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ON FULLY DEVELOPED CHANNEL FLOWS: SOME SOLUTIONS

AND LIMITATIONS, AND EFFECTS OF COMPRESSIBILITY,
VARIABLE PROPERTIES, AND BODY FORCES 1

By STI_n'H_:NH..MASLV:X

SUMMARY

An examinatiol_ of the effeet,_' _J eompre,ssibillty,

_,ariable properties, and body forces on fully deceloped

laminar flows has indicated several limitatio_ts on
._ueh stream,s'.

In the abse,u'e oJ a pres,_'ure gradient, but pre_'ence

o.f a body Joree (e.g., gravity), an exact.fully developed

gas' flow re._ults. For a liquid thi,_ .follows also Jor
the ease oJ a constant streamwise pre,',sure gradie_tt.

These motions are exact in the sense oJ a C)uette

.flow. In. the liquid ease two solutions (not a new

result) can occur.for the same boundary conditions.

An approximate analytic solution was .found u,hieh

agrees closely with machine calculatio_ts.

In the case of approximately exact .flows, it turns

out that .for large temperature variations across the

chan_el the effects oJ convection (due to, say, a wall

temperature gradient) and frictional heating must
be negligible. In such. a case the energy and momen-

tum equations are separated, and the solution,s" are

readily obtained. IJ the temperature variatio_s are

small, then both convection effects and .frietio_ml

heating can consistently be considered. This ea.se

becomes the constant-property i_tcompressible ca,se
(,,. quasi-incompressible case Jor Jree-eom,ecti, n.

flows) considered by ma,_y author,_'.
T_'nally, there 'is a brief discussion of cases wherein

dreamwise variatioTts of all quantities are allowed but

only in such form that the independent variables are

separable. For the case where the _'treamwise velocity

caries inversely as the square root oJ distance along

the channel, a solution, is given.

INTRODUCTION

Among all possible fluid flows, one of the most

useful is the fully developed (i.e., independent of

i Supersedes NACA Techrdcal Note 4319 by Stephen U. Masler_, ltaS_,.

stveanlwise distance) ehamwl flow. The flow is

taken to be the motion generated by a ('onstant pres-

sure gradient (the familiar Poise, utile flow) or by a

hotly fi)r('e ever. 1). In either (..as(, one usually

considers only an inconlpressibh, or quasi-
incompressible llow with fixed ttuid properlios.
This is in marked contrast to the case of ('ouett(,

tlow where l,wo parallel walls move with respect lo
each other. In such a ease there is no nee(| to

limit oneself to a perfect gas or to any parti('ular

variation of the transport properties (ref. 2 is a

case in point,).
The crucial difference between the (!ouetle and

the Poiseuille flows is that the former admits r_

stream wherein nothing depends on the stream-
wise distance, while tim htt ter requires that the

pressure vary in the flow direction, tlence, to

some small degree, atleast, the, other flui(I properlies

will also vary in that direction if the state equation

involves the pressure. The I)resenl study is an

examination of the general circumstances under
which there can be a fully developed laminar flow

past fixed boundaries.
One special problem considered is an unustml

situation found by Ostrach (refs. 1 and 3 to 6).

He discusses the flow of _ flui(l in a two-

dimensional eh_mnel under the influence of gravity.

Incomt)ressil)h_ flow is assunn,d excel)t as is re-

quired to generate a varying body fl)ree, _md the

fluid transport properties arc assumed not to vary.

[Tnder these assumptions, the surprising result is

found that there are t,wo solutions to the flow in

question for _ certain range of vahtes of the itow

parameters. The first corresponds roughly to the

neglect of frictional healing, while the otitcr is
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near the (nontrivial) solution for honmgeneous

boundury conditions.
There may t)e some doubt as Io the stability of

one of tit(, solutions, presumably the second one.

In any case, a question arises about the effect of

considering a real fluid having variable viscosity

and thermal ('on(luctiviU _ as well as being truly

compressible.

Accordingly, the present paper treats the (,on-

Se(lueuees of such generalizations. However, to
reiterate, one serious restriction is made on all

IIH, flows (,onsidered herein: Tit(; flow is always

fid[y developt,d, with the result lhat the effects of
conditions near either end of tim channel are

ignored.
ANALYSIS

('onsider a two-dimensio,ml flow of a viscous

compressible lluid acting under the influence of

an axial body force such as gravity. Variable

viscosity and thermal conductivity are admitted.
The (.mdiguration is showit in the following sketch:

p(UCx+ ¢'vv)q-Pr =2 (_ucr)r + [g(ur + Vx)]x

-_[u(u.,-+v,.)],. (a)

oc.(uTx +vTr) +P(ux + Or) = (kTx)x+ (kTv)r

, 2 2 _2 O 'a 2
+#[2uic+ur+tx+-Vr+2UvVx--_(Ux_-Or) '_] (4)

(Symbols are defined in appendix A.) Consider,

in addition, two possible forms of a state equation,

one applying for a gas, and the other for a liquid:

1" = p12T (G as) (Sa)

O=p[1--_(T--T)] (Liquid) (510

In equation (51,), _ is the (sInall) volumetric

expansion coetficient, and _ anti T are reference
wdues. The signifi('am difference between lhe

two state equations is that the second is indel)end-
ent of pressure.

Tim boundary conditions on the chamml walls
are

_0

U

X ¢

Body

force,
f

7- = _WI

'['he equations of motion are

(ou),,+ (pv),.=o O)

p (UUx + vat) +Px = -- pf+2(taUx)x+ [#(ur q- Vx)]r

-_[u(ux+v_.)],_ (2)

uiX,o) =u(X,d) = v(X,O) =v(X,d) =0"]

)T(X,o) = T,_o(x)

7'(X,d) = T_, (X)

(6)

where d ,is the distance between the ('hannel walls.

The temperature boundary conditions couht, of

course, be replaced entirely or in part by a heat-
transfer condition but, for the purpose of this

report, such a change is unimportant.

Equations (1) to (6) are sufficient to define the

fully (hneloped flow in a ehamwl provided the

viscosity and conductivity variations with ten>

perature _re known, and provided further that the

forced-flow pressure gradient, if any, is specified.

