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ABSTRACT

An investigation at low subsonic speeds has been conducted in the

Langley 300-MPH 7- by lO-foot tunnel. The basic wing had a trapezoidal

planform, an aspect ratio of 5.0, a taper ratio of 0.143, and an unswept

80-percent-chord llne. Modifications to the basic wing included deflec-

table full-span and partlal-span leadlng-edge chord-extensions. A

trapezoidal horizontal control similar in planform to the basic wing

and a 60 ° sweptback delta horizontal control were tested in conjunction

with the wing. The total planform area of each horizontal control was

16 percent of the total basic-wlng area. Modifications to these hori-

zontal controls included addition of a full-span chord-extension to the

trapezoidal planform and a fence to the delta planform.

*Title, Unclassified.
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SUMMARY

An investigation has been conducted at low subsonic speeds to
study the effects of horizontal-control planform and wing-leading-edge
modification on the longitudinal aerodynamic characteristics of a
general research canard airplane configuration. The basic wing of the
model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio
of 0.143, and an unswept 80-percent-chord line. Modifications to the
wing included addition of full-span and partial-span leading-edge chord-
extensions. Twohorizontal-control planforms were employed in the study;
one was a 60° sweptback delta planform and the other was a trapezoidal
planform similar to that of the basic wing. Modifications to these hori-
zontal controls included addition of a full-span leading-edge chord-
extension to the trapezoidal planform and a fence to the delta planform.

For the basic-wing--trapezoidal-canard configuration, rather abrupt
increases in stability occurred at about 12° angle of attack. A slight
pitch-up tendency occurred for the delta-canard configuration at approx-
imately 8° angle of attack.

A comparison of the longitudinal control effectiveness for the
basic-wing--trapezoidal-canard combination and for the basic-wing--
delta-canard combination indicates higher values of control effective-
ness at low angles of attack for the trapezoidal canard. The control
effectiveness for the delta-canard configuration, however, is seen to
hold up for higher canard deflections and to higher angles of attack.
Use of a full-span chord-extension deflected approximately 30° on the
trapezoidal canard greatly improved the control characteristics of this
configuration and enabled a sizeable increase in trim lift to be realized.

*Title, Unclassified.
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The addition and deflection of a partial-span wing chord-extension
tended to alleviate wing-leading-edge separation at low angles of attack
and to reduce canard interference effects. Improvement in the high lift
characteristics of the basic wing were also noted for high chord-
extension deflections. The addition of the wing chord-extension pro-
vided rather large increases in maximumllft-drag ratios for both canard
configurations, as comparedwith those for the chord-extension-off con-
figurations, and also improved the pitchlng-moment characteristics of
the delta-canard configurations at high lift coefficients.

INTRODUCTION

Because of the desirability of efficient supersonic cruise capa-
bility for both military and commercial transport aircraft, a consid-
erable amount of aerodynamic research has been directed towards the
development of supersonic configurations having high lift-drag ratios.
Becauseof the increase in longitudinal stability encountered at super-
sonic speeds the drag due to trimming the aircraft becomesa primary
factor in the supersonic efficiency. Onemethod of reducing this trim-
drag problem is the use of a canard trimming surface, and considerable
research has been carried out on various canard configurations at super-
sonic speeds. (Seej for example, refs. l, 23 and 3.) Investigations
at subsonic speeds on someof the more promising designs (for example,
refs. 4 and 5) have indicated somerather serious subsonic problem
areas. Such factors as loss of control effectiveness and low lift
efficiency due to canard-wing interference create landing and take-off
problems which tend to offset the supersonic performance advantages.
Methods of improving canard control effectiveness by use of high-lift
canard devices (refs. 6 and 7) have also been investigated and indi-
cated promising results with regard to increasing trim-lift range and
allowable center-of-gravlty travel. However, the presence of a canard-
induced flow field at the wing results in low values of overall-
configuration lifting efficiency and further decreases in efficiency
accompanyingthe canard deflection required for trim at moderate values
of lift coefficient.

The present investigation has been initiated to investigate methods
of improving the trim-lift capability at low subsonic speedsby wing-
planform modifications that may reduce or take advantage of canard-
induced flow-field effects and to investigate the effect of canard
planform and modification on overall efficiency and control effective-
ness at moderate and high lifts. (The term "canard" is used in this
report to refer to the horizontal control of the canard configuration.)
The use of a wing-leading-edge chord-extenslon as a meansof increasing
lift-drag ratio at subsonic speeds (as indicated in ref. 8) has also been
investigated. The wing employed in the investigation had a trapezoidal



planform. A trapezoidal planform gave higher values of lift-drag ratio
at supersonic speeds than did a delta planform in the investigation of
reference 9 and also indicated higher values of lift-drag ratio at high
subsonic speeds in the results presented in reference 4.

