy a burst pressure constraint and a backload due to a -1 g dive. Therefore,

the relevant load cases for the design of the fuselage are given in Table 4.1:

Case 1 - Burst pressure (material failure only)

• 16 psi internal hydrostatic pressure

Case 2 - 1.0 g Pull-up (buckling failure)

• 8 psi internal hydrostatic pressure (applied as dead load)

• 9,000,000 lb-in horizontal moment

• 15,000 lb vertical shear force

Case 3 - 2.5 g Pull-up (material failure)

• 8 psi internal hydrostatic pressure (applied as dead load)

• 15,000,000 lb-in horizontal moment

• 25,000 lb vertical shear force

Case 4 - 1.0 g Dive (buckling and material failure)

• 8 psi internal hydrostatic pressure (applied as dead load)

• -9,000,000 lb-in horizontal moment

• -15,000 lb vertical shear force

Table 4.1: Load Cases for Fuselage Structure

For cross-sections that are symmetric about a horizontal plane, Case 4 is not required since it is

obviated by the constraints of Cases 2 and 3. The load cases given in Table 4.1 are translated into

a nondimensional load constraint through the use of a safety factor, which is given as

Failure Load
SF = (4.53)

Design Load

where the failure load is calculated by the analysis and the design loads are given in Table 4.1.

The lowest value of SF considering each load case is considered critical, and for a design to be
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feasible the safety factor must be greater than or equal to t nity.

4.5.3 Design Strategy for Optimization of Cross-Section

The statement of the problem for the weight minimization of a generic narrow body fuselage

cross-section subjected to the loads given in Table 4.1 is as follows:

minimize W (eight ) (4.54)
such that SF > 1

In addition to the weight minimization, added preference will be given to designs that exhibit

greater load-carrying capability. Thus two designs that weigh nearly the same can be differenti-

ated by their failure loads. When composite laminates are used in the design process (so that the

stacking sequence is being optimized), it is assumed that laminates are constructed with +45 °

plies on the outside of the laminate, for they possess a greater resistance to damage. A penalty is

also applied to laminates that are not balanced (though the symmetric laminate condition is ful-

filled automatically in the design process).

The basic geometry of the cylinder cross-section and tile associated axial stiffeners and tear

straps is shown in Figure 4.20. The cylindrical shell is approximated as the segment of the fuse-

,.
I Z

radius r

t s

_ Tear strap: b x tts

Figure 4.20: Geometry of Cross-section and Stiffener Arrangement for Short Segment
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lage structure between successive frames_ spaced 20 inches apart. At each stiffener location on the

inside of the cylinder, there exists a tear strap which resists crack propagation and is usually the

same material as the skin, and an approximate inverted hat stiffener. The thicknesses of the tear

strap and stiffener will be given, but otherwise all variables, including the number and location of

the stiffeners, are possible design variables. Other relevant information is supplied in Table 4.2:

Fuselage

Skin

L = 20" R = 74"

• Minimum gage thickness Hmi n = 0.036" (Eight plies for laminate)

• Isotropic material - Aluminum 2024-T3

• Composite material - Graphite-epoxy

Tear Straps

• Standard thickness of 0.036", located beneath each stiffener

• Isotropic material - Aluminum 2024-T3

• Composite material - [+45/0/90]s laminate with smeared properties

Stiffeners

• Standard thickness of 0.027"

• Minimum values

bmi n = 1.0" hmi n = 0.75" rmi n - 0.1"

• Isotropic material - Aluminum 7075-T6

• Composite Material - [_+45/0]s laminate with smeared properties

Table 4.2: Details of Components of Cross-section

The material information is given in Appendix C. Note, however, that the tear strap and the stiff-

ener material as given in Table 4.2 are described as smeared laminates. In this case, the term

"smeared" implies that the stiffness and strength properties of the constituent laminate are repre-

sented as a "new" orthotropic material with the effective moduli, Poissons ratio, and failure

stresses associated with each laminate. Thus a stiffener can be composed of a [+45/0]s laminate

that is molded into the shape of an inverted hat, and the material failure characteristics conform to

the failure of such a laminate that is subjected to axial loads. The calculations for smeared lami-

nates of this type can also be found in Appendix C.

An outline of the optimization strategy for traditional stiffened structures (not utilizing curvi-

linear fibers) is presented in Table 4.3. The choice of the design variables for each specific optimi-

zation case is intended to overlap with the preceding case, in that the optimal solution for the
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h Isotropic Materials (Aluminum)

I0. Baseline case with no stiffeners. Only design variable is skin thickness.

Constant Skin Thickness Arrangement

I 1. For a given number of equally spaced identical stiffeners, design variables are skin

thickness and stiffener dimensions.

I2. Same as Case I1 except that the number of equally spaced identical stiffeners is also

a design variable.

13. Equal spacing of stiffeners is not required. However, the dimensions of the stiffeners

are chosen using the results of the optimal values from Case 12. From this, a "small"

and "large" stiffener are defined. Predetermined locations around the circumference

of the cross-section are allowed to contain either one of these stiffener sizes, or none

at all. The number of predetermined locations are varied, so that the number of each

size stiffener and their locations around the circumference are unknown, as is the skin

thickness.

Crown/side/keel Arrangement

I4. Baseline case with no stiffeners. Cross-section is divided into three specific areas,

and each can possess a different value of the skin thickness. Design variables include
the section thicknesses and the locations of the transition between sections.

I5. Crown/side/keel arrangement is again used, along with the variable stiffener spacing
of Case I3.

C: Composite Materials with Constant Stiffness Properties (Graphite/Epoxy)

• For composite materials, Cases C0-C5 are repeated with graphite-epoxy materials

used for the structural elements. The major difference that exists is the presence of the

laminate stacking sequence as a design variable in place of the skin thickness. This

occurs for the crown/side/keel arrangement as well, so that each section may have an

independent stacking sequence including the number of plies.

Table 4.3: Description of Optimization Cases for Traditional Stiffened Structures

preceding case should always be a possible design for the foll,)wing scenario. This is done to eas-

ily distinguish which design parameters most greatly contribute toward improved performance.

Note also that the "0" and "4" cases contain no stiffeners, and are mainly used as a baseline and to

determine if the unstiffened configurations are competitive with the stiffened designs. For the

variable stiffness solutions using curvilinear fibers, comparisons are completed with respect to

these constant stiffness composite designs without stiffeners, since the presence of the stiffeners

tends to dominate the response. Further details for the curvilinear fiber designs are provided in

Section 4.6.3. All optimization is performed using a genetic algorithm, which easily handles dis-

crete variables such as stacking sequences. Several examples are also provided of the GA coding

information, which is explained in the discussion of the optimization techniques in Section A.6.2.
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4.6 Design Study Results

This section provides the detailed results of the optimization studies, divided into three sub-

sections for the isotropic, composite, and curvilinear fiber cases. Comparisons of the design stud-

ies to reduce the total weight of the short cylinder section are summarized in Figure 4.21:
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Figure 4.21: Comparison of Weight Optimization Results for All Cases

The first noticeable result from this figure is the significant weight reduction attained through the

use of composite materials. Though this conclusion is certainly warranted, it should be noted that

the improvement is predominantly due to the lower density of the graphite-epoxy composite

material when compared to aluminum (0.057 lbs/in 3 versus 0.100 lbs/in3), as opposed to actual

savings in material volume. Of course, the superior stiffness-to-weight ratio is the motivating rea-

son for using composites in the first place, but it was found in these studies that the total amount

of material required to satisfy the loading constraints was comparable for both material systems.

Another distinguishing aspect of the results of Figure 4.21 is the relative improvement for the

traditional stiffened designs starting with Case 3. This is due to the fact that the critical load for

almost every design was bifurcation under bending (Load Cases 2 and 4 in Table 4.1). For this

loading condition, the optimizer strived to place as much material as possible at the tops and bot-

tom of the cross-section to resist the impending instability. However, the early optimization sce-

narios insisted on evenly spaced properties around the circumference of the shell, therefore no

noticeable improvement was found. Case 3 was the first to allow for arbitrary placement of the

stiffeners, which increased the efficiency of the cross-section tremendously. Case 4 utilized the

crown/side/keel arrangement, which offered similar improvements by concentrating the material
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at the top and bottoms of the cross-section. It should also be noted that the (unstiffened) curvilin-

ear fiber cases shown in the figure competes extremely well with the traditional structures.

The following three sub-sections provide the remaining details of the optimization studies.

Besides reporting the weight of the optimal design, the safety factors for each load case and the

effective thickness of the cross-section are also reported. The effective thickness is calculated by

smearing the total amount of skin and stiffener material around the cross-section, and it provides

an gauge of total material used.

4.6.1 Traditional Stiffened Structures (Isotropic)

These results are broken down in terms of the case designation provided in Table 4.3. It is

interesting to note the progression of the optimal solutions as additional design variables are intro-

duced into the system.

Case I0: Constant thickness skin, no stiffeners

Design Variables: H

This case is mostly used as a baseline, for a monocoque isotropic shell is rarely used in a fuse-

lage structure due to its high sensitivity to imperfections. The shell thickness is the sole design

variable, and is transformed from a continuous variable to a discrete one through the following

general equation:

length

Variable = Minimum Value + Step Size x y_ (DNAi- 1) x 3(leng th-i) (4.55)
i=l

For instance, for the shell thickness variable H the minimum value (from Table 4.2) is 0.036" and

the step size is chosen as 0.005". DNAi is part of the coding of the genetic algorithm, and is

allowed to be either I, 2, or 3. The variable length in Eq. t4.55) represents the portion of the

genetic string that is dedicated to the design variable. For this variable, the length is 4, so that the

first four DNA entries in essence translate into a base-3 integer that determines the final value of

the shell thickness. This strategy is used for all continuous variables. The final results are:

H = 0.0505" SFI = 2.1326 SF 3 = 2.2161
(4.56)

W -- 46.961 lbs SF 2 = 0.9994 SF 4 = 0.9994

In truth, this case is not ideally suited for a genetic algorithm since the only unknown variable is

continuous in nature and the actual number of designs are limited. However, using the GA for this

case does provides a check on the accuracy of the genetic algorithm. Traditional root finding

methods yield a solution of H = 0.050535", which gives evideace to the robustness of the GA.



Chapter 4.0 Linear Membrane Solution for a Circumferential Stiffness Variation 165

Case II: Constant thickness skin, given number of equally spaced stiffeners

Design Variables: H, b, h, r

The number of equally spaced stiffeners is a defined as a constant and then subsequently

incremented by ten to cover the whole range of possibilities. The scenario with two stiffeners (one

each at the top and bottom) is also included since it represents a distinct jump from the unstiffened

case. The design variables for the stiffener dimensions (displayed in Figure 4.20) are converted

into discrete variable using Eq. (4.55) with appropriate minimal values and step sizes. The results

for this case are displayed in Figure 4.22 in the form of a bar graph which plots the total and sub-
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Figure 4.22: Optimization Results for Case I1
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component weights as a function of number of stiffeners. All designs were critical with respect to

Load Case 2 (buckling under bending). One can see that two optima exist: one for the two stiff-

ener case which appears to be the global optima; and another local minimum between forty and

fifty stiffeners. In general, the designs with few stiffeners tend to have larger size stringers, while

the many stiffener cases have minimum values for the dimensions. This extreme is reached as the

number of stiffeners increases past fifty, where both the skin and stiffener dimensions are at their

minimum values and no weight improvement is observed.

Case I2: Constant thickness skin, unknown number of equally spaced stiffeners

Design Variables: H, b, h, r, Np_ir_

This next case is designed to find the optimal designs from Case I1, since now the number of

pairs of stiffeners (pairs due to the vertical symmetry of the cross-section) is also a variable. Two

sub-cases are investigated, which differ by the limits on Np_i,_. The first case is limited to

0 < Np_i,_ < 26, which allows for the possibility of no stiffeners, while the second has higher limits
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in the range of 10 < Npai_ _<36. The results are shown in the following figures:

Heft = 0.048355"

W = 44.966 lbs

Npmrs = 1

H = 0.0470"

b = 2.00"

h = 1.50 °

r = 0.500"

SF 1 = 1.9848

SF 2 = 1.0001

SF 3 = 2.1215

SF 4 = 1.0001

Figure 4.23: Optimization Results for Case I2, 0 < Np_r_ < 26

Heft = 0.048980" H = 0.0375"

W = 45.547 r'_lbs _ b = 1.00" A

Npair s = 22 I h = 0.75" I

Figure 4.24: Optimization Results for Case 12, 10 < Npairs <_36

SF 1 = 1.5836

SF 2 - 1.0052

SF 3 = 1.9242

SF 4 -- 1.0052

Note that if equally spaced stiffeners are required to produce a cross-section with no directional

preference, such as when the direction of the maximum bending moment is not known before-

hand, the result shown in Figure 4.24 would be the best choice.

Case I3: Constant thickness skin, unknown placement of stiffeners

Design Variables: H, locstiff

The optimal sizes found in Case I2 and shown in the preceding two figures are now used as the

only stiffener size possibilities. This reduces the number of design variables so as to increase the

numerical efficiency of the optimization algorithm: Besides the skin thickness, the only other vari-

able is the placement of the stiffeners. To accomplish the coding of this variable, equally spaced

locations are chosen around the circumference of the cross-se ction, with the possibility for each

location to contain either a small or large stiffener (using _he geometries of Figure 4.23 and

Figure 4.24) or no stiffener at all. This method proved quite successful for discretizing the design

space, since each location could be represented by one digit in the genetic algorithm DNA string.

Several representative values of possible stiffener locations were investigated, and the optimal
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design was found for stiffener locations spaced every 5 ° around the circumference with only small

stiffeners being used. The numerical results and plot of the buckled shape for this design are given

in Figure 4.25. As expected, the majority of the stiffeners are located at the top and bottom of the

Neutral axis
....... Symmetric axis

! .......................Undeformed

Budded shape
H=0

Hef f = 0.041439"

W = 38.535 lbs

SF] = 1.5203 ....

SF 2 = 1.0227

SF 3 = 1.7356

SF 4 = 1.0181

i
i

Figure 4.25: Optimization Results and Deformled Shape for Case I3

structure, and serve both to increase the bending resistance of the cross-section and also to serve

as nodes to increase the circumferential frequency of the critical mode shape. Note also the few

isolated stiffeners closer to the sides of the cross-section. Their placement is largely a function of

the optimization algorithm, which is excellent at finding optimal designs in a global sense, but

often lacks the precision for small details that can improve the design. For example, moving the

locations of the remote stiffeners closer to the bottom generates a design with the same weight but

slightly improved (less than 1%) failure characteristics.

Case I4: Crowrdside/keel arrangement, no stiffeners

Design Variables: H c, 0o Hs, 0t, Hk

Traditional fuselage designs are frequently constructed in four sections, namely the crown,

two sides, and the keel. This cross-section design usually works best under beam-type loading,

where the crown and keel are designed to withstand the large bending stresses while the sides are

flimsier since they need only withstand the less critical shear stresses. Therefore, the next two

cases incorporate this idea into the fuselage design study, one without stiffeners and the second

with an arbitrary placement of predetermined stiffener sizes (akin to Case I3). The proposed

geometry using this crown/side/keel arrangement is shown in Figure 4.26. The design variables
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n¢

Ok

n k

Figure 4.26: Geometry of Crown/Side/Keel Arrangement

now include the thickness of each section as well as the transition points between them. The thick-

ness variables possess the same minimum value and step size as usual, while the transition angles

are limited to 25 ° _<0c _<65 ° and 115 ° _.<Ok -< 155 ° with a step size of 5 °. The optimal design is:

H c = 0.1M8" SFI = 1.5203

Heft = 0.039819" 0c = 25 ° SF 2 = 1.0055
H s = 0.036" (4.57)

W = 37.028 lbs Ok = 155 ° SF 3 = 1.8604
H k = 0.0515"

SF 4 = 1.0012

Note the asymmetry of the cross-section about the horizontal axis. This implies that this design is

not the "true" optimum, since a symmetric design that would satisfy the SF 2 and SF4 constraints

equally would likely generate a slightly lighter and stronger structure. However, the design shown

here still compares favorably with the stiffened structure of Case I3.

Case 15: Crown/side/keel arrangement, unknown placement of stiffeners

Design Variables: H c, 0_, H_, O_ Ha locstiff

This last case combines the crown/side/keel arrangement w ith the arbitrary placement of stiff-

eners. This is the most general design case for the isotropic material, since all optimal designs

found earlier still exist as possibilities within this design space. Again several choices for possible

stiffener spacing were used. For sparser designs (those with large stiffener spacing possibilities)

both the skin thickness variation and stiffener placement played a role in the optimal designs,

however their total weights were still marginally greater than the design with 5 ° stiffener loca-

tions. For this case, all thickness variables attained their minimum values and small stiffeners

were employed with similar distributions to those shown in Figure 4.25. Thus no significant

improvement was found compared to the optimal design of Case I3.
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4.6.2 Traditional Stiffened Structures (Composite)

The relevant details for each case are shown here. Much of the discussion and initial setup for

these cases are related to the earlier results for the isotropic study presented in Section 4.6. I, so

that the conclusions presented here are quite brief to save space.

Case CO: Composite laminate skin, no stiffeners

Design Variables: layup

For composite laminate design, stacking sequence optimization is performed by representing

each lamina as a choice of a 0% +45 °, -45 °, 90 ° fiber orientation angle or an empty ply designa-

tion. The laminate is assumed to be symmetric about the middle surface, so that only half of the

stacking sequence needs to be represented. The genetic algorithm is designed for weight minimi-

zation of laminates so that the empty plies are pushed to the outside of the laminate during the

optimization process so that empty plies do not occur near the middle surface. A penalty function

also exists if the laminate is unbalanced (wben the number of +45 ° plies does not equal the num-

ber of -45 ° plies) or if it falls beneath the gage thickness (0.036 _"used in this study). Furthermore,

a small bonus is awarded to a laminate that contains a group of +45 ° plies on the outside of the

laminate, for it has been shown that this aids in damage tolerance of the laminate. Again, this first

case without stiffeners is used as a baseline, yet it also tests the stacking sequence optimization

procedure of the genetic algorithm. The results are:

[+45/0/903] s

H = 0.060"
SF I = 1.9802 SF 3 = 1.1838

(4.58)
SF 2 = 1.0715 SF 4 = 1.0715

W = 31.803 Ibs

Note the skin thickness is actually much larger than the corresponding isotropic design (slightly

above 0.05"). The reason that the composite laminate skin cannot attain this decreased value is

that the discrete jumps for stacking sequence optimization are much larger than the step size of

the isotropic skin variable (0.005"). This is due to incorporating practical construction methods

within the stacking sequence designs. Enforcement of balance and symmetry of the laminate

implies that each discrete jump in thickness corresponds to at least two plies of material being

added, and since the nominal ply thickness is 0.005" this translates into a much larger increase in

weight for each variation in thickness. Thus even though stacking sequence designs with ten total

plies (H = 0.05") produced a structure with considerable less weight, the inability of these thinner

laminates to sufficiently carry the design loads forced the optimal design to contain two more

plies and, subsequently, considerable more material. This phenomenon of larger step sizes for

composite laminates also appears in the crown/side/keel arrangement for Case C4.
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Case CI: Composite laminate skin, given number of eqvally spaced stiffeners

Design Variables: layup, b, h, r

The corresponding bar graph for the composite material case is shown below:
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Figure 4.27: Optimization Results for Case C1

70

Most cases were critical with respect to buckling, though the designs with thinner skins often

failed first due to the burst pressure constraint (Load Case 1). Note that no relative minimum

exists for Npai,_ = 1, mostly due to the fact that the laminate thickness does not decrease. The

decrease in the number of plies is also quite evident, revealing that with a sufficient number of

stiffeners the minimization of the skin weight is critical. The optimal value for Npa_ seems to lie

between twenty-five and thirty. As the number of stiffeners increases, the dimensions of the stiff-

eners approach their minimum values as before.

Case C2: Composite laminate skin, unknown number of equally spaced stiffeners

Design Variables: layup, b, h, r, Npairs

This case should isolate the optimal number of stiffeners from Case C 1. The numerical results

substantiate this claim, yielding as the optimal design:

[+45/0/90] s Npair s -27 S/:'_ = 1.0189

H = 0.04" b = 1" S/:2 = 1.0034

Heft = 0.05399" h = 0.75" S/; 3 = 1.3584

W = 28.618 lbs r = 0.1" S/; 4 = 1.0034

(4.59)

Note that the small stiffener geometry displayed in Figure 4.2,_ is also used for this case.
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Case C3: Composite laminate skin, unknown placement of stiffeners

Design Variables: layup, locstiff

Since the last case only revealed one possible size for stiffeners, the alternate "large" size is

assumed to be the same as for the isotropic case, shown in Figure 4.23. The optimal design here

uses this sturdy stiffener to provide increased bending stiffness, and the smaller stiffeners are

employed to alter the shape of the critical buckling mode. The numerical data and deformed shape

for the critical buckling case are given in Figure 4.28. The constraint that is most critical here is

Neutral axis

....... Symmetric axis
! ............................ Undeformed
I

Buckled Shape

[+45/0/90] s , H =

Heft = 0.04599

W = 24.376 lbs

SF 1 = 1.0191

SF 2 = 1.0586

SF 3 = 1.2135

SF 4 = 1.0431

I

I

Figure 4.28: Optimization Results and Deform_ed Shape for Case C3

for the burst pressure, and depends predominantly on the stacking sequence of the laminate as

opposed to the placement of the stiffeners. Again note the extemporaneous stiffeners located near

the sides, which do little to improve the response. This indicates that slight improvements to this

design likely exist.

Case C4: Crown/side/keel arrangement, no stiffeners

Design Variables: layup, ply_, 0 o ply s, Ok1,plyk

For crown/side/keel arrangements (Cases C4 & C5) using a composite material, each fuselage

section should ideally possess its own stacking sequence. However, the genetic algorithm that is

being used cannot optimize three different stacking sequences at the same time, for it is designed

to push all the empty plies to the outside as if it were one laminate. Thus, the difference in each

skin section is represented by the variable ply k which represents a group of added plies. Each sec-

tion will possess the same base stacking sequence underneath these plies according to the variable
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layup. Each ply variable is represented by two integers (li xtited to 1, 2, or 3) in the DNA string

and is interpreted in the following manner: the first integer represents the orientation angle of the

added ply, much like the stacking sequence. Here, howevel, a "3" represents a group of two plies

(_+45° ) to preserve symmetry and balancing of the laminate. The second digit, when subtracted by

one, defines the number of plies added, so that multiple thickness possibilities exist. For example:

21 --_ 90 °, 0 added plies

32 --_ +45 °, I added group

(no thickness increase)

(thickness increase of 2 tply)
(4.60)

Of course, this method is unable to represent the most general definition of stacking sequences for

the crown/side/keel arrangement, which possibly contributed to the poor results for this case. The

optimal design for this case did not possess any added plies for any of the fuselage sections, and

in fact the base stacking sequence was identical to the solution for Case CO. It is believed that the

limited possibilities of stacking sequences, due to the inclusion of only 0 °, +45 °, and 90 ° fiber ori-

entation angles, was the main reason for these results, for it is shown in Section 4.6.3 that this

geometry can show remarkable gains if the ply angles are given greater flexibility.

Case C4: Crown/side/keel arrangement, unknown placement of stiffeners

Design Variables: layup, plyo Oc, plys, Ok,plyk, locstiff

This last case did incorporate the combination of added plies and stiffener placement. The

results for the optimal design are shown in Figure 4.29. Note the added plies in the crown of the

H = O.050"(plyk 9°i Neutralaxis= Symmeaic axis
! ............................Undeformed
I Buckled shape

[+45/0/90] s H = 0.040" i

Hel,/ = 0.04483"

W = 23.760 lbs

SF I = 1.0191

SF 2 - 1.0786

SF 3 = 1.3266

SF 4 = 1.0181

Figure 4.29: Optimization Results and Deformted Shape for Case C5
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cross-section. The extra thickness there compensates for the lack of a stiffener in the middle of the

symmetric wave of the buckled shape. The weight of this design is lower than any other result,

however it is believed that greater improvements than this design exist if greater flexibility in the

stacking sequences is available.