In seeking solutions of these equations fi)r flows

in a very long channel (i.e., fully developed),

three approaches are considered: first, exact

solutions entirely independent of distance along

the chamtel (X); second, solutions approximately
independ,mt of 2(; and third, solutions wherein

the varit_bles are separable. In each case the

results cat be expected to differ at'cording to which

of the sta_e equations applies. ]n this connection,

it is important to observe that the viscosity and

thermal conductivity vary differently in liquids
and gases. In particular, the viscosity rises with

temperature for a gas and falls for a liquid.



ON FULLY DEVELOPEI) CHANNEL FLOWS: SOME SOLUTIONS ANI) LIMITATI{)NS 3

The I)hrase "exact solution" shouhl perhaps be

defined. In this report it is understood to mean

a solution which satisfies equations (1) to (6)

rigorously. However, no consideration is given to
conditions near the ends of the channel. There

are two relatively simple circumstances under
which such exact solutions can be found. For a

gas nothing can vary with X, not even the pressure.

For a liquid this restriction is moderated to the

extent that only the gradient of the pressure need

be independent of X. This relaxed condition

occurs because of the pressure-independent stale

equation (eq. (Sb)) for a liquid.

EXACT PLOW OF GAS

If nothing depends on X, equal|on (1) lo (5_t)
and (6) become

v 0 (Ta)

(uur) r-- of (71))

Pr=0 (7c)

(kTr) r= --uu_. (7d)

P=oRT (7el

u(O)----u(d)=O 1

T(O) = T<,

Tfd)= T_, J

(8)

Assume tlmt. t.hc viscosity and thermM con-

ductivity vary as powers of temperature, and also,
for convenien('e, change the independent variabh,

(Y).
Thus, suppose

and h,l

g=aT'q } (9)k=bT"_

,,f'* ,iV
"J o la/law o

,= --1_ l{=__f. dY
,2o _ /la._. (J0)

or

where the constant B is as yet undetermined.

Then equations (7) t)ecome

{ a B_.f l"_.,_ -1"

u.,=!, _ ) " '

t'= Cons tan t (11 )

If the viscosity varies linearly with temperature

(?_= 1), then these equations are separated. If
_2 is also unity, the solution is

/ aB2fl''\` 2
(12)

V-- 77.,.+_2 r,,,.+, \--(T,,,..--2T.,,_)

a, (a_B'_l'fy 1','--1_ (13)
-6 \4I¢u_o / k-if/

Finally, B can be found from the second form ()f

equation (10). Thus,

r_ • I.

2d:':',o=1+ r a
B .)_. Td_=(T"'o-k'"'w--15b\41l,t_ :

Of

I {BTm_V(P2"fdafd)]-{-(UTm" ) .
246 \(IX,,,,: Lkk_#-_: T._:J ",.d g,)(/=1 (14)

V6}lel'( _

7_,,t = Two -_ _v:Wl

-- '2 (14a)

The, <luantily in brackets is essentially the
1)arameter A" defined in reference I. This is al-

ways posilive. Umler these (.ir(mlnstances e<tua-
lion (13) has only one real root, that root being
such that

B?;,
0< d-T,..0 41

For example, for air under standard conditions,

if d----3 andj is gravitational acceleration, equation

(14) yields BT,,/dT%--0.904. A convenient
standard for comparison of the present solulion

with more approximate results is given t>y the
mass flow. This is

' BP ['+' { BT,,_a (o_fda_

_'l wo,] - 1
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The COITesponding result for im'mnpvcssibh, tlow

with consttmt fluid prol)erties, or for t_ompressibh,

tlow with variable properties, but neglecting

ft'ictional heating, is

*di .d>--
.,0 \ I--G_u.,:'

For tile case ('lied prior to e(lul_tion (15), whei'e

BT',,/(IT,,o--0.904 , lhc a('ltlal Inass flOW is about
95 t)erc(mt helow the in('onipressib]e vahle. [Fit-

fiwtunately, the mean flow velocity is about 800

fl,el per se('.ond. This high velocity wouht prol)a-

bly prechide the t)ossibility of htminar th)w even

existing. If an exanlph, h'a(ling to slower flow

wel'e considcrc(I, the diffel'ence between the lwo
l'Cslllls wouhl tilive h(,en sntall. This denionslrille._

lhlit lhe vai'ialioli of viscosity is llniini)orlanl,
A_flail[ (,oninlenl ; [[" the viscosity is noL il_Slllnl_d

io Vitl'y lineal'ly with lhe i.enil)el'allll'e, the nio-

ilieilltlni lind cncl'gy equlllions ('annol tie scparl_lc(l.

As this ('if('uinstll.n('o (hick. of sepal'all(in) led

()sti'a('h (veiL,< 1 and 4 to 6) it) lind lwo solutions

for the flow I'lil}il,i' liilln ()ill', it is perhaps worth

extinl inill 7 fllri.hel'. ])('[lne

ll= f) r k dTu (16)

Then equations (11) Imvonie

aB_l,f/all(_,=,--n Ai ] )'_-- fl- nl'I(l--'i +"2 )

This conlt)letes the st)hilton for the extit'l fully

developed flow of ii gas. There it.l'e two generaliza-
lions wtiich can readily lie Inadc. These involve

the addilion of a body force transverse to the chan-
nel alid the addition of heat SOUl'Ces ill the fluid.

The solutions lt.l't' given in appendix B.

EXACT FLOW OF LIQUID

l[erc it is assumed that there is a t)FessuFe
gl'adienC such that, at least, ]_. and Pr are inde-

pendenl of X. No other ."(-(Icpendence is ad-

nlittcd. Then the system is that given, in equations

(7) an(t (8), exci,pt, for I tie .V-illolnclttllllt (,(|tlalion,

which van convenienlly lie written its

(_,r)_ ..... p/3(7' -T*J.f

t (It,- } 7[)-pill(T-- T*) (IS.)

