View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by NASA Technical Reports Server

NASA TR R-34

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

A -5

NASA TR R-34

TECHNICAL REPORT
R-34

ON FULLY DEVELOPED CHANNEL FLOWS: SOME
SOLUTIONS AND LIMITATIONS, AND EFFECTS OF
COMPRESSIBILITY, VARIABLE PROPERTIES,
AND BODY FORCES

By STEPHEN H. MASLEN

1959

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Yearly subscription, $15; foreign, $19;
single copy price varies according to size - - - - - « - - . Price 35 centa


https://core.ac.uk/display/42769375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1







TECHNICAL REPORT R-34

ON FULLY DEVELOPED CHANNEL FLOWS: SOME
SOLUTIONS AND LIMITATIONS, AND EFFECTS OF
COMPRESSIBILITY, VARIABLE PROPERTIES,
AND BODY FORCES

By STEPHEN H. MASLEN

Lewis Research Center
Cleveland, Ohio




TECHNICAL REPORT R-34

ON FULLY DEVELOPED CHANNEL FLOWS: SOME SOLUTIONS
AND LIMITATIONS, AND EFFECTS OF COMPRESSIBILITY,
VARIABLE PROPERTIES, AND BODY FORCES*

By StepHEN H. MasLex

SUMMARY

An examination of the effects of compressibility,
rariable properties, and body forces on fully developed
laminar flows has indicated several limitations on
such streams.

In the absence of a pressure gradient, but presence
of a body foree (e.g., gravity), an exact fully developed
gas flow results. For a liguid this follows also for
the case of a constant streamwise pressure graduient.
These motions are exact in the sense of a Couette
flow. In the liquid case two solutions (not a new
result) can occur for the same boundary conditions.
An approximate analytic solution was found which
agrees closely with machine calculations.

In the case of approximately eract flows, it turns
out that for large temperature variations across the
channel the effects of convection (due to, say, a wall
temperature gradient) and frictional heating must
be negligible. In such a case the energy and momen-
tum equations are separated, and the solutions are
readily obtained. If the temperature variations are
small, then both convection effects and frictional
heating can consistently be considered. This case
becomes the constant-property incompressible case
(or quasi-incompressible case Jor  free-convection
flows) considered by many authors.

Finally, there is a brief discussion of cases wherein
streamwise variations of all quantities are allowed but
only in such form that the independent variables are
separable. For the case where the streamwise velocity
varies inversely as the square root of distance along
the channel, a solution is given.

INTRODUCTION

Among all possible fluid flows, one of the most
useful is the fully developed (i.e., independent of

1 Supersedes NACA Technical Note 4319 by Stephen H, Maslen, 1958,

streamwise distance) channel flow. The flow 1s
{aken to be themotion generated by a constant pres-
sure gradient (the familiar Poiscuille flow) or by a
body foree (ref. 1). In either case one usually
considers only an incompressible or quasi-
incompressible flow with fixed fluid properties.
This is in marked contrast to the case of Couette
flow where two parallel walls move with respect to
each other. In such a case there is no need to
limit oncself to a perfect gas or to any particular
variation of the transport properties (ref. 2 1s a
case in point).

The crucial difference between the Couette and
the Poiseuille flows is that the former admits a
stream wherein nothing depends on the stream-
wise distance, while the latter requires that the
pressure vary in the flow direction.  Henee, to
some small degree, atleast, the other fluid properties
will also vary in that direction if the state equation
involves the pressure. The present study s an
examination of the general circumstances under
which there can be a fully developed laminar flow
past fixed boundaries.

One special problem considered is an unusual
situation found by Ostrach (refs. 1 and 3 to 6).
He discusses the flow of o fluid in a two-
dimensional channel under the influence of gravity.
Incompressible flow is assumed except as is re-
quired to generate a varying body force, and the
fluid transport properties are assumed not to vary.
Under these assumptions, the surprising result is
found that there are two solutions to the flow in
question for a certaln range of values of the flow
parameters. The first corresponds roughly to the
neglect of frictional heating, while the other is
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near the (nontrivial) solution for homogencous
boundary conditions.

There may be some doubt as to the stability of
one of the solutions, presumably the second one.
In any case, a question arises about the effect of
considering a real fluid having variable viscosity
and thermal conductivity as well as being truly
compressible.

Accordingly, the present paper treats the con-
sequences of such generalizations.  However, to
reiterate, one serious restriction is made on all
the flows considered herein: The flow is always
fully developed, with the result that the effects of
conditions near either end of the channel are
ignored.

ANALYSIS

Consider a two-dimensional flow of a viscous
compressible fluid acting under the influence of
an axial body force such as gravity. Variable
viscosity and thermal conductivity are admitted,
The contiguration is shown in the following sketch:
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The equations of motion are
(1) x+ (pv) y =0 (1)
p(Wiky +-0tty) + Py = —pf+2 (1) x + [ (y + ) |
utetole @)

p(Uvx+-rvy) 4 Py=2 (wvy)y+ [w(uy+ o)]x
_g[ﬂ(u.r+l’Y)] y (3)

pc(uTy +oTy) +P(ux+l‘r'):(kTX)A'+(kTY)Y
2 \
+y[2u§+u§+v§+QU§+2uyl’x—§(Ux+0y)Z] 4)

(Symbols are defined in appendix A.) Consider,
in addition, two possible forms of a state equation,
one applying for a gas, and the other for a liquid:

P=pRT (Gas) (5a)

p=pll—=B(T—T)]  (Liquid) (5b)

In equation (5b), 8 is the (small) volumetric
expansion coefficient, and 5 and T are reference
values.  The significant difference between the
two state equations is that the second is independ-
ent of pressure.

The boundary conditions on the channel walls
are

wlX,0)=u(X,d) =v(X,0)=0(X,d) =0
7(X,0)=T,,(X) (6)
T X,d)=T, (X)

where d is the distance between the channel walls.
The temperature boundary conditions could, of
course, be replaced entirely or in part by a heat-
transfer condition but, for the purpose of this
report, such a change is unimportant.

Equations (1) to (6) are sufficient to define the
fully devcloped flow in a channel provided the
viscosity and conductivity variations with tem-
perature are known, and provided further that the
forced-flow pressure gradient, if any, is specified.
In seeking solutions of these equations for flows
in a very long channel (i.e., fully developed),
three approaches are considered: first, exact
solutions entirely independent of distance along
the channel (X); second, solutions approximately
independrnt of X; and third, solutions wherein
the varigbles are separable. In each case the
results ca1 be expected to differ according to which
of the state equations applies. In this connection,
it is important to observe that the viscosity and
thermal conductivity vary differently in liquids
and gases. In particular, the viscosity rises with
temperature for a gas and falls for a liquid.
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The phrase “exact solution” should perhaps be
defined. In this report it is understood to mean
a solution which satisfies equations (1) to (6)
rigorously. However, no consideration is given to
conditions near the ends of the channel. There
are two relatively simple circumstances under
which such exact solutions can be found. For a
gas nothing can vary with X, not even the pressure.
For a liquid this restriction is moderated to the
extent that only the gradient of the pressure need
be independent of X. This relaxed condition
occurs because of the pressure-independent state
equation (eq. (5b)) for a liquid.

EXACT FLOW OF GAS

If nothing depends on X, equation (1) to (5a)

and (6) become

p=10 (7a)
(wity)y=pf (7b)
Py=0 (7¢)
(kTy)y=—pui (7d)
P=pRT (7e)

u(0) =u(d)=0
T0)=T,, (8)
T(d)=T,,

Assume that the viscosity and thermal con-
ductivity vary as powers of temperature, and also,
for convenience, change the independent variable
).