4.6.3 Variable Stiffness Skin Designs

The inclusion of curvilinear fibers within the framework of this design problem promises to

generate significant improvement over traditional constant stiffness skins. However, the results of

the previous design studies have revealed that the major factor for weight minimization is the size

and placement of the longitudinal stiffeners, and that for most optimal designs the skin thick-

nesses gravitate toward their minimum values and thus contribute little to the performance of the

structure. Therefore, if stiffeners are included as design variables, they will most likely dominate

the response and the flexibility of the variable stiffness skins will never come into play. Thus this

section concentrates on unstiffened shells that utilize curvilinear fibers or the crown/side/keel

arrangement to see if these designs can compete with the traditional structures. Though the mono-

coque shells are somewhat impractical due to their lack of postbuckling strength, these design

studies should give a basic indication if the curvilinear fiber format is desirable.

Case V0: Curvilinear Fiber Formats

Design Variables: n, To, Iocs

These cases involve the use of curvilinear fibers within the stacking sequence of the laminate.

The variables used to define the variation of the fiber angle are TOand the change of the fiber ori-

entation angle at equal spaces around the circumference. To make the solution easier to complete,

stacking sequence optimization as done in Cases C0-C5 will not be completed. Instead, the results

from these cases are used to determine the basic stacking sequence. Therefore. the possibilities for

the stacking sequences of variable stiffness plies are limited to

[+tP/O/9On] s

where the value of n can be 0, I, or 2. This significantly increases the performance of the GA,

since stacking sequence optimization produces a large number of design possibilities.

The path of the curvilinear fiber is defined by a base angle at the top of the cylinder (To), and

changes to the fiber orientation angle at equally spaced locations around the circumference (locs).

It is formulated this way for one major reason: the manufacturing constraints for the maximum

curvature of the fiber path is known. If the fiber orientation angle at each location was allowed to

attain whatever value it desired, then, in general, this manufacturing constraint would often be
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violated, resulting in the analysis of many designs that are infeasible. However, by defining the

stiffness variation in terms of the change in the fiber orientation angle, we can automatically sat-

isfy the manufacturing constraint by limiting the size of the change to the acceptable value.

For example, the most basic consideration would use the base angle at the top of the cylinder,

and two locations around the circumference (see Figure 4.30). The GA genetic string contains

To

= locs 1

locs 2

Figure 4.30: Description of Curvilinear Fiber Definition

variables that define the base angle To and the linear change of angle at each endpoint locs I and

locsz. The angles at the endpoints thus depend on the magnitude of the preceding value, and are

constrained to be to be either a positive, negative or zero change. The magnitude of the change of

the fiber orientation angle is either the maximum allowable due to the curvature constraint or 15 ° ,

whichever is smaller. Increasing the number of locations around the circumference should then

provide a general solution for the fiber orientation angle variation.

The results for all possibilities of curvilinear fibers produced a laminate with the same stack-

ing sequence and weight, therefore the results are depicted as a percent increase of the load over

the constant stiffness case (buckling due to bending was the =ritical load case constraint for all

designs). However, now this constant stiffness case has more opportunities for ply angles (since it

is based on TOinstead of being assumed to be 45°). The result i'or a constant stiffness laminate is:

[+5/0/902] s H = 0.050" Critical SF = 1.0097 W = 26.502 lbs (4.61)

The rest of the designs are shown as variations of the stiffnes:. (solid lines) and fiber orientation

angle (dotted lines) along with their relative increase in load c_rrying capability in the following

table:
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Table 4.4: Optimization Results for Composite Skin with Curvilinear Fibers

As one can see, the optimal designs gravitate toward an "I-beam" type structure which possesses

large resistance to axial stresses at the top and bottom with shear dominated regions in the middle.

The load-carrying capability can be increased even further (over 10%) by using additional links in

the curvilinear fiber definition, though the shape is quite similar to the one shown for the 16 link

variation. Also note how these designs compare with the traditional stiffened structures as sum-
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marized in Figure 4.21. The total weight is certainly competitive, while the 10% increase in the

factor of safety demonstrates the worth of this concept for tuselage structures.

Case V4: Crown/Side/Keel design

Design Variables: n, T_, 0c, T_, Ok, Tk

This final solution conforms to Case C4 except now the stacking sequence can change in each

section due to the greater possibilities for the +q) ply. Each section possess a base angle that is

independent of the other, and the transitions between the sections are again additional unknowns.

The results are presented in graphical form in Figure 4.31. Note how the extra flexibility of the

o

15

45

60

75
9O

105

12o'

t2 135

165

180_

Fiber Orientation Angle cp
) 15 30 45 60 75 90

I I I I I I

Crown/Side/Keel

Increase = 10.2%

I _ I
0.5 I

Figure 4.31: Optimization Results for Variable Stiffness Crown/Side/Keel Arrangement

stiffness variation generates a design that is greatly superio" to the Case C4 result and that the

added plies are not even needed. Slight improvements to this design are also possible by allowing

the fiber orientation angle to vary within each section.

In summary, this section has demonstrated that the variation of the fiber orientation angle

through curvilinear fibers or a crown/side/keel arrangement can produce unstiffened shells that

show comparable performance to traditional stiffened structures. Investigation of the postbuckling

response of these designs is needed in the future to determine if the designs are able to withstand

the total load range as displayed in Figure 4.18, though it is believed that some longitudinal stiff-

ening is required. Thus the combination of axial stiffeners witil variable stiffness skins of this type

should produce fuselage cross-sections that exhibit minimum weight with possible improvements

in load-carrying capability.



Chapter 5.0 Bending of Infinite Length

Cylinders including the Brazier Effect

Attention is now focused on cylinders with a circumferential stiffness variation that are long

enough so that the end conditions can effectively be ignored. The analysis of the previous chapter,

employing classical membrane constitutive theory and ignoring the bending boundary layer of the

shell near the ends, does not apply for longer cylinders due to the limitations of the constitutive

theory. As discussed in Section 2.2.3, to accurately reflect the behavior of long cylinders the cir-

cumferential bending of the cross-section must also be included, thus this section will use semi-

membrane constitutive theory. Furthermore, since we are now dealing with long cylinders, the

loads cannot be assumed as constants for the particular axial location under examination, as was

done in the previous chapter. Instead, the loads must be constant, else the configuration of an infi-

nite length shell does not make sense. Therefore, the presence of transverse shear loads is not

allowed, and to make the solution simpler the investigation will only include bending with respect

to one plane. The presence of beam bending also introduces the possibility of the Brazier effect,

which is an interesting nonlinear phenomena for long tubes under bending that must be included

if infinite length cylinders are being considered (see Section 1.2.3 for a discussion of the physical

mechanism of the Brazier effect). The governing equations of Chapter 2.0 were formulated with

this nonlinearity in mind, so that this section will employ the full nonlinearity of the governing

equations to solve the Brazier problem.

Therefore, this chapter begins with the nonlinear static solution of the Brazier problem for

infinite length tubes under bending. Auxiliary loads of internal pressure and an axial force are also

included, though the main emphasis is on the bending load. Two stability analyses are formulated,

one a thorough nonlinear estimation from a perturbation of ihe prebuckled state, while the second

approximate solution is based on a "maximum buckling stress" criterion and is applicable only to

constant stiffness structures. Comparisons between these two solutions, as well as to the classic

Brazier solution, are also presented, and some basic optimization is performed to determine lami-

nate layups that can best resist this type of nonlinear deformation. The effect of stacking sequence

and pressure on the nonlinear behavior is also discussed. Lastly, some basic results using variable

stiffness laminates is presented.

177
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5.1 Nonlinear Static Solution

An approximate analysis of nonlinear bending of long tubes, which is based on the original

linearized solution of Brazier 42, is often considered suitable for cross-sections that do not have a

variation of stiffness around the circumference. However for more complicated structures, cir-

cumferential distributions of the bending stresses and stiffness parameters can create complex

deformation patterns which cannot be accurately analyzed with the simple mode of deformation

assumed by Brazier. Therefore, an accurate variable stiffness solution must fully account for the

arbitrary stiffness variation and high nonlinearity. Here it is also assumed that the cylinder is infi-

nitely long, or possesses "greased" end conditions which allow full freedom of the cross-section,

so that the specialization of the governing equations can be completed by including the nonlinear

terms associated with significant cross-sectional deformation while neglecting any changes in the

axial direction. This stipulation implies that the stresses and strains do not change along the length

of the cylinder and are only a function of the circumferential coordinate 0. Note, however, that

some displacements may still be a function of the axial coordinate since the strains depend on the

derivatives of the displacements.

The basic geometry of the cross-section, along with the relevant coordinate directions and dis-

placement components, is shown in Figure 5.1. The axial coordinate with its corresponding

I
i

° t

e

"' ) 0 "_'_q

I

+

Figure 5.1: Geometry of Cross-section for Infinite Length Cylinder

displacement u° acts in the out-of-the-page direction. The principal displacement variable used in

this solution is the inextensional rotation co, which was first introduced in Section 2.1.3. It can be

defined in terms of either the cylindrical (v °, w °) or rectangular displacements (_b,_) whenever the
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cross-section is considered to deform inextensionally. In such a state, application of the nonlinear

Kirchhoff-Love assumption and the condition of inextensionality to the strain-displacement rela-

tions results in the following simplifications to Eq. (2.20):

o Ou° o o 1 3u ° Ov °

"Ex = 0"_ +lCye(c°sO-(_-c°SOref) E0 = 0 Yx0 - RO0 +/)'-'x

o o o 1 do o
Co0 = sine _x = _c_.cos0. _0 = RdO--- _xo = 0

(5.1)

Note that the rectangular displacement 0, which is a function of co through Eq. (2.35), is used for

the axial strain instead of the usual cylindrical displacements. Further simplification of Eq. (5.1) is

possible since these strain quantities are assumed to be only a function of 0. In particular, the axial

and circumferential displacements can be decomposed into two portions, only one of which

depends on the axial coordinate. The dependencies on x must be linear so that the axial and shear

strains remain functions of 0, so that these two displacements are written as

u (x, O) = -£ _ - x + uw(O) v(L)v°(x, O) = -_ _- x + vw(O ) (5.2)

These expressions correspond roughly to the decompositions involving the average cross-sec-

tional displacements used in the membrane solution, much like Eq. (4.7) and (4.28). The decom-

positions contain a "global" portion representing the axial displacement and circumferential

rotation of the total cross-section, along with a local "warping" function. Here the warping func-

tions are only a function of 0. It can also be shown that the effect of the Vw function is wholly con-

tained in the circumferential rotation co. Thus the strain-displacement relations are rewritten as

O U O O

E x = -_+KyR(CoSO-(_-cOSOref) E 0 = 0 ](x0 =

o o 1 dco o
_0 = sin co Kx = KyCOS0 Kg = _'d'--0 _x0 = 0

l dUw P

RdO L
(5.3)

Only five unknown displacement parameters now exist: the axial displacement U, which repre-

sents a constant axial strain; the beam curvature _:y; a warping function uw and a cross-sectional

rotation V, which make up the shear strain; and the circumferential rotation co. For this study, the

axial displacement and circumferential rotation of the cross-section are used to introduce the axial

force and torsional loads on the cylinder, so that they can be considered known constants.

For the static solution, the constitutive laws are based on semi-membrane theory, discussed in

Section 2.2.3. This constitutive model is ideally suited for this problem since neglecting the axial
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boundary conditions effectively negates the possibility of shell bending in the axial direction,

which is a basic tenet of semi-membrane theory.

.- o ON x Exile ° Nxo = GxoH'[xO M 0 : D22_ 0 (5.4)

These constitutive equations relate the unknown displacement variables to corresponding stress

measures. The stiffness parameters Ex, G_0, and 022 are a function of O and are symmetric about

the vertical line _ = 0.

The shell equilibrium equations, Eq. (2.87)-(2.92), are simplified through the use of semi-

membrane theory and the assumptions for an infinite length cylinder (which assume that all quan-

tifies are only a function of 0), and after much manipulation are written as

1 dNxo 1 dMo

_d'-g = 0 Qo = kd-g

(. ,o)?Rd-'O + 1 +_--_/ _--_ -_- I +_-_ +NxK:ySin(0+co ) = 0 (5.5)

-_(1 dco" ldQo + +P-Nxr, yCOS(O+co) = 0

Since no constitutive law exists for the stress resultants N Oand Qo, they are regarded as merely

intermediate variables and can be eliminated from the equations. Thus the second, third, and

fourth equations in Eq. (5.5) can be combined into one equation (the dot over to denotes d/d0):

rd_£M,,TI
d ]d_0_').l. .. d rMo_+ d p

The third and final equilibrium equation is supplied by the beam equation,.Eq. (2.93):

d 2

_x2[My(X)] = 0 _ My = _Nx(0)(co_0- _ - cOSOref)R2dO

r d rS_c°s(0 +coI )zY_d'd_' (1 + O) - Nxsin(0 + co) (5.6)

(5.7)

where the integration in the axial direction has been performed to find the correct equation for the

constant bending moment applied to the cross-section about tlre horizontal axis.

The combination of the strain-displacement relations, constitutive laws, and equilibrium equa-

tions for the infinite length cylinder with a circumferential stiffness variation form a system of

three ordinary differential equations for the unknown disphtcement parameters u_, _:y, and to.

However, the equation for the warping function uw is decoupk:d from the other two, and the rele-
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vant equations concerning this mode of shear deformation are

o ldUw V Nx 0 o ldNxo
Tx0 = RdO L = Gx°HYx° Rd-'O = 0 -7" = _Nxo(O)R2dO (5.8)

The solution of this sub-system closely follows that of Eq. (4.28) and (4.29) for the linear mem-

brane solution, and can be solved analytically for all quantities through integration and enforce-

ment of the periodicity condition for Uw(0):

Nxo(O ) - 2rcR 2

V' 7 I..

R (G J)

dO o dO ]uw(O)- 2_-R'H Gxo(O ) 2"_JGx---_J

2rcHR 3
(G J) =

_dO/Gxo(O)

(5.9)

Notice that this definition of the torsional constant (G J) is slightly different than before and actu-

ally more accurate for variable stiffness structures. Furthermore, the solutions in Eq. (5.9) provide

an estimate of the axial warping that occurs for variable stiffness structures under torsion. Note

that for a constant stiffness variation the integrals within the brackets cancel out so that the axial

warping due to torsion is zero, as expected. The relevant coupling of this torsional deformation to

a long cylinder under bending is only apparent when buckling is considered. For this study, this

effect will not be investigated, therefore the results for torsion of a cylinder with a circumferential

stiffness variation are limited to the buckling problem using a linear membrane prebuckling solu-

tion, which was presented in Chapter 4.0.

Accordingly, let us return to the main problem at hand, which involves pure bending of a long

tube with auxiliary loads of pressure and axial compression. Normalization of the coupled equa-

tions governing the bending response is completed using the classical buckling parameters intro-

duced in Section 1.2.2. Some baseline stiffness quantities are defined first. These include a typical

average quantity that is related to the skin only and a global quantity that represents the axial stiff-

ness of the variable stiffness structure:

_x = l_ESxkin(O)dO F'x = Ex/_x (EA) = ¢Ex(O)HRdO (5.10)

The axial and circumferential stress resultants are normalized with respect to their classical buck-

ling values for infinite length cylinders from Eq. (1.4) and Eq. (1.6), respectively.

Nx(O) Nx(O)R N0(0) N0(0)R2
fix(0) - - fi0(0) - - (5.11)

(--Nxcl ) 2_bl 1/_0H (-No) 3D22
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The stipulation that the bending load does not produce a resultant axial force on the cross-section,

as discussed in Section 4.1.1, results in the expression of the reference angle that designates the

neutral surface of a cylinder under pure bending. Also included here is another global stiffness

quantity which represents the bending stiffness of the structure about the neutral axis.

  x COS0-, d0
_;7=x(o)_cosO cosOr.i)2dO (5.12)

COSOref = _.xdO ])' = _

Analogous nondimensionalization in terms of the classical buckling values for the beam curva-

ture, bending moment, internal pressure, end shortening, and resultant axial force are:

I_xHRK v M_,
-- " _l y = " p "-(__ct) - cigR2I),(-_x )

r, = _xHO f = _xHP
L(-_ "ct) (eA )(-_'ct)

pR

(5.13)

nondimensional parameter Z in terms of four laminate stiffness quantities:

Insertion of these normalized variables into the governing equations leads to the definition of a

(5.14)

nondimensional form as (a dot and do represent d/dO)

d [a-_(D=_)7 - 3p_
°L_T;_ j+(l+(b)de(D22¢b) (I +f.b:, 2 -

_ f r_,(0)cos(0 + co)]4z=_ldoL i+_ - nx(e)s_n(o+co)j

_), "- --_-_Ex(O)(cosO - * - cosOrey)2dO

This symbol is termed the collapse parameter and is a function of the laminate stacking sequence.

The complete nonlinear system consists of a differential equation for the circumferential rotation

and an integral relation that represents the beam behavior of ".he cylinder. They are expressed in

(5.15)

Normalization in this manner renders the nondimensional end displacement u and axial forcef

equivalent. Thus the axial loading will be introduced through the normalized forcej', since this

choice enables the designation of hydrostatic loading easier.
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The supplementary equations for the static solution are:

nx (0) - Ex(0)[_( cOSe-0- cOSOref)-f] (_(O) =

d_(O226)) D226)
%(0) - ( 1 + 6)) +

3(1 +6)) 3 (1 +6))

0

f [sin(0 +o3)- sin0]d0

0r,.e

4Z 2 _fix(0)cos(0+03)
3(1 +6))

(5.16)

:J; x(coso-¢ )de :j;L(o)(
COS 0re f = _TxdO ly = cos O - cos 0ref)2d0

The boundary conditions for co in the circumferential direction represent the line of symmetry at

0 = 0 and 0 = n, which demands that the rotation and the shear force resultant Qo are zero there.

03(0) = 0 66(0) = 0 03(rc) = 0 6b(r_) = 0 (5.17)

The finite difference technique is used along with Newton's method to solve the nonlinear ordi-

nary differential equation in terms of 03 for a given value of the normalized curvature _. Then the

remaining expressions in Eq. (5.1 6) can be evaluated.

5.2 Stability Estimate with Nonlinear Prebuckling including the Brazier Effect

As mentioned in the discussion of the Brazier effect in Section 1.2.3, the solution of the pre-

ceding system results in a nonlinear moment-curvature relation which attains a limit moment due

to the deformation of the cross-section. Often it is believed that this highest point on the nonlinear

load path corresponds to the collapse moment for long tubes under bending. Once the maximum

bending moment is surpassed, the structure has no ability to withstand the load and catastrophic

failure occurs. Though this is theoretically true for some structures, ones in which the Brazier

effect is very pronounced, most realistic tubes collapse before the limit moment is reached due to

the formation of a "kink", which represents a postbuckled state. The mechanism which produces

this kink is actually local buckling on the compressive side of the tube. The Brazier effect still

plays a significant role in this failure mode, for the development of the kink depends substantially

on the local curvature of the cross-section. To accurately determine when this local buckling

occurs, a stability analysis similar to the one presented in Section 4.2 for the short cylinder case

must be performed. However, the formulation of the eigenvalue problem must now consider the

prebuckling deformation due to the Brazier effect, so that the numerical eigensolution must use

the general nonlinear technique as opposed to the straightforward linear stability estimation.

The strain-displacement equations for the perturbed state, as defined in Eq. (2.108), are sim-

plified with respect to two assumptions about the prebuckling deformation: inextensionality of the
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cross-section and no variation in the axial direction. This reduces the relations to:

0

+ Ky(W 1 COS0 -- V I sin0) Eot =

(lOVl Ow 1
cos0)[._-_ +-_)+sino_(_ 1R00 )

2 2

o l bUt 0v I . (Owl_ Ow I o l_0V 1 0w 1)
Yx0t = R_'0 +_'x + sln°[,-"-_x ) mC°x'- OX 2 KxOt = Rt'ff-x-2_"_-OI

2

o (10v, 1 _.3w,]+ coso_., flOV, + wl)+ sin_'-----_---(z+ o_)(_"v, R0010w')j

(5.18)

The governing equations for the stability estimation are derived by inserting these expressions

into the second variation of the total potential energy, Eq. (2.109). Application of the calculus of

variations to the resulting integral for the three perturbed displacements generates the required

system of partial differential equations. Thus the analogue to Eq. (2.110)-(2.112) for an infinite

length cylinder under bending are written as:

Axial direction:

_._[Nxt] + 1 O rN_"6l x0, ] = 0 (5.19)

Circumferential direction:

l__.6(cos coIN0 + (2 + 6_) sino_[N

r'ySinONx,+_-2(_l)+( p N°°R M--£°°_VIR2 ]t.R _,_..._l)+ (5.20)

+

2

WlR l0 Wl]R002 = 0

(5.21)

- _:ysinONxt - Nxo[_X_] - Nxo,,[_xO,] = 0
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The stiffness terms and "0" subscripted quantities are strictly a function of 0, and the nonlinearity

of the prebuclding solution is introduced through the semi-membrane stress resultants as well as

the circumferential rotation co and the beam curvature n_.

To reduce the complexity of the stability solution, the perturbed displacements are assumed to

vary sinusoidally in the axial direction with wavelength 13.

UI(X , 8)=--ut(e)cos(--_]+ Utt(0) sin(-_]

vl(x, 0)= Vl(0) sin(-_)+ Vtt(O)cos(_ ) (5.22)

wt(x, 0)= Wt(0)sin(-_)+ Wtt(O)cos(_ )

Since the cylinder is assumed to be infinitely long, the parameter 13has no minimum constraints

dependent on the length of the cylinder, and thus [3 must be chosen so that the resulting eigenvalue

is a minimum. Two modes are also considered sufficient instead of four, since no anti-symmetric

loading occurs for this specialized case. Thus any arbitrary mode shape can be defined through the

framework of Eq. (5.22), with the appropriate circumferential boundary conditions applied for

each function. These boundary conditions are chosen so that mode I represents a symmetric mode

about the vertical (_ - 0), while mode H is anti-symmetric about this line.

Insertion of this assumed form for the displacements into the stability equations generates a

system of linear ordinary differential equations with variable coefficients, which is denoted as

rK rN II
= 0 (5.23)

The 3×3 sub-matrices are similar to the ones given in Eq. (4.46) for the short cylinder case, except

that the sub-matrices for the stiffness terms (Ks, Ka, and C) now contain numerous nonlinear preb-

uckling quantities. Also note that for this chapter, torsion will not be included so that the sub-

matrix S is identically zero. The mathematical expressions for the rest of the sub-matrices are sup-

plied in Appendix B.3.

To find the eigenvalue, a perturbation from the equilibrium solution must be performed, akin

to the stability estimate for the nonlinear axisymmetric problem in Section 3.2. The geometric

stiffness matrix for the eigenvalue problem is formulated in terms of the derivative with respect to

the load level of the total matrix given in Eq. (5.23). However, these derivatives of the terms in the
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sub-matrices cannot be found analytically, since the nonlinear equilibrium solution is highly com-

plex. Therefore, the geometric stiffness matrix is calculated through a finite difference approxima-

tion by finding the equilibrium state at closely spaced load levels. In essence, this technique

produces an eigenvalue which represents the required increase in load level that produces instabil-

ity. Therefore, along the nonlinear load path, a point exists for which the resulting eigenvalue is

zero, and this corresponds to the buckling load of the structure.