A trapezoidal-planform canard similar to the basic wing and a
delta-planform canard having an aspect ratio of 2.62 were investigated.
The total planform area of each canard surface was 16 percent of the
basic-wing planform area, and the distance from the momentreference
to the quarter-chord point of the meanaerodynamic chord for both plan-
forms was held constant.

SYMBOLS

Data in this paper are presented about the wind-axis system which
is shown in figure l, with the coefficients nondimensionalized by the
area and meanaerodynamic chord of the basic wing. The momentrefer-
ence point was located 4.06 inches or 0.2258w ahead of 8w/4 for all
tests unless otherwise specified.

CD

wing span, ft

drag coefficient, Drag

Lift
CL lift coefficient,

qsw

CL,max maximum lift coefficient

CL_ lift-curve slope per degree

ACL,c incremental llft due to presence of canagd surface

Cm pitching-moment coefficient, Pitching moment

Cm5 c
canard-control-effectiveness parameter, 2_Cm/8 c

_C canard mean aerodynamic chord

 c14 quarter-chord point of canard mean aerodynamic chord

wing mean aerodynamic chord, ft
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L/D

(L/D)m 

q

5c

r::>n,cl

5n ,w

i

(Sn,w) O

_L

quarter-chord point of wing mean aerodynamic chord

lift-drag ratio

maximum lift-drag ratio

dynamic pressure, lb/sq ft

wing area, sq ft

angle of attack, deg

deflection of canard surface, deg

deflection of trapezoidal-canard-surface chord-extension,

deg

deflection of wing chord-extension, deg

wing-chord-extenslon deflection inboard of 0.332bw/2
station

wing-chord-extension deflection outboard of 0.332bw/2
station

lift-efficlency factor,

(ACL' C)wlng on

(ACL' C_wlng off

Subscripts and abbreviations:

B

W

C1

C2

C2,f

CLtWBC - CLIWBI, or

(eL,Be - eL, B)

body

wlng

trapezoidal canard surface

delta canard surface

delta canard surface, with fence on



MODEL

The model configurations and componentparts are shownin figure 2.
The body was a circular ogive, symmetrical in all planes, with a maximum
diameter of 4.5 inches and a fineness ratio of 13.33.

The basic wing had a trapezoidal planform similar to that of the
basic trapezoidal wing of references 4, 5, and 9, an NACA65A004airfoil
section parallel to the plane of symmetry, an aspect ratio of 3.0, a
taper ratio of 0.143, and an unswept 80-percent-chord line. Full-span
and partial-span leading-edge chord-extenslons, each of which had a tip
extension 20 percent of the baslc-wing tip chord and a root extension
lO percent of the basic-wing root chord and was of flat-plate section
with a leading-edge radius of 1/16 inch, could be deflected downto a
maximumof approximately 30° . The partial-span chord-extension had the
root chord 7.50 inches from the fuselage center line, corresponding to
approximately 0.93b/2 of the delta canard, and the inboard and outboard
sections could be differentially deflected.

The trapezoidal canard surface was of flat-plate section similar
in planform to the basic wing and had a total planform area equal to
16 percent of the total basic-wing area. The construction of the chord-
extension located on this canard was similar to that of the full-span
wing chord-extension. (See fig. 2.) The delta canard was also of flat-

plate section with a leading-edge sweep of 60 °, an unswept trailing edge,

and a tots/ planform area equal to 16 percent of the basic-wing area. A

fence Was located at a 0.66 spanwise station on this canard surface.

(See fig. 3.) The hinge line for both canard surfaces corresponded to

the quarter-chord point of the mean aerodynamic chord of each canard

planform (fig. 2).

TESTS AND CORRECTIONS

The present investigation was conducted in the Langley 300-MPH

7- by lO-foot tunnel at a dynamic pressure of approximately 57 pounds

per square foot. The average test Reynolds number, based on the wing

mean aerodynamic chord, was approximately 2.10 × lO 6. The model was

mounted on a single support strut (fig. 3) and tested through an

angle-of-attack range from -2° to 24 ° and at 0° sideslip. All forces

and moments were measured by means of a mechanical balance system.