I )= (_OIISl tlIlt

(17b)

I I_-- --u_

For gases, Olle (,xl)ecls tlliil #li_l il.lld #12)(); till.IS

lhl, fight side ()f e(tulilion (17a) is 11 decreasing

funvlion (if ]l. Iii this (,as,, there can be ill niosl

till(' solulion (if the prot)lenis. The llrgllinent gOeS

this wily. Suppose one solution is known. If a.

second solution has larger lI, then by equation

(17a), u_ is smaller. [lence, for a reasonable

lil'ofile, u, is rcdu('ed. Then, by e(luation (17h),

II,, is (if h, sser magnitude. ]fence for a reason-
al)h, case, H nlust also 1)e slnall, which is a con-
trallietion.

It should he emphasized, however, that this case

of no pressure gradient whatever has no connection

with the work reported in references 1 and 4 to 6.

whet'(;

7.=_ _._.- • (19.)
pnf

It is w.rth observing here that, if the reference

point is changed in equation (5b) (i.e., a new T),
this has no effect whatever on the vahte of T*.

This is because the state equation (eq. (5b)) is

really of the fm'm p=A--BT, where A and B
are fixc, I. lit that case equation (19) is really

T* Px+Af
n/

Hence T* is a function only of 1_.,/, and the mate-

rial. Tmn if n and H, defined by" equations (9)

and (16., respectively, replace y and T, the mo-

]nentllln (i([lllltit)n bt,comes

u,, = -- k _2o flu ( T-- T*) (20)

while t],e al)propriate energy equation is, again,

equatiol (17t)).

Now the foi'cing term (the right side of eq. (20))

should be considered. According to its definition

(eq. (16) ), If is an increasing filnetion of T. Hence,

at least 'or constant viscosity, the forcing term is

an incre;_sing function of H. If v and k arc con-

stant, then the forcing fimetion is linear in H and,

for this ease, it has been shown (refs. l and 6)
that two sohitions occur under certain conditions.

In the pi esent situation things are not that simple,
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and the results depend oil how _ and k vary.

For many liquids the conductivity varies only
moderately over a faMv wide range of tempera-

ture, while the viscosity may change severalfold.

Two cases, water and liquid sodium, are illustrated

in tables ] and I1. In the present discussion the

TABLE I.--VISCOSITY AND CONDU('-

TIVITY OF IJQI;II) SOI)IUM

Conductivity, k, Viscosity, #, cenli- -1]

watts/(cnl)(aC) l)('fises [
Temper- __ __ [

ature, -- -- -- [
T,°C Experi- I 1117 Experi- Fq. 121 i

merit - .^ m_ ut (a) '

(ref. 9) I IH0+T (ref. 9)
I

2011 (L 815 ' I). _,15 tl. 4.N_ 0. 4.5tl

3011 .759 i .7¢10 . :t45 3.51)

400 .712 .712 ,284 2_6

500 .668 .668 ,243 242

6()0 .627 .62¢6 .211) 210

700 .5_1 I .598 . lSfi 1_5
g0(I .547 .567 .165 11_6

91)(I l I " -- . 150 150
I

• T,=IS0°C; s=15_ (cent(poises) °C .

TABLE II.- VISCOSITY Ol,' WATER

UNDER ATMOSPItERIC CONI)ITIONS

Viscosity. #,

__ eentil)l)is's_ __rrl!l/I [)eF-

attire. 7',

°C I Expert- : Eq. (21)
! meat i (a)

(ref. 9) I

0 ' 1 71 ' 1.79

20 i 01

4D • 66 . 611
60 .48 ! .45

•:¢*_ [ .36

so I .28 I .3(,
11}0

a 7'. = _3° C;
._= 36 (cent(poises) (o(,).

variation of conductivity is neglected. The vis-
cosity can be written to good approximation as

,q

u = ],+-: 7; (2 l)

where s and T,, are c,onstants (for water ._'--().36

(cent(poise) (°C), and T,=20 ° C if 7' is in °C).
This expression is compared in tables I and II with

experimental values. It is to be expected that

(T+ T_)_0 in the range where the fluid remains a

liquid. Under these circumstances, equation (16)

yields

H=-_ T(T+2T_) (22)

and equation (20) becon'es

u"'=--l', )L - krXT2 ,U T;_] (2:_)

From equation (17b), it is seen that, if u_, is

large, ll musl vary more or less paral)olically
upward across the channel. Then it follows (eq.

(2.3)) that, when H--H(T*) has a large magnitu(h,,

the forcing term increases only slowly with ll,

while for small H--H(T*), the forcing term is

linear in ll. The latter reduces the prol)h,m to the

usual free-conveetion situation (ref. 1), while t]le

former (large II--H(T*)) approaches the usual

Poiseuille ease, wherein the forcing term is con-
st,ant. This eireumstance al least reslri('ts the

range of flow Imrameters for which two solutions.

as found in reference 1, can exist.

Stated more explicitly, if (7'--T_o)/(I;_o+ 7',)
remains snmll, the viscosity is essentially constant

and the syslem becomes that solved in referenee 1.
tlad the variation of conductivity been allowed

for, a small modification of the foregoing argument.
might occur. If the conductivity drops as the

temperature rises, the forcing term would move
toward a more linear variation with H.

In general, the solution of the system given by

equations 123), (17b), and (8) is not simple.

I|owever, after two limiting cases are discussed, the

general case can be described. The first such ease

is that of small frictional heating; the second is for

small temperature variations, and therefore vis-

cosity can be considered constant.

SMALL FRICTIONAL H EATING

First consider the case of small frier tonal heat ing.