5.3 Approximate Analyses for Infinite Length Cylinders

The preceding nonlinear static equilibrium solution and the eigenvalue problem for the stabil-

ity estimation of an infinite length cylinder are both highly complex systems of equations that do

not lend themselves to efficient solution techniques, so much so that a numerical solution is

required for an accurate result. However, if the shell does not contain a circumferential stiffness

variation, then history has shown that some approximations to both the equilibrium and stability

solutions do exist. Therefore, this section relates the essence of simplifications that are employed

to formulate these approximate analyses. Slight modifications are also introduced which attempt

to incorporate some aspects of the variable stiffness effect into the stability estimate so that the

numerical solutions can avoid the lengthy nonlinear eigenv, due problem. Comparisons of these

approximate analyses to the full solutions are presented in the next section.

5.3.1 Linearized Brazier Solution for Constant Stiffness Structures

The first approximate solution transforms the highly compiex equations for the equilibrium

state into simple expressions that define the cross-sectional teformation and nonlinear load-dis-

placement relation. The simplification is based on the origina', solution of Brazier 42,43. The formu-

lation begins by assuming that the stiffness parameters do not change around the circumference

(i.e. a constant stiffness cylinder). Though a variable stiffness solution could be formulated using

these same techniques, it was found that the extra effort required to include the complete details of

a general stiffness variation increased the complexity of the approximate solution enough so that

its efficiency was no longer that significant when compared ta the full nonlinear solution. There-

fore the Brazier simplification for the equilibrium equations is confined to constant stiffness struc-

tures. The governing equation for co with the normalized stiffness parameters equal to unity is

then simplified to:

3pdb 2 -( r'fixCOS (0 +

do[(1 + d))] +(1+ 63)/'/) (1+ 63)2- 4Z (x_d° L i_ "4 o3!]_ fixSin( 0+ 03)) (5.24)

03(0) = 0 /6(0) = 0 a)(n) = 0 to(n) = 0

This is precisely the equation found by Reissner 45 (for isotrop c materials) in 1959, except that he
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introduced the nonlinear loading terms (the right-hand-side of the equation) through a less rigor-

ous approach. Linearization of this equation in terms of a Fourier expansion for the rotation 03

leads to an analogous form of the original ODE discovered by Brazier a2 in 1926. His simplistic

solution establishes that the deformation varies sinusoidally around the circumference and is of

the form (Wood .4 later included the effects of pressure):

_2_2

o3(0) = -2(1 + p) sin20 (5.25)

The pertinent auxiliary relations from Eq. (5.16) are then easily calculated as

2--2 2--2

I )_ tZpil Z°t (3cos0 + cos30) (5.26)my -- _ 1 2('i"+ (_(0) - 12(1 -I- p)

These equations represent the Brazier solution for the moment-curvature relation and the cross-

sectional deformation of a long cylinder under bending. As expected, the moment-curvature rela-

tion is nonlinear, and the limit point where the moment reaches a maximum possesses the follow-

ing properties:

_tim 1 [2( 1 + p) _tim 2 [2( 1 + p) . tim 2
OL - _[ my - l_ma x (5.27)Z 3 3Zq 3 =9

The parameter Omo_is a measure of the ovalization of the circular cross-section, and represents the

inward displacement, normalized with respect to the radius, at the top and bottom of the cross-

section. A comparison of the accuracy of these values when compared to the full nonlinear solu-

tion is presented in Section 5.4.1.

5.3.2 Approximate Stability Analysis Based on Maximum Compressive Stress

To determine the buckling load of a long cylinder under bending, the buckling curvature "_buck

at which the cross-section becomes unstable is calculated using the nonlinear eigenvalue tech-

nique of Section 5.2. However, this technique is quite intensive and inefficient in a computational

environment, for it involves performing a nonlinear eigenvalue analysis at many steps along the

load path until the critical load level is determined. Therefore, this sub-section utilizes some pre-

vious results concerning the stability of cylinders under bending loads to develop an approxima-

tion technique for the estimation of the buckling load.

Buckling of circular cylinders under bending was most qualitatively defined by Seide &

Weingarten s5 in 1961. They determined that the maximum critical bending stress is roughly equal

to the critical buckling stress under axial compression. Local buckling occurs when the maximum

compressive stress (at 0 = rt using our definition of a positive bending moment) attains this value.
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For orthotropic materials, this critical stress is found from tte classical value as

-2 _DIIEoH

Ccr = pH (5.28)

Note that for this definition the stiffness parameters are not the average skin values as usual, but

are allowed to vary around the circumference of the cylinder. The symbol p represents the local

radius of curvature and is also a function of 0. Due to the Brazier effect, the cross-section of the

cylinder deforms into an oval (see Figure 5.1), and the radius of curvature at the location of high-

est compressive stress increases, thus lowering the critical buckling stress according to Eq. (5.28).

Therefore, one can obtain an approximate estimate of the critical buckling moment by determin-

ing when the axial stress on the compressive side of the cylinder reaches this critical value.

Only two characteristics of the loaded cylinder need be known to determine this approximate

stability criterion: circumferential curvature; and the axial stress resultant. Both quantifies have

been defined earlier in terms of the circumferential rotation 6o(0), in Eq. (5.3) and (5.16), respec-

tively. Then the stipulation that the maximum compressive stress must remain below the critical

buckling stress to remain stable is expressed as:

-Nx(O)-----ff--<2_[DIl(O)E°(O)H[1_- [./_,+ _o(0) 1 (5.29)

This generates the (normalized) stability criterion for orthotropic tubes of infinite length:

7_x(0)[_(cos0 - ¢ - COS0re/)- f] + _/bi 1(0)_:0(0) ( 1 + 6_)> 0 (5.30)

For a general variable stiffness cylinder, this equation must be evaluated at all locations around

the circumference. The load which first violates the inequality is considered the critical buckling

load, and the buckled mode shape should (theoretically) be cc, ncentrated around the critical loca-

tion in the usual shape for buckling under a bending moment (some examples are shown in the

next section). Of course, for variable stiffness structures some assumptions must be valid for this

criterion to hold, namely that the stiffness variation is relatively smooth and that no axial stiffen-

ers are present near the critical buckling location. An investigation of this stability criterion for

variable stiffness cylinders that fall within this criterion is given in Section 5.5.

For constant stiffness cylinders, the approximation is simplified even further through the use

of the linearized Brazier solution. The critical location at whict_ the stability criterion of Eq. (5.30)

will first be violated is now easily deduced as 0 = rt (for a po.,itive horizontal bending moment).

The inequality is expressed solely in terms of the applied curvature, axial force, internal pressure,
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and collapse parameter Z:

3(1+p) (1+/7) _+l-f>0 (5.31)

Thus, the method for finding the critical bending curvature of a constant stiffness orthotropic cyl-

inder with internal pressure and a constant axial strain consists of finding the root of a third degree

polynomial. One interesting point here is that for certain values of X (and p), the critical curvature

for buckling is not theoretically reached until after the maximum moment is attained. Some com-

parisons of Eq. (5.27) and (5.30) will be made in the results section to illustrate this point. Also

note in Eq. (5.31) that for cylinders that do not undergo bending, buckling due to an axial force is

estimated at its respective classical values. Comparisons to the full nonlinear eigenvalue solution

and the original stability estimate given by Eq. (5.30) will be performed next to determine the

suitability of these approximations.

5.4 Constant Stiffness Results

The nonlinear solutions and stability estimates developed in the previous sections represent an

original form of the governing equations for infinite length cylinders. The differences to pre-exist-

ing solutions lies mainly in the normalization procedure for orthotropic laminates (which pro-

duces the nondimensional parameter X) and the full inclusion of the nonlinear deformation terms

in the stability estimate. Therefore, besides checking the accuracy of the approximate analyses,

this section also investigates the effect of these new improvements to the Brazier problem for con-

stant stiffness laminates. Some simple optimization is also performed in this section to determine

the optimal stacking sequence to resist buckling. These optimization results are complemented by

similar design studies using curvilinear fibers in Section 5.5.

5.4.1 Accuracy of Approximate Analyses

The first task is to compare the approximation based on the analysis of Brazier to the full non-

linear problem represented by Eq. (5.15). Here the load case is defined as pure bending (f= p = 0)

for a laminate with a collapse parameter g equal to unity. Note that this restriction on Z basically

limits the cylinder composition to either an isotropic material or an orthotropic material in which

all the layers are aligned in the same direction. The comparisons between the full nonlinear solu-

tion (referred to as the Reissner solution) and the Brazier approximation are presented in

Figure 5.2 in the form of a curvature-versus-moment plot of the nonlinear load path as well as the

resulting cross-sectional deformation for each solution at a given load level. Each load curve also

reveals the limit points and the buckling levels corresponding to the maximum bucking stress

(Seide-Weingarten) criterion. As expected, the simplistic Brazier solution generates surprisingly
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Figure 5.2: Comparisons between Reissner and Brazier Solutions

accurate results when matched with the full nonlinear solution. In direct comparison, the approxi-

mate technique slightly underestimates the cross-sectional deformation, which results in less non-

linearity and an increase in the calculated bending moment. However, the deformed shape of the

cross-section is predicted correctly and differs only in relative magnitude. These results may seem

to indicate that the level of complexity in the Reissner equation is superfluous, and that some

terms may be omitted to produce a sufficiently accurate solution with less involved equations.

However this is not the case. It can be shown that the linearization of the nonlinear equation that

leads to the Brazier approximation does not contain an intermediate step that produces accurate

results while decreasing the nonlinearity of the equations. This result is discussed in Calladine 5°,

and he demonstrates that attempting such a solution by performing a perturbative expansion gen-

erates a corrective term to the Brazier solution that actually renders the solution less accurate, and

that the next term in the expansion restores the equations to the full nonlinear form. This phenom-

enon is also evident in the work of Bannister 49, who included _ome extra terms in the approximate

solution that skewed the results by over 30%. Nonetheless. the approximate Brazier solution,

when applied correctly, does provide an excellent alternative to the nonlinear Reissner equation,

especially when comparing efficiency of the solutions.

The load-displacement response, limit and buckling points, and cross-sectional deformation

shown in Figure 5.2 do not depend on the radius-to-thickness ratio of the infinite length cylinder.

This is evidenced by the normalized equations (5.16), (5.26), _5.30), and (5.31) derived in the last

section. However, the nonlinear eigenvalue calculation was not shown for these cylinders, particu-

larly because it does depend on the relative thickness of the cylindrical shell. This phenomenon

was first discerned by Fabian 48, who concluded from his bifurcation analysis for isotropic cylin-
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ders that the collapse of thin cylinders was governed by the maximum buckling stress criterion for

thin cylinders yet better approximated by the limit load for shells with a small radius-to-thickness

ratio. However, it should be noted that Fabian's stability estimation was based on shallow shell

equations for a toroidal shell that did not take the full effects of the nonlinear prebuckling defor-

mation into account. To clarify, Fabian assumed that the shell contained axial curvature due to the

bending moment and circumferential curvature due to the cross-sectional ovalization, and then

utilized DMV shell theory to calculate a buckling load from this deformed state. This technique

possesses two differences with respect to the bifurcation analysis used in this study, namely the

use of DMV theory versus Sanders equations, and the inclusion in this investigation of the preb-

uckling deformation that leads to a nonlinear eigenvalue problem. A comparison of the two tech-

niques reveals that the results for thin shells are the same: the deformation is localized on the

compressive side of the ovalized cross-section, and the axial buckling frequency is relatively high.

For thicker shells, the buckling mode tends to spread out farther from the maximum compressive

stress location, and buckles at lower circumferential and axial frequencies. This tends to increase

the buckling load slightly when compared to the maximum buckling stress criterion. However

Fabian's conclusion that thicker cylinders approach a limit moment before bifurcation was not

substantiated by this investigation. Instead, it was found local buckling still occurred first (for the

isotropic shells under consideration) but with critical curvature somewhat higher (less than 10%)

than expected. Thus it was concluded that the maximum buckling stress criterion was adequate

for determination of the buckling load, even for variable stiffness structures, and the remaining

results in this section will utilize this approximate criterion for the buckling results.

5.4.2 Influence of Laminate Stacking Sequence

Brazier's analysis applied to long cylinders constructed of orthotropic material was first com-

pleted by Kedward 51. For our analysis, the nondimensional parameter Z of Eq. (5.14) seems to

describe a measure of orthotropy for any shell wall construction. However, g does not signify any

classical measure of orthotropy, such as the ratio of the moduli in perpendicular directions. For

instance, isotropic materials and cylinders fabricated from one layer of an orthotropic material

both possess a value of Z = I. Clearly then, the degree of orthotropy of the material is not repre-

sented by Z- A more accurate description of Z is related to the collapse loads of the cylinder.

Recall that the classical buckling moment is proportional to _ 1_'0. However, due to the Brazier

effect, another mode of failure exists in the form of a limit moment on the nonlinear load path.

After unnormalizing, it can be shown from Eq. (5.27) that this limit load is proportional to

_. This makes physical sense, since each of the stiffness measures Ex and D2: contributc to

the nonlinearity in different ways: a high axial membrane stiffness resists the curving of the tube
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which generates the inward forces that ovalize the cross-;ection; while a large circumferential

bending stiffness will not allow the circular cross-section to deform into an oval. Therefore, _ is

an indication of the ratio between the buckling and limit loads of a tube under bending, and is

dubbed the collapse parameter. Structures with a low collapse parameter are more likely to buckle

locally before the limit point is reached, while tubes with large values of _ may attain a maximum

moment before the local buckling condition is reached.

The question still remains as to what kind of structures generate different values of the col-

lapse parameter defined by Eq. (5.14). The ratio of bending stiffness divided by the in-plane stiff-

ness in two perpendicular directions is certainly not intuitive. As mentioned previously, any tube

constructed of a single orthotropic layer possesses a value of _ = 1 and behaves identically with

respect to their normalized collapse load values. To produce extreme values of _, the aim is to find

structures that possess drastically different bending and membrane stiffness characteristics in the

axial and circumferential directions. Obviovsly, multi-layered composites satisfy this criteria and

can achieve a wide range of X values. For instance, a simple laminate composed of unidirectional

orthotropic layers (EI/E 2 = 11) with the layup [02/+45]s has a collapse parameter )_ equal to 1.55.

Therefore, the collapse parameter is a direct function of the stacking sequence of multi-layered

shells, as well as the material properties of the constituent layers.

With this in mind, some optimization is performed to determine the limiting values of g that

can be achieved as a function of lamina orthotropy and stacking sequence. Laminates were

restricted to be symmetric, balanced, and constructed only ot 0 °, +45 °, and 90 ° plies. It was found

that laminates with large values of g tend to have many 0 ° plies at the extreme locations of the

laminate, with 90 ° plies at the middle surface and a transition region of-I-45 ° plies between the

two. Conversely, small values of g are generated by an inner core of 0 ° plies with 90 ° layers at the

extremities. The extreme value of the collapse parameter for these optimal ply configurations also

depends on the orthotropy of the laminae. A plot of the maximum value of g as a function of

material orthotropy is shown as a solid line in Figure 5.3 (here it is assumed that the shear modu-

lus of the lamina is that of the matrix material). The relative amount of 0 ° and 90 ° plies in the lam-

inate now varies as a function of material orthotropy, while the percentage of +45 ° layers

remained about the same (around 10%). Two mechanisms _o increase the value ofz exist. For

smaller values of EI/E 2, the laminate is composed of over 50_ 90 ° layers in the core of the lami-

nate. This has the effect of making Eo greater than Ex without a large difference in the bending

stiffnesses. However, the maximum values of g are not very large for this case due to the small

value of the orthotropy. As the orthotropy increases, the mectaanism to maximize g changes. The

amount of 0 ° plies at the extreme locations of the laminates g_ows to almost 60%, thereby increas-
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ing the bending stiffness in the axial direction (Dll) when compared to that in the circumferential

direction (D22) because of the distance of these plies from the laminate middle surface. Analogous

optimization techniques for minimum values of Z results in a reversal of these trends, so that the

curve for the minimum value of Z (the dashed line in Figure 5.3) follows an inverse relation (i.e.

Zmi, = 1/Z,,_). For a given material orthotropy, the range of Z values lies between these two cases.

Representative moment versus curvature relations for various values of the collapse

parameter Z are displayed in Figure 5.4 for unpressurized cylinders. The load paths are terminated
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when the limit point is encountered. The intersection of the; dotted line with a load path represents

the buckling point according to the Seide-Weingarten criterion. Note in Figure 5.4 that the tubes

with higher values of the collapse parameter experience significant nonlinearity due to the Brazier

effect before a buckling point is attained. Conversely, laminates possessing a small value of z

behave more linearly and collapse when their classical buckling value is reached. Thus the limit

point of the Brazier effect cannot be used as an accurate estimate of the collapse load for long cyl-

inders possessing a small value of _. To illustrate this more clearly, critical curvatures according

to limit load and local instability are plotted as a function of 2 in Figure 5.5. The lower value of

\

\ Buckling Points

\ Limit Points
\

0 ' I , , , I , I , , ,
0 i 2 3 4

Collapse parameter, _C

Figure 5.5: Buckling Curvature and Limit Curvature vs. Collapse Parameter

the two is the curvature that determines collapse. Note that for small values of Z, the limit moment

is not an accurate estimate of the collapse load. Furthermore, for values of Z greater than two, the

limit point is reached before the local stability condition is violated However, it may be almost

impossible to distinguish this limit load behavior from the local instability experimentally, for the

buckling load remains very close to the limit load, and the catalyst to the post-buckled state may

be difficult to distinguish.

5.4.3 Stacking Sequence Optimization to Maximize Crititai Load

The results of the previous section have demonstrated taat the nonlinearity for a composite

laminate depends strongly on the stacking sequence of the I trninate. Additionally, some optimal

stacking sequences that maximized or minimized the valu,_ of the collapse parameter _C were

determined. However, it is not apparent if this nonlinearity h_s any effect on the optimal design of

cylinders under bending, or even what the desired characteris:ics of the laminate should be to pro-

!.5
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duce a long cylindrical structure that performs well under bending. For instance, the last chapter

assumed that the cylinder section was short and the prebuckling static solution was approximated

by the classical membrane solution. The optimal designs tended to increase the axial stiffness at

the top and bottom of the cross-section, while the sides were relatively soft so that the stiffer sec-

tions could carry the bulk of the load. However, such a design may not perform as well as others if

the cylinder is long, since the soft sides would tend to increase the Brazier effect by deforming

easily circumferentially. Therefore, this sub-section illustrates the difference in optimal designs

that exist between short and long cylindrical shells.

For this design study, the radius-to-thickness ratio is chosen to be 200, which qualifies as a

thin shell so that the maximum buckling stress criterion can be used. The laminate is constructed

of twenty-four plies of a typical graphite-epoxy material (for properties see Appendix C) that is

constrained to be balanced and symmetric. This leaves twelve design variables defined as the fiber

orientation angle for each lamina, which are allowed to be either 0, +45, or 90 degree plies. A

genetic algorithm is implemented to use these discrete design variables to find the optimal col-

lapse moment for both a short cylinder segment and an infinite length shell. For the short segment

solution, the critical bending moment is assumed to correspond to the classical buckling moment

given in Eq. (5.13). Thus the optimization problem can be simply stated as maximizing the quan-

tity DIIE o for a 24-ply stacking sequence. The collapse moment of the infinite length shell is

determined by the minimum value of either the limit moment or the buckling load calculated by

the maximum buckling stress criterion. This can be evaluated by either finding the buckling and

limit points as the curvature is increased along the load path, or using the approximate Brazier

analysis expressions given in Eq. (5.27) and (5.31). Here the former choice is used due to its

greater accuracy. The results for each case are displayed in Table 5.1:

Case Stacking Sequence My (lbs-in) _ Otcr My (lbs-in)

Short [04/908] s 8.323x106 1.900 0.4477 2.313x106

Infinite [902/O/90/02/90z/O4]s 5.187x 106 0.6906 0.7883 3.441 x 106

Table 5.1: Results of Optimization for Maximum Bending Load (Constant Stiffness)

Not surprisingly, the optimal designs for each case differ substantially. For the short cylinder, the

buckling load is maximized by placing 0 ° plies at the outermost locations with many 90" plies at

the core. This has the effect of simultaneously increasing the Dll stiffness parameter (axially stiff

plies far from the middle surface) and the E 0 term (due to the presence of many circumferentially

stiff 90 ° laminae). However, this method of design produces a laminate with a large value of the
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collapse parameter Z, which implies significant nonlinearity before buckling for a long tube. The

critical normalized curvature and bending moment for this stacking sequence is also calculated,

and it is evident that the drop in load carrying capability is drastic (over 70%). Conversely, optimi-

zation using the infinite length solution produces a laminate with a more even distribution of 0 °

and 90 ° plies, with the larger bending stiffness in the circumferential direction. This produces a

small value of Z and a drop of only 34% from the short c)flnder case. However, this design also

exhibits a relative increase in load-carrying capability of over 50% when compared to the optimal

short cylinder design. Thus these designs demonstrate that for long cylinders, the Brazier effect

plays a significant role in the performance of the structure under bending.

5.4.4 Influence of Pressure

The presence of internal o/" external pressure also affects the amount of nonlinearity for long

tubes under bending. The effect of pressure on collapse loads for cylinders under bending was

first investigated in detail by Fabian 48 in 1977, who also pertormed a full bifurcation analysis from

the deformed state for infinite cylinders under b_nding, pressure, and axial loads. His results for

various pressure loads conform exactly as those presented here, though his conclusions regarding

the effect of the radius-to-thickness ratio on the mode of collapse are not evident in these results

since the buckling criterion is based on the maximum buckling stress criterion. Nonetheless, plots

of load-displacement curves are displayed in Figure 5.6 fc,r typical values of pressure for thin

shells with a collapse parameter equal to one. A large internal pressure creates circumferential
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stresses that dominate the bending stresses in the tube and for=e the cross-section to remain circu-
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lar. Thus the ovalization that lowers the moment of inertia does not occur, and the nonlinearity due

to the Brazier effect is lessened. Conversely, exterior pressure heightens the nonlinear effect by

encouraging the cross-sectional deformation to increase. The dotted line in Figure 5.6 again corre-

sponds to the buckling point using the Seide-Weingarten criterion. Limit points and buckling

loads are compared as a function of pressure in Figure 5.7. As expected, large external pressures

increase the Brazier effect, so that a limit point may occur before the local buckling phenomenon

appears. Though the results shown in these figure apply only to thin shells, and it is still safely

concluded that the limit load is again a poor estimate of the failure load of the structure except for

extreme cases.
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5.5 Variable Stiffness Concept Results

This last section analyzes infinite length cylinders constructed of variable stiffness laminates

through the use of curvilinear fiber formats. Axial softeners are not investigated here, since their

total effect is not accurately reflected for the infinite length case. Though discrete stiffeners figure

significantly in the membrane and bending stiffness parameters in the axial direction, the absence

of end conditions severely limits their effectiveness for this idealized problem. This is due to the

"greased end" boundary conditions, for which the axial stiffeners are not rigidly attached at the

boundaries and merely float in space as attachments to the skin. Therefore the resistance to cross-

sectional deformation that the stiffeners should provide (by bending as beams) is lost by virtue of

the approximate analysis in the axial direction. Nonetheless, curvilinear fiber formats and

crown/side/keel arrangements are still viable possibilities for skin constructions. Therefore this

section will discuss the analysis associated with such structures and their relative effectiveness in



Chapter 5.0 Bending of Infinite Length Cylindera including the Brazier Effect 198

increasing failure loads when compared to constant stiffness solutions.