Thus, suppose

p=al™ (9)
k=bTm ‘
and let
ZIY' dYr h
0 ll/,“uvo
=TT redYy L
~Jow/a, (10)
or
‘7Y Jn}‘dn
-1 Hw,

where the constant B is as yet undetermined.

Then equations (7) become

aB2f1’>
41{#%

P=Constant (11)

(s

If the viscosity varies linearly with temperature
(n,=1), then these equations are separated. I
n, is also unity, the solution is

aBYPY
wm%)( (12)

= (e, ) ()

Finally, B can be found from the second form of

equation (10). Thus,

2dT,, (', , 2 a/al3rf
B _JV, Tdn=(Tu,+ r“‘)+ 5b 4[1y0>
or

(BT N[/ p2fd® fd )] BT
an (g AR "Y=1 (14
240 ((1 r“‘ ) [( ]\‘”I“LWL +(dTII U> ( )
where
T’IU +’1v“‘
o 0 . 1
Tp=-- 9 (14a)
The quantity in brackets is essentially the
parameter K defined in reference 1. This is al-
ways positive. Under these circumstances equa-
tion (13) has only one real root, that root being
such that

BT,
0< ar, <1

For example, for air under standard conditions,
if d=3 and f is gravitational acceleration, equation
(14) yields BT,/dT, =0.904. A convenient
standard for comparison of the pw%nt solution
with more approximate results is given by the

mass flow. This 1s

P 2
f""dy 211137 e >(15)

udn* dT > 12;).,,,
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The corresponding result for incompressible flow
with constant fluid properties, or for compressible
flow with variable properties, but neglecting
frictional heating, is

*d 2 l{i
wdl — — <B'"_f‘_
J(] P

124,

For the case cited prior to equation (15), where
lfT,,,y’dY'wu:()..()()4, the actual mass flow is about
25 percent below the incompressible value. Un-
fortunately, the mean flow velocity is about 800
feet per second.  This high veloeity would proba-
bly preclude the possibility of laminar flow even
existing. If an example leading to slower flow
were considered, the difference between the two
results would have beensmall.  This demonstrates
that the variation of viscosity is unimportant.

A final comment: If the viscosity is not assumed
to vary linearly with the temperature, the mo-
mentum and energy equations cannot be separated.
As this circumstance (lack of separation) led
Ostrach (refs. 1 and 4 to 6) to tind two solutions
for the flow rather than one, it is perhaps worth
examining further. Define

.
11:] Eap (16)
Jo u

0

Then equations (11) become

alBPPf fall (ny—n -+ 1)\~ 0-n0rl-ngtungy
11,,,,2;“‘,“1,7 Ty (174)
ll‘o
P’=Constant
(17h)
Ilvnj_”ﬁ

For gases, one expeets that n;<1 and 1,05 thus
the right side of equation (17a) is a decreasing
funetion of /7. In this case there can be at most
one solution of the problems.  The argument goes
Suppose one solution is known. If a
second solution has larger 17, then by equation
(170), gy 1s smaller. Hence, for a reasonable
profile, w, is reduced.  Then, by equation (17h),
I1,, is of lesser magnitude.  Hence for a reason-
able case, // must also be small, which is a con-
tradiction.

It should be emphasized, however, that this case
of no pressure gradient whatever has no connection
with the work reported in references 1 and 4 to 6.

this way.

This completes the solution for the exact fully
developed flow of a gas.  There are two generaliza-
tions which can readily be made. These involve
the addition of a body force transverse to the chan-
nel and the addition of heat sources in the Auid.
The solutions are given in appendix B.

EXACT FLOW OF LIQUID

Here it is assumed that there is a pressure
gradient such that, at least, Py and Py are inde-
pendent of X. No other X-dependence is ad-
mitted.  Then the system is that given in equations
(7) and (8), except for the X-momentum equation,
which ean conveniently be written as

—pB(T—T%)f
FPx V) — pBI(T—T%) (18)

(wuy)y -

where

e xtBA TS
pBf

It is worth observing here that, if the reference
point is changed in equation (5b) (i.c., a new 7),
this has no effect whatever on the value of 7*.
This is because the state equation (eq. (5b)) is
really of the form p=A— BT, where A and B
are fixed.  In that case cquation (19) is really

_Px+4‘1f
T*“‘Bf

(19)

Hence 7* is a function only of Py, £, and the mate-
rial.  Thaen if 5 and H, defined by equations (9)
and (16, respectively, replace y and 7, the mo-
mentum equation becomes

BoBf
4pl,

w(T—T% (20)

Upg=—
while the appropriate energy equation is, again,
equatior (17h).

Now the forcing term (the right side of eq. (20))
should he considered. According to its definition
(eq. (16)), 71 is an increasing function of 7. Hence,
at least ‘or constant viscosity, the forcing term is
an increasing funetion of . If y and k are con-
stant, then the forcing function is linear in H and,
for this case, it has been shown (refs. 1 and 6)
that two solutions occur under certain conditions.
In the present situation things are not that simple,
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and the results depend on how p and % vary.
For many liquids the conductivity varies only
moderately over a fairly wide range of tempera-
ture, while the viscosity may change severalfold.
Two cases, water and liquid sodium, are illustrated
in tables 1 and 11. 1In the present discussion the

TABLE I.—VISCOSITY AND CONDU(-
TIVITY OF LIQUID SODIUM

Conductivity, k, Viscosity, u, centi-
watts/(em)(°C) i Poises
Temper- L L
ature, .
T,°C Experi- 1117 ! Experi- Fq. 21 ¢
ment. S -~ | ment (a) :
(ref. 9 no+7 (rel. 9
R N .
200 (. 815 0. 815 {). 450 0. 450
300 L759 LTH0 345 . 350
400 LT12 L7112 . 284 . 286
500 ! 668 . 668 243 .242
600 .B27 . K36 ! L2100 2210
700 . 690 JB98 . 186 L 1X5
800 it . 567 . 165 1668
900 I - 150 . 150

2 Ta=150°C; $=158 (centipoises)(°C).

TABLE IL-—VISCOSITY OF WATLR
UNDER ATMOSPHERIC CONDITIONS

r Viscosity, u,
centipoises
Temper- | ___ . _. .
ature, T,
°C Experi- . Eq. (2
nment | ()
(ref. 9) ‘
. e
0 1.79 L.79
20 1.01 .90
40 .66 .60
60 L48 .45
&0 a6 .36
100 .28 ’ .30 [

aT,=20° C;
5= 36 (centipoises) (°C).

variation of conductivity is neglected. The vis-
cosity can be written to good approximation as

u:'rf_ffTa (21)
where s and 7T, are constants (for water s=0.36
(centipoisg) (°CY), and 7,=20° C if T is in °C).
This expression is compared in tables T and 1T with
experimental values. It is to be expected that
(T4 T,)>>0 in the range where the fluid remains a
liquid. Under these circumstances, equation (16)
vields

k
H=g- T(T+2T,) (22)

and equation (20) becomres

B2oBfs
T apd, LT

0

ZCT3+2“f1(TQ:| (23
kT2 425y | Y

From equation (17b), it is seen that, if u? is
large, /I must vary more or less parabolically
upward across the channel. Then it follows {eq.
(23)) that, when H— H(T*) has a large magnitude,
the foreing term increases only slowly with /1,
while for small H—H(T*), the forcing term is
linear in 7/, The latter reduces the problem to the
usual free-conveetion situation (ref. 1), while the
former (large IT—II(T*)) approaches the usual
Poiseuille case, wherein the foreing term is con-
stant. This circumstance at least restriets the
range of flow parameters for which two solutions,
as found in reference 1, can exist.