Blockage corrections determined by the method of reference l0

have been applied to the dynamic pressure and drag, and jet-boundary

corrections determined by the method of reference ll have been applied

to the angle of attack, pitchlng-moment, and drag coefficients. Drag



coefficients have also been corrected for tunnel buoyancy effects. Tare
corrections for strut interference have also been applied to the lift
and pitching moment.

PRESENTATIONOFRESULTS

The figures that present the basic data for the configurations
investigated are presented in the following table:

Figure

Effect of the addition of delta and trapezoidal canard surfaces
on the longitudinal aerodynamic characteristics of various
configuration componentparts; all control surfaces at zero
deflection ..........................

Effect of various componentparts on the longitudinal aerody-
namic characteristics of the basic-wingutrapezoidal-canard
configuration; all controls at zero deflection ........ 5

Longitudinal control characteristics of the basic-wingu
trapezoidal-canard configuration, WBC1 ............ 6

Longitudinal aerodynamic characteristics of the configuration
having a trapezoidal canard and the wing with full-span
leading-edge chord-extension, WBC1;5n,w = 0o ........ 7

Longitudinal aerodynamic characteristics of the configuration
having a trapezoidal canard and the wing with partial-span
leading-edge chord-extenslon, WBC1;5n,w = 0° ........ 8

Longitudinal aerodynamic characteristics of the configuration
having a trapezoidal canard and the wing with partial-span
leading-edge chord-extension, WBC1;5n,w = -15° ....... 9

Longitudinal cont@ol characteristics of the configuration having
a trapezoidal canard surface and with the wing off, BCI:
Basic trapezoidal canard ................... lO(a)
Trapezoidal canard with full-span leading-edge chord-

extension; 5n,cl = -30° .................. lO(b)
Longitudinal aerodynamic characteristics of the configuration

having the basic wing and a trapezoidal canard with full-span
chord-extension, WBCI; 5n,cl = -30° ............. II

Longitudinal aerodynamic characteristics of the configuration
having a trapezoidal canard with full-span chord-extension and
the wing having partial-span chord-extenslon; 5n,cl = -300;

- O
5n_ w - -i0 ......................... 12

Longltudinal control characteristics of the configuration having

a delta canard with wing off, BC 2 .............. 13

Longitudinal control characteristics of the configuration having

a delta canard and the basic wing, WBC2 ........... 14
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Figure

Longitudinal control characteristics of the configuration having

the basic wing and a delta canard with a fence, WBC2, f .... 15
Longitudinal control characteristics of the configuration having

a delta canard with a fence and the wing having a partial-span

chord-extenslon, WBC2,f; 5n, w =-30 ° ............ 16

Longitudinal control characteristics of the configuration having

a delta canard with a fence and the wing having differentially

deflected full-span leadlng-edge chord-extension, WBC2,f • 17

Longitudinal control effectiveness of the basic trapezoidal

canard and the delta canard with and without the basic wing . 18

The effects of canard modifications on the control effectiveness

associated with the basic-wlngNcanard configuration:

Trapezoidal canard; moment reference locations have been

adjusted to render approximately 5 percent low-lift

stability .......................... 19(a)

Delta canard with and without fence .............. 19(b)

Comparison of the longitudinal stability and control character-

istics associated with the trapezoidal canard having a full-

span chord-extension, 5n,cl = -30 °, and with the delta canard

having a fence; moment reference has been adjusted to render

approximately 5 percent low-lift stability for both

configurations ........................ 20

Comparison of the trends in L/D for various configurations with

the trapezoidal canard and delta canard; 8c = 0o ....... 21

Comparison of the canard-lnduced flow effects on the wing at

various angles of attack for the configurations having a trape-

zoidal canard and the basic wing, and the wing with a partial-

span chord-extension deflected -10 ° .............. 22

DISCUSSION

Longitudinal Stability

A comparison of the longitudinal stability characteristics of the

two basic configurations is presented in figure 4. The data indicate

a rather abrupt increase in stability occurring at about 12 ° angle of

attack for the configuratisn having the trapezoidal canard while a slight
pitch-up tendency exists at about 8° for the configuration having the

delta canard.