The formulation involving 77and H (eqs. (23) and

(17b)) is not convenient for this ease. th'nce,

consider e<luations (18), (7<1), and (8). The vis-

cosity is defined by equation 121), and the con-

ductivity is assumed constant. When lhe fri(.-
tional heating is small so that the right side of

equation (Td) is negligible, one obtains

T= T_o +Y (T=_-- Two) (24)

Then equation 118) can be integrated to give

u= -- "Bfd2
24s ( Twl- T'%)2 [3 (Y)'+ (4a2-l- 8°q) (_[) 3

y2 y
+ (12ala2--a3) (_) --2a_a3 (-d); (25)
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_V[IUFP

at__ _ u,.--_ I, t_r)te I -- Wo

a,,= T,,, + Z, (2(;)
" T,_-- Tw0 /

12ala_ +4 (a_+ 2al) + 3 /
_ (1 + 2_21 J

aml T* is defined by equation 1191.
lhe wall shear is

From these,

:(uUv)v _ _f_l(7'_,-- T,,,°)(_:ff12--0<l--1/21

(27)
The m'! mass flow is

• d

[o,, Y
.,,, d = _611.,' (7',-- T,,,o) _'

Nil +511 +2o<,)1___20<_(1+60<.,+ 6a_)"l] (28)

These r(,sulls can I)(, COml)_wed with those for

conslam tluid properties. (This case is givel_ on

t). 10ofref. 1.) In suchacase, the teml)eralure is

again given 1)y e(luaiiolt (24). The velocity
distril)ution, wall shear, and mass flow arc girt,n,

r(,sl)e('(ively, l)v

m

p_fd(T,_ -- 7',,,o)" (1+20<2)
u _ -- 12,_

Y Y y ,+,+.,.,)](29)

(uu,( ,.=,) _f_d(T,:,-- T. o) [(1-_ 30<,)/6] "_
t"

(uuv),.=, -_.f-_d(T.,-- T,,o) [--12+30<,)/6] j
(:m)

ounl - 481s' (T._-- 7',._):[(1 +20<,)(1+2_)]

(31 )

ht lhese last (,(lualions the vis('ositv has l)(,en taken

as that ('orresl)on(ling to t,h(, ,l'v(,rag(, h,ml)t,ralure ;

that is,
2s

u=_ ,> (32)
T,q + T,_o+ _ T_

A COml)arison of the r(,sults obtain(,d for the

cases of constant and varial)le i)roperties is given in

figure The tluid is liquid sodium, an(t the

lenl])erattlres of lhe lwo walls (I00 ° and 900 ° C)

(lifl'(,r (,rlough (hal the viscosity varit,s l)y a factor
of about 4. Irt st)ire of (his there is no signilicant
(lill'(,ren('e l)etw('('n (he r(,sulls for the two cases.

Tha( i,',, the (,fl'(,(.t of variable viscosity is un-

lint)oft.ant even though the (eml)eralur(' va, rialions

are large.
It is in/eresling to ol)serve (h(, case when

7'* (Two+ T,,,_)/2, the average fluid temperature.
Th(,n 0<:- -- 1/2, 0<3-- -- 1, and the sh(,ar is not only

the salae a( ('ach wall, t)ut is the same in the

conshn t- and wu'iable-viscosity (.as(,s. Howev(,r,

(h(' v(,1,)cily profih,s (lifter slightly; and, while the

mass fl()w is zero for the (_onshmi-l)rOl)(wly case, it

is not f,)r variable l)rOl)erlies.

SMAI,I, TI':MIJERATURE VARIATION

In the case where the friclional heating is

(.()nsi(h,r(,(l l)ut wh(,r(, lh(' t('ml)('ralure variations

art' small, the tlui(l 1)rol)('rties can t)e ('onsi(h,r(,(I

consta) t. This ('as(' has l)(,en solv(,(l l)y ()stra(.h in

some (I.,(ail (r(,fs. 1 an([ 6), t)y n,_achine m(,tho(ls.

Howcvw, a noth('r nu, t]lo(t of getting the samc

results is now ])r(,senle(l lhal has (h(, atlwmtage

of givi),g lhe paramelri(_ det)t,nden(_e simply. The

sam(, ntethod is apl)li('(I la((,r to tim general case

(large ((,ml)('ratur(' varialions). ]low(,v(,r, the

j uslification of (hi, l)rO('('(lure is most convincingly

(lisl)la.v ,(l l)y ('omparison wi(h th(, aforem(mlion(,(l
maehine solutions.

In (t is case of small t.emperatur(' (liff(,rcnces, it

is agaizt (_onvenient h) work from equations (18),
(7111, and (8). ]f (h(, temperature changes are

small ,qiough that (T--'I',_,))/(T_.+T,,) is small

(,veryw here, the viscosity and conductivity can l)e
(_onsi(h red constant.

quantilies arcTh(' following din)(,nsionh,ss
dr,fined:

",,vh oro

U PMd_
" =-4/_m u

"_'_2.Pd4 K(T--T*)

v----(T-- T*) ]6_k-_,,_ = i6iTwo _ _*i

--Y-1
n=2 d

(3:9

K__

(fffifd _2)_('1' -- T*)
- w o

_m_m

(34)
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is the lmranleter defined in reference 1. In terms

of the new varinbles, equations (IX), (7d), and
(S)1,oeom (,

7-,,..... I "_ (36'

[ (+ 1)- 0

]ii\T,,,K(T,,,, _T*'_ _TIt 1)_ T,./_mtC/'lU s_w

7

{37)

1.6

1.2

.4

]- ] -

#Uy

; # f d( ,rv,_- .r%)

JoodPU dY

V(]rioble

propeHies

-I.906

l
Constant

properlies Y

0.229

-.395

-2.031

Constent /

properties
(eq. (29)) -/

/
/

(eq. (25))

0

d

I

\
\
\

\
\

t

0 .2 .4 .6 .8
Y/d

l,'t_;t:lt_: 1. -Effect of ])ropm'ty variation ou velocity profiles. 7',,.0, II)() e ('.; Tq, 900 ° (!; 7'*, (I ° C; liquid sodium.