Stated more explicitly, if (T—7,)/(Tw,+ T.)
remains small, the viscosity is essentially constant
and the system becomes that solved in reference 1.

Had the variation of conductivity been allowed
for, a small modification of the foregoing argument
might occur. If the conductivity drops as the
temperature rises, the foreing term would move
toward a more linear variation with H.

In general, the solution of the system given by
equations (23), (17h), and (8) is not simple.
However, after two limiting cases are discussed, the
general case can be described.  The first such case
is that of small frictional heating; the second is for
small temperature variations, and therefore vis-
cosity can be considered constant.

SMALL FRICTIONAL HEATING

First consider the case of small frictional heating.
The formulation involving ¢ and 77 (eqs. (23) and
(17h)) 1s not convenient for this case. Henee,
consider equations (18), (7d), and (8). The vis-
cosity i1s defined by equation (21), and the con-
ductivity is assumed constant. When the frie-
tional heating is small so that the right side of
equation (7d) s negligible, one ohtains

T— T%+§ (T —Ta) (24)

Then equation (18) can be integrated to give

U e pBfd? (T, —T)? [3 (%)4-*— (4oy+8a) (%)3

24s
2
+ (120110!2—0!3) (?) — 200, <§>] (25)
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where
ll ['* \
o=t
T T 1“‘0
’]V"‘ +‘ ,[,d
= "1 e 26
Twl_“ Two } ( ))
1200y +4 (0 +20y) +3
A= -
3 (1 +2¢12) J

and 7% is defined by equation (19). From these,

the wall shear 1s

(utty)yp= P’ﬁ‘l’( T Two) (0/12) 3

(#“r‘)rtd:l_)fﬁ;'/(rl'z ]11 )(Gs/l)*al‘l

The net mass flow 1s

X[HL:')U+2a.><1+6a3+(;g§)] 28)

1+ 2q,

These results can be compared with those for
constant {luid properties. (This case is given on
p. 10 of ref. 1) In such a case, the temperature is
again  given by equation (24).  The veloeity
distribution, wall shear, and mass flow are given,
respectively, by

(T, —T.)*
o pBf( lr; - )7(1+2a2)

0] e

(“”) )-()*pfﬁ([('lnl 110) [(1*{ %al)/ﬁ]

(30)
(uiy)yag— PfB‘[(Tul Tzro) [_(2+3C¥1)/6]
*d . [
JO p"d) p4{8§fﬁ (1”1 u(, [ ]+‘)al (1+2(¥2)]

(31)

In these last equations the viscosity has been taken
as that corresponding to the average temperature;
that is,

25

BT T Tt 2T, (42)

A comparison of the results obtained for the
cases of constant and variable properties 1s given in

NATIONAL AERONAUTIS AND SPACE ADMINISTRATION

figure The fluid is liguid sodium, and the
temperitures of the two walls (100° and 900° C)
differ enough that the viscosity varies by a factor
of about 4. In spite of this there is no significant
difference between the results for the two cases,
That is, the effect of variable viscosity is un-
important even though the temperature variations
are large.

It is interesting to observe the case when
T*— (T",U+ T:)/2, the average fluid temperature,
Then o = —1/2, ay= — 1, and the shear is not only
the same at each wall, but is the same in the
constar t- and variable-viscosity cases, However,
the velocity profiles differ slightly; and, while the
mass flow is zero for the constant-property case, it
ix not for variable properties.

SMALL TEMPERATURE VARIATION

In the case where the frictional heating is
considered but where the temperature variations
arc smull, the fluid properties can be considered
constart. This case has been solved by Ostrach in
some d-tail (refs. 1 and 6), by machine methods.
Howev r, another method of getting the same
results is now presented that has the advantage
of givitg the parametriec dependence simply. The
same nmiethod is applied later to the general case
(large  temperature variations).  However, the
justifiention of the procedure is most convineingly
displayd by comparison with the aforementioned
machine solutions.

In this case of small temperature differences, it
is again convenient to work from equations (18),
(7d), and (8). If the temperature changes are
small cnough that (7— 7' )/(Ty,+ Ta) is small
evervwhere, the viscosity and conductivity can be
considered constant.
quantities are

The following dimensionless

defined:
_— 3
_ pBfd?
U_¥4k,,. U
62 2d4 K(T__T*) e
—(T—T* > (33
r=(T-T" ¢ Tk 16(T, — 1% (33)
Y
n=2 E-——l J
where
=Ny
K (oBfd?)* (T, —T%) (34)

km#m
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is the parameter defined in reference 1. In terms {(E1)=0
of the new variables, equations (18), (7d), and .
(8) beeome (— 1 =K/16 ]
e (35) K Te—T (37)
. 1 o -
. : Tt D= o i J=m K16 say
S (36) AT, —T
N N | - ~ 1 N B I
Variable Constant
properties | properties Y
MYy 0.294 0.229 | ©
’” - pBral7,, - ,TWO) - 331 -.395 d
24
pu vy
o h -1.906 -2.031
243¢ -7 °
pcd ’B(7W| Wo)
48s
|6}——-— [ — - -
| — <"_\
R . / A N - L
\ i
Constant /
properties / \ j
(eq. (29)) - \
.2 —- —_ . )/ . - P
i
- ‘ |
io “Variable
L properties
g (eq. (25))
> }\i a — } i i
= |
N
7
'ld_
i ,
. i
0 .2 .4 .6
Yid

Frovre 1o -Effect of property variation on veloeity profiles.

513555--60——2

Ty 1007 C; Ty, 900° C; T*,0° C; liguid sodiun,
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An approximate solution of this system can be
found by iteration. The velocity profiles are
usually parabolic.  Thus, suppose

(79— A(1—7?) (38)

where A is an undetermined parameter. Then
equation (36) vields, subjeet to the bhoundary
conditions,

K . A1 —nY)

=0 ((m4-1)Anlm—1)]+ T

(39)

If this is put into equation (35},
veloeity distribution is

: K[m+1 . 1
1“‘:—;—['-"j ey w"~-m]

32
A2 . 51
e <n-———|)—(7’—l,_, )] (40)

6

the resulting

This process could be continued, assuming con-
vergence, but is stopped at this point.  1f equa-
tions (39) and (40) are put into equation (36)
and the result is integrated across the channel, a
quadratic equation for the unknown parameter
A follows, This is

17,325 {(ni-1 1) 1,155
]7-) — Al _
At { R08 |:] ’H) ]}+I()ti,424
Y[ tm 4 D |: ]:-U 41
(i -

Real solutions exist if

210

< K(im-+1)
1 — i\ PR L
Y 2,640 ENEE

210
< !
707 m
VAN PR
+\ 2,640 [4 (o 1)]

The boundaries defined by equation (42) are
plotted in figure 2 for K>>0. Some limiting values
found in reference 6 by machine methods are
shown for comparison. Agreement is excellent.

The two solutions can be examined generally
in the following manner. If K(m+1) is moderate
(say, in the range 0 to 40), then equation (41)
viclds, approximately, the two results

= [0.016 K (m+1)]?
~42

or (41a)

NATIONAL AERONAUTIC3 AND SPACE ADMINISTRATION
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- e R

act : IR
i I quation (43)

! o Exact results ‘ i

. T

: L

— 1

JL ]
M
m L . l .
0 ; : ,

.

b

! % ‘

<& 7 Two solutions /‘
50 T | ! | o4
‘ // \
l | 11
“1ODE : ] b
|
45 i bo-
| .
Il L L | b
<0 )O 20 40 60 80 100 120

FrGURrE £.-  Regions of existenee of solutions of cquations

(35) te (37).