To complement the optimization performed in Section 5.4.3 for constant stiffness laminates,

this section utilizes a circumferential stiffness variation to improve the critical buckling load of a

long cylinder under bending. The variation of the stiffness parameters is expected to provide two

methods to improve the performance under bending: modification of the prebuckling deformation

pattern by minimizing the circumferential bending of the cross-section; and the presence of a

stacking sequence at the critical buckling location that exhibits excellent resistance to buckling

due to axial stress. The cylinder geometries are chosen as R/H = 200 and are constructed of 24

balanced, symmetric plies, which implies twelve fiber orientation angle design variables. The two

outermost plies are constrained to be variable stiffness layers, while the remaining ten are allowed

to be variable stiffness plies or straight fiber laminae with fiber orientation angles equal to 0 ° or

90 °. Two methods of stiffness variation are used: curvilinear fibers using a linked-line segment

format that are symmetric about the horizontal axis; and a crown/side keel arrangement with vari-

ous locations used for the transition area between the sections. A genetic algorithm was used for

the numerical optimization.

The results for the variable stiffness case are shown in Figure 5.8. The plot on the left displays

the fiber orientation angle q) (dashed line), normalized axial stiffness Ex (solid line), a:;d collapse
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parameter X (dash-dot line) as a function of the circumferential coordinate 0. Note that the regions

that experience the largest circumferential bending (the top, bottom, and sides) possess a stacking

sequence with a small value of X which reduces the circumferential bending due to the nonlinear

Brazier effect. Where the cross-sectional deformation is not as significant, the design favors an

axial stiff laminate that increases the bending resistance of the structure. It is interesting to com-

pare this optimal design with the results for a short cylinder under bending, such as those shown

in Table 4.4. For those cases, the top and bottom regions required the highest stiffness possible,

however for a long cylinder such a design is less valuable since it experiences increased nonlin-

earity. The plot to the right in Figure 5.8 shows the cross-sectional deformation of the variable

stiffness design. Note that even with the drastic stiffness variation, the displacements still basi-

cally follow the cos20 deformation pattern. This is due to the fact the forcing term in the nonlinear

equilibrium equation is dominated by this function, and that the variation of the circumferential

stiffness parameter D22 is not able to significantly alter the shape of the deformed cross-section.

This result was also exhibited for shells with different radius-to-thickness ratios. Thus it is con-

cluded that though the variable stiffness concept does provide an improved design with respect to

the constant stiffness solution (around 5%), the variation of the stiffness parameters is still not

able to significantly alter the resulting deformation shape or failure mechanism due to the nonlin-

ear Brazier effect.

For the crown/side/keel design case, the results were even less promising. Since both the sides

and the crown/keel regions required a laminates with a small value of Z to resist the ovalization,

the resulting design turned out to be a constant stiffness laminate identical to the optimal design

given in Table 5.1. This is somewhat expected from the variable stiffness results shown in

Figure 5.8. Instead of a crown/side/keel arrangement, a more effective layout would contain an

additional region between the sections that improved the global axial stiffness, while the sides, top

and bottom would be constructed of a laminate that resisted the cross-sectional deformation.



Chapter 6.0 Bending of Finite Length

Cylinders including the Brazier Effect

The previous chapter investigated the Brazier effect for infinite length tubes under bending.

Unfortunately, that analysis suffers the drawback that it is only applicable to extremely long shells

that are not affected by the end conditions. For many practical structures, the presence of end

restraint renders the infinite solution useless, since the end Conditions play such an enormous role

in retarding the deformation of the cross-section. Therefore, this chapter attempts to incorporate

the end effects into the nonlinear analysis of cylinders under beam bending loads. By including

the variation of the response in the axial direction, the resulting analysis can also incorporate stiff-

ness variations along the length, akin to the axisymmetric solution of Chapter 3.0. The axisym-

metric analysis formulated there constitutes a complete solution for the axisymmetric response, in

that the inclusion of boundary layer effects, arbitrary end ,:onditions, and stability estimations

with nonlinear prebuckling solutions provides a thorough investigation of all aspects of the prob-

lem. However, retaining this amount of detail for loads that vary around the circumference of the

shell, such as this particular case of beam bending, increases the complexity of the solution tech-

nique by a considerable degree. This is due to the fact that the nonlinear governing equations con-

tain products and squares of the variables, most notably rotations of shell elements. For the

axisymmetric problem, this does not present too severe of a complication, for the nonlinear terms

remain functions of the axial coordinate only and the expressions governing the response are still

ordinary differential equations. However, with a possible non-axisymme.tric distribution of the

response, the nonlinear terms generate equations which demand analysis in the circumferential

direction as well. For example, traditional investigations of pure bending of cylindrical shells

often rely on a harmonic expansion of the displacements, which results in a large system of cou-

pled ordinary differential equations. Though a numerical solution is feasible (see, for instance,

Fuchs88), the complexity of the method requires far greater computational time and power than

that of our axisymmetric solution. Since the goal in this investigation is chiefly to explore the pos-

sibilities of the variable stiffness concept, such a highly sophisticated solution that is computa-

tionally slower will not be used. However, since the beam loading of a variable stiffness shell is

still a desirable problem to solve, an approximate method wil ' be employed. By utilizing certain

200
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assumptions about the response in the circumferential direction, the resulting system can be main-

tained to be a few ordinary differential equations, though some of the desirable details of the anal-

ysis mentioned earlier will be lost.

The specific problem to be explored is pure bending of a finite length cylindrical shell with an

axial stiffness variation. The most basic solution to this problem is found through the use of linear

membrane theory, such as the analysis presented in Chapter 4.0. Though this solution does not

consider the local boundary layer of the cylindrical shell, it still conveys an accurate representa-

tion of the beam response of the structure in a global sense. Furthermore, the neglection of the

shell boundary layer near the ends removes the nonlinearity and leads to a simple closed-form

solution in the axial direction. Thus for short cylinders the first approximation of the solution for

pure bending corresponds to the linear membrane solution. For longer cylinders, membrane the-

ory is not as accurate and must be augmented by the inclusion of the circumferential moment

through the use of semi-membrane theory, as discussed in Section 2.2.3. This again leads to the

incorporation of the Brazier effect, which was investigated in the last chapter for infinite length

cylinders with a circumferential stiffness variation. However, the inclusion of an axial stiffness

variation for a finite length cylinder changes the problem considerably, for now a thorough analy-

sis must be performed in the axial direction to fully explore the ramifications of the variable stiff-

ness concept and the effect of finite length on the nonlinear bending phenomenon. Thus the loss of

the detailed analysis near the end of the cylinders due to adopting an approximate solution is tem-

pered by the existence of a different type of nonlinear problem that is still significant for many

applications.

The assumption used for the simplification of the governing equations in the circumferential

direction will be based on the approximate solution of Brazier az in 1926. As discussed in the

introduction and established numerically in the last chapter, Brazier's original linearized analysis

for infinite length cylinders is surprisingly accurate compared to the more robust nonlinear solu-

tion. When applied to finite length cylinders, the simple assumptions transform the static equilib-

rium equations into differential equations that only vary in the axial direction. This produces a

mathematical system that can be solved efficiently using standard numerical techniques. The

application of Brazier's analysis to finite length tubes was first investigated by Aksel'rad 59, who

also employed semi-membrane constitutive theory to determine the effect of the cross-sectional

deformation on the structure's buckling load. In this study, the approximate maximum buckling

stress criterion introduced in Section 5.3.2 will likewise be used to estimate stability and the effect

of the Brazier nonlinearity on collapse. Since the stiffness variation is only in the axial direction,

this approximate technique should be adequate, since it was shown in the last chapter that the



Chapter 6.0 Bending of Finite Length Cylinders including the Brazier Effect 202

approximate stability estimate is sufficiently accurate for cylinders with a smooth stiffness distri-

bution around the circumference of the cylinder.

6.1 Static Equilibrium

The original Brazier solution determined that for long cylinders under bending, the line of

action of the bending stresses produces an ovalization of the cross-section which varies like

cos20. Therefore for this chapter, this variation is used as the basis for the functional form of the

displacements in the circumferential direction so that the magnitude of the deformation along the

length of the cylinder are the unknown variables. Thus the displacements are expressed as

u°(x, 0) = u2(x)cos20 v°(x,O) = v2(x)sin20 w°(x, 0) = -w2(x)cos20 (6.1)

and the resulting strain-displacement relations are assumed to be linear. The negative sign of the

radial displacement is inserted so that the resulting measure of the ovalization will be positive.

The resulting deformed geometry of the cylinder acting as a beam is shown in Figure 6.1.

2(x)

- _ i ,."
My. My

i"" "" r

L

Figure 6.1: Geometry of Finite Length Cylinder under Bending

Semi-membrane theory is used to model the constitutive behavior, which corresponds to a

membrane solution for the beam-like response of the cylinder that still includes the effect of cir-

cumferential bending. Since the major loading of the structure consists of beam bending which

produces predominantly axial stresses, the resulting ovalizati, m Of the cross-section is assumed to

be inextensional in the circumferential direction. This translates into a relationship between the

circumferential and radial displacement functions that guarar_tees that the circumferential middle

surface strain is zero, and for a linear approximation this is expressed as

o 1(@v° )eo = _ +w =0
w2(x)

=_ v:(x) = T (6.2)
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Therefore the circumferential displacement v 2 is eliminated from the equations and the solution is

formulated in terms of the radial displacement w2. This choice is made since the radial displace-

ment gives a great physical feel to the problem than the circumferential displacement. However, it

should be noted that the resulting equations using semi-membrane theory will be membrane equa-

tions, and that the boundary conditions in terms of w 2 are physically related to the circumferential

displacement v2.

The correct application of Brazier's approximation implies that the nonlinearity attributed to

shell rotations is small and that the axial curvature due to variations of WE(X) Can be neglected. The

strain-displacement relations can then be specialized from their general form from Chapter 2.0,

Eq. (2.20)-(2.21), and are written here in terms of the ovalization variables:

E°x = Ky[(R- 3w2"x w2 o7j=s0- L j o= -o =0:0

_ o F 3w27o ldw27 o L-Tyjsin20 0 (6.3)u2 7._xx ]sin20 cox 0 co0 ezz =Yxe = _- + = =

o
Kx=O

o v 3w27

L-#jcos:0
o 1 7dw2 . xo- }s,n O

The semi-membrane constitutive equations from Eq. (2.71) are:

.- o oN x ExHe°x Nxo = GxoHTxo M 0 = D22K 0 (6.4)

where the softness parameters are solely a function of x. The equilibrium equations for the shell

and the beam, Eq. (2.87)-(2.94), become:

_Nx 1 _Nxo

_x +_b_ = o
3Nxo I _No 1 OMo

Ux +_ +-fi_

2
1 bM0

R2O0 2 o)NxlC'yC°SO - No + _0 + P = 0

+ Nxl_ysinO = 0

d2 = d2 (_]cos30]Rd0
dx2[My(x)] d---_{ J;Nx [(R - -_ )cos 0 - }'-0

(6.5)

For the boundary conditions, all constraints are homogeneous except for those dealing with

Note that due to the lack of stiffness variation around the circumference, the reference angle that

determines the neutral surface of the cross-section is automatically calculated as 0,_y = rd2
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the beam variables, which introduce the loading through t_le application of either an end rotation

or a bending moment.

U2(0 ) = 0 or Nx(0, 0) = _cos0 u2(L/2) = 0

dw 2 (6.6)

w2(0 ) = 0 _XX (L/2) = 0

£_y(0) = _y or My(0) = 0 _y(L/2) = 0

For the end conditions, the axial direction provides two alternatives: a fixed condition in which the

cross-section remains straight, and a free end where the stress resultant due to bending is specified

and cos20 warping deformation is allowed (this is discussed in more detail shortly). The boundary

condition for w 2 at the ends corresponds to the stipulation that the cross-section must remain cir-

cular there, for it guarantees that the radial and circumferential displacements, through Eq. (6.2),

are zero. At x = L/2, suitable symmetry conditions are used for the axial and radial displacement,

which are respectively anti-symmetric and symmetric with respect to the mid-length of the cylin-

der.

A remark should also be made here regarding the evaluation of the end conditions. Often the

governing equations for this problem are formulated solely in terms of the radial displacement w 2

by assuming that the shear stress is zero. In such a situation it can be shown that the first two

options for the boundary condition in the axial direction are replaced with the choices of

dw21dx - 0 or d2w2/d.x 2 = 0. These expressions are often construed as "clamped" or "simply sup-

ported" boundary conditions due to their traditional form. However, since semi-membrane theory

does not account for bending of the shell wall in the axial cirection, these classifications are not

appropriate for these boundary conditions. The concept of clamped versus simply supported can

only be related to the structure as a beam, that is, through the designations of fl and My at the ends

(for this case of pure bending, the beam would be considered clamped). Therefore, the constraints

at x = 0 actually correspond to membrane boundary conditions and the first two options refer to

either a fixed or free end in the axial direction. The first choice demands that the axial displace-

ment vary linearly across the cross-section, which results ilt axial stresses developing that vary

around the circumference as cos20. This condition occurs ,,,,hen the end is supported by a rigid

plate or sturdy ring stiffener and it is considered the more re_distic of the two. The second option

corresponds to a free end or a flimsy stiffener, in which the axial displacements are allowed to

vary in the yz-plane and lead to warping of the cross-section. The intended point here is that these

boundary conditions are related to the axial displacement of the cross-section, and thus do not
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involve the axial rotation or resultant moment of the shell element.

Returning to the formulation of the governing equations, the beam equation is solved first. The

expression for the axial stress resultant in terms of the displacement parameters is

Nx(x, O) = Ex(x)H[_y(x)R(1 3w2"_ fdu2"_- TR"J c°s0+ _d-'xxJcos20 - _:y(x)R(_--_)cos30lw2 (6.7)

Inserting this expression into the integral equation for the moment in Eq. (6.5) and ignoring

squares of the radial displacement generates the relationship between the beam curvature and the

bending moment, which is constant since we have limited the loading to pure bending.

By ( 3w (x))
- Ky(X)_ 1 (6.8)

Ex(x)rcHR3 2R ]

The beam rotation Dy(X) can be found through the definition of the curvature using Eq. (2.4), and

the application of the appropriate boundary conditions after integration yields the desired relation

between the end rotation and moment:

m L/2

df_y _ My dx
d"_ - -lq, y(X) :=_ _'_y(X) -- -_R 3

Ex(x) fl_ 3W2(X),] _"_y(0) "- _y (6.9)
x

The governing equations for the axial and radial displacements are determined from the com-

bination of the shell equilibrium equations, semi-membrane constitutive laws, and strain-displace-

ment relations. No is eliminated as an intermediate variable in these calculations, and a few other

terms, involving squares and derivatives of the variable w2, are neglected in accordance with Bra-

zier's approximation. The resulting pair of differential equations are found from the requirement

that the coefficients of the harmonics sin20 and cos20 must be equal to zero.

d du2 Gxo(x)H(dw2+
d_FCxo )M(ldw2 (18D22(x)

dxL R \2dx 2_2)]+\ _ +6p)-_- =
3Ex(X)HR1Cy(X)2

(6.10)

Normalization is performed using similar parameters as those used in the axisymmetric problem.

The axial coordinate and stiffness parameters are nondimensionalized as

= 2x _x = _ESxkin(_)d_ F'x = Ex/_-x (6.11)
L
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The Brazier-type displacements are normalized with respect to typical length quantities:

2LU2(X) w2(x)
(6.12)

The end rotation, axial curvature, bending moment, and pressure are all normalized with respect

to their classical buckling values for an infinite cylinder:

_ f_xHR21cv(x) My _ pR 3
_xHR2_ tx(_) = - _y = /_ (6.13)

L_blI_'oH 2,q/Dl I_oH 2nR_bll_0H 3622

This leads to the definition of three nondimensional parameters, referred to as the collapse param-

eter, tube length parameter, and shear length parameter, respectively:

bill 1_'o [9622 L4 _f_xoL 2
Z = 4b--_2_x t = _]_ g = _ _,xR 2 (6.14)

Then the coupled system for the solution of the Brazier problem for finite length cylinders with an

axial stiffness variation is written as (primes denote differentiation with respect to _):

[Ex(_)u2 ] + j22Gxo(_)(w2- g2) = 0

_1,2 -- , , )_2Ex(_)tX(_)2

4_[Gx0(_)(w2 - fi2)] + [D22(_) + if]W2 -" 3

t

U2(0) = 0 or fi2(0) = 0

_2(0) = 0

my = Ex(_)tx(_)(1--_)

u2(1) = 0

p

g'2(1) = 0

1

(6.15)

0

The loading is introduced through the end rotation ix, and the unknown moment is calculated

through the integral relation. This displacement control procedure is used because for longer cyl-

inders the moment versus end rotation curve has a maximum, and specifying a moment above this

limit would not be feasible. "Also note that the forcing term in the second equilibrium equation is a

function of tx 2, so that the radial displacement w2 is positive. Taus the effect of the Brazier defor-

mation leads to a decrease in the bending stiffness of the structure, as revealed by the relation

between the applied bending moment and the axial curvature.

Several pertinent limiting cases of these governing equations exist in terms of the nondimen-

sional length parameters _, and la. Firstly, as _,---->0, the cylinder becomes so short that the radial
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restraint totally nullifies the Brazier effect, in which case the classical membrane solution governs

the response. Thus the results for this scenario agree with the short cylinder section analysis of

Chapter 4.0. The other limiting case for _, can be represented as:

_" _ _ _ u2(_) = 0, w2(_) = constant (6.16)

This of course is the solution for an infinite length cylinder, and corresponds exactly to the

approximate Brazier solution given in Eq. (5.26).

For the shear length parameter It, two limiting cases also exist. When l.t-+0, the shear stresses

that normally transform the deformed cross-section back into a circle at the end restraints are zero

and thus the edge effects disappear. This again leads to the infinite length solution of Brazier.

Conversely, the condition _t---+_ implies that the shear strain is zero everywhere. This is an

assumption that is often invoked for this problem, and it provides another constraint which can be

used to eliminate one of the unknown variables from the equations. Usually the radial displace-

ment is still chosen as the main unknown variable, so that the constraint in terms of zero shear

strain, from the third equation of Eq. (6.3), determines that

u2 -- w2 (6.17)

The resulting reduced system is expressed as:

-- tp ot

"_"_[gx(_)w2] + [D22(_) +/_]w2 = _2Ex(_)_(_)23

t io _t

WE(0) -- 0 or i_2(0 ) = 0 _2 (1) = 0

(6.18)t

_2(0) = 0 _2(1) = 0

I

my -- gx(_)_(_)(1-_-_)

0

A comparison of the numerical solutions for both of the systems represented by Eq. (6.15) and

(6.18) will be presented in Section 6.3.

6.2 Approximate Stability Analysis

This section utilizes the maximum buckling stress criterion formulated in Section 5.3.2 to esti-

mate the load which renders the finite length cylinder unstable. The most accurate solution tech-

nique to determine when this local buckling occurs is based on a nonlinear stability analysis with

the prebuckling deformation due to the Brazier effect included, similar to the one presented in

Section 3.2 for the axisymmetric case. However, since the loading and cross-sectional deforma-
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tion is no longer axisymmetric, the eigenvalue problem becomes appreciably more complicated

because the analysis must be carried out in the circumferential direction as well. In essence, this

implies that the buckled mode shape is no longer separable in terms of the circumferential

wavenumber n, so that the assumed form of the displacements used for the axisymmetric prob-

lem, Eq. (3.19), cannot be used unless all values of n are considered simultaneously. To do so

would make the problem much larger numerically and inefficient for our purposes. However, the

approximate stability analysis formulation for the infinite length case can be easily modified to

handle the finite length problem. Plus the results of Section 5.4.1 indicate that this approximate

technique produces excellent correlation to a full stability analysis for thin shells that do not pos-

sess a drastic variation of stiffness in the circumferential direction.

The basis of the maximum buckling stress criterion relies on determining when the axial stress

due to bending reaches a critical value that depends on the local curvature of the shell. Only two

characteristics of the deformed cylinder need be known to determine stability under this approxi-

mate criterion: the axial stress resultant; and the circumferential change of curvature. Both quanti-

ties have already been defined, and are reproduced here in nondimensional form as

fix(_,0) = Ex(_)a(_) l---_--)cos0- cos30]+ 4ZX-------Tfi2cos20 (6.19)

V¢o(_, O) = R_co(x, 0) = -3_,2cos20

Then the stipulation that the maximum compressive stress (at 0 = x for a positive bending

moment) must remain below the critical buckling stress to remain stable generates the "critical

stress" stability criterion:

3Ex(_) ,

_Dl 1(_)_70(_)( 1 - 3_2(_)) + _2(_) - Ex(_)'x(_)[ 1 - _2(_)] > 0 (6.20)4X _

This criterion must be investigated at all points along the length of the cylinder. Buckling occurs

when the inequality is first violated, and the maximum deformation of the buckled mode shape

should form at that axial location.

6.3 Numerical Results and Comparisons

The investigation of the Brazier effect for tubes of finite length begins with the constant stiff-

ness solutions. The effects of the length parameters involved in the solution, namely the shear

length parameter l.t and the tube length parameter %,, are st[il largely unexplored, therefore the

results will first attempt to qualify the behavior of the system with regard to these parameters. The

effects of the collapse parameter X and the pressure p were already investigated in Section 5.4.2
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concerning infinite length tubes. Therefore, so as to concentrate on the effect of the length param-

eters, the initial study is restricted to unpressurized cylindrical shells for which Z = 1. Once this

behavior is understood, composite laminates and variable stiffness designs can then be fully inves-

tigated with confidence.

The nonlinear systems of Eq. (6.15) and (6.18) are solved numerically using Newton's method

along with the finite difference technique. Though analytical solutions could be obtained for cer-

tain cases of the nondimensional parameters, the numerical technique is suitably efficient to fully

explore the effects of the parameters on the solution. Stability is assessed through Eq. (6.20), and

the moment-end rotation curves terminate when the Seide-Weingarten maximum buckling stress

criterion is violated. For finite length cylinders, this mode of failure is the critical one (as opposed

to a limit load in the load-displacement curve) for virtually all designs. Most of the collapse loads

are presented in terms of the end rotation as opposed to the bending moment. This enables us to

distinguish between collapse points more accurately, due to the fact that near collapse the load-

displacement curve flattens out as it approaches a maximum moment, thus making it harder to

locate the failure point in terms of the bending moment since all values are close in magnitude.

6.3.1 General Solution for _, and la

The solutions of the two systems of differential equations given by Eq. (6.15) and (6.18) are

shown in Figure 6.2 for an isotropic cylinder with X = 5 and RIH = 100. The boundary conditions

are chosen as fixed ends. Both the axial and radial displacements, as well as the normalized shear

strain, are plotted as a function of the axial coordinate for a load equal to the critical buckling end-

0.4[ ._:.::..

[ ¢ _ --. w 2
0.3 [ i '_, -- Shear Strain

/ / "\ ........................ Reduced solution

0.2 / \'.

i X,

0 0.25 0.5 0.75

Figure 6.2: Displacement Profiles for Finite Length Cylinder under Bending
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rotation of the structure. Several observations stand out from this figure. Firstly, notice the differ-

ence in the shape of the "membrane" boundary layer for the radial displacement w 2 when com-

pared to the typical shell bending boundary layer evident in the axisymmetric results (see

Figure 3.2). The membrane boundary layer extends much farther into theinterior of the shell and

produces a gentle transition from the maximum deformation at the mid-length to the condition of

total restraint at the ends. Meanwhile, the axial warping represented by the u 2 function also pos-

sesses a "shear" boundary layer that is most easily apparent in the curve signifying the shear

strain. Within this region, shear stresses develop that transform the ovalized cross-section back

into a circle to satisfy the boundary conditions. It should also be noted that for the majority of the

domain, the shear strain is effectively zero. The assumption of zero shear strain that is used in

reduced system is denoted by the dotted lines in Figure 6.2. Note that the only region that this

assumption does not hold true is near the ends, however tile results indicate that the presence of

the shear strain does not significantly affect the solution. The radial displacement profiles seem

identical, while the axial deformation differs only slightly at its maximum value. This implies that

the reduced system given in Eq. (6.18) that assumes zero shear strain everywhere may be valid for

cylinders with a large shear length parameter.