In an effort to explain the nonlinear variation of pitching moment

with llft coefficient noted for the trapezoidal-canard configuration

the effect of various component parts for the trapezoidal-canard arrange-

ment has been investigated (fig. 5). The rather large increase in
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longitudinal stability for the wingwbodymtrapezoidal-canard configura-

tion between 12 ° and 20° angle of attack results from the combination

of increasing stability of the wlng-body arrangement (associated with

wing-leading-edge separation) noted in this region and the decrease of

the canard-body instability. The abrupt pitch-up above 20° angle of

attack noted for the complete configuration may be attributed to the

pltch-up tendency of the basic wing due to tip stall, being aggravated

by the canard-induced flow-field effects, and to the direct canard

effect associated with its decreasing lift characteristics at high

angles of attack.

The slight pltch-up tendency for the configuration having the delta

canard can be seen from figure 13 to be associated with the canard itself

as indicated by increasing instability with increasing angle of attack.

This canard instability, when combined with the basic wing, which indi-

cates increasing stability at moderate angles of attack 3 as mentioned

in connection with the trapezoidal canard, results in a fairly linear

variation of pitching moment in the moderate angle-of-attack range

(fig. 4). The pitch-up tendency at high lift of the delta-canard con-

figuration is also directly related to the continued increasing canard

instability coupled with tip stall associated with the wing. In this

connection it is noted that addition and deflection of a partial-span

wing chord-extension reduced the pitch-up tendency of the delta-canard

configuration occurring at high lifts, by delaying the wing tip stall

to higher angles of attack (fig. 16). This improvement in wing lifting

capabilities is detrimental to the longitudinal stability associated

with the trapezoidal-canard configuration since the abrupt increase in

stability, noted for the basic configuration, is further increased in

the moderate lift range. (See, for examples, figs. 8 and 9-)

Thus, a comparison of the longitudinal stability characteristics of

the wingmtrapezoidal-canard configuration with those of the wing--delta-

canard configuration indicates the importance of canard-planform selec-

tion for a given wing planform in determining the overall pitching-moment
characteristics.

Longitudinal Control

Figure 18 presents the control effectiveness for thetrapezoidal

and delta canards and the effects of the addition of the basic wing.

The trapezoidal canard indicates higher values of control effectiveness

than did the delta control at low angles of attack for the wlng-off

condition. The control effectiveness for the delta canard, however, is

seen to hold up for higher canard deflection and to higher angles of

attack due to the angle for CL,ma x being greater for this planform.

The addition of the wing had little effect on the overall variation of
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control effectiveness with angle of attack for these planforms_ although

the magnitude is somewhat reduced because of canard-wing interference.

The use of a full-span chord-extension deflected approximately 30 °

on the trapezoidal canard surface greatly improved the control charac-

teristics of this configuration (fig. 19(a)) and enabled a sizeable

increase in the trim-lift coefficient to be realized. The moment refer-

ence has been adjusted for both arrangements to render approximately

5 percent low-lift stability. It should be pointed out that the improve-

ment in the control power is believed to be due mainly to the deflection

of the chord-extension rather than to the chord-extension itself. The

effect on the canard-body configuration can be seen in figure 10.

The addition of a fence to the delta-canard arrangement (fig. 19(b))

did not increase maximum trim llft although it reduced to some extent

the nonlinearities at the moderate lift coefficients associated with

the fence-off configuration. Again the moment reference has been

adjusted to provide _ percent low-lift stability for both arrangements.

Figure 20 presents the longitudinal control characteristics of the

trapezoidal canard with a full-span chord-extenslon deflected approxi-

mately 30 ° and the delta canard with a fence. These canards are used

in combination with the wing having a partial-span chord-extension.

The addition of the partial-span wing chord-extension on the trape-

zoidal canard configuration indicated little or no improvement in the

control characteristics noted for this configuration without the partial-

span wing chord-extension. The addition of the partial-span wing chord-

extension to the delta canard configuration also had little effect on

the control effectiveness of this configuration. However, reduction in

the large variation in pitching moment at high lifts is noted, due to

the delay in wing tip stall by use of the partial-spanwing

chord-extension.

Canard-Wing Interference

One problem area of prime interest in canard considerations at

subsonic speeds is the effect of the canard-induced flow on the overall

longitudinal aerodynamic characteristics of this type of configuration.