The nass flow and heat transfor to the walls
are, resoeetively,

v . . ) N
] pu (l)'z_l\,"‘ 1\(I.Il 11 ) ‘
. B 24
) ‘ r (43)
’I‘.m . 1
Q'f’ 16 l
B )

Atk Ty =k, [Ty )y o (Ty)yodl
o5 T+
26k (L =1 D10.016 K G+ 1)) o
3Kd (4
or
256k, (T, —T%) 0
SKil

The first (smaller) solution is one in which there
is neglgible frictional heating and, hence, heat
transfe -, while the second is quite the opposite.
The second ease is, as is pointed out in reference 4,
one of regenerative heating. There is a large
amoun: of heat transfer to the walls (eq. (44));
this heat is supplied by frictional heating of the
fluid occasioned by large mass flow (eq. (48))
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and the resultant high shear. Notice that even
when T, =T, =1T% so that the problem is an
homogeneous one (K=0 in eq. (37), although
K/(T.,—T*) in cq. (33) is not zero), this second
solution does not vanish. For that matter, the
second solution is virtually independent of K and
m, provided K and m take on moderate values.
The range of validity of these results is limited
by the condition that (7— T )i Ty, +T%*) besmall
so that the viscosity variation is negligible. In
the case of the second solution (large .12), the
maximum of 7' occurs near the center of the
channel, and thus equations (38), (44), and (46a)
vield
,Iv’"'”_ T”n 2700 ’[v"'uh ™
T +T, K 7T, +1T,

u(n=0) = ”H,‘l “ »|:A'(1”“.1 .
16 \ u
or R o
=25 V‘Ck( l“‘u—‘ 1 *)
\’ ulK
or

R

. AP
Tly-0) T =(", V) (1, 1%

For example, for water at 0° (', if A=25,
’l',,,]—’l'*:().il.’)o C, and m=1, the numbers for
the various cases are

! ' Small
i

w{n=0), ft/sec ’ 9 200
1 2

Large

T(0—0)— T'v, °C

This case corresponds to a channel width of 14.6
inches. A more general idea of the orders of the
numbers involved in the second solution can be
obtained as follows.  From equation (33),

uw kU

I (0)

However, from equations (39), (40), and (41a)
the maximums of {7 and 7 for the second solution
usually occur near =0 and have the respective
values of about 61 and 14.  Henee, for the second
solution,

( -T>”f,1,* ) . (46a)
N A=)

'I'*):|

2000 N o
N( KHI)(I“”'*I )
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If, for example, K=10, then T, — T is limited
to a few degrees.  This implies also that the wall
temperatures must be virtually equal.  Ontheother
hand, for applications of the first solution (small
A%y, the only restrietion is that ('I'w“*,’['wl)/"('l',,u
-+ 7, be small.  However, if the viscosity is that
for some suitably defined average, the error due
to larger temperature variations should be unim-
portant. This conjecture is based on the example
discussed after equation (32).

Before giving a numerical example, it is worth-
while to examine the order of magnitude of the
numbers one obtains in physical problems for the
present case of small temperature differences.
From equations (33), (34), (40), and (41a), one
has, very roughly,

-

(Small solution)

(Large solution;
- (45)

(Small solution)

(Large solution) j

Actually there is no combination of K and m
such that equations (41), (39), and (40) vield
(i Timaz<1.  For water, 3k/u is of the order
104(ft/sec)?/°C, and hence if T—7T* is 1° (', the
velocity maximum is 100 feet per second. For
liquid sodium, 3&/u is about 107(ft/sec)?°C: thus
a temperature differcnce of only 1° C' corresponds
to a maximum velocity of 3,000 feet per second.
It therefore appears that, if the velocity is to be
kept moderate to maintain laminar flow, the
temperature variation must be small.  Henee, the
assumption of constant fluid properties is a
good one.

To compare the present method of caleulating
the velocity and temperature profiles with the
more exact solutions obtained by machine methods
(ref. 1), a single example 1s shown in figure 3.
Remember that this is a constant-fluid-property
situation.  The example is that of water flowing
in o channel 14.7 inches wide and for which
T,,—T*=1/10° C. The wall temperatures are
20.0° and 20.1° (. This leads to K=10. The
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Velocity, ft/sec

Temperature deviation

Fravee 3.

Velocity and temperature profiles. m, 20 4,
10; ’Ivu'u T*, 1710° (5 water.

agreement is within 10 percent for the second
solution and, not surprisingly, virtually exact for
the smaller one.

Before ending the discussion of exactly fully
developed flows, it should be observed that the
iterative procedure used to get solutions here can
be applied in the other eases considered in refer-
ences 1, 4, and 6, namely those involving wall
temperature gradients and heat sources in the
fluid.

As is stated earlier, the present iterative proce-
dure can he applied directly to the original problem
wherein the frictional heating is considered and
large temperature changes are contemplated. The
solution for such a flow is given in appendix C for
the case of equal wall temperatures.  The only
difference from the ease just discussed is that
some of the integrals are rather involved and the
equation for the amplitude is more complicated.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

However, as is observed previously, if the velocities

are o be kept moderate in the second solution,

the temperature variation will be negligible.
APPROXIMATE SOLUTIONS

The resulis thus far presented have the beauty
of being exact within the limitations of fully
developed flow.  However, several cases arise in
which such a limited view is unacceptable.  The
simplest such case is the flow of a gas with a pres-
sure gradient, the ordinary Poiseuille flow.  An-
other case of some interest is that involving a wall
temperature gradient.  The extent to which such
flows can be considered fully developed is examined
in what [ollows.

Solutions of cquations (1) to (6) are sought.
Again, a long channel is assumed and end effeets
are negleeted.  Tn such a case, any gradients in
the X-lireetion (in the flow direetion) must be

small.  Ilence, write the variables as follows:
I’*’F[lq ey N h
p- pleatiy -t dpilryi-i ]
T Tt s b
PR TR CTIE Y T O T AR R

b—Flkatp) -+ ok tagn - .. L
w gty - SuyLey) -l

":(/{;7410 Forira L]
+—=X/L
‘7/1)7/““(/ J

where £ is small,  being the wall spacing and L
being 1 length of flow, as vet undefined. The
other 1wo parameters, e and 8, are small but un-
related ut this time.  For a gas § must be at least
as larg» as € for the state equation (eq. (5)) to muke
sense, ‘vhile for a liquid the number § is determined
by the temperature boundary conditions.  The
barred quantities are, except for ¥, given param-
eters chosen so that py, Ko, we. and so forth, are of
unit order. The value of % is initially unknown
because there is no characteristic velocity for in-
ternal flows of this kind.