Investigation of the sensitivity of the solution with respect to the length parameters is also

desired. To this end, the applied bending moment as a fitnction of end rotation is shown in

Figure 6.3 for various values of IXwhen _, = 1. Note that the smaller values of Ix increase the non-

linear effect and lead to lower buckling loads. This is due to the fact that small values of the shear

length parameter generate larger shear strain deformation, thereby allowing additional degrees of

If
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Figure 6.3: Moment vs. End Rotation for _, = 1, Fixed Ends
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freedom and less stiff structures. In fact, the limiting case as It _ 0 is the infinite length solution

given by Eq. (5.26), where the radial displacement and axial loads do not depend on location

along the length. For It > 5 in Figure 6.3, the solution approaches the case of no shear strain

(It _ oo), which corresponds to the system of Eq. (6.18).

Keeping It constant and choosing various values of _, leads to the load-displacement curves of

Figure 6.4. Small values of the tube length parameter _, correspond to short and thin cylinders
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Figure 6.4: Moment vs. End Rotation for It = 1, Fixed Ends

which do not undergo ovalization and are very susceptible to buckling, thus remaining in the lin-

ear range and collapsing at the classical value. As _, increases, the effect of the Brazier nonlinear-

ity does as well, until it also approaches the infinite length solution given by Eq. (5.26). For this

case, the maximum buckling stress stability criterion gives for the (isotropic) buckling loads:

_** -- 0.66012 my = 0.51629 w 2 -- 0.14525 (6.21)

These values serve as a useful comparison to the finite length results.

Collapse loads due to local buckling are shown as a function of _, and It as a surface plot in

Figure 6.5. The contour lines correspond to constant values of the critical buckling curvature _cr"

One can see that as the shear length parameter It increases, the contour lines become parallel, indi-

cating that changes in the value of the shear length parameter do not significantly affect the solu-

tion once It is greater than five. For these regions, the collapse behavior is governed solely by the

tube length parameter L. Also note that many areas of the surface have critical curvatures which

are below the infinite length value as given by Eq. (6.21). This is due to the boundary layers at the
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Figure 6.5: Critical Curvature vs. X and _t, Fixed Ends

edges which propagate throughout the structure and significantly alter the critical values of the

axial stress resultant and circumferential curvature.

To provide a practical perspective of the parameters _. and It, they are expressed below in

terms of a "material" and "geometric" portion:

9D22' G_xo* L

_l Ex. R
(6.22)

Therefore, for a given material system, low values of _. (which produce very little Brazier effect)

are generated by short and thin cylinders, and buckle accord:ng to the classical solution. Longer

and thicker cylinders, which are more easily construed as "tubes", undergo drastic Brazier nonlin-

earity before buckling occurs. Note how these conclusions rei:erate the buckling results as a func-

tion of the radius-to-thickness ratio for an infinite length c_¢linder, discussed in Section 5.4.1.

Additionally, the importance of the shear strain is only apparent for small values of It, i.e. shorter

cylinders. Similar qualifying statements could be made for the material portion of Eq. (6.22),

though the range of parameter values for typical material systems does not vary as greatly as those

of the geometric part. To illustrate the point further, a surface plot for the critical curvatures of an

isotropic cylinder as a function of length-to-radius ratio L/R ;tnd radius-to-thickness ratio RIH is

displayed in Figure 6.6. As expected, short and thin cylinders undergo little Brazier nonlinearity,

while the longer, thicker, tube-like cylinders behave closer to the infinite length case. Figure 6.6
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Figure 6.6: Critical Curvature vs. L/R and R/H for an Isotropic Cylinder, Fixed Ends

also reveals why it is preferred to employ the nondimensional parameters _ and IX, as they

approach a definite solution as they tend toward infinity.

6.3.2 Influence of Shear Length Parameter

We have seen in the previous results that the nonlinear solution does not significantly change

for larger values of It. This must be investigated in greater detail, for if we can ignore the presence

of shear strain (when IX--->_) we can reduce the system of Eq. (6.15) to the single ordinary differ-

entiat equation of Eq. (6.18), thereby increasing the efficiency of the solution technique by elimi-

nating unknown variables. To this end, the critical buckling curvature is shown as a function of the

tube length parameter X for various values of the shear length parameter Ix in Figure 6.7. The hor-

izontal asymptote that the curves all approach as _, --> _ is the infinite tube solution of Eq. (6.21).

Small values of It arrive at this asymptote quite quickly, and thus for such a structure the effect of

ignoring the shear strain for the Brazier problem (It --->-0) can lead to serious errors in the calcula-

tion of the buckling load. However, Figure 6.7 may be misleading in regard to the range of values

that It can achieve. For example, specification of the material system for the cylinder under bend-

ing puts a lower bound on the value of l-twith respect to )_, since from Eq. (6.22)

14G °H3It = 4_49ExD22_ • • _ (6.23)

The ratio of R/H must be greater than one half, else the structure is not a cylinder. Therefore, val-
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Figure 6.7: Critical Curvature vs. _ for General Material, Fixed Ends

ues of Ix = 1 for large values of _. may not even be feasible. For instance, Figure 6.7 is reproduced

for an isotropic cylinder for various values of radius-to-thickness ratios in Figure 6.8. One can see

that all of the different thickness cylinders produce remarkably similar solutions, and that they all

are analogous to the case which ignores the presence of the shear strain. The largest deviation

from this case occurs for shorter, thicker cylinders, as expected. Similar results apply even to

highly orthotropic materials, such as the graphite-epoxy AS3501 used by Corona & Rodrigues 63
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Figure 6.8: Critical Curvature vs. _. for Isotropic Material v = 0.3, Fixed Ends
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for the study of infinite length tubes under bending. For this material, EI/Gj2 is around 20 and

El/E2 approximately 15, yet Figure 6.9 reveals that this material also approaches the case of no
1
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Figure 6.9: Critical Curvature vs. 3. for Orthotropic Material AS3501, Fixed Ends

shear for thinner shells. Therefore, one can conclude that the shear warping due to the Brazier

effect is not significant for most thin shells under pure bending, and that the simpler system of

Eq. (6.18) can be used except for small values of_. and g.

6.3.3 Influence of Boundary Conditions

The results presented in the last two sub-sections have all been generated with the "fixed end"

boundary condition. This cases= is considered more realistic, since most testing apparatus and

structural applications involve a rigid plate or sturdy ring stiffener at the end of the cylinder. How-

ever, the "free end" boundary condition does occur in other tube bending applications, or more

commonly, an elastic restraint which lies between the limiting cases of fixed and free is applied.

Therefore, an investigation of the effect of the boundary conditions on the buckling characteristics

and load-displacement behavior is warranted.

The surface image of Figure 6.5 for a fixed end cylinder is reproduced in Figure 6.10 as a con-

tour plot, along with the corresponding level curves for a tube with free ends (dashed lines).

Regions where the contours coincide are the values of _, and la for which the boundary effects

have no effect. According to Figure 6.10, this is most easily apparent for small values of g, which

approaches the infinite length case as it goes to zero. Though not evident on the scale of

Figure 6.10, very small and very large values of _, also are independent of the boundary condi-

tions. The small values of _, experience no Brazier deformation, while the large values generate



Chapter 6.0 Bending of Finite Length Cylinders including the Brazier Effect 216

=.

i.a

o
E

V_

.c

I

I

I

I

I

I

I

Fixed End

Free End

00 1 2 3 4 5

Tube Length Parameter, _.

Figure 6.10: Comparison of Critical Curvature for Fixed and Free End Condition

the infinite case for which the boundary conditions have no e_fect. All intermediate values of both

parameters, however, do produce solutions which vary significantly according to the end condi-

tion. In general, the free end allows for greater movement, thus producing more nonlinear ovaliza-

tion and lower buckling loads. As an illustration of this, load-displacement curves and buckling

load comparisons are performed for both end conditions for aa isotropic cylinder with R/H = 100.

First, moment and radial displacement versus end rotation fox _, = 2 are shown in Figure 6.11. As
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Figure 6.11: Moment-End Rotation Curves for Fixed and Free Ends, Isotropic Material
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expected, the fixed end generates a stiffer structure due to the extra restraint applied to the dis-

placements. Shown in Figure 6.12 is the critical end rotation and bending moment as a function

m
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Figure 6.12: Critical Curvature and Moment vs. _. for Fixed and Free Ends

of _, for an isotropic material. Note how the free end case plummets much more quickly to the

infinite length value as the tube length parameter is increased. This phenomenon is expected,

since the fixed end provides a constraint to the deformation which leads to stiffer and more stable

structures. Also note that the moments approach the asymptotic value of the infinite length case

much faster than the end rotations, mostly due to the small slope of the load-displacement relation

near collapse. This demonstrates the need to use the critical curvatures to define the buckling

point since it provides greater distinction between different load levels.

6.3.4 Comparison to Published Results

Few references exist concerning finite length tubes that are long enough for the Brazier effect

to be significant. Most cylinders in structural applications are short or have ring stiffeners that

inhibit the nonlinear ovalization. However, Stephens et al.66 performed a nonlinear finite element

analysis on various length isotropic cylinders under bending and pressure to measure the amount

of ovalization and nonlinearity due to the Brazier effect. Their results were presented in terms of

the amount of ovalization versus the applied bending moment, and are reproduced here in

Figure 6.13 for various L/R ratios and compared to the present analysis using free end conditions.

Collapse load calculations are also included (all load-displacement curves end at the critical load

level), however Stephens et al. presumed that for infinite length cylinders the collapse load occurs
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Figure 6.13: Comparison to Stephens et ai. for Moment vs. Radial Displacement

due to the limit load of the Brazier effect. The results calculated here indicate that this is not the

case (the structure experiences local buckling first) and so a discrepancy exists in Figure 6.13.

Also note that the load-displacement curves use the free end condition since it was found that this

boundary condition produced better correlation to the pubhshed work than the fixed end condi-

tion. This may be due to the constraints applied in the finite element solution, which did not

exactly match either boundary condition. This comparison reveals that our solution agrees in prin-

ciple with the published solution, though an exact match d,_es not exist. These are attributed to

two factors: the radial deformation is not as accurate a nleasurement of displacement as the

applied end rotation; and the finite element solution offered 1,mited choices for the buckling mode

of the cylinder.

A more recent investigation of the Brazier effect for finite length tubes was performed by

Libai & Belt 67, who employed semi-membrane theory and tile approximations of Brazier to pro-

duce systems analogous to the governing equations derived here. Approximate closed-form solu-

tions using a simple Rayleigh analysis were generated for orThotropic tubes under the assumption

that the shear strain is zero (Ix _ 00), and critical loads due to local buckling were estimated along

the same lines as those presented here. A comparison of theil closed-form solution to the numeri-

cal solution of the present work for isotropic cylinders is shown in Figure 6.14. Note that the crit-

ical load is presented in terms of the moment as opposed to the end rotation, which tends to

minimize any discrepancies between the results for longer c) linders due to the small slope of the

load-displacement curve near the critical point. The largest _lifferences between the two studies
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Figure 6.14: Comparison of Libai & Bert to Present Research

occurs for longer cylinders with the free end boundary condition. This error is due to the approxi-

mate solution technique used by Libai &Bert, which underestimates the nonlinearity for longer

cylinders and overestimates the critical buckling load. Also notice that for small values of 1, a

slight discrepancy exists due to the inclusion of shear strain (It #: oo) in our analysis.

6.4 Variable Stiffness Solutions

This section is intended to investigate the effect of variable stiffness designs on the perfor-

mance of finite length cylinders under bending. In truth, the existence of the nonlinear Brazier

effect is actually quite serendipitous for this investigation, for it provides an application that

shows great promise for the use of the variable stiffness concept while also tying together the

results of the other three specific design scenarios. Most cylindrical shells that undergo bending

loads are constructed with frames and ring stiffeners which are required, among other things, to

resist the ovalization associated with the Brazier effect. For such structures, the short cylinder

analysis of Chapter 4.0 has demonstrated that designs with a circumferential stiffness variation

exhibit a significant improvement in load-carrying capability and weight minimization. Likewise,

the results of Chapter 5.0 show similar gains under bending for long cylinders with stiffness prop-

erties that vary around the cross-section. However, the application of an axial stiffness variation to

a cylinder that undergoes predominantly axial stresses should follow the trends of the axisymmet-

tic response under an axial force. Unfortunately, the conclusions from this investigation in

Chapter 3.0 have revealed that little improvement is expected for an axial stiffness variation

because the axial stiffness variation is bound to possess a weak link that will dominate the mate-

rial failure and buckling response of the structure. These conclusions imply that an axial stiffness
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variation will not enhance the response of short cylinders under bending. However, the significant

cross-sectional ovalization that exists for long cylinders under bending does provide a likely ave-

nue in which the variable stiffness concept can flourish, for the one aspect of the response that the

concept is able to control is that of deformation. The main mechanism in this regard is providing

an effective circumferential restraint for long cylinders that will reduce the Brazier deformation

and act as an end condition. This technique should produce structures that possess greater load-

carrying capabilities than constant stiffness designs, as well as more weight efficient cylinders that

act as beams.

6.4.1 Curvilinear Fiber Formats

To demonstrate the effectiveness of the variable stiffness concept for long cylinders under

bending, this sub-section presents the results of a design study aimed at improving the buckling

load of a relatively long cylinder. Curvilinear fibers are used to vary the stiffness parameters, and

the path of the fiber is defined by the standard linked line segment approach. Comparisons are

made to constant stiffness laminates that undergo stacking sequence optimization using a genetic

algorithm. The optimization problem is represented as:

maximize Mr(Ti, ¢Pk) (6.24)

such that manufacturing constraints are satisfied

where the manufacturing constraints imply the maximum curvature of the tow path must not be

exceeded. This design study is analogous to the curvilinear fiber path optimization presented in

Section 3.6.2, so that the details need not be repeated here. q'he cylinder is defined to have a bal-

anced, symmetric layup with 24 plies, which translates irto twelve ply angle variables. The

radius-to-thickness ratio is chosen to be 200 to corresponc to the optimization for an infinite

length shell (Section 5.5), and several length-to-radius ratios are investigated. The optimal con-

stant stiffness solutions are presented in Table 6.1. The infinite length solution is also included to

L/R Ratio Stacking Sequence _cr Z mcr Mr(Ibs-in)

20 [07/905] s 3.8118 2.135 0.7913 6.111×106

50 [902/019010519010190]s 0.6667 0.78"77 0.6101 3.416x106

100 [902/0/90/0/90105/90] s 0.7331 0.7077 0.6497 3.420><106

00 [902/0190/02/902/04] s 0.7883 0.69136 0.6633 3.441x106

Table 6.1: Results of Optimization for Maximum Bending Load (Constant Stiffness)

show the effect of the finite length on the buckling load and the optimal stacking sequence. Note
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that the applied bending moment is actually larger for the infinite length case, which is contrary to

expectation. This is due to the end effects of the finite length cylinder that produce a boundary

layer that is slightly less resistant to buckling than the other regions of the cylinder.

The results for the curvilinear fiber format cases, however, do not exhibit any significant

improvement over any of these constant stiffness geometries. The hope is that the variation of the

stiffness parameters will produce stiff regions along the length ihat act as ring stiffeners, so that as

that location the radial deformation will be reduced and the nonlinear effect lessened. For exam-

ple, shown in Figure 6.15 is the radial displacement profile of the long variable stiffness cylinder

0.15 90

o., 6o<i
45 "!

._ 0.05 kJ 30

15

[_///-_ 05/901s Laminate

O0 0.25 0.5 0.75 10

Figure 6.15: Variable Stiffness Concept Example for Finite Length

Cylinder under Bending

(L/R = 1000) whose fiber orientation angle variation is denoted by the dotted line. As desired, the

circumferentially stiff regions restrict the cross-sectional deformation to give the appearance of a

ring-stiffened structure. The maximum buckling stress criterion indicates that buckling is most

likely to occur at the points denoted by a filled circle. However, the critical buckling value of this

design is quite low (less than 60%) when compared to the optimized value for a constant stiffness

laminate. This is due to the fact that the optimal layup consists of a circumferentially stiff stacking

sequence at all locations along the length. Thus to improve upon the design shown in Figure 6.15,

the weak 45 ° areas should be replaced by the stiffer 90 ° layups since that stacking sequence per-

forms the best for this geometry. This phenomenon resembles the weak link philosophy intro-

duced for the axisymmetric case. The cylinder will buckle at the least resistance location, so that

the optimal design should ideally consist of the best stacking sequence at all locations along the
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length, which of course is simply a constant stiffness design. Therefore, though the application of

the variable stiffness concept to this problem seemed promising, the results indicate that no signif-

icant improvement actually exists.

6.4.2 Ring Stiffened Structures

Luckily, there still is a useful application for the finite length nonlinear bending problem.

Though the curvilinear fibers could not produce the desired mechanism to increase the buckling

load, ring stiffeners are perfectly suited for the task of decreasing the effective length of the cylin-

der. For example, the displacement profile of a cylinder under bending containing two sturdy ring

stiffeners within the half-length is displayed in Figure 6.16. The ring stiffeners constrain the
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Figure 6.16: Example of Ring Stiffened Cylinder under Bending

cross-section to remain circular due to their relatively high circumfe_ntial stiffness, which

decreases the span of the cylinder and improves the buckling load. The buckling locations are esti-

mated to occur at the point midway between the stiffeners (at the point of maximum deformation).

By placing the stiffeners closer together (or using more t:qually spaced stiffeners), one can

improve the buckling load until it approaches the value for a saort cylinder with no cross-sectional

deformation. However, too many ring stiffeners would needlessly increase the weight of the struc-

ture, therefore a happy medium should exist with regard to the number of ring stiffeners. There-

fore, this final section uses the finite length Brazier analysis to investigate the effect of ring

stiffener spacing on the maximum buckling load.
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The results are formulated for the L/R = 50 cylinder from Table 6.1. The ring stiffeners are

assumed to be blade stiffeners, l"x 2", that are equally spaced along the length of the cylinder

and constructed of a unidirectional graphite-epoxy material. Two stacking sequences are used,

corresponding to the optimal layups for the shortest and infinite length cases from Table 6.1. The

results are presented in Figure 6.17 in terms of the maximum bending moment, as well as a
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Figure 6.17: Buckling Moments versus Number of Ring Stiffeners for

Finite Length Cylinder under Bending

moment that is normalized by the relative weight of the structure. Notice that for no stiffeners, the

infinite length stacking sequence provides the largest buckling moment, but once stiffeners are

introduced the "short" cylinder layup is dominant. As expected, as the number of stiffeners

increases, the maximum load does as well, however a limit point does exist (around five stiffeners

for the short cylinder stacking sequence) after which adding stiffeners decreases the efficiency of

the structure in terms of total weight. This simple design study demonstrates the worth of this

analysis for ring stiffened cylinders, for it efficiently indicates the optimal stiffener spacing to use

when nonlinear bending is an issue.
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The concluding remarks are grouped into four distinct sections, each which contains a sum-

mary of the major conclusions drawn from this investigation as well as future recommendations to

further the research. The four sections deal with, respectively, the analysis of shell structures that

contain general stiffness variations, the effect of an axial stiffness variation on the performance of

a cylindrical shell structure, similar conclusions for a circumferential stiffness variation, and gen-

eral results for nonlinear bending of long tubes.

7.1 Analysis of Variable Stiffness Shells

The presence of stiffness parameters that vary spatially within a shell structure demands a sub-

tly different type of formulation than the typical constant stiffness structure. For this particular

investigation, it was shown that the equilibrium equations contained derivatives of certain stiff-

ness parameters that are not normally included in standard cylindrical shell analyses. Even when

alternate formulations of the shell governing equations are used (such as a stress-based approach

or the finite element method that integrates the stiffness parameters over a local region), attention

must be focused on correctly including the effect of the stiffness variation. This study has success-

fully completed this goal for the subset of cylindrical shells with various stiffness variations and

loading conditions. The method of formulation has also revealed to this author two conclusions

regarding the analysis of cylindrical shell structures. First, that additional terms that do not exist in

the standard formulation are required to correctly model the nonlinear bending problem for long

tubes, and secondly that the best first approximation for the shell equations should be based on

Sanders theory. This second conclusion is based on the fact that the numerical solutions using the

Sanders-type expressions are only slightly more complicate(, than the Donnell-Mushtari-Vlasov

shallow shell equations, yet they do not contain the inaccuracy for longer shells that DMV theory

possesses. Of course, for many closed-form analytical solutions the simplicity of the shallow shell

equations remains unchallenged, however it is believed that ary general numerical solution should

satisfy at least the level of accuracy of the Sanders approximations to be considered robust.

The introduction of the curvilinear fiber format for fibex reinforced laminates also presents

some novel ideas for shell analysis and design. Firstly, the definition of the stiffness variation

through the designation of the local value of the fiber orientation angle provides a meaningful

224



Chapter 7. 0 Conclud#tg Remarks 225

technique to ensure that the various stiffness terms represent a feasible structure. In fact, it may be

advantageous to use this method to formulate a new "element" in standard finite element packages

that can be defined via the spatial variation of the fiber orientation angle within the element. Typi-

cally, modem finite element codes either assume constant stiffness values within each element or

require the definition of many stiffness parameters at several points within the domain, however it

would be more efficient and accurate if the stiffness variation could be accounted for at the funda-

mental level of the fiber orientation angle. Furthermore, the representation of variable stiffness

plies using the proposed curvilinear fiber definitions provides a realistic method to transform the

theoretical design into actual parts through the use of the tow placement process. Coordination of

the idealized fiber paths with computer controlled manufacturing techniques has been success-

fully demonstrated for fiat panels, and can easily be extended to include general shells. Thus the

use of curvilinear fibers can be a valuable tool in the design of high performance shell structures.

The analytical tools developed in this investigation possess one other advantage over many

modem analysis techniques, that being the numerical efficiency of the solutions. The inclusion of

ply drops and discrete stiffeners into the shell stiffness parameters (through the use of Classical

Lamination Theory) provides a straightforward method to calculate the effect of these mecha-

nisms without resorting to smearing their stiffness contributions over the total area or constructing

cumbersome models that require large amounts of computational space and time. It is believed

that in the future this variable stiffness technique can be used to generate an effective "global"

shell analysis tool that provides excellent coordination with the detailed local models yet is still

numerically efficient and able to accurately reflect the global effects of the problem. Such a tool

would be a tremendous contribution to the present capabilities of modem shell analysis.

7.2 Axial Stiffness Variation for a Cylindrical Shell

The investigation of cylinders containing a stiffness variation only in the axial direction

revealed the most common form of material failure for variable stiffness structures, denoted here

as the weak link phenomenon. In essence, the results indicated that for loads that do not change in

the axial direction, the introduction of varying stiffness and strength parameters through the use of

curvilinear fibers will never significantly improve the performance of the structure since it cannot

effectively redistribute the applied loads. In the presence of these non-varying loads, there always

exists some laminate stacking sequence that is best suited to withstand the resulting state of stress,

and thus any deviation from that stiffness definition only detracts from the strength of the lami-

nate. Though the variable stiffness concept under axisymmetric loading is able to affect the preb-

uckling deformation and the critical location of failure stress, these effects did little to improve the

global response of the structure. The only apparent advantage with regard to material failure was
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limited to the various global stiffness and strength properties that could be achieved using curvi-

linear fibers, which may be advantageous in a design environment.