513555--60--2

1.0
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An npl)roxinmte solution of this system can be

flmml by iter21tion. The velocity profih,s are

ommllv i)_)r_bolic. Thus, suppose

I :(0)=-A(1--'o") (88)

where .A is an undetermined parameter. Then

equation (36) yields, subject to the houmlnry
corot(lions,

K "lf-r-32[(m-!-l)-t n(m--l)] -:-'V(- fl!) (39)

If this is put into e{luntion {35) the resulting

veh)city distrit}ution is

l .,_,_ K[[,I _ I +(m--I) ]-- --32 _ (_12---1) 6 " _TJ:_--r/)

"I: E (rl_- 1 )] (40)

This process could 1)e cimtilmod, assuming con-

v('rg(,nce, })ut is slopped al this l)oin(. If e(lUa-

lions (39) and (4(I) rip(, put into e(iualion (36)

and the result is inl('_ra1('d re.ross lh(, clmn]w], ))

(lua(h'ali( ' equation fop tlm mfl,:nown ]}arameh,r
:F' f()lh)ws. This i_

.i-' k. S0SL - '_',() )]} + 103,424

X[A.{m 4 1)]_[1_ m ]41m t 1)-' =4) 141)

Real solu(ions exis( if

210

/' 707 f- m -]
i [4-i,,; :(

_N( m + L

210

'+6 D-(,,,"'>
The 1)oun(laries defined by equation (42) are

plotted in liguro 2 for K_0. Some lira(ling values

found in referen(;c 6 1)y machine methods are

shown for corot)at(soiL Agrcemell( is e×('elh,/_(.

The two solutions can be examined genernlly

in the fi)lh)wing matm(,r. If K(m+ 1) is nmderaic

(say, in Ihe range 0 to 40), then equation (41)

yields, at)t)roximutely, the two results

A2_ [0.0] 6K(m + 1)]2"_

or _ 42 j_ (41 a)

4(

3(

20

The m_ss lh)w and heal transfer to (h(' walls

are, r(,s }e(,( ively,

"_ /[',,, lCI m-) 1 ) "_
pu (I}" _-

• () f3.fd 24
()r _ (43)

___k,. 16 !

2.f,I •1

.-vk,,,7')-_k,,,l(7'r _-_,, {7'r)). ,1 "]

256k,,,( 7'..- 7'*)
,_ [O.Ol()I((m : l)]e
3IGt *- (44)

or 25(g:,,,(T,_.- 7'* [

"_ :llCd 40 J
The tird (Slnnllcr) mlulion is one in which there

is negl:gibh' h'icti{mal heating and, hence heat
(ransfe', while the second is quite the oI)posite.

The so( ond case is, as is 1}ointed out in reference 4,

one of regenerative healing. There is a large

amotmi of heat transfer to the walls (eq. (44));

this heat is supplied 1)y frictional healing of (he
fhfid o<.<.asioned by large mass ttow (e( I. (48))
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and the resultant high shear. Notice that even
Wlll, n T -- •,q--T,_--T*, so that. the l)roblem is an

homogeneous one (K=O in eq. (37), although
t(/(T,_o--T*) ill eq. (33) is not z(,ro), this second

solution does not vanish. For lhat matter, lhe

second sohition is virtually inth'l)endent of K and
m, provide(I I¢ and m take on nmderate values.

The range (if validity ()[' these resulis is limited

by the <'ondition lha.i (T-- T "_(T -L-T*) besmall
• [,FO} ,, \ _ tg 0 ]

so that the vis('osity variation is negligibh,, in

the case of the second sohition (large A:), lh(,
maximum of T occurs near the ('enter ,if the

('harm(,1, and lhus equations (3S), (44), all,l (4tbl)

yi('hl

7;,,,,_-- T,:,, 200_ T,,, - T*

"t',_,,+--7',, _ K 7',,,,+ 7'.

If, for examt)le , K-- 10, then 7',:,,-- T* is limited

t() a, few degrees. This implies also lhal, |lie wall

tmnperatures must t)(, virtually equal. (in 1 tip ot ]l(q'

hand, for appli(,ati(ms of the th'st solution (smMl

A2), the only. r(,st,'iciion is {hal (7'<,-- ...../_,),'(7u,0

-{-T,,) be small. ]{owev(w, if Ill(' viscosity is llnl[,

for some suilal)[y detin(,d average, l.lm error (hm
to larg(,r t(,ml)eralure variali(ms shouhl lie imim-

t)ortant.. This conjecture is based (m lh(, (,Xaml)h,

discussed after equation (32).

Before giving a numeri(ml eXaml)h, , il is worth-

while to cxlunine the order of ]nagnilu(|e of the

numliers ()lie olitains in l)hysical probh, nts for lhe

present (;ase of smM1 teinpcrahlre dilt'eren(,es.

From equations (33), (34), (40), n n(I (4In), one

has, very roughly,

O1'

Ill'

uln=O)_ 16 "_ k

210" Ii _ 1 ") ( 7 ',,1 _ 7'*

(Snl/lll s(ilution )

('L/u'ge sohlihin

(Snill.H sohll ion

(lml'g(, sohlt ion

(45)

For exllnll)h, , for wa.ter at, 0° (!, if IC-:25,

7',,,.--T* 0.25 ° (', itll([ IH--l, l]le Illllnl)ol'S foF

lho "vni'ious (qlSOSlifo

i- " fs,,,a_l I,argv

u(,=o,, ftfs,,c I 25 200

I T('-m-T=°°c I " "

This case ('OlTt'spoilds tO ti. channel widlh of 14.6

inches. A niore general idea of the orders of lhe
numtmrs involved in die second sohtlion (,Ill/ lie

()t)lilillp(I /is folh/ws. Froin (,(ill/ilion (33),

u_ £"I "_
= - (46)

7'--T* u r

||owovor, fr()nt e(tuli.lh)ns (3,(t) (40), and (41a)
llie InlixiniuliiS of [" and r for the se(>(nid solution

usually o(_cllr notir 17--0 lili(1 have lhe respc(qive
vii.hi(is (if ii.l)(ilil ti_ and 14. lie/it(,, for lh(, s(,('on(I
s(lllili(in

#12 -

(r:: <4..)

Actually lh('l'(' is il() ('onltlinalion of K /liid i'i'_

Slleh t]lat ('qulltions (41), (39), and (40) yMd
l'_g,a_/r,,,<,_l. For waier, 3kl# is (if the order

104(ft/scc)2/°( _, and hen('e if T--T* is l ° (', t]l(,

velocity nmxinnlin is lt)(I feet per second. For

liquid sodiuni, 3ki:u is lil)oul l()7(fti's('(q2./°(' ; lhus

a l,(_lll|lOl'ltl,tli'e dilT(,ren(_(, (if only 1° (7 ('(llT('Si)(ilids

tO tt lllllXilllUlil velocily of 3,000 feet per Se('oll([.