Had the term g(r) in the pressuve (the first of
eqs. (47)) been considered as a function of y also,
then added terms would be introdueed because of
the y-momentum equation (eq. (3)). However,
these are, analogously to the usual boundary-
layer analysis, of higher order than what is re-
tained in the other equations of motion.
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If equations (47) are put into equations (1), (2),
and (4) and only the dominant terms of each kind
are retained, there follows

pO(ul,r'*’l'l,u) ’%‘pn‘ul‘lprl‘ruO:O (48)
2 r 1y -
pu (ol 0320 ,)] + { é(l +Pf(Pn+5PI)}
it
*“7[ [(l’-ﬂ‘uﬂ.y,)zz] (49)
épe, ul
A [P0(110112+/1 p/)]+ {1 atony)
/\ T , - .
/2 [(A /U u)u+5 LO[I 1/+li [() M u]+ /o (#')“U r/)
{50}
Finally the state equations (eys. (5)) vield
P=plT
p()[[)—vf (GHS) (5] )
PuTl’FplTn:(f/‘S).’/(-")
p”—_],,,,—‘B]' 7(»*1' X A
. $> Liquid) (52)
:~51 1

Now observe that the terms in the braces in
equation (49) deseribe the driving forces of the
flow and must therefore be of the same order of
magnitude as the viscous terms (which contain
the highest derivatives).  The following four cases
will be considered in’turn:

N "\

Body ' Large te mper-
‘ Cuse foree
!
1 1 Yes ‘ Yoes
1T No Yes
111 ‘ Yes No

Y No No |

CASE I=T; VARIABLE, FREE CONVECTION
For case 1, terms of order 8 can be neglected as
compared to  corresponding  zero-order
Thus, p can be set equal to zero in equation (49),
as can by and 77, in equation (50).  Assuming p,
and ¢.(x) to be of unit order, the body force and
pressure gradients must be of similar size so that

terms.

Pe

7, =rf (53)

Actually, itisonly necessary that Pe/L<3f in order
to have the body force matter. However, it can
be assumed that equation (53) holds, and e ean
be discarded later if it is small cnough.

Then, using equations (51) and (52)
term in equation (49) is

, the driving

Pe To—17 )
I '/1(1 Aol =pf| 144 () — “p :I (Gas)
l
or f
- I~ _,.(.' 74
—pfe1 [”’6{{1, ”_( 0_1):|
(Liquid)
(H4)

For a mixed flow, g,(x)==0(1) for a gas or g,(r) =
—1+0(BT) for a liquid. A pure free-convection
flow might arbitrarily be defined as one for which
g:(r)=—1, but, for convenience, any flow involv-
ing body forces is henceforth referred to as a free-
convection flow,

Definitions of the barred reference values in
equations (47) are all straightforward, except that
for %, and a selection of values can res 1(111\ be made
a priori.  However, @ must be chosen such that wu,
is of unit order, and there is no way of knowing
ahead of time how big the flow will be.  Henee, for
the moment, let us beg the question and define
simply

() Hfu——pfﬂly {57

-l
~t

where (% 1s unknown and, for a gas, 437'5 I, Itis
shown later that (%} is a number in the range 10 to
50, Then equations (48), (49), and (50) ean be
written

poly 0y )+ pa - pr =0 (56)
To—1 , 3
‘#1»’11),1/)_1/'+'(':{ (:I’ —[1 !/z(-"”}
0
st .
13T > [poluou,, 2T 0Uo,y)] (\(1113)
BT > 5T
(wotta, )y +Co{ To—1— 1+ (1)/BT )
Sul(’ ..
flIIBI' [pol oty -+ tytho, )] (qumd)J
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v ) z(" sl lfal P
ke “_~{[p0<u011.,+z~110,y>1+Ji_
c. o1

/iuln =

X[P‘)(Uo et 7o) U«ﬂ Jz (J)]} T (o, )

(Gas) L

P
Jv

X[ (ugTy .+, T, 0)]} T (;uou(, ») (Liquid)

(koTo, )= {[PO(U(‘IJ:THIUN)]

(H8)

The system whose solution is sought is given by
equations (56), (57), (58), and (51) or (52) plus the
houndary conditions (eq. (6)). Assuming that
g.(2) is given, the unknown dependent variables
remaining are seven in number, w,, %y, &y, po, P,
Ty, and 1. With five equations and seven de-
pendent variables, some further restriction must
bemade. The difficulty arises mainly in the terms
w,and . For a gas it appears pi, %, and v are of
the same order as 7, and henee that the inertia
term in equation (57) is of the same size as the
convection term in equation (58). IHence, it
follows that, in order for the solution to be de-
termined, both of these terms must be negligible.
The same result follows for liquids, although per-
haps not so obviously. In this_case (eq. (51)),
pi is very small, of the order of [31’ where g 1s the
volumetric expansion coellicient.  However, for
liquids the viscosity is a very strong function of
temperature, and thus g, =0(7}). Hence, there
is no particular reason to assume that u, and #
are not the same size as 7Tp. Accordingly, if these
terms matter, the present formulation is useless.

For these terms to be negligible, two courses are
open.  One ix to have everything s-independent
as in the exaet solutions deseribed carlier.  The
second is that the parameter (4,817 fLB]' be small.
This is not simple.  For example, if equation (55)
is used and a channel 1 inch wide and having a
characteristic length L of 10 feet is assumed, then
under standard conditions and gravitational ae-
celeration,

(L5 fLBT=66,000 5/C,  (For water)

(H9)

— 6,400 §/(%, (For air)

Considor (5= FFor the air case, § must be as
large as e, which is about 1/3,000 here. For water
& can be chosen by an applied wall temperature
gradient. In either case it seems diflicult to make
Uz&ﬁz,{[LB'_l' small, in fact, unless (% is a large
number.

If this question is ignored for the moment, it
can be observed for a gas that, if = (and 6 must
be as large as ), the cocfficients of the inertia or
convection terms and of the dissipation terms are

(o LET—(

veu?/fL= Wl

and ,
(60)

(where Pr is a Prandtl number), which are both
essentially the squares of & Mach number and are
the same size if (5=1. Hence, for the gas case,
at least, the frictional heating must also be negli-
gible because, as is shown later, (,7>>1.

For 1 liquid it can be seen, by trying some cases,
that tae frictional heating must again be very
small provided 6/e is not virtually zero.

Now to return to the question of a value for (.
Suppose that equation (55) is used together with
its subsequent consequences.  Then, for the sake
of an sxample, let g.(r)=—1 and assume a gas.
The differential equations become

(oo, ,)y= (1 —=Ty) /T
(ko To,1),=0
The boundary conditions are
e (0) —up (1) ==0

I(;(()

ug

rl'U( 1 J = yv1rl

To mnake the point about orders of magnitude,
consider that wy and ko are proportional to the
temperature (i.e., go=hko=1y). Then the equa-
tions can be solved very readily.  Maximum speeds
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have been computed for several cases and are
shown in the following table:

{ fuo | t
Ty Te, | €,
‘ imar
t,;_ﬁ‘ —— ‘ —_——
IV Y
B 32 .01
L ‘ 2 ! .08

-

Then [t per 1s of unit order if 4 is, say, 40. Thus
for the conditions cited in connection with equa-
tion (59),

(Wt fLBT=1,6500 (For water)
or

=1608 (For air)

which, particularly for the air case, can readily be
made small. In a case (such as eqs. (35) to (37))
where two solutions occur, the same conclusion
about ¢} follows, although the argument is rather
tortuous.

Finally, then, the inertia terms must be negligi-
ble for the flow to be fully developed. In that
sase the thermal conveetion and frietional dissipa-
tion are negligible. The equations for fully devel-
oped free-convection flow ina channel are (eq. (55)
is assumed to apply with (,=1)

1—17
(patlo y)y= (')+14.’/r
" (Gas) (Gla)
‘ko,l:)vy)_z/:o
I /7
‘Mll'ltb.zz)!/:]—[()+ 'B_r[ '
(Liquid) (61b)

‘/l'orlvn,y)y:o

(,==1 is used here and also in equation (53) be-
cause (5 was introduced only as an aid in deter-
mining what matters in the equations of motion.
With these small terms climinated, ¢ can be
dropped.

It should be remembered that these equations
correspond to cases where the temperature varia-
tions across the channel can be large. The solu-
tions are valid provided only that 6'113,,,,,(7’[43_7’ is

small.  For consistency, of course, g.(x) must be
constant.