With regard to buckling behavior, the applicability of the axial stiffness variation produced

mixed results. Firstly, it was shown that the possible negative effects of the prebuckling deforma-

tion on the nonlinear buckling load did not exist. That is, the non-flat deformation produced by the

variation of the stiffness terms did not appear to act as a geometric imperfection, which severely

affects the collapse behavior of cylinders under compression. Thus the membrane prebuckling

solution could be used with relative confidence. Secondly, for loading that produced mainly axial

stresses (such as axial compression or bending), the weak link phenomenon still applied due to

the high axial frequency that exists for this type of loading. The buckling mode was simply con-

centrated in the region that contained stiffness properties that were the most susceptible to axial

buckling, so that no improvement over constant stiffness laminates existed. Conversely, the load

cases of external pressure and torsion exhibited much lower frequencies in the axial direction

(dependent on the effective length of the cylinder), thus a stiffness variation that could signifi-

cantly increase the axial frequency possessed the possibility of improving load-carrying perfor-

mance. This basically means that the optimal stiffness vari_ttion should contain a region that is

circumferentially stiff and approximates a ring stiffener. This technique was also shown to be

instrumental to improve the buckling moment of long cylinders under bending, since a circumfer-

entially stiff region could resist the ovalization due to the Brazier effect. Unfortunately, the results

indicated that the stiffness variation based on varying the fiber orientation angle never produced

enough stiffness disparity between regions to achieve this gaal, while traditional ring stiffeners

fulfilled this objective quite easily.

Though these results indicate little advantage for cylinders with an axial stiffness variation, it

should be emphasized that the foregoing conclusions apply only to cases where the loads are con-

stant along the length. For stress states that do vary in the axial direction, the introduction of the

variable stiffness concept obviously promises tremendous advantage for the reasons just dis-

cussed. If the loading varies along the length, then each region possesses a particular stiffness

configuration that is best suited to withstand that state of stre ;s, and an excellent way to vary the

local shell properties to correspond to the loading is through the mechanisms of the variable stiff-

ness concept. Thus instead of the original desired mechanism of the variable stiffness concept,

which was improving the load-carrying performance by redistributing the applied stresses, the

application of an axial stiffness variation is better suited by ,tesigning the stiffness and strength

properties to correspond to the local state of stress, such as cylinders acting as beams or ones with

known concentrated and distributed loads acting along the length.
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7.3 Circumferential Stiffness Variation for a Cylindrical Shell

The alternate possibility of stiffness variation presented in this investigation allows for fluctu-

ation of the properties in the circumferential direction. For axial loading,the circumferential stiff-

ness variation can now achieve the desired goal of redistributing the stresses so that the stronger

regions carry the majority of the load. Unfortunately, this is not the case for pressure or torsion,

since the distribution of the stresses from these loads do not depend on the local stiffness proper-

ties so that the failure is governed by the weak link concept. Therefore, the pressure and torsion

cases do not indicate any improvement for shells with a circumferential stiffness variation. How-

ever the remaining load cases considered, namely an axial load, bending, and a transverse shear

force, do depend strongly on the circumferential variation of the stiffness, and subsequently

showed relative improvement over constant stiffness laminates in terms of material strength, glo-

bal stiffness, and buckling characteristics. In general, the greatest improvements were realized for

loads which also contained variation in the circumferential direction. For pure bending of short

cylinder sections, the best designs tended to place the highest axial stiffness at the top and bottom

of the cross-section, which maximized the global bending stiffness of the cylinder while simulta-

neously producing a region that behaved well under buckling due to an axial stress. For some

designs, the stiffness variation was also able to produce a node at the top that relocated the critical

buckling location away from the area of maximum stress. Likewise, for transverse shear force

loading in which the maximum shear stress is located at the sides of the cylinder, the circumferen-

tial stiffness variation altered the distribution of the shear flow and spread the buckling deforma-

tion over a larger area. This tended to significantly increase the resulting buckling loads.

These preliminary positive results for a short cylinder segment with a circumferential stiffness

variation lead to an in-depth optimization study of a fuselage structure under typical flight loads

of internal hydrostatic pressure, an axial bending moment, and a vertical shear force. The formu-

lation of the design problem was based on reducing the weight of a generic narrow body fuselage

section that was subjected to typical flight load conditions. As a comparison, initial design studies

were conducted for traditional isotropic and composite shells that also utilized longitudinal stiff-

eners and a crown/side/keel arrangement for fuselage construction. The results indicate that the

response was dominated by the buckling characteristics of the structure under bending, and that

the isotropic and composite designs were quite similar in geometry. The optimal solutions placed

longitudinal stiffeners at the top an bottom to increase the stiffness and act as nodes for the buck-

ling shapes. A comparison to these traditional design cases was conducted for (unstiffened) curvi-

linear fiber designs and crown/side/keel arrangements. It was found that the variable stiffness

designs were both quite competitive to the traditional designs in terms of weight and structural
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characteristics. Furthermore, it is believed that the variable stiffness designs also offer an advan-

tage over the stiffened structures when it comes to production, since the curvilinear fiber shells

can be constructed as one piece and do not require any further attachments. The ability of the vari-

able stiffness shells to change their properties spatially is also a significant bonus when holes in

the fuselage are required (such as doors or windows), siv_ce the laminate in that area can be

designed differently from the top and bottom regions so that the effect of the hole is minimized.

This feature of altering the stiffness properties can also be t_en advantage of along the length of

the fuselage, where the loading changes from bending to one dominated by internal pressure and

the shear force. These areas do not require the added stiffness at the top and bottom of the fuse-

lage, therefore significant weight savings and performance improvements can be achieved by

combining the circumferential stiffness variation with alterations in the axial direction to produce

a total variable stiffness fuselage structure.

7.4 The Brazier Effect for Long Tubes

The last problem studied in this investigation concerned the deformation resulting from pure

bending of long cylinders. Due to the significant cross-sectional deformation associated with this

problem, it was considered an excellent application for the variable stiffness concept due to its

ability to control deformation and dictate the stiffness response. Initial investigation into this

problem revealed that before the variable stiffness designs were studied, a thorough consideration

of the basic mechanism was warranted since its highly nonlinear behavior needed to be quantified

for general orthotropic cylinders. The formulation revealed that the standard cylindrical shell

equations were not able to accurately reflect the true nature of the problem, and that additional

nonlinear terms were needed in the governing equations to co:'rectly represent the problem. Inves-

tigation of the resulting equations for infinite length and finit. • length constant stiffness cylinders

revealed that the nonlinearity was strongly a function of cylinder length as well as stacking

sequence and internal pressure, and that the usual failure mechanism was local buckling as

opposed to a limit load phenomenon. However the cross-s,,_.ctional deformation still played a

major role in the determination of the critical load.

For variable stiffness structures, investigations of possibh; improvements over constant stiff-

ness structures were attempted using both an axial and circumferential stiffness variation. The

results revealed that the circumferential variation for extremely long cylinders worked reasonably

well, with the optimal designs resisting the cross-sectional bending deformation yet still providing

areas that could sufficiently withstand the impending axial buckling mode. However, these infinite

length designs differed substantially from the short cylinder segment solutions, in which the

region of maximum stress did not require any resistance to cir zumferential bending. This conclu-
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sion was further evidenced by the results of the finite length cylinders, which indicated the dispar-

ity of the optimal stacking sequences for cylinders of various lengths. Attempts to improve the

buckling load of finite length cylinders using an axial stiffness variation proved useless, since the

possibility of redistributing the bending stresses or significantly restricting the cross-sectional

deformation did not exist. Ring stiffeners again showed their dominance here, since there inclu-

sion effectively reduced the length of the cylinder and negated the nonlinear deformation. There-

fore, it is believed that the most effective way to increase the buckling loads of long cylinders

under bending is either through a selective choice of a stacking sequence that is best suited to

resist the nonlinear effect or including optimally spaced ring stiffeners to sufficiently control the

cross-sectional deformation.
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Appendix A. Numerical Techniques

This appendix presents the general solution techniques for the specialized governing equa-

tions presented in Chapters 3.0 through 6.0. Numerical methods are employed due to the relative

complexity of the governing equations in terms of nonlinearity and the existence of variable stiff-

ness coefficients. The four basic numerical techniques discussed in this appendix include the finite

difference technique for the solution of linear ordinary differential equations, Newton's method

for nonlinear problems, the Rayleigh-Ritz method as an auxiliary formulation of the eigenvalue

problem, and the power method for the solution of the eigenvalue problem. A comparison of the

finite difference technique versus the Rayleigh-Ritz method is also included. Additionally, numer-

ical optimization techniques used for the design studies are discussed, and the accuracy and effi-

ciency of the numerical techniques are investigated. The numerical techniques are implemented

using the FORTRAN computer language, and certain numerical subroutines were obtained from

the LAPACK algorithm library.

A.1 Finite Difference Techniques for Linear ODE's

The equilibrium equations governing the static response of a variable stiffness cylindrical

shell under various loading conditions are in the form of ordinary differential equations with

boundary conditions specified at each end. Problems of this type are termed boundary value prob-

lems, as opposed to initial value problems which have prescribed conditions at only one point of

the domain. For these initial value problems, the solution is quite straightforward, for all that is

required is a step-wise numerical integration of the differential equation as the domain is traversed

from the initial point. Because of the ease of this approach, numerical solutions of boundary value

problems are often based on "shooting" methods, which generate an initial value problem at one

end and vary some unknown parameters until the boundary conditions at the other end are satis-

fied. However, this method is not suitable for problems that involve complicated boundary condi-

tions at each end, or ones in which the numerical integration of the differential equations is not

easily accomplished. Therefore, the numerical technique used for our problems will instead be

based on discretization methods, which solve the boundary value problem by defining the vari-

ables at discrete points within the domain that approximately satisfy the differential equations and

the boundary conditions at each end. For this investigation, the finite difference technique will be

237
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used. This choice is made due to its ease of implementation for variable coefficient differential

equations, as well as its efficiency and accuracy for boundary value problems of this type. In this

section, the primary concepts of the method will be discussed and illustrated with an example.

The basic premise of the finite difference method is to define the region of interest in terms of

discrete points separated by a finite distance, and to approximate the unknown functions and their

derivatives by the values at these given locations. The representation of the derivatives is based on

the definition of differentiation through the theory of limits, which states that

p

f (x) = lim f(x + h) -f(x) (A.1)
h_0 h

For the finite difference technique, the limit parameter h is replaced by the finite distance A, and

the values of the function fat the two points are treated as the unknown variables:

f (x) --- f(x + A) - f(x) = fx + ,_ - fx (A.2)
A A

This equation conforms to a "forward difference" equation, since the derivative is based on func-

tional values that occur in a forward direction from the original point. "Backward difference" and

"central difference" equations can also be defined, where the latter can be shown to be the most

accurate. Thus the central difference equations will be used here, and the higher-order derivatives,

expressed in terms of A and the functional values at equally spaced points xi, are given as

e

f(xi) -- f i f (Xi) = f i + 1 - f i- 1
2A

,ell p•II

f (xi)=fi+2-2fi+l +2fi-l-fi-2 f (xi)=
2A 3 A 4

fi + 1 - 2fi + fi- 1tt

f Ixi)-_ A2

(A.3)
fi+2-4fi+ 1 +6fi-4fi-! + fi-2

Of course, the smaller the distance between points, the more accurate the derivatives become

according to the theory of limits. Numerically, however, there are bounds for the value of A due to

the accuracy of the computing machines. If A is too small, the solution may experience severe

round-off errors due to the finite arithmetic used by the compltter; while too large a value of A will

not accurately reflect the values of the derivatives.

Insertion of the approximate relations of Eq. (A.3) into a linear ordinary differential equation

for the functionf(x) transforms the differential equation into m algebraic one, in which the func-

tional valuesf are the unknowns. Boundary conditions can _dso be expressed in terms of these

unknown functional values, and the combination of the approximate differential equations in the

interior of the region with the boundary conditions at the end., produces a unique solvable system
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of algebraic equations. Of course, since the value of A is usually small, the number of unknown

variables can be quite large, thus numerical algorithms to solve large linear systems are employed.

The finite difference technique has an added advantage here in that the form of the matrices used

in this linear solution lends itself to efficient numerical solutions. This will become more apparent

as we develop the finite difference equations with the help of an example.

To illustrate the finite difference method for a typical linear system, we use a simple example

of the axisymmetric problem derived in Section 3.4, where the nonlinear terms will be ignored.

This system has an independent variable of _ and two unknown dependent variables: the radial

displacement Wo(_) and the constant axial force ]', and is reproduced here from the linearization of

Eq. (3.15) as

pt

"
(D11%) +E0%-v0 f = -

1

E-=-_-(E0w0 - vex

• rt

W'0(0) -'- 0 _0(0) = 0 or _0(0) = 0

• _t,"

_0(1) = 0 _0 (1) = 0

(A.4)

The system is well-posed, since we have a fourth order differential equation for w o along with

four boundary conditions, and an algebraic (integral) equation for the solution of the constantf.

Note that the loading is introduced through the known constants u and P. The region of interest is

defined as 0 < _ < 1, where the end point at _ = 0 is part of the boundary, and the interior region

where the differential equation must be satisfied is divided by N equally spaced discrete locations,

as shown in Figure A. 1. Variable spacing of the finite difference points can also be used to investi-

_1=0

Clamped or S.S.

" I I I
W 0 W 1 W 2 W 3

_N= 1

1 _i = (i-1)A Symmetry conditions

A-N-1 '_1I I I I I I I I''
.............................................................. WN_2WN_ 1WNWN+ _I_N+ 2

Figure A.I: Finite Difference Representation of Region of Interest

gate complicated regions in greater detail, though for our purposes it was found that the constant

spacing was sufficient for accuracy as well as being easier to implement. Estimations of the stiff-

ness and loading terms must be calculated at each endpoint _i, and the solution will consist of
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finding the values of the radial displacement at these locations. Since the differential equation is

of fourth order, two finite difference points are required on both sides of each interior point. Thus,

three more finite difference points must be defined so that the differential equation can be satisfied

at each end of the interior domain (i = 2 and i = N), bringing the total number of unknowns to N+3

plus the constantf. The differential equation is applied at each interior finite difference location

(_i, i = 2, N), and inclusion of the integral equation and the four boundary conditions brings the

total number of equations to N+4 as well. Therefore we can use linear algebra techniques and for-

mulate the problem in matrix form. All that remains is to transform the differential and integral

equation into linear algebraic equations. This is accomplished using the central difference rela-

tions for the function w--0,as well as assuming that the stiffness terms and their derivatives are fully

defined at each finite difference location. Before developing the algebraic relations completely,

however, we must examine the formulation for the boundaI 3 conditions and the integral equation.

The boundary conditions must also be expressed in terms of the unknown variables, which is a

straightforward procedure for the problems investigated here. For example, for the axisymmetric

problem the first boundary condition reveals that the left end is fixed against radial displacement,

therefore we know that the value of wo(0) = wl must be zero thereby removing it as an unknown.

Similarly, the clamped or simply supported boundary condition can be represented through the

central difference equations, and the unknown variable w0 can be automatically calculated once

the boundary condition is determined:

Clamped: _ w 0 = w 2
(A.5)

Simply Supported: _ w_l-- 2w I -w 2 = -w 2

Similarly at the other end, the symmetry condition also removes two unknowns:

WN + 1 = WN- 1 WN + 2 = WN- 2 (A.6)

Thus the reduced linear problem is of order N, with N-1 unhnown radial displacements (i = 2,N)

and the unknown axial force coupled with N-1 algebraic equations at each interior location

(i = 2,N) and the integral equation. This integral equation must also be transformed into an alge-

braic one, and this is accomplished by performing the integration using the trapezoidal rule:

1 N

0 k=2

Higher order representations of the integral for finite differeace techniques do exist, however in

,F

_0(0) = 0

_o(0) = 0
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practice it was found that this simple trapezoidal rule generated the same results than the more

accurate approximations, so its use will be retained here.

To complete the example, the algebraic system for the linear axisymmetric problem is formu-

lated in terms of the unknown vector -_'i, where

ff_i=Wi+l,(i= 1, N-l) X N = f (A.8)

Then the algebraic equations are presented as

t

x
k 4(IA)4 J i-

t ot

I +

tt

-6Dlx -2DIl A2 0]4(IA)4 + E X i
+

p sp 2_

4Dll - 2DllA +Oll A

4(1A)4 Xi +

_0-

I + "4_4 " Ai+ 2 + [-VOx]XN =
(A.9)

where the first equation is evaluated for i = 1 to N-1, and is slightly altered for i = 1, 2, N-2, and

N-1 due to the application of the boundary conditions. Formulation of these equations in matrix

form A._ - _ reveals that the system is banded and bordered, which is displayed in schematic

form in Figure A.2, where the open spaces denote zeroes of the matrix. The bandwidth for the

XI

X2

X3

N-2

XN- I

k. X_.

n I _

B2 I

N-2

N-I

BN J

Figure A.2: Matrix Structure for Finite Difference Technique

matrix in this example is four, and Gaussian elimination is employed to solve for the unknown

vector ._. Numerically, Gaussian elimination is much more stable and accurate than, for instance,

matrix inversion by calculating determinants, and it also is quite efficient when applied to banded
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matrices of this form. The bordered section of the matrix is dealt with through the use of the

Woodbury formula (see Press et al.89), which preserves the banded nature of the matrix structure

while still incorporating the influence of the bordered portion through the addition of a few matrix

computations.

As a comparison to the example of the axisymmetric problem, the equilibrium solution for the

Brazier problem for finite length cylinders with an axial stiffness variation generates a matrix of

the same structure as the one shown in Figure A.2, except that the order of the matrix is ~2N and

the bandwidth is eight due to the extra differential equation and variable present in that system.

For the Brazier problem applied to infinite length cylinders, the linearized equation is even sim-

pler because the bordered portion due to the presence of an unknown constant does not exist,

therefore the Woodbury formula need not be invoked. These results for the linearized form. of the

nonlinear governing equations are important, for the following sections reveal that the numerical

solution to these linear problems is vital to the calculation of the nonlinear response as well as the

solution of the eigenvalue problem.

A.2 Newton's Method for Nonlinear Problems

The finite difference technique discussed in the last section is one of many numerical tech-

niques that works for linear problems, in which powers and nmltiplications of unknown variables

do not exist. However, the equilibrium equations for a cylindrical shell undergoing loads that pro-

duce instability are usually nonlinear, for which these straightforward linear solution techniques

are not applicable. In fact, it is generally believed that no generic solution techniques exist for an

arbitrary nonlinear problem, for the presence of the nonlinearity produces multiple solutions of

the equations which cannot necessarily be calculated using standard techniques. However, this

does not mean that some important solutions to nonlinear prot lems cannot be found. For instance,

nonlinearity in shell equilibrium solutions usually increases proportionally to the level of the

applied loads. For the initial loading, the linear solution can be found; and as the load level

increases the resulting nonlinear solutions can be calculated by finding a suitable configuration

near the linear solution that satisfies the static equilibrium equations. This technique usually

works adequately until a bifurcation point develops, for bifurcation implies a drastic change in the

configuration that leads to a significant alteration in the respon;e. Calculation of the resulting state

after bifurcation is found through the application of postbuckhng theory, and is beyond the scope

of this investigation. Instead, we will employ nonlinear solution techniques for the prebuckling

solutions, which can be based on perturbations from the lineav solutions, and include the nonlin-

ear effects to determine when bifurcation may occur. The nonlinear technique is iterative, in that it

keeps updating the solution until the equilibrium equations are. considered accurately satisfied. It
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is based on Newton's method (also referred to as the Newton-Raphson method) for finding the

roots of nonlinear equations using derivative information, which is extended to include ordinary

differential equations of several variable.

A general nonlinear system containing ordinary differential equations with _ as the indepen-

dent variable and the vector _ as the dependent variable can be represented as

p pt

P(_, _, _, _ ...) = 0 (A.10)

where the vector J_ is a system of nonlinear differential operators (for our problems of fourth

order) and is a function of _ and its derivatives with respect to _. The system should be well-

posed, so that the number of equations represented by 2_ is the same as the number of components

in the unknown vector £. The idea is to assume an initial solution _'0(_) for the nonlinear system

and use this basis to find a more accurate solution in the neighborhood of this solution. Of course,

convergence depends highly on the accuracy of the initial solution. For our problems this choice is

usually the linear problem, where we solve the differential equation without the nonlinear terms

in/_ using the finite difference technique already described.

Once an initial solution is chosen, we perturb the dependent variable such that

J_ = _0 + 5_ (A. 1 l)

Substituting this assumed form into Eq. (A.10) and performing a Taylor series for/_ about the

original solution results in the following equation:

p to

0....__/_,I _+ 0,_ 5_,'+ _ /_l 5_"÷...+O[52] =_2_(_,_o,_0,_0... ) (A.12)

If the original solution is close to the correct one, then the forcing term ]_ on the right hand side

will be small, as will be the solution to the correction 5_. Since these terms are small, we can

neglect orders of 52 in Eq. (A. 12). Thus we have formed a system of linear ODE's for the correc-

tion variables, which can be calculated using the linear solution in terms of finite difference tech-

niques discussed in the last section. Then we can update the actual solution of ,_ using Eq. (A. 11)

and iterate until the correction terms converge to zero. Therefore the solution technique for the

nonlinear problem is to solve a series of linear problems until we reach the desired accuracy,

which is measured by either the relative changes of the dependent variables or the magnitude of

the vector/_, where in practice both of these convergence criteria are usually considered.

For the integral equations that also arise in our nonlinear systems, a similar technique is used.
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A general case can be represented as

b
p

_G(_,Y_,7_)d_ = C 1 (A.13)

/2

where this time G is a nonlinear function and is for our systems first-order at most. We also

include the possibility of the limits a and b being unknowns. These variables must also have an

initial guess, and are perturbed slightly to correct the solution:

a 1 = a 0+_Sa b I = b 0+6b (A.14)

Again using a Taylor expansion for the unknowns and ignoring products of the correction terms

results in the integral relation

!o(_-'-_ 1,o 0"_'18 ° J _-_)aG(a°'f_°'f_°)+SbG(b°'f_°'7_°)=Cl-_G(;'7_°''ff)M_J5)ao

This integral is linear with respect to the correction variables _i._ as well as _Sa and fib.

The relative complexity of the nonlinear solution technique is contained in the calculations of

the derivatives of the nonlinear solution with respect to the unknown variables. These derivatives

make up the matrix in the resulting linear system of equations, which is termed the Jacobian

matrix. If the nonlinear equations are sufficiently complex, numerical techniques most also be

used just to calculate the entries in the Jacobian matrix. Howt:ver, for this investigation the analyt-

ical representation of the governing equations supplies the necessary relations so that the terms of

the Jacobian matrix can be calculated in closed form. The or¢:er and matrix structure of the result-

ing system corresponds to that of the linear solution, so that the algorithms to solve the nonlinear

problem consist mainly of updating the Jacobian matrix and forcing vector until the desired accu-

racy is attained. For the specific problems presented in this irvestigation, the effect of the nonlin-

earity did not produce any numerical problems (i.e. non-coavergence do to a failure to find an

equilibrium solution near the linear configuration) except for loads that were well past the bifurca-

tion point of the structure. In fact, the nonlinear static solutions near bifurcation often hinted that a

buckling point was imminent, such as the results shown in Figure 3.10.

A.3 The Classical Rayleigh-Ritz Method for the Eigenvalue Problem

The Rayleigh-Ritz method has long been used for the solution of buckling and vibration prob-

lems in structural mechanics. Its origin began with the conce 3tion of Rayleigh's quotient to esti-
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mate natural frequencies (eigenvalues) of conservative systems by assuming the resulting shape of

the vibration mode. The Rayleigh-Ritz method is an attempt to improve these estimates by deter-

mining what the correct mode shape should be so that the eigenvalue calculation is more accurate.

The designation of the "classical" Rayleigh-Ritz method is introduced so that the traditional pro-

cedures of this technique are differentiated from one of its popular descendants, the finite element

method. An excellent introduction to the classical Rayleigh-Ritz method, as well as a discussion

of its general formulation, convergence properties, and comparisons to the aforementioned finite

element method, can be found in Meirovitch 9°. For our purposes, we will highlight only certain

facts and procedures that are significant for the formulation of our buckling problems for variable

stiffness cylinders.