It thcr(ffor(, al)l)cars thai, if the velo(:ity is to 1)(,

kept nlo(h'r/it.(_ io niainili.in hi.nlinli.r lh)w, the

t('nlp(q'll.t.tlro vii.rill.lion liiiisl, lie sinli.]|, lh, nce, /he
tiSSlililptioii (if c()nShilil thlid ])l'O])(q'li(,s is it

good Oil(,.

To (;oil/pal'(, the i)rt, st,ni niet.h(i(I of (_ah!ulaling
the velo('ily ilil(I |(qlll)(q'lttilr(' ])ro/ih,s with the

nlore oxlicl so[ulions o|)lllin(ql tiy inli(,hin(, l/i(,1 hods

(rof. l), el singh, eXll,llll)h, is shown lit figure 3.

lleincniber lhal this is It ('onsiant-fluid-prop(,rty

sillllllion. Tile (,Xliln])l(_ is thai. (if Wllltq' [lowing
in a, chamwl 14.7 inches wide an(I flit which

T_%-- T*-- 1/10 ° (]. Tile wM1 t('inl)(,ralur(,s ill'(,
20.0 ° an(t 20.1 ° C. This leads to /C--ilk The
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"5
O

2°°ii i i
f /,,<" I "",. \ -Eq.c4o/

L6o ! : if l-"-. -b 4".hi I :

40, '

2.4r _ r ' r 1 t [

,-Eq. (39) and

0 0 I

]"I(;I'If.E _. \'el_luily lliul hUlll)eril, lilre I)l'oIill's. m, 2: /G

1(I; 7', ° 7'+, l'l(i ° ('; waler.

U_l'eenll,lll is within lii t,el'('t,lil for lhe seeolld

so|utiou liud, iiol ,_url)i'isiilT|y, virtullliv exact for
lh(, snialh, r OliO.

lit, fore eudhig the discussion of exarlly fully

develol)ed tlows, il _houh| lie observed |hal llie

iiol'll.livu l)i'oCedllre used Io g('t SOlllliollS her(' ('llll

he llpl)lh'd hi Ihe oilier i,llSi_s coushtel'ed iu refer-

tilI.C(,s l, 4, llll(I ti, lllllllOl)" those illVOlVilig wall

lenll)erlilllre 7radieuls and heal SOtll'Ce_ in lhe

lhlid.

As is _lliled elirliel', Ilu' 1)i'eselil ih,i'lllive |)l'OCo-

(Jlil'l' ('ll.ii Ill' applied dJri,rlly 1o liu, ol'igilili| |)rol)|pni

wherehl lhe friclional ]lelililig i._ cousidoi'ed and

}lil'_e ll,liil)('l'lil iirc chlliig(,s are (toill(,illlillil e(I. Thu

SOhllh'm for su('}l li Ihiw is giveu ill al)l)endlx (' f()l'

ihc (!llsi, o[ equal wail t.entperalures. The olily

dil[ereliCe fl'Olll the l!ilSi, |liSt discussed is thai

SOlile of ltio hllegi'lils ll.ro rather iliVOlVed and the

i,qulilion for the liinl)|ilude is inore ronll)lieuled.

Howevl,i', lis is ol)serv(,d previous|y, if the v,,lo,!iih,s

ll.l'(! [o ill, kepl llloderille in lh,, se,'ond sohllion,

lhe lenll)eralure v_irilllion will be liegiigible.

APPROXlMATt: SOLU'rlON,S

Tile l'eSUlt,_ thus far l)resellled hll_'e lhe heauly

,if liehi_' e×acl within ltie ]iulilnt.ions of fully
dovelopt,d tlow. |{I)W('VOI', several _'tis(',_ liri._l, ill

whicli _lleii II. lira|led _qew is unlict'ul)lli.lih,. The

siniph,s: Sil(']i ('lltl, i, is ill(, flow of a gil_ with Ii ])l'(,s-

._/ll'l, gr.,ldieni, the ordinary PoiSelii|h, flow. All-

other rtlse of so111(, intero_l is t}llll hlvolvhig li wlill

lenipel'alure grtldieul. The exlelil. Io wllich sueli

flows I_tlll t)e cousidered fully developed is examined

ili Whlll follows.

,*'_)|lll[OliS of equlitiolis (|) 1() (6)art' SOllglii.

Agliili, a. ]olig I_liillillOl is llSSlllll('(I Illl(1 ('71(i (q'i'(,(qs

Ill'(, iu'_:h,cloll, hi such il ('lls(', |lily gradh,nis iu

liie .\'-,lireclioli (it| lhe th)w direelion) niusl lie

<_lnlill. lhuice, write lhe "Viil'iUl)|es ll._ follmw:

1> 7_{1 i_g"."t4 --.I

P P[P,,(]t)-{ 6p_(.r,_lj 7 •..I

7' 7_l'1',,(:t)} 6A',(.,m) f ...]

-_l_,,(il)-t 6_,(.r,y) + ...l

I," k(l; (_I -i 61q(.r,!lJ { ...I t.t7>

'177[()i ,St!.",_1) }
P_L ; " ' "

,_ A'/L

_,1 "}"i'd

wlicre IL is suilil], <l }Jeilig lilt, will| sptl('uig' litid L

l)ehlg I h,llglli of flow, II_ }'('1 uu_h,thted. The

other lwo |)Ul'lllllt, l(,l'S, _ liitd 5, lil'e siillili |)ill Illl-

relilled ill |his lime. For Ii l£llS (_nlu_t Iw Ill h,u_l

its htrge tlS _ for |he sllile eqtliiliou (eq. (5)) 1o niiike

_('ll,_e, vhile for 11liquid lhe lttlllli}er (_i_ delermilu,d

})y ttu, lemperalure |)oundliry coiidiliolis. Tile

l)liri'ed qtlillilitie,_ ure (,xl!ei)l for _, gJveii l)tirllln -

(!ll!l'S ctiOSell so lhat. p0, J'., /x., ulid ._o foi'lti, ill'l' of

uuit oxler. The vahie of '_ is iliilillH)- unknowu

t)ocilu+_e |here is lit} chilrlicteri_liu vehluiiy fiir hi-

lerntil flow,_ of this kilid.