The system is readily solved by first integrating

the energy equation.  The result in parametric

form is

] ko dT
T

®y

V= v, (62)
[ k() d7
. ’I'w”
T ko 7T -
[ ( ] kAT, )dT,
Jr, Nhodr,
= W o [ S
I:’ Yo dT
. TII‘
(1]
 or B (T . e hY
I ’ (JIJ kole dT,)dT, ] ko g
| o Ty, M Ty, J T, Mo
X3 e e [ ~ ek
| J ( J kol2 AT, )dT, ‘ ko gy
w 7'11'” Mo 7'11") . 7'11'“ Ho

where 2 is the vight side of theffirst of equations
(61a) or (61b).

This then is the solution of a frec-convection
flow wherein large temperature variations across
the channel are admitted. The effect of longitu-
dinal wall temperature variations would presum-
ably be allowed for by considering that these were
local profiles, by a sort of strip theory. Results
of the kind in reference 4 would apply to case 117,
discussed later on, wherein small temperature vari-
ations are assumed throughout.

CASE II—T; VARIABLE, FORCED CONVECTION

This is a flow in which the body foree is con-
sidered to e negligible.  Tn such a case equation
(53) no longer applies, but one assumes that f=0
and that e is given. Without loss, take g.(r)=1.
Equation (55) is replaced by

(63)

Then equations (61) and (62) with their accom-
panying conditions hold, but with the right sides
of the first of equations (61a) and (61b) replaced
by unity. The solution is that given in equations
(62) but with 1=1.

The analysis thus far given applies to the case
where large temperature differences are allowed
(Ty#1). If only small differences are permitted,
a somewhat different formulation results.
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CASE NI—7y-1, FREE CONVECTION

If To=1. then py=p,=1. Also, equation (53)
stull applies, and henee the driving term in equa-
tion (49 is (compare with eq. (54))

P _
T‘ grla) +pf(1-f 8p))

— ] I Al
pf I: I+ + +{/ :| “ms)} (64)

- = e Vbag(r) .
=pfépT| —171 S0 (L 1)
plog I: i+ 53T :| iquic

/
Then, for a free-conveetion flow, it is required that
g=(r) =—14-0(8T) (65)

Under such a condition the driving and viscous
forces are of the same order provided (compare
with eq. (55))

pfoBT— wijd* (66)

If these last equations and equations (51) and (52)
are used, equations (48), (49), and (50) become

Wy rot-8y - = pr2lo ('(57)

Wy o 1 — — e (Ugly i M )

(68)

. wooue, - P =
ll,yv: —_— /{7{ 'lllll.r+-7—, [BI u()ll,,r
’ PI(',

ofLBT
—= u..q, ]}

where the terms involving €/8 do not appear if the
fluid is a liquid.

In distinetion to the result for the case of large
temperature variations, in equation (68),

—===00,0006" (For water)

or

=6,4008° {For air)

for the etrcumstances of equation (59). In the
case for air, if d=¢, this is a very small number
and should, indeed, be negligible.  The convection
term in equation (69) is of order 8 or larger, asis the
frictional heating term, and should be retained.

Ther equations (68) and (69) are

6871

1)

where again the terms involving €/8 in equation
(70) an g, in equation (71) appear only for a gas.

Now to determine what form the temperature
variaticns can take. Tt was assumed at the outset
that wg is independent of r. For this case it is
readily shown that the most general forms allow-
able for the temperature and pressure gradient are

’I(l,uu'+'0 (7())

—y -+-§ gl +

,lv] we o — (-: [ —)B
| 5“{ At

T\ =+ a+ 13y (72)

golx)= — 1+ éﬁl[(e, Fay)e+a,) (7:3)

Then ejuations (68) and (69) become

o, yy=— T (70a)
g R ) S g
I‘."!/!/:: i kul.l,u" [z ] by . -(] i‘%)
skT I8\ pe,
(7Tha)
where  he term @a?/skT {u 1]} disappears for a
liquid. These equations require small temperature

variaticns but admit substantial mass-flow rates.
Then, in terms of uy and [75(y), equations (70a)
and (71a) are a paiv of ordinary differential equa-
tions ard are nonlinear only if the frictional heating
is important. Solutions in the linear case are quite
simple ‘ref. 4) and in the nonlinear case can be
found by the iterative method given eartier follow-
ing equation (37).  Ostrach discusses this system
extensively in reference 4, where, among other
things, some machine solutions are given.
CASE IV -To=1, FORCED CONVECTION
For ase IV equation (63) still applies, and
equations (70) and (71) are replaced by

o, yy =gz () (74)
, 2’ , 6 [(‘ P o
I’I,yll’:% —uf, v ,;—) (] +- B) ”(DIl,r+.{/ruU]
3 €
(75H)
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The temperature variation must have the form
T =(atay) e+ Taly)

while ¢,(r) is a constant. These equations are
easily solved because the dependent variables are
separated. The result is, of course, the familiar
Poiscuille flow,

OTHER GAS FLOWS

The flows discussed thus far have included only
those cases wherein the velocity is essentially
independent of distance along the channel. If
this restriction is lifted, the problem becomes
vastly more complicated. Therefore, only one
class of solutions i1s examined here. These solu-
tions are ones in which the independent variables
are separable.  Such a flow is out of the question
for hquids unless it can be assumed that the
temperature is a funcetion of y only. This is
heeause of the form of the state equation (eq. (5h)).
It ean be shown that this limitation to T independ-
ent of z leaves only the fully developed cases
discussed previously.

First recall that, to have a fully developed flow
in any sense, the channel must be very long and
the dependence on r must be much weaker than
that ony. Then equation (1) to (5) can be approxi-
mated as

(pu)x+ (pv)y=0 (76)

plury+vuy) +Py=—pf+ (uuy)y (77)
Py=0 (78)

pe,(uTx+oTy) +-Plux+vy) = kTy) y+uui  (79)
P=pRT (GGas) (80a)

p=p[1—B(T—T)]  (Liquid) (80b)
These equations can be derived formally in the
same manner as they are derived for external
boundary layers. The only difference is that the
Reynolds number of boundary-layer analysis is
replaced by a ratio (L/d)?, where L is a charac-
teristic flow length and d is the channel width.

If the fluid is a gas (eq. (80a)) and the body
foree is negligible, and the viscosity and thermal
conductivity cach vary with the temperature as

p=aTt (81)
kF=bT?
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then the permissible separated forms are
wju (Y)=(X/L)® or Xk h
p/e(Y)=(X/L)! or oOX L
p/pl(Y):("Y/L)orszlu»l or - 1eX /L } (82)
T/T\Y)=(X/1)* or X

/’/[’1:(}Y/L)B(EH”“ or (,4‘.’f+lw.\'/l,4

where 8 1s an arbitrary constant.

It is interesting, though perhaps irrelevant, that
exactly the same variations of free-stream velocity
are allowed for similar solutions of the external-
boundary-layer equations (ref. 7).

The exponential form in equations (82) is valid
for the complete Navier-Stokes equations, while
the other form depends critically on the assump-
tion of a very long channel.

Several other somewhat unrelated comments
about this result are perhaps in order. First, for
a liquid the requirement previously stated, that
770X =0, leads to the condition that nothing
varies with X. This case has already been ex-
amined. Second, for a gas, if the viscosity and
conduetivity do not have the same variations
with temperature (eqs. (81)), only the trivial X-
mdependent separation results. The X-independ-
ent solution corresponds in equations (82) to the
exponential variation with =0 and was discussed
starting with equations (7). Finally, if the body
force is important (—pf in eq. (77)), the forms
given in equations (82) apply, but only with =0
(exponential and uninteresting) or 8=1% (power
of X).