The derivation of the governing equations for buckling (and vibration) problems using the

Rayleigh-Ritz technique are usually formulated from energy methods for the system under study.

For the cylindrical shell, these energy equations correspond to the expressions for potential energy

and work done on the system that were introduced in Section 2.3, and contain at most second-

order derivatives of the perturbed displacements (u l, v l, Wl). The basis of the Rayleigh-Ritz

method is to approximate the expected shape of these displacements using a linear combination of

predetermined trial functions, which effectively discretizes the displacements and turns the differ-

ential eigenvalue problem into an algebraic one. The coefficients of the trial functions constitute

the unknown buckling mode, so that the numerical solution using these variables generates esti-

mates of the buckling modes and their critical values. The accuracy of the method depends greatly

on the choice of the trial functions. These functions can be divided into three types, in terms of

increasing accuracy: admissible functions, which need be differentiable only up to the order of the

energy equations and only have to satisfy the geometric boundary conditions; comparison func-

tions, which are differentiable to at least twice the order of the energy equations (which corre-

sponds to the order of the governing equations in differential form) and must satisfy all the

boundary conditions; and lastly, eigenfunctions, which fully satisfy the governing equations and

boundary conditions and are linearly independent to each other. Of course, for complex systems,

determination of the actual eigenfunctions is usually impossible, so that linear combinations of

the admissible and comparison functions are used to approximate the true shape of the buckled

mode. However, if the eigenfunctions for similar systems to the one under study are known, then

the use of these as trial functions greatly improves the accuracy of this method.

It should be noted here that one of the main differences between the classical Rayleigh-Ritz

method and the finite element method lies in the choice of these trial functions. The classical for-

mulation traditionally chooses global functions, which are defined over the entire domain and
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often belong to the same set of orthogonal functions, such as trigonometric functions or Bessel

functions. As such, the requirements of differentiability are usually automatically satisfied, and

the trial functions are chosen to satisfy as many boundary conditions as possible. In the finite ele-

ment method, the trial functions are only defined in a local sense, in that each function only cov-

ers a portion of the domain, and are sometimes chosen to merely satisfy the minimum

differentiability requirements. One advantage of the local aspect of the trial functions is that it can

more accurately approximate abrupt changes in stiffness and loading definitions. The boundary

conditions can also be rigorously satisfied using these local function definitions, however the con-

vergence characteristics of this technique do not always follow the typical trends of the classical

Rayleigh-Ritz method due to the fact that the trial functions are not linearly independent. For

more detail in this matter, refer to Meirovitch 9°.

For this investigation, we will employ the classical Rayleigh-Ritz method for the solution of

various cases involving buckling. Since exact eigenfunctions can be determined under certain

loading and boundary conditions for constant softness cylinders, their use as comparison func-

tions for variable stiffness cylinders generates very accurate results that converge quickly. An

exception to this rule, however, is when the stiffness definition contains discrete and abrupt

changes due to the presence of stiffeners or dropped plies. The global definitions for the trial func-

tions have trouble approximating these sudden changes, as compared to the local definitions of the

finite element method. However, finite difference techniques, which do not classify as Rayleigh-

Ritz methods due to their nature of discretization, can incorporate these drastic stiffness changes

since they also, in a sense, rely on local analysis of the domain. Thus it will be seen that the clas-

sical Rayleigh-Ritz method performs very efficiently for cylinders with well-behaved stiffness

and loading definitions, while for structures containing significant stiffness changes the finite dif-

ference technique (or the finite element method if desired) pro ves more reliable.

The formulation of the Rayleigh-Ritz method for our problems can also be referred to as the

assumed modes method. Examples of this technique have already been used for the solution of the

classical buckling estimates of Section 1.2.2, whereby for these constant stiffness cylinders with

their specialized boundary conditions the assumed modes aclually turn out to be the eigenfunc-

tions of the system. Therefore, these eigenfunctions are used a_ the basis for the trial functions for

the general variable stiffness cylinder. The governing equatk,ns for the stability estimation of a

cylindrical shell are in terms of the laminate stiffness measures, the perturbed displacements, and

the rotations and stress measures which are the solution for the prebuckled state. The equations

are displayed in differential form in Eq. (2.110)-(2.112), and can also be expressed as a surface

integral, which is defined as the second variation of the potential energy. Neglecting the prebuck-
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ling rotations (to save space here) results in

L

62V = {all[(ul)z]+2Alz[(Ul)(91 +wl)]+a22[(v 1 +Wl)2] +a66[(t_ 1 +v])2] +

0

2BI1 ' " D11rt ".2. 2Di2 " D22
R [(ul)(-wl)] + _-T,,-wl) j + --_--[(-Wl)(_ x-_1)] + -_-i-[(01__1)2] +

(A.16)

D66r, ' ' 2o_ ' ' 2D26 ' •_-ttVl-2_¢l )2]+ ,, [(-w]')(vl-2_/,1)]+--_--[(_ 1 -#l)(vl-2wl)]+

Nxo[(W l )2] + N0o[(v I _ Wl )2] + 2Nxo,,[(wl )(Vl _ _/'l )] -

pR[vl(vl-Wl) +wl(vl +wl)] }dxRdO

For the Rayleigh-Ritz method, the trial functions for the perturbed displacements are in terms of

trigonometric functions and divided into four modes, such that

ul(x, O) =
N

Z n n ?I 1,1- U 1 CnoC x + UIISnOS x - UIIICnOS x - UIVSnOC x

n=0

N

v_(x, o) = y, " " " "V t SnoS x - VIi Cno C x - VtttSno C x - VtvCnoS x (A. 17)

wl(x, O) =

n=0

N

n n n rl

Z Wl CnoSx + WtlSnOCx- WlllfnOCx + WlvSnoSx

n=0

The notation for the trigonometric functions is translated as

Cno=cos(nO) Sno=sin(nO) Cx = cos(--_)Sx = sin(-_)(A.18)

where the axial wavelength [3 is assumed to be an integer multiple of a base wavelength related to

the length of the cylinder. Integration of Eq. (A.16) in both directions results in an expression

involving squares and multiplications of the coefficients of the series expansions. For equilibrium,

the derivative of the energy expression with respect to each of these independent variables must be

zero. These leads to a complete system of linear algebraic equations for the unknown series coef-

ficients for the perturbed displacements, which can be organized into standard matrix form. As

such, the unknown vector _ representing these series coefficients is denoted as

i
XIA = X[(3N + 3)(I- 1)+3i+A] (A.19)

where the superscript A defines which variable is being referenced (U = I, V = 2, W = 3) and the i
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and I indices represent the harmonic coefficient and mode, respectively. The terms in the stiffness

and geometric stiffness matrices are likewise referenced as

k_A,j B = K[(3N+3)(I- 1)+3i+A, (3N+3)(J- 1)+3j+AB] (A.20)

A sample calculation of a matrix term reveals that the stiffness and loading definitions are

being expressed in terms of a similar series expansion as the displacements, in this case in the cir-

cumferential direction. For instance, the D_I portion of one matrix entry is

iI )tk_3,13 = _ Dll(O)_4X'13X]scos(tO)cos(jO)s,n2(m-m_x dxRdO (A.21)

The resulting integral in the circumferential direction is most easily evaluated when the stiffness

term is expanded in a Fourier series, such that

0

• _ k k 1
DII(0) =_dl12 + zL, dll c°s(k0) dll = _Dll(0)cos(k0)d0

k=l

(A.22)

Since the stiffness terms are symmetric about 0 = 0 and rt, only the cosine terms need to be

included in the expansion. However, the prebuckling stress resultants Nxo , Nxo ° must also contain

a sine term in the expansion due to the possible anti-symmeu'y of the beam loads. The resulting

expressions for the matrix terms are given in Appendix B, aad the resulting eigenvalue problem

follows the matrix form for the finite difference technique. The terms in the geometric stiffness

matrix are functions of the load level, so that the eigensystem becomes:

K s C 0 0

CTKa 0 0

0 Ks C
O C T K a

+

"N s S V s M]

S T N a M a V a

T T
V s M a N s S

r r Sr
Ms V a N a

r-

I

II

YlI

IV

= d (A.23)

Two major differences do exist when compared to the finite difference formulation, in that the

sub-matrices are now symmetric and full (as opposed to banded).

One advantage of using the classical Rayleigh-Ritz method for the eigenvalue problem is that

it ensures that the matrices are symmetric when the expressions for the matrix elements are able to

be derived from energy expressions. The symmetry of the matrices implies several favorable

properties of the eigensystem. For example, it can be easily shown that the eigenvalues of real
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symmetric matrices must always be real, thereby removing the need to investigate the imaginary

plane. The expansion in terms of a finite sum of orthogonal functions (the Fourier series) also

ensures that the inclusion principle holds. This very powerful result means that as you increase the

number of terms in the expansion for the displacements, the resulting matrix includes the pre-

existing eigensystem except for an addition of another row and column. The new eigenvalue that

is created due to the higher order of the system will not be less than any eigenvalue from the lower

order system, and in fact the old eigenvalue spectrum is "embedded" within the new one such that

each eigenvalue is decreased. Thus the inclusion principle guarantees convergence from above for

all eigenvalues, which is a very desirable feature for eigenvalue calculations. An iterative solution

to find the lowest eigenvalue and associated eigenvector is introduced in the next section.

A.4 The Power Method for the Eigenvalue Problem

The eigenvalue problem using either the Rayleigh-Ritz method or finite difference techniques

can be presented in a general form as

[K]. _1 = A[M] • t_l (A.24)

The eigensystem will be defined to be of order N, so that N eigenvalues and corresponding eigen-

vectors exist (usually the rank of [M] defines the order). However, our investigations only require

an estimation of the critical, or lowest, eigenvalue and its associated mode shape, so that numeri-

cal algorithms that generate all characteristic values and buckled shapes are more robust than

needed. Therefore, a method that only calculates the lowest eigenvalue and associated eigenvector

is all that is desired so as not to waste computational time and expense. One such technique for the

solution of the general eigenvalue problem is the power method. Not only does this method fulfill

our needs of efficiency by only calculating the pertinent modes, but it also can be applied to sym-

metric and unsymmetric matrices, which occur when the finite difference technique is employed

for the discretization of the domain. Systems that are not positive definite, such as when a critical

load is calculated at a point along the nonlinear load path which is past the bifurcation point, can

also be handled. Furthermore, the algorithms of linear algebra to solve the banded systems that

occur for the static problems can again be used in the solution techniques using the power method.

The power method is based on the principle that the eigenvectors for a given matrix are lin-

early independent and that they represent a complete basis for the N-dimensional subspace. Thus,

an arbitrary vector can be decomposed into a linear combination of the orthogonal eigenvectors:

N

_0 = _ 0_k_k (A.25)

k=!
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where the N eigenvectors are found from a general matrix such that

[A]:_ = A._ (A.26)

Each eigenvector has a corresponding eigenvalue Ak associated with it, which are not necessarily

distinct (i.e. AI may be the same as A2, but the associated eigenvectors _1 and -_2 are still linearly

independent). If we use the matrix [A] to multiply the arbiuary vector in an iterative fashion, the

resulting vector can be expressed as

N

_p = [A]_p_l = _ _kA_k (A.27)
k=l

since the eigenvectors are orthogonal to each other. Isolating the first term of the expansion and

dividing by A_, which will be defined as the largest among the N eigenvalues, results in

_, = h_' 1:_1+ y_ o_k :_
k=2 3

(A.28)

However, since A 1 is by definition the largest eigenvalue, then the ratio in parentheses will con-

verge to zero as the power p tends to infinity (hence the terra "power method"), and the iterated

vector will be equal to a scalar multiple of the eigenvector associated with the dominant eigen-

value. Convergence to this fundamental eigenvector depends greatly on the value of the ratio that

is being increased exponentially. A special case exists when there are repeated eigenvalues corre-

sponding to the largest one, but it can be shown that even for this case the resulting eigenvalue and

iterated eigenvector correctly satisfy the solution to the eiger, value problem, though convergence

may be slow.

The power method applied to our specific problems follows the basic theory as presented

above with some slight differences. For instance, our eigensystem is cons.tructed of two matrices

as in Eq. (A.24) instead of the single square matrix [A]. Furthermore, we desire the smallest

eigenvalue and associated eigenvector as opposed to the large.q one, and want also to speed up the

convergence rate for closely spaced eigenvalues. These alterations are performed by assuming

that the eigenvalue is composed of a known "shift" It_ plus tae calculated eigenvalue _._, so that

Eq. (A.24) is rewritten as

A = It s + _'s ([K] - Its[M]). _1 = _s[M] " t_l

Rearrangement and use of a negative power to denote matrix iaversion results in

(A.29)
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([K]-gs[M])-J[M].I_I = [A].11 = _s_l (A.30)

This form now corresponds to that of Eq. (A.26), except that now the power method will produce

the largest value of (1/2_,), equivalent to the smallest value of )_s. Furthermore, convergence now

depends not on the ratios of the eigenvalues, but instead on the quantity

gsJ

When the shift is chosen to be zero, the power method will find the lowest eigenvalue and associ-

ated eigenvector as shown earlier, while a constant shift will produce the eigenvalue that is closest

to the value of gs. Therefore, convergence can be greatly enhanced when looking for the critical

eigenvalue by using a shift value that is nearest the lowest one. Of course, some care must be

taken in the choice of the shift value, for if its magnitude is closer to a different eigenvalue than

the resulting solution will not correspond to the critical one. It should also be noted that a value

of gs which exactly corresponds to an eigenvalue does not actually present a problem. This is due

to the fact that the inversion of the matrix in Eq. (A.30), which is singular when the shift value is

equal to any eigenvalue, is numerically performed using Gaussian elimination through LU decom-

position, which is very stable even for nearly singular matrices. The numerical algorithm when

implemented with a computer also generates some leeway in this respect, for actual equality of

real numbers rarely exists when using finite arithmetic. In fact, the algorithm converges fastest

when the shift value is chosen as close to an eigenvalue as possible, and this method, also known

as inverse iteration, is often used to find the eigenvectors when the eigenvalues are already known.

Another factor that greatly affects the operation of the power method is the initial choice of

the vector that is being iterated. If it is equal to an actual eigenvector than the iterative solution

should return the same vector multiplied by a scalar corresponding to the eigenvalue, which is one

factor which determines convergence. Furthermore, the initial choice of the vector can also be

used to limit the possibilities of the solutions so that symmetry considerations can be fully investi-

gated. For instance, a simplified form of the eigenvalue problem, given in Eq. (A.23), involving

symmetric loading of a variable stiffness shell, can be rewritten as

r K

I
=A

II r N I1
(A.32)

Here we will assume that either the finite difference technique or the Rayleigh-Ritz method has
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been used to transform the original differential eigenvalue [.roblem into this algebraic one, where

each sub-matrix is now 3N'X3N and the eigenvector contains a symmetric mode I and an anti-

symmetric mode II. If there are no coupling effects or shear loading, the two modes become

decoupled. Therefore, if the original vector used in the power method has non-zero terms only in

the symmetric portion of the vector, then the resulting solution will contain the critical eigenvalue

and associated eigenvector for the symmetric case only. Thus to include the possibility of an anti-

symmetric buckled shape, the algorithm should be performed again with a vector containing some

anti-symmetric terms. In practice, it was found that the most efficient approach was to iterate two

vectors at once: one with only symmetric terms and the other with non-zero values only in the

anti-symmetric portion. The overall critical eigenvalue is then the lowest of the two. This method

also works well when torsion and/or coupling are present, for each vector tended to produce the

dominant shape for each respective mode (which were sometimes identical). This technique is

also used for modes II1 and IV associated with anti-symmemc circumferential loading.

Lastly, the efficiency of the power method is chiefly due to the fact that only one or two eigen-

vectors and eigenvalues are actually being calculated, as opposed to general canned subroutines

which typically solve for the whole system. When the finite difference technique is used, the

matrices that need be inverted are in banded form, and thus can be factored using Gaussian elimi-

nation quite efficiently. For the Rayleigh-Ritz method, the matrix structure is not banded but does

possess the added advantage of symmetry, so that the inclusion principle and convergence of an

eigenvalue from above, discussed in the last section, are applicable. For the non-symmetric matri-

ces resulting from the finite difference technique, some discrepancy may occur due to the possi-

bility of complex eigenvalues, however it was found that for our class of problems the power

method did generate the results for all cases that corresponde,t to non-imaginary configurations.

A.5 Finite Difference Techniques versus the Rayleigh-Ritz Method

In this section, we will contrast the use of two different namerical methods, namely the finite

difference technique and the Rayleigh-Ritz method, to determine which one works most effi-

ciently and accurately for a typical problem from this work. The example problem to be used is

the linear stability estimate from Chapter 4.0. Both of thest: numerical techniques are used to

solve the static equilibrium and eigenvalue problems detailed in that chapter (in truth, the solution

of the static equilibrium equations using an expansion in terrr s of sines and cosines is not techni-

cally the Rayleigh-Ritz method, but will be referred to as such for this discussion). Each method

has a size parameter N associated with it which represents the aumber of unknown variables in the

problem. For the finite difference technique, this parameter ?! is defined as the number of finite

difference points within the domain, while for the Rayleigh-l?.itz technique it describes the num-
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ber of terms used in the expansion of the displacements. Larger values of N should lead to

increased accuracy, but also decreased efficiency with respect to the numerical algorithms. Results

of the numerical techniques with respect to the size parameter are shown in Figure A.3 for a typi-
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Figure A.3: Accuracy and Efficiency versus Size Parameter for Numerical Techniques

cal stiffened cylindrical shell under torsion. The top and bottom axes represent the size

parameter N for the finite difference and Rayleigh-Ritz technique, respectively. Note that the

numbering of the axes do not coincide, since each numerical method depends differently on the

magnitude of N. The left axes in Figure A.3 is used to measure the failure loads of the structure,

for both buckling and material failure (normalized with respect to the buckling load), while the

right axes displays the computation time for each method.

The results from Figure A.3 highlight several key points. Firstly, the two curves that represent

the material failure load differ quite substantially. For the finite difference technique, the solution

converges quite quickly and accurately even for small values of N. However, the Rayleigh-Ritz

solution exhibits very slow convergence, in fact the plot reveals abrupt changes in the material

failure estimation at intervals of N = 50, with very little agreement to the correct finite difference

solution until N becomes large. The reason for this is due to the fact that the structure under con-

sideration contains fifty evenly spaced longitudinal stiffeners around the circumference of the cyl-
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inder. To complete the material failure estimation, an expansion in terms of sines and cosines must

be implicitly performed for the stiffness variation to determine the existing stress and strain states

resulting from the applied loads. When discrete stiffeners are included, accurate convergence of

this expansion may be quite slow, since abrupt changes are notoriously difficult to handle using

expansion functions such as these. This is readily apparent in Figure A.3, which reveals that the

accuracy and convergence of the expansion solution experiences great changes at fifty point inter-

vals, coinciding with the most significant harmonics for a stiffness variation with fifty stiffeners.

Therefore, since softeners will be used extensively in this study, the finite difference technique

will always be used to estimate material failure.

With regards to the other two relationships compared in Figure A.3, the most significant factor

involves the structure of the solution matrix for the eigenvalue calculation. This was briefly dis-

cussed earlier, where it was mentioned that the finite difference solution produced a banded,

unsymmetric matrix, while the Rayleigh-Ritz technique generated a symmetric matrix that was, in

general, not banded. These properties have a direct influence on the accuracy and convergence of

the eigenvalue estimation as well as the computational efficiency of the numerical technique. The

eigenvalue calculation using the power method involves iteratively factoring the solution matrix

until the critical eigenvalue and eigenvector emerge. Thus, tie finite difference technique, which

produces a banded solution matrix, lends itself to extremely efficient numerical algorithms that

increase linearly with respect to the size N of the matrix. Conversely, the Rayleigh-Ritz technique

forms a full matrix that requires much more computational time to factor, even though it is sym-

metric, and it can be shown that the efficiency varies quadratically with respect to matrix size.

These results are reaffirmed in Figure A.3 for both numericzt methods. Therefore, since we are

using these analysis techniques for rigorous optimization stu, lies, the more efficient finite differ-

ence technique is used whenever possible due to its superior numerical efficiency.

Lastly, the numerical results of the buckling failure eigenvalue calculation for the two methods

are also shown in Figure A.3. Note that the finite difference technique converges quickly to an

asymptote, though the path is not perfectly smooth. The Rayleigh-Ritz solution is much smoother,

and the results indicate that the correct eigenvalue is actually .,omewhat lower than what the finite

difference calculation predicts. As explained in Appendix A, the symmetric nature of the solution

matrix for the Rayleigh-Ritz method used here guarantees the convergence of the lowest eigen-

value from above, due to the inclusion principle and embedding features of the solution technique.

This means that increasing the number of terms in the exi,ansion for the displacements will

always yield an improved estimation of the eigenvalue, and that any numerical result is at least an

upper bound on the actual eigenvalue. The finite difference te_ hnique, however, does not produce
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a symmetric matrix, therefore these desirable properties of convergence do not apply. Addition-

ally, estimation of derivatives using central difference equations is not considered "exact", and

possible round off errors do exist for this method. These factors lead to the jaggedness of the

curve for the eigenvalue estimation in Figure A.3. Furthermore, it can be shown that for non-axial

loading (shear and torsion) when using a small value of the axial wavelength parameter 13, the

finite difference solution matrix is ill conditioned, so that for large values of N the numerical solu-

tion is unstable and often inaccurate. Of course, the test case displayed in Figure A.3 was chosen

to exhibit this discrepancy, and for most of this study the loading is such that the finite difference

technique generates results that completely agree with the Rayleigh-Ritz eigenvalue calculation.

Therefore, though the finite difference technique does suffer some disadvantages for eigenvalue

calculations, the numerical efficiency of the method far outweighs the accuracy problems that

occur for limited cases, and as such we will employ the finite difference technique for all calcula-

tions while keeping in mind the areas where its accuracy may be in question.

This discussion centered around the results of Figure A.3 have demonstrated that, for our pur-

poses, the finite difference technique is more beneficial for our problem than the Rayleigh-Ritz

technique. These key points are summarized in Table A. 1. It should be noted, however, that the

Numerical

Technique

Finite

Difference

Rayleigh-Ritz

Stiffness

Variation

Converges

quickly for
all cases

Slow to

converge

Material

Failure

Accurate

for abrupt

changes

Inaccurate

for abrupt

changes

Matrix

Structure

Banded, but

unsymmetric

Full, yet

symmetric

Numerical

Efficiency

_N

_N 2

Eigenvalue

Analysis

Inaccurate for

non-axial loading

with small 13

Accurate for all

cases, but often

slow

Table A.I: Summary of Numerical Technique Comparison

finite element method actually possesses the advantages of both of these techniques, namely the

discretization, bandedness and efficiency of the finite difference technique and the eigenvalue

convergence of the Rayleigh-Ritz method. Therefore, future research along these lines should

consider using this approach for the numerical solutions.

A.6 Optimization Techniques

The numerical methods presented in the previous sections of this chapter have dealt exclu-

sively with the numerical solution of the governing equations. Thus the analysis provides esti-

mates of the stiffness, strength, and stability characteristics of a given variable stiffness cylindrical
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shell, which can be translated into a suitable "performance' with regards to the application of the

structure. However, in the design process, this is merely th,: first step, for the analysis portion has

no ability to recommend possible cylinder designs or to calculate the sensitivity of the response

with respect to some design parameter, such as a dimension or the laminate stacking sequence.