Had the term .q(x) hi |he 1)i'(,s._tll'l , (the th',_t of

(,(is. (47)) bi,Pil _onsidered lls ii fun(.liou of ?/ also,

then lithlod terms wouhl }m hltrodue(,(] }}t!ltlitlSi, of

|lie ff-lllOlileniulli (,qllil|iOll ((,({. (;/)). t|owev(,i',

these are, analogously lo liu, llStlii| ]}otlltdlil'V-

layer :lnaly,_is, of lliglwr order lhali wlilil is re-

lllined iu file oil|or equation,_ ()[ niolion.
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If equations (47) are put. into equations (1), (2),
and (4) and only the dominant terms of each kind

are retained, there follows

PO(UI,.rAI t!l,V) i-po, J_l--Pl,z_o=O (48)

L - [po(UoU,._+v,u,,._)] + _ +p.:(t,o+_p,t

u_z [(u,,uo ,),,] (-19)
(12

6"_c,,u7'. ........ M>'u
--L--- loo(U0/,.x_,', lo._)]+ I]- {u, .+v, ,i

kT' . ,, . _, . ,, D7_-
- ,t_ [(l_olo.,,),,+a(kol,.,+k_ 7,,,_,),,]+ 7P (u,u_ ,,)

Finally the slate equations (eqs. (51 ) yidd

(5O

7;=M:T 1

p0"/;)= 1 _ (Gas) (51)
/

poT',+ p,7'o= <4a)<./(.; J

p.-I --fl7----;(7;, 1 1
(IJqui_l (52)f-

p, = -- ¢77'Ti j

Now observe t ilat the lerms in the brnees in

equation (49) descritw the driving forves of lhe
llow ltltd IllUSt. lhorofore ])o (if the Slilno order of

magnit,ude as the viscous l erins (which conh/hl

tile tiighesl derivalives). Tile following fOlll' (!ilSl,s
will lie considered ill'llll'll:

Body
_Ol'Ct'

I ,al>!Ze [ (qlIIR,I-

;it III'p "lqlFia{ il ill

( T:, %'til'i;tbll')

(';is{'

] 'YeS YeS

l I N o Yes

III Yes No

IV No NI_

CANE l--T0 VARIABLE, FREE CONVECTION

For ('ilsl, I, It,rills of oMt'r 6 ('tin tit, n('gh'('t(,(I lis

(toni pli r(,(l to (,OIT('spon(1 hlg Zl,l'll-(irdt, l' l(,l'llls.

Thus, pi can tie s(,l oqUil| 1o zero ill equillion (491) ,

its (_iili _'1 tilld rl.!/lit (,f|lllili(tll (50). Assunihlg or,

itnd (t,(x) 1o l)(' of unil (irdor, llie body force and

i)i'(,ssure gi'ndicnls niusl lie of simillir size so lhnl

L=p. (53)

11

Aet.unlly, it is only necessary lhlll PttL <_-pf ill order

to tiave lhe body foI'(!(! nlnller. Howevol', ii Cilll

tie iLSStlllled t|lill c,qualion (53) tlolds, and _ ('lilt

lit, dise_ll'ded lalcr if il is slnll]], cnoiig]l.

Tlien, ilshig equat.ions (al)ilpd (52), the di'ivin 7
lernl in equitlion (49) is

_ E1 7-:I,.(.r)--'/i_71-L- :I,(.,.)-+U(p.,) _.f . ,, ]

01"

((ills)

_ P,f-_ V l _ :l_('r) ]L _-_ --(To--l)

For a mixed flow, g_(x)--0(1) for it gas or g,(.r)-:
--1_-0(_'_') for It liquid. A |)llre freo-conve('lion

ttow mighl lirilitrlirily tie defined its ()lit, foi" which

.qz(.r)-:- 1, but, for ('OllVOlii('iit:c, tiny tlow ilivolv-
ing body forces is ileneeforl.h referred 1o l/s il fl'oO-
(:onvoetion flow.

I)efinilions of the lmrred reference vnlues ill

equations (47) are till st.rilightflwwaM, except, l inll
for _, and "l.selection of wlhies can relldily lit, lmlde

a priori. However, _ lllllS| lie (!tl/)St,ii Sil(,[l fRill t&l

is of unit, ordoi', and l|iere is 11o v¢ii.v o[ knowhig

liliell(I (if time ]low ]fig lhe ttow will t>e. II('liCp, for

the niolIlellt,, let, tls l)('7 lh(' queslion nnd define
silnply

( '., -il2= pip • (5;->)

where (':> is unknown and, for li gas, dT'--_ I. ]i is

shown later liiat tie is il nunltmr in the rliligu 10 {o
50. Til('n equlilions (4£), (49), filial (30} {'till I)('
written

po(u ._+e .,,)+p<.,v _ p ,_u =0 I56)

{'"-' } i
(#_ou0.,,),, + ('e 7'0 --[1-I g_(.r)]

= " [,O0(U0Ul,xA[ g'lU0 y)] foils
.fL_7 ....

(. u,o,, v+('e{ T0 1--it+q,(.,. ]//TT)

5_'2( '.."in u_uz_-riu), ] (Liquid)
.fLST

(57)
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" • ' ('r P

e q'_ _-_e,. U,, ,̀

a, J
(Gas)

,/,:,1;_) =_.,,a_C',, { [po(_,,/, +<,/_.,,)] _7"' " fL'_' r-c,,p,

L no ' -_., --ff_i, (l_ou_)._,)(l_iquid
(58

The system whose solution is sought is given l)y

equations (5t0, (57), (5S), an(l (51) or (52) plus the

I)oundary conditions (eq. (6)). Assuming that

.q,(x) is given, the unknown dependent variables

remaiIfing are seven in nuntber, 'u0, u_, v_, p0, p_,

70, and Tt. With five equations and seven de-

l)en(lent variables, some further restriction must
I)e made. The difti('ulty arises mainly ilt lhe terms

tit aiR[ tq. For a gas il at)t)ears p_, u_, and c_ are of
the same order as 7'_ and hen(,e tlmt the inertia

term in equation (57) is of the same size as the

eonve(,tion term in equation (58). Ilcnee, it

folh)ws that, in order for the solution to be de-

1ermine(l, both of these tenns must be negligible.
The same result follows for liquids, although per-

Imps not so ol)viously. In this case (eq.:_ (51)),

p, is very small, of the order of _V/', where _ is the
volumetri(, expansion eoelli('ien(, th)wever, for

li(tuids lhe viscosity is n very strong fun('tion of

teml)erature, and thus m 0(T_). ]h,n('e, there
is no t)arti('ular reason to assume that u_ and _.'_

are not the same size as T> Aveor(lingly, if lhese

lerms matter, the present formulation is useh,ss.