The canard efficiency factor _L' which is a measure of the amount of

available canard lift that is obtained_ is directly related to the

average downwash at the wing induced by the canard surface. (See

refs. 2, 3, and 5.) If there were no interference between canard sur-

face and the wing, the lifting efficiency would be 1.Oj and, if the

total amount of lift produced by the canard surface is lost at the wing

due to interferencej the lifting efficiency is O.
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A comparison of the lifting capabilities of the delta and trape-
zoidal canard controls without high-lift devices maybe seen in fig-
ure 4, which presents the effects of canard planform on the aerodynamic
characteristics of the basic-wingubody configuration. An interesting
point to note is the fact that, even though the addition of the delta
canard to the basic-wingmbody configuration was less destabilizing
than the trapezoidal canard, due to lower values of CL_ for the delta
canard, slight increases in overall configuration lift over those
realized for the trapezoidal-canard arrangement are present, which
suggests that the delta planform has higher lifting efficiency because
of less interference effects on the wing, as noted in reference 7. This
effect could also result in higher (L/D)max for the delta-canard
arrangement. Also, morewing area is located in the upwashfield for
the delta canard surface than for the trapezoidal canard surface, pos-
sibly resulting in the higher lifting efficiency as suggested in
reference 5.

Figure 21 presents trends of (L/D) for someof the configurations
tested and indicates that the (L/D)max for the delta-canard configura-
tion approaches the (L/D)max realized for the basic-wing--body com-
bination closer than the trapezoidal-canard arrangement.

A partial-spanwing-leading-edge chord-extension was added to the
wing at the estimated delta-canard tip vortex location for _ = 4° , in
an effort to take advantage of the canard upwashfield and also to
reduce the canard-induced wing-tip stall characteristics of the basic
wing as noted in figure 4. Gains in (L/D)max are noted for both
canard-planform arrangements by use of the wing chord-extension. It
should be noted, however, that the partial-span wing chord-extension,
being located at the approximate delta-canard tip vortex location, had
its root section located in the downwashfield of the trapezoidal canard
and, thereby, the effect of favorable upwashwas reduced somewhat.

The effects of the addition of the wing chord-extension in reducing
canard-induced flow effects for the trapezoidal-canard arrangement may
be seen in figure 22, which presents visual flow studies at various
angles of attack. For _ = 4° , which is approximately the angle for
(L/D)max, the wing with chord-extension off has considerable outflow
along the leading edge due apparently to the canard-induced flow effect,
whereas the addition and slight deflection of the wing chord-extension
tends to straighten out the flow across the total wing span, which helps
explain the reason for the realized increases in (L/D)max with the
wing chord-extension.



SD_RY OFRESULTS

Ii

An investigation has been conducted at low subsonic speeds to study
the effects of canard planform and wing modification on the longitudinal
aerodynamic characteristics of general research canard-airplane configu-
ration. Trapezoidal and delta canard planforms were employed in the
investigation. Modifications to the canard surfaces included addition
of a full-span leading-edge chord-extension to the trapezoidal planform
and a fence to the delta planform. Modifications to the wing included
addition of full- and partial-span leading-edge chord-extensions. The
results of the investigation maybe summarizedin the following
observat ions :

i. For the basic-wingutrapezoidal-canard configuration, rather
abrupt increases in stability occurred at about 12° angle of attack.
A slight pitch-up tendency occurred for the delta-canard configuration
at approximately 8° angle of attack.

2. A comparison of the longitudinal control effectiveness for the
basic-wing--trapezoidal-canard combination and for the basic-wingw
delta-canard combination indicates higher values of control effective-
ness at low angles of attack for the trapezoidal canard. The control
effectiveness for the delta-canard configuration, however, is seen to
hold up for higher canard deflections and to higher angles of attack.
Use of a full-span chord-extension deflected approximately 30° on the
trapezoidal canard greatly improved the control characteristics of this
configuration and enabled a sizeable increase in trim lift to be realized.

3. The addition and deflection of a partial-span wing chord-extension
tended to alleviate wing-leading-edge separation at low angles of attack
and to reduce canard interference effects. Improvement in the high
lift characteristics of the basic wing were also noted for high chord-
extension deflections. The addition of the wing chord-extension provided
rather large increases in maximumlift-drag ratios for both canard con-
figurations, as comparedwith those for the chord-extension-off con-
figurations, and also improved the pltching-moment characteristics of
the delta-canard configurations at high lift coefficients.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Field, Va., May 9, 1961.
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Wing chord=extension off Wing chord-extension on

49

a=4 ° a=4 °

a = 8 ° a = 8 °

4

a=12o a=12 °

L-61-2182

Figure 22.- Comparison of the eanard-lnduced flow effects on the wing at

various angles of attack for the configurations having a trapezoidal

canard and the basic wing, and the wing with a partial-span chord-

extension deflected -I0 °.