The forms given in equations (82) have two
other properties of interest.  The through-flow
Mach number, which is proportional to w/A/T,
is independent of X, Also, unless there is flow
through the echannel walls, all the solutions except
=0 (exponential) and 6= —4¥¢ (power of X))
must be flows with zero net mass flow. This is
because the mass flow 1s

d *d
fp'u(ll':(AX'/L)?fﬂ'P‘J o (VHu (Y )dY
n JO
(83)

or

g
oL J (V) (V)dY
0

which must not vary with X unless there is flow
through the walls.
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If equations (82) are put into equations (76) to

(&0a), the result is

] 3
f[:% )P17l|+ pit)y=0
8 1
o (i, ui-korpyy +|: (+ :II)
> (84)

= (il y)yr— plfl)l, y=0

= (T vy +uud vPr=p BT, J

0 if the exponential variation is used and
A= 1if the vartation is as a power of r.  Also, the
term pf can appear only if, as already men-
tioned, =0 (exponential) or 8=1/2 (power of r);
ki and g, have the obvious definitions.

Now a new space variable, 9, is introduced from
equation (10). Then equations (84) become

BP(2¢0-+\) e )
{2111,[7\(”;!} A T pin)y =0 (85)

R[ 1+{2[7', ] } Tl*{(Pl?‘ 111 n
1)4-X
P
H{[ e

where A -

v,{'(];”]z Ty g legf (86)
{[Ci—r20) 7]}
+“—;'; T (= DB (o) T T
: 4b”’1§;; { ‘(Tn.wk%ﬂ?,,,) (87)
Pi=p\RT, (88)

Observe that equations (85), (86), and (87) form
a set of three ordinary differential equations for
three variables (uy, 7%, and pyy). One curious
feature of the system is that it is of fifth order and
there are, in general, six boundary conditions to

be applied (one each to wy, ¢y, and T} at each wall).
Henee some restriction must be placed on the
combirations of boundary conditions for given
values of the parameters, particularly P, and 6.
Actually this is no different from what happens in
analysis of the external laminar boundary layver.
In that case, however, the boundary condition on
¢ (or 7, at the outside of the boundary layer is not
satisfied, nor is there any particular reason for it
to be. For channel flows such an omission is
probably not allowable. In general, this means
simply that there must be a flow through at least
one wall, and this flow cannot be preseribed 1if
similarity is to be maintained.

[f, on the other hand, one examines the case
where 2¢0+A=0 (cq. (85)), it 18 permissible to set
m—0. Then the system is of fourth order with
four boundary conditions. The condition 2¢8--
A=0 corresponds exactly to the two cases men-
tioned in connection with equation (83). These
are the only ones in which #; can vanish at the
walls. Of the two cases defined by 2¢8-4+A=0,
namely, A=0, =0 (exponential z-variation) and
A=1, (§=—1/2 (a®-variation), the first has been
solved carlier. In the second case, for linear
viscosily-temperature variation, equations (86)
and (87) become (—20=¢=A\—1)

- 8aRL,,
w4 RTy= — 1,1;; T3 :|u,,,,,, (89)
B, . 2 . .
XLb : 1("]) ( - *I:’)]ul(]i,ll):(ll) 1),7,,
+('5]?71, . (90)
where he boundary conditions are
U (F1) =0
T (—1)=Constant (91)
T (+1)—=Another constant

The sclution of this system is more difficult 1o
obtain than is the solution of equations (35) to
(37), although a similar procedure can be followed.
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If the flow is fairly slow, with the Mach number
limited to, say, a few tenths, the profiles are, to
good accuracy

=g [T+ 1)+ T )]+ (1) =T (= D)
e P , r
T LT+ )T 1))
L ([ [T(ED)=Ti(= 1) a1 =n%)
X{4 Hrcnsne—n e )
(92)

where use has been made of equation (10) to
determine 5. It may be observed that the dis-
tance L ean be defined by

- ,1,)
ob
0X/x-1

L= —

which follows directly from the last of equations
(82). If the wall temperatures are cqual, the
velocity profile is exactly the familiar Poiseuille
one.

A final remark: It can be seen that the system
deseribed by equations (90) and (91) will probably
admit pairs of solutions just as the free-conveetion
flow of equations (35) to (37) does.

CONCLUDING REMARKS

When fully developed channel flows are con-
sidered, the cases that can be solved exactly are
very limited. For a gas a constant pressure is
required, or at least one which does not vary in a
streamwise direction.  This case is analogous to
Couette flow in that no approximations neced be
made in arriving at a relatively simple mathe-
matical problem. In the ease of a liquid, one can
solve the exact case of constant pressure gradient
in the streamwise direction. For both the gas
and the liquid, the wall temperatures must be
constant. In the gas case nothing astonishing
happens. However, in the liquid case a sur-
prising result arises. There appear to be (except
for certain singular cases) either two or no solu-
tions for the flow. This result, which has been

discussed extensively by Ostrach, has one solution
for which frictional heating is negligibly small.
The second is one in which the frictional heating is
large, and thus the temperature is raised and the
buoyancy effect is inercased. In the present
report an approximate analytic solution of this
problem is given. The results agree very well
with Ostrach’s machine caleulations. Although
an analysis is given for the case of variable vis-
cosity, it turns out that for the cases of interest,
wherein the fluid velocity is kept within reason,
the temperature variations are small and there is
no reason to consider variable viscosity or con-
duetivity.

These so-called exact solutions, particularly in
the case of a gas, do not cover all the flows of
interest. Hence, consideration is given to cases
in which there are streamwise temperature and
pressure gradients but in which the flow velocity
is virtually independent of distance along the
channel. For a gas the mere presence of a pres-
sure gradient requires a temperature gradient,
while for a liquid the presence or absence of a
streamwise temperature variation is governed by
the wall temperature conditions.

In these cases one of two situations occurs. 1f
the temperature variation across the channel is of
the order of the temperature level, then in order
that “channel flow” be maintained, the conveetion
terms in the energy equation must be negligible.
This implies that the mean flow Mach number is
small and also that the frictional heating is negli-
gible.  For such circumstances the equations are
separated and can readily be integrated for any
case of interest. Only one solution exists.

On the other hand, if the temperature variations
are small, more complicated effects occur. This
situation of very small temperature changes ad-
mits very large flow velocities (see the diseussion
following eqs. (46)). Then both the frictional
heating and the thermal convection effects can be
significant. In such cases (when the frictional
heating matters) two solutions can occur. These
flows qualify as quasi-incompressible in that the
only place where compressibility effects matter is
m the buoyancy term in the streamwise momen-
tum equation.
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The forced flow perhaps deserves an added
remark. When the temperature varies only
slightly across the channel, the velocity profile
must be the usual parabolic one. When the
variation in temperature is large, the profiles can
still be found in closed form but are more compli-
cated.

If streamwise variations of veloeity are allowed,
the flow is more complex. A description is given
of the eircumstances under whieh the independent
variables are separable. These forms can yield
new results only for gas flows and show that the
streamwise variation must be either as a power of
£ (streamwise coordinate) or exponentially with o,
With two exceptions, only one of which admits
r-varintions, these flows require that the body

force be negligible.  The exponential cases apply
to the full Navier-Stokes equations, while the
other ones require an expansion of the equations
of motion in terms of the width-to-length ratio of
the channel.  For all these cases, the streamwise
Mach rumber is independent of 2. All but one of
these possible flows lead to difficulties with bound-
ary cenditions and require a flow through the
walls. The lone exception has streamwise velocity
proportional to 1/4r. For small flow Mach
numbers the solution is similar to that for Pois-
euille flow but allows for temperature variations
across the channel.