These aspects of the design process are governed by optimization techniques, which strive to

determine the best values of certain design parameters so that the performance of the structure is

maximized. Of course, the number of numerical procedures and algorithms that have been devel-

oped to solve this optimization problem are vast. Here, we will only attempt to highlight the basic

concepts of the optimization tools that are used for our design problems, and refer further inquiry

to the text of Haftka and Gtirdal 91. Implementation of the traditional gradient-based techniques

was accomplished through theuse of ADS, designed by Vanderplaats 92.

The methods used herein can be divided into two sections, one concerning traditional gradi-

ent-based methods and the other describing "genetic algorithms". Both deal with the solution of

the standard optimization problem, which can be expressed as

minimize f(:_)

such that gj(_) >_ 0, j = l, ng

hk(_) = 0, k = 1, n e

(A.33)

The vector _ represents the design variables of the system, whilef is defined as the objective

function and gj and h_ are the inequality and equality constraints, respectively. The design vari-

ables may be either infinitely-valued, which implies continaity throughout the real numbers, or

discrete-valued, for which only certain values of the variables are permitted. Examples of discrete

variables include ply thicknesses and orientation angles, which may be limited due to manufactur-

ing constraints, and integers representing the number of stitfeners included in the structure. The

inequality and equality constraints divide the domain into a feasible and infeasible design space,

and the correct solution of the optimization problem results ia a vector :_ Which generate the min-

imum value of f while still being located within this feasible design space. For nonlinear objective

functions, many local optima may exist which still satisfy all the expressions of Eq. (A.33). How-

ever, the goal of the optimization process is to find the actual global optimum which achieves the

best performance when compared to all other feasible designs. For most optimization techniques,

this assurance of global optimality can never be proven, thc ugh some techniques (most notably

genetic algorithms) strive to attain this demand.

A.6.1 Gradient-Based Methods

Analytical methods of finding extrema of functions of .,everal variables are often based on
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determining where the gradient of the functions is zero, where the constraints may be taken into

account by using Lagrange multipliers. For optimization problems, techniques based on this

approach are often termed gradient-based, or first-order methods, since they rely on calculating

the first derivative of the objective function with respect to each variable. If the objective function

and constraints can be expressed in closed form in terms of these design variables, then these

methods are quite useful in determining the optimum design. However, for most realistic prob-

lems, either the complexity of the objective and constraint function evaluation or the shear num-

ber of unknown design variables warrants a numerical solution for the optimization problem.

However, the fundamental theory behind gradient-based methods remains the same, and its basic

implementation and inherent shortcomings are illustrated using a simple example.

Consider the optimization problem for a highly nonlinear function of two variables, which is

displayed in Figure A.4 through the use of a contour plot for the level curves of the functionf For

x 2

J
x 1

Figure A.4: Illustration of Optimization Schemes

clarity, the local minima are shaded dark, while the maximum ridge-like area is lightly shaded.

The goal of the optimization problem is to locate the global optimum at point A, found by calcu-

lating the values ofx_ and x 2 so that the objective function is a minimum over the given domain.

If, for instance, the initial design is chosen at the point Sl, then the gradient-based techniques will

traverse the dark line "downhill" until the correct optimum is attained. Note that the downhill



Appendix A. Numerical Techniques 258

course is actually made up of successive linear paths, where at the starting point (and each succes-

sive point) the direction to move is determined through the evaluation of the gradient, which is

perpendicular to the level curves. However, if the initial point is instead chosen to be at $2, then

the optimization techniques will actually find a local minimum at point B since the successive gra-

dient directions flow downhill to that location. This possibility of the calculated optimum not

being the lowest minimum value is a constant source of uncertainty in traditional optimization

methods, since for most complex problems the ability to map out the design space and determine

where the global minimum is located is impossible. Of course, the optimization technique illus-

trated in the figure is quite basic. Typical problems also involve highly nonlinear inequality and

equality constraints, which even further complicate the design space and the ability to find the

optima. Furthermore, the design variables used in this example are assumed to be infinitely val-

ued, such that they are allowed to be any real number in the feasible design space. In many prob-

lems, this luxury is not present, perhaps due to manufacturing constraints or the formulation of the

problem in terms of integer variables. For example, if the design variables in Figure A.4 are only

allowed to attain the values marked by the grid lines, then the optimal solution for these discrete

variables is located at point C. The standard optimization techniques have no ability to find this

optimum, therefore some hybrid techniques which can incorporate discrete valued variables must

be used.

A.6.2 Genetic Algorithms

One such technique is based on the concept of natural selection from the theory of evolution,

which states that the best designs should evolve from a "survival of the fittest" selection process.

The design variables of the problem must be represented as genetic strings, and typical biological

functions, such as offspring generation and mutation, recomtine the genetic strings of each indi-

vidual design. The interchange of the genetic information is carried out using probability and ran-

dom chance based on the fitness of the designs, and new generations are developed using these

algorithms until an optimal design is found.

Several advantages of this optimization process exist for structural design problems. Firstly,

the translation of the design variables into genetic strings that contain all of the information about

the designs is usually accomplished by discretization of the variables. Thus the algorithm actually

works best with discrete-valued design variables, therefore the design of stacking sequences with

only particular ply thicknesses and orientation angles is perfectly suited for this process. Sec-

ondly, the random-based generation of designs is designed to cover the whole design space

equally, where the optimal regions of the feasible space are investigated more thoroughly due to

the workings of the algorithm. Therefore, the possibility of a he final design being a global opti-
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mum is dramatically increased. Furthermore, this method not only produces a "best" design, but

also supplies many similar designs with slightly decreased performance but often radically differ-

ent design parameters. Therefore, the process may discover areas of near-optimality that gradient-

based optimization methods would not discover. For example, referring to Figure A.4, if the

design variables were discretized so that only the values coinciding with the grid lines were feasi-

ble alternatives, the genetic algorithm should find point C as the optimal point, but may also

reveal that the area around point A also contains some meritorious designs.

The major drawback of genetic algorithms is their efficiency. For the random-based searches

and probability concepts to prove effective, a large number of designs must be analyzed to ensure

convergence. However, the advantages of discrete-valued variables and global optimality are very

important for our design problems. This is one of the main reasons that the efficiency of the

numerical solution techniques has been stressed so thoroughly - the faster the analysis, the better

that the genetic algorithms will perform. For the most part, all of the design studies are completed

using the genetic algorithms, even ones with continuous-valued variables. For this case, the

genetic algorithm is often used to find viable starting points so that the local optimum found by

the gradient-based optimization technique is a probable global solution.



Appendix B. Stability Equations for Finite

Difference Technique

This appendix details the partial differential equations that govern stability of a variable stiff-

ness cylindrical shell, first introduced in Section 2.3.4. Three separate cases are presented, first for

the axisymmetric prebuckling solution of a finite length cylinder with an axial stiffness variation,

secondly for a short cylinder segment with a liner prebucklihg solution and a circumferential stiff-

ness variation, and lastly for an infinite length cylinder with stiffness changing in the circumferen-

tial direction that experiences nonlinear beam bending due to the Brazier effect. The detailed

equations follow from the specialization of the general stability estimation represented by

Eq. (2.106), and are formulated using either the finite difference technique or the Rayleigh-Ritz

method, as noted within each section. The particular assumFtions and formulations employed for

each problem are referenced in the details that follow.

The notation is presented in terms of the differential operators d x and do as well as primes and

dots, which are defined as

• _ • (9 (B.I)d_=( )=R d°=() :--O"_

and are nondimensional. When placed at the end of an expression (for finite difference formula-

tions), the operator acts on the relevant unknown variable. To make the presentation easier to read,

this section does not contain any normalization with respect to classical buckling estimates,

though in practice this is performed to improve the performance of the numerical algorithms.

B.1 Nonlinear Axisymmetric Prebuckling for an Axial Stiffness Variation

The general form of the eigenvalue problem for the stal:ility estimation of an axisymmetric

cylinder with an axial stiffness variation using the finite diffeJence technique is represented as

K s C S I I ---> { UI, VI, W 1 }
+ = 0 (B.2)

i i i T
-C K N II 11 --.->{ Ull, Vtt, Wtl }

The sub-matrices are 3x3 and contain linear operators that act on the modal displacements, repre-

260
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sented by the roman numerals, at each finite difference location i. The subscripts s and a denote

slight changes for the terms near the mid-length to account for the symmetric and anti-symmetric

conditions for each function, which are not detailed here. The expressions are in terms of the CLT

stiffness parameters and the prebuckling quantities, denoted by a 0 subscript, which are functions

ofx only. Additionally, the circumferential wavenumber n is an unknown parameter that must be

determined by finding the minimum eigenvalue for all integer values of n.

The stiffness sub-matrices [K] and [C] are detailed first. They only contains stiffness terms

and thus do not depend on the value of the applied load. They are represented as:

[X] = [k21 k22 k231 [C] = c22 c 2 (B.3)

[.k31k32k33.J c32c33.J

The detailed expressions are given below. An overbar denotes some obvious normalization with

respect to the cylinder radius for a few quantities to make the notation consistent and concise (for

example, D"ij = OijlR 2, 322 = B22/R, W'-o= wo/R).

kll = Alld2x+Alldx-n2A66 k12 = n(A12+A66)dx+nA12

t o

k13 = Al2dx+Al2 k21 = n(A12+A66)dx+nA66

k22 = - (A66 + D66) d2 - (A66 + O66)dx + n2(A22 + 2B22 + D22)

t

k23 = - n(Dl2 + 2966) d2- 2n_)66dx + n(a22 + B22) + n3(B22 + D22)

t t

k31 = Al2d x k32 = -n(D12 + 2D66)d2- 2n(_)12 + _)66)dx -

nDl2 + n(A22 + B22) + n3(B22 + D22) (B.4)

• •t t J,

k33 = Dildx 4 + 2D11dx3 + Dlld 2 - 2n2(D12 + 2D66)d 2- 2n2(Dl2 + 2D66)d x-
op

n2D12 + A22 + 2n2B22 + n4D22

P • •

C22 = - 2nff)26d x-no26 c23 = Dl6d 3 + D16 d2- 3n2926dx-n2D26

t tt j,

c32 = Dl6dx 3 + 2Dl6d 2 + Dl6d x- 3n2D26dx- 2n2D26

0 t• •

c33 = 4nD16 d3 + 6nD16 d2 + 2nDl6d x - 4n3£)26dx - 2n3D26

Note that for a constant stiffness variation, both of the matrices are symmetric.
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The expressions for the geometric stiffness matrix, or k ading matrix, are detailed in a similar

manner. The matrices are represented as:

In 9 n12n13]. IS 0 1231
[N] = 21 n22 n231 IS] = 0 s 2 (B.5)

[_n31 n32 n33.J s32 s33.J

and the related equations are given below.

• _ P e

n12 = -nA66w 0 n13 = AllWOdx 2 +dx(AllWO)dx-n2A66w 0

-' -' 2 '
n21 = nA66wo n22 = - (pR- Noo ) + A66(wo) + dx(A66wo)

P e

n23 n(pR- Noo ) + n(AI2 + A66)wod x - 2 •= _ + nA66(wo) +ndx(A66wo )
_,, ,, (B.6)

n31 = -AllWOd x n32 = -n(pR-Noo)-nAl2W 0

• st o

n33 = - Nxod2x - (pR - n2N%) - A l Iwowodx + A s2wodx - A 121wo

s23 = -Nxood x s32 =-Nxoodx s33 = -2nNxoodx

Note that when prebuckling deformation is included, the system takes the form of a nonlinear

eigenvalue problem due to the products of prebuckling rotations and curvatures in the loading

matrix. When the classical membrane assumptions are used far the prebuckling solution, all terms

in the loading matrix given in Eq. (B.6) are zero except for

n33 = - Nxod2x + (n 2 - 1)Noo

s23 = -Nxoodx s32 =-Nx%d x s33 = -2nNxoodx
(B.7)

Now the eigenvalue problem is linear, and the loading quantities can be divided into a "dead" and

"live" portion as suggested in Section 3.3. Finally, it should also be recognized that these equa-

tions reduce to the classical estimate for buckling of a constant sOffness laminate using Sanders

shell theory if the displacement functions are assumed to vary sinusoidally in the axial direction

with frequency 13.In fact, this is exactly the formulation used 1o develop the contour plots and infi-

nite length buckling estimates discussed in the Introduction, Section 1.2.2.

B.2 Linear Membrane Prebuckling for a Circumferential Stiffness Variation

For this problem, both the finite difference technique and the classical Rayleigh-Ritz method

were implemented to find the critical eigenvalue. This was done because the initial solution using
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the finite difference technique was inaccurate for some cases (small values of 13), and in the course

of determining the cause of the error the Rayleigh-Ritz solution was formulated for comparison

(these details are presented in Section A.5). Therefore, the matrix entries for both methods are

given here as further means of comparison.

Firstly, the finite difference solution is very similar to the previous one for the axisymmetric

problem, though of course the stiffness parameters are now a function of 0 and the nonlinear and

prebuckling deformation terms are removed. Furthermore, instead of the unknown variable n, the

circumferential analysis contains the variable 13,which represents the axial frequency of the buck-

led shape. The displacements are assumed to vary according to Eq. (4.44), which supplies four

possible modal displacements and forms an eigensystem given as

(Ks C 0 O"

-CK a 0 0

0 0 Ks C

0 0 -C K a

-N s S

-S N a+

-V s M a

M s -V a

V s Ms

Ma Va

N s S

-S N a dead

II

[TvJ

=-A

-N s S V s M;

-S N a M a V a

-V s M a N s S

M s -V a -S N a

Ill
iml

live LIVJ

(B.8)

The expressions for the linear operators in the stiffness sub-matrices are given below.

kll =-A66d2-A66do+132AI1 kl 2 = 13(A12+A66)do+13A66

k13 = 13A12+_3BI1 k21 = _(A12+A66)d0+13/(12

k22 = (A22 + D22) d2 + (/_22 + D22)do - 132(A66 + D66)

k23 -. _ D22 d3 -/_22d 2 + _2(D12 + 2966)do + 132212 + a22do + A22

k31 = 13A12 + _3Bll k32 = _ D22d 3 - 2D22d 2 - D22d 0 +

_2(D12 + 2D66)d 0 + 2_2D66 + A22do

k33 = D22 d4 + 2022d 3 + Dlld 2 - 2_2(D12 + 2De6)d 2 - 2_2(D12 + 2D66)d 0-

_2D12 + _4DII + A22

c22 = - 213D26d 0 - 13926 c23 = - 3_D26 d2 - 2_Oz6d 0 + 1_3D16

c32 = - 313D26 d2 - 413D26d 0 - 13926 + 133D16

c33 = -413D26 d3-6_D26d 2-2_D26d 0 +4_3Di6do + 2_3D!6

(B.9)

For the loading matrices of Eq. (B.8), the "dead" and "live" designations refer to predetermined
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load levels chosen for each problem. The matrix entries are given below, with their corresponding

load cases indicated for each linear operator:

n33(P, F, My) = I]2Nx,- Noo (1 + d 2) m33(Mz) = _j2Nxo

s23(T, Vy) = _N xo°

v23(V_z) = _Nxo °

For the Rayleigh-Ritz

Section A.3. The sub-matrices in Eq. (B.8) now represent a summation over all values of n, which

is denoted by the ij superscripts for each term that is expanded. Also used to save space are four

functions that utilize the Fourier expansions for the stiffness and loading terms:

Nmax
1

For e(0)- 5".E"cos(n0) E" =  , e 0)cos(n0)a0
#L,--

n=0

CC[En(i, j)]

CS[ En(i, j)]

SC[En(i, j)]

SS[En(i, j)]

s32(T, Vy) = -_Nxo,, s33(T, Vy) "- 2_Nxoodo (B.10)

v32(Vz) = -_Nxo ° v33(Vz) = 2_Nxoodo

method, integration is performed following the method outlined in

(B.11)
= (EJ-i+Ei-J+Ei+J+E-i-j)/2

= (EJ-i+Ei-J-Ei+J_E-i-j)/2

= (EJ-i-Ei-J+Ei+J_E-i-j)/2

= (EJ-i-Ei-J-Ei+J+F-i-J)/2

Then the matrix entries can be calculated utilizing the indexed notation defined in Eq. (A.21)

(refer to Section A.3 for more detail). The terms in the stiffness matrix for the symmetric modes I

and III are:

kiJli = _2CC(All) + ijCS(A66) kiJl2 = j_CC(A12 ) + _CS(A66)

kiJl3 = _CC(AI2 ) + _3CC(BII) k_l = i_CC(AI2 ) +.i_CS(A66)

k2ij = ijCC(A22 + D22) + _2CS(A66 + D66)

k2iJ3 = iCC(A22 + _2D12 + j2D22) + 2_2jCS(D66)

k3ij =

k 3iJ2 =

k3iJ3 =

A simple transformation of CC<--->CS results in the correct expressions for the anti-symmetric

modes H and IV. Note how much simpler the expressions are since the integration could be per-

formed symbolically.

_CC(A12) + _3CC(B11)

jCC(A22 + _2DI2 + j2D22) + 2_2iCS(D66)

CC(A22) + _i4CC(D! 1) + i2j2CC(_)Z2) + [32[(i 2 + j:)CC(_)I2) + 4ijCS(D66)]

(B.12)
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For the coupling stiffness matrix, the matrix entries become:

O
C22 = _[iCC(D26) + jCS(L)26)]

6
c23 = 2_ijCC(ff)26) + _j2CS(D26) + I]3CS(DI6)

(B.13)
0

c32 - 2_ijCS(D26) + _i2CC(L)26) + _3CC(D16)

ij = 2_3[jCC(ff)16 ) + iCS(ff)16) ] + 2_ij[ iCC(L)26) + jCS(L)26) ]c33

Finally, the loading matrix is filled by likewise assuming a Fourier expansion of the membrane

stress resultants, as per Eq. (B. 1 1). However, since some of the loading is now anti-symmetric

about 0 = 0 and 0 = _, a sine expansion must also be performed. These separate expansions are

denoted by a c or s superscript for the Nx and N_o stress resultants.

ij _2CC(NCxo) Noo_)ij[i2 (l+n33(P, F, My) = + - 50i)]

ij -- _CS(NCxoo ) ij -s23(T, Vy) = s32(T, Vy) = _JCC(N:oo)

ij -
s33(T, Vy) = _[jCC(NC%) + iCS(NCoo )]

(B.14)

ij - fJ2SC(N o)m33(Mz) =

ij - _lSS(NSxeo) ij - sV2a(Vz) = Va2(Vz) = _JSC(N xo,,)

q -
v33(Vz) = _[jSC(NSxoo) + iSS(NSxo,,)]

The global matrices are filled by summing over the ith row andjth column and using the previous

expression. If anti-symmetric loading is not present, only the first two modes need be considered,

which improves the performance time tremendously.

B.3 Nonlinear Semi-Membrane Prebuckling for an Infinite Length Cylinder

The last specialization involves the nonlinear Brazier solution for an infinite length cylinder.

Since the major loading case here is bending, the value of l] is necessarily high due to the axial

stresses that cause buckling, therefore the more numerically efficient finite difference formulation

can be used without loss of accuracy. Due to the complexity of the terms in the stability matrices,

the eigenvalue problem is now represented in the most basic form as:

E:'J['I 'l)I'l,, A [c ,, (B.15)
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In practice, the loading matrix is formed by taking a numerical derivative of the stiffness matrix,

so that the definition of the stiffness matrices is all that is recuired here. The equations are derived

from the bucking equations, Eq. (5.19)-(5.21), using the assumed form of the displacements

defined in Eq. (5.22). Numerous intermediate variables are used since the equations are so com-

plex and unwieldy. For instance, strain and curvature quantities for each mode can be defined in

terms of the displacements as:

ex, = _Ul+w.y(WlcOsO-VtsinO) eo, = cosoo(_'l+Wl)+sinto(vi-Wl)

_ _ = _2WI = _(V t Wt) (B.16)TxO, - - (-It + _Vt 13sine°W! _¢x, t¢x0, -

_¢0, = (2 + 63)[cosc0(I2i + W/) + sinco(V/- Wt)] - cosco(Wi + if'x)

For mode H, the subscripts are merely interchanged. To develop the buckling equations, the fol-

lowing equations are expanded in terms of the displacement quantities (for I_--_I1)

[3All [ex,] + I3A 12[eo,] + _]BII [lZx,] + do[A66TxO ,] = 0

- [_[A66"YxO,+ D66KxO,] + do[At2cos(Oex,] + do[A22coso_eo,] +

do[Dl2COS¢.O(2 + 63)_:x,] + do[D22coso_(2 + cb)KO,] ÷ All_cysinO[ex,] +

A 12_:ysin 0[eo,] + Bll 1¢ysin 0[ _¢x,] - A 12sin c°[ex,] - A22 sin c°[eo,] -

D12 sin t.o(2 + tb)lCx, - D22 sin_(2 + 6)) K:o_+ (pR - N% -: MOo)(VI - WI) +

Noo (l? ! + W!) + Moo(2 I2! + W! - Wl) + (-1)1{ _Ol61_:x,t + I]D26K0t, +

do[D26c°s_(2 + _)_¢xO,,] - D26sin_(2 + _)KxO,, } = 0

_2D! 1 [Kxt ] + _2D12 [ Kot] + [_2Bl 1 [Ext] + 2_do[D66KxOt] - d2[Dl2COSO)Kxt] - (n. 17)

d2 [D22 c°s t.m¢o,] - d2[Moo ( (ll + WI)] + do[A 12sin t.OZx,] + do[A2. 2 sin _eo, ] +

do[Dl2sino)(2 + _)r.x,] + do[D22sin(o(2 + tb)_:o,] + 411 _yCOS0[ex,] +

A12_yCOS0[eO,] + Bit X:yCOS0[_Cx,] _2NxoWl + Al2(os.03[ext] + A22cosO)[E0,] +

D12cos0)( 1 + fJ)) [Kxl ] + D22c0s03( 1 + (J))[Kot] - (pR - N0o)(_)'/+ W!) +

_I0o( (t"1- _1) + do[ (No,, + 2_IOo)(Vl - WI) ] - _A66 sin 03[TxO ,] +

(-1)1{ [_2D16[Kx0n] - 2_do[D16Kxu] - 2_do[OE6Ko, i - d2[£)26COSO)KxOn] +

do[DE6sin_(2 + (b)SZxO,,] + D26cost.o(1 + _)[l_xo,,] } = 0



Appendix C. Material Data

The material data used in this study is listed here for both isotropic and orthotropic materials.

Material Designation Aluminum 2024-T3 Aluminum 7075-T6

Elastic Modulus, E (psi) 10.5x106 10.7x106

Poissons ratio, v 0.33 0.33

Density, p (lbs/in3) 0.100 0.101

Yield Stress, S (psi) 25.0×103 36.5x103

Table C.I: lsotropic Material Properties

For the two laminates listed below, effective moduli and failure stresses are determined and then

averaged over the thickness of the laminate, which is defined by the ply thickness in the table.

Material Designation Graphite-Epoxy [+4510190]s [+45/0]s

Elastic Moduli, E_ (psi) 18.5×106 7.42X106 8.25×106

Elastic Moduli, Ez (psi) 1.64x 106 7.42x 106 3.73x 106

Poissons ratio, vl2 0.3 0.3 0.67

Shear Modulus, Glz (psi) 0.87×106 2.85×106 3.51×106

Ply Thickness, tpty (inches) 0.005 0.04 0.03

Density, p (lbs/in3) 0.057 0.057 0.057

Fiber Failure Stress, Xt (psi) 211 .×103 30.1×103 78.3×103

X c (psi) -204.× 103 -81.9× 103 -78.3× 103

Transverse Failure Stress, Y, (psi) 6. I×103 30.1×103 15.1×103

Yc (psi) -21.4× 103 -81.9× 103 -45.4× 103

Shear Failure Stress, S (psi) 13.8x 103 30.0× 103 37.0× 103

Table C.2: Orthotropic Material Properties
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