Lewis ReEsearcH (CENTER

NATIONAL AERONATTICS AND SPACE ADMINISTRATION
CrLsvELAND, Onto, June 5, 1958
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APPENDIX A

SYMBOLS

parameters defined in eqs. (41) and
(C5)

parameters defined in eqs. (9)

parameler defined in eqs. (10)

parameter defined in eq. (C'9)

specific heats

wall spacing

body forces in X- and }Y-directions,
respectively, considered positive
in the minus - and }Y-directions

pressure perturbation, eq. (47)

temperature funetions, eqs. (16) or
(22) and (C1)

parameter defined in eq. (34)

thermal conductivity

characteristic length, eq. (47)

parameter defined in eq. (37)

pressure

gas constant, eq. (5a)

parameters defined in eq. (21)

temperature

reference temperature defined in
eq. (19)

dimensionless velocities in eqs. (33)
and (C1)

velocity components in X- and }-
directions, respectively

XY
LY

ay, 0,0

8

d,€

$,0,A

h~]

Subseripts:
m

Wy
wy
X, Y 2,09

0,1
Superseripts:

), (1)

bars

Cartesian coordinates, X being in
the main flow direction

/L and Y/d, respectively

parameters defined in eqs. (26)

volumetric expansion coefficient (see
eq. (5b))

small  parameters
eqs. (47)

dimensionless distance across chan-
nel in eq. (10)

parameters defined in eqs. (81) and
(82) and after eq. (84)

viscosity

density

dimensionless  temperature  differ-
ence in eq. (33)

mtroduced  in

mean value corresponding to aver-
age of wall temperatures

wall conditions at }'=0

wall conditions at Y'=d

partial derivative with respeet to
that variable

zero-order and first-order solution
in eq. (47)

first two approximations
reference values in eqs. (5b) or (47)
19



APPENDIX B

A GENERALIZATION OF EQUATIONS (7)

If a transverse body force f, and a distribution
of heat sources p¢), where @ is a constant, is in-
cluded, equations (7) become

=0

(wy )y —=pf

I’y =——pf,
ATy —uud —pQ

These equations can be solved in exactly the same
manner as equations (7). The results are, for
linear varintion of viscosity and conductivity with
temperature, f1=0, and =0,

(B1)

I):[)oe""' W
PR ) o
o (= Der—(nd1)emr-2e7]
. ’I'wl J’T' !['w” ’1‘”'1 - Two
:“42' +77 - ")" -
8
_afft (./ B
’”"+ e~)— (et | g7 ) 11
+77 [(’-qv;,( —-d——:_; (e7— ¢~ ]}
(B2)

where ¢ = Bf,/2RT, is defined by
2k _ak (SRAYT(,
Todf, bdf, \ 2af?

and, for fi=0 and @0,

)2 (ly—4/6?)

+::)72 ((sz_p‘gd) + 2]

P’ - Clonstant h
ab”f[’
i Slf#wo (n*—1)

Teen ™0

Tt T, (71101—1',,,0)_—9 aBHP (,,_1)
K b

2 2 4Ruh, /) \ 12
PQB? 9
+Sm (1*'0 ) J
(B3)
where
1 B]'> [(pmfd3 fd
040 Ivm
BTm) ( merP b’Tm>_l
tar, ) ek, T,,, 47;,0 -

If ¢ is positive, there is only one real root of this
equation, that root being such that

BT,
0<ar,, <!

If @ is sufficiently negative, there can be three real
positive roots.

Other solutions can readily be obtained for the
case where neither f; nor ) vanishes or where other
distrib 1tions of heat sources occur,



APPENDIX C

EXACT SOLUTION FOR LIQUID

The problem at hand is to solve equations (27
|

and (17b), subject to equations (8). Define
7 — ETE24H(T ) T—F'I’a>2
VT ETE2sH(T*) \T*4-T,
o )
U= 2s _ uy2sfk

FTT L2 T4 T,

In terms of these variables the problem is

—18, (C3)

U(£1)=0

7 r 1* 1 12 ((\"4)
IJ}(:t 1) :[(Tw0+ Iu)/(j -+ Iu)]h
where, to keep the problem from geiting out of
hand, equal wall temperatures are assumed. For
convenience, define

A =[(To T/ T* 1)
A, BBy 25lk (©5)
T AT+ Ty

It should be remembered that the parameter B3,
and hence A,, is as yet undetermined (recall eq.
(10)).

The solution is found in exactly the same man-
ner as the solution of equations (35), (36), and
(37). Thus assume

(70— A(1—7?)

Then equations (C3) and (("4) vield

= A+ A2 —nY) /3 (C6)

If this is put into equation (C2), that expression
becomes
3/ A
Iy Y : «
[ tomn l. /l ;141 ((\7)

4

’\ 1)”7’

If this is integrated and the appropriate houndary
conditions are satisfied, the result is

(1)
Az 2 e VA(J /’m’

1
__f 1 f ndn > (©s)
’(“—'q n\(“—n

(t=143A,/42

where

(C9)

If equations (C8) and (C6) are put back into
equation (C3) and the result is integrated across
the channel, the result is

Séz }’___21/% J‘(l—n )dn
34803 04—

1 2 .
RN

Before using this equation to determine A, some-
thing has to be done about B, which is as yet
undetermined. 1f equations (21}, (1), and (C'6)
are used, the second of equations (10) vields

dA ]*{-]' J'l_ dn

0 —\9'7 y(; n g

(1
Ve 3B '
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If this is put into the first of equations (C5),

eliminating B3, and the result is put into equation
(C'10), the defining equation for oA is, finally,

M "o .
AL:A\:‘;;J L:T”Ld?ljwj (J " dm ¥y,
oy (— 0 oy (i—qt

‘)885]‘7] ( __'*—n>

LB (T *4-T)

=0 (C12)

This can be solved to very good accuracy by

2
1 i\ ;J n)dn “‘7"51‘<J VOT— ‘)
2 —n'

The second root of equation (C'12) is never a
significant one.  This equation can readily be
solved for .1 in terms of 7 (which is itself a
function of .4; see eq. (€'9)) and the parameter

oBdH(T*+T,)
(C'13)

[oBfd*(T*+Tp)|° _ K

sk T VA (YA —1)

where A is defined in equation (34)., As in the
case of constant properties, two possible values
for 1 are again found.

The varwous integrals appearing in equations

NATIONAL AERONAUTIL 'S AND SPACE ADMINISTRATION

(C8) and (C13) can be evaluated as follows

(ref. 8):
ody 1 . Topt T h
T F( sin-! T 149
J (“ ~qpt ('\r-z (bll '\/ﬂz‘i_cvz Iy -‘)

=F(x/2,1/y2) -—F(cos“n/(,',l/\;z-):]

[sm“(l/("") sin=Y(n¥/( )] >

J" n(ln
Jo y QW
' 20 —H
77(;7777 .5 N R 2 =
Jo \(14>_1,4—_—(\2{[g (bln Jl'«k('zjlfyl\‘z)
[(*—1
Al ("}

(C14)

]
21 [sm V2140, l/\-]

where F(o,1/42) and E(p,1/52) are the respective
elliptic iIntegrals of the first and second kind of
amplitwle ¢ and modulus 1,42, Two of these
integrals. can be approximated as follows:

1 D ¥
S (n+7°/10C")

which is correct to 1 percent if (7>1.3, and

T {lem)dy 1
Co oy (j4_.,,4' 5(”( + 70("+88(J"

which is correct to 1 pereent if (71,0,
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