For these terms to be negligible, two (.ourses are

open. ()he is to have everything x-independent
ns in the exa('r solutions desm'il)ed earlier. The

second is that. the Imrameter (_ef'f'-'.,.'fLg3Tbe snmH.

This is m)! simph,. For eXamlfle, if equation (55)
is used aml a. ehanm'l 1 inch wide and having a

chara(.tel'isti(' length L of 10 feet is assumed, lheli
umler standard e(mditions amt gravilaliomd ac-

celeration,

- }':gfiT:,jL_7' {;6,00(t a,,,'(',, (For wlLler)

(59)
(i,400 a,,"(_ (For nit)

Consid,r (_=l. For the air ease, 6 must he as

large a; _ which is about 1/3,000 here. For water

6 can f}e chosen t)y an al)plied wall temperature

gradim_t, hi either ease it seems (litli(mlt. h) make

UaaTF_fL_I---' small in fact unless ('.2 is a hu'ge
nlllll})er.

If this (luestion is ignored for the IlIOllleltl, it
can be el)served for a gas that if a=_ (and 6 must

be as l,wge as _), the eoellieiems of the inertin m"
conve('tion terms and of the dissipalion lerms are

a nd

--2 ,"/77_,,T r --Z/ ----2 "_l( _Su/fLlJY ( .,eu/,fL=( ..,pu,/!

--'2 u }_l. __ |

_'_,i--"" (_'I/') I
k7 c,, j

(6O)

(wher(. Pr is a Prandtl ltunlber), which are both

essentially the squares of a Maeh mmfl)er and are
ihe same size if (_ t. llence for the gas case,

at, least, the fri(;tional heating must also t}e m,gli-

gil)h' because, as is shown later, (_1.

For t liquid it. can 1)e seen, l)y trying some cases,

that t:m frictional heating must again tn, very

small provided a/_ is nol virtually zero.

N(m to relurn l o lhe question of a value for (!2.

SupI)o,_e that equation (55) is used together with

its sulse(luent consequences. Then, for the sake

of an :'xaml)le , let g_(x)-----1 and assume a gas.

The d_lferential equations be('ome

(_,oUo.),, = ( '._(i - 7'0) 17'0

(k070._)_=0

The t),)undnry (:omlilions are

_0(0)= ,0(_)-- 0

7;,(I)) =: 7',,o

7;,(I) l',q

To hake lhe point al)out orders of magnitude,

consider that y0 and k0 are prol)ortional to the

temperature (i.e., _0--k0--T,,). Then the e(lua-

tions (an 1)e solved very readily. Maximum Sl)eeds
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have been eomputc(l for several cas(,s and aro

shown in the following (al)le:

-o ]"°[,,7

1 o. 12 I
• 01

I;, 3/2 . )3
i" 2

Then [u0]..... is of unit oMer if C " .2 is, say, 40. Thus

for the conditions cited in conn(,clion with equa-

l(on (59),

OF

w

('..,5_'-'/fL_T= 1 6505 (For water

= 1605 "(1 or air)

which, 1)articularly for the air case, can reiMily t)c
made small. In a case (such as (,(ls . (35) (o (37))

where two solutions occur, the same conclusion

about ('2 follows, although the argument is ralher

[OF( llOllS.

Finally, then, the ineriia (erms musl |)e negligi-
ble for the flow lo |)e fully dcveh)pe([. In that,
case the thermal convection and frict iomd dissipa-

lion arc negligible. The eqmllions for fully devel-

oped free-convection flow in a chamwl are (eq. (55)

is assumed to al)l)ly v<ith ('e_ 1)

1 -- 7'9+(#,d'/o u ;;= 711 1+(Ix

J(k07], _)_,=0

(Gas) (61a)

7¢)
(u , , , I--7],+ _,-rr,

(/c07'< _),_ 0

(I.iqui(1) (61b)

(',2--1 is used here and also in e(lua(ion (55[) l)e-

cause C, was introduced only as an aid in deter-

mining what matiers in the equations of tool(on.
With these small lea'illS el(re(haled, (' can |)e

dropl)ed.
it should l)e rememl)cred tim( these equations

corresl)ond to cases where the temt)erature varia-
t.ions across the ('hannel can l)e large. The solu-

q ( r_tions are valid provided only that &t;,,_fLf_7 is

small. For ('onsisten('v of COIIFS(!, ,O'z(;f:) IlIlIS[ l)e

constant.

The system is readily solved by first integrating
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the energy equation. The resul( in lm,'ametric
form is

.r k,, (17'
• 7" it, q)

'q= i' 7',q
I ko (t 7'

t) '/* bF 0

(62)

.t7[( t'uO,, 7',_,,k,, 11 (I 7:2

[i 3u= . r,q '{'0([ 7 -

• Tw o

f' ['"
I ] Tu,[. ;i] .) Tu, 1/'0/t_ d T[2" I "T ]c!!dT _

Jz'w, #o 7"w) ,ITu,_ _ ,u J
• _

where h' is lhe right side of the(first of equnlions

(6111,) OF ((; I b).
This (hen is tile solut.ion of a froe-COllV(,('liou

[h)w wherein hlrge temperature variations a(.ross
the channel are admi(te(l. The (,flee( of hmgilu-

(final wall teml)erature varialions wouh] l)resunl -

al)ly l)e allowe(l for l)y ('onsi(h'ring (hql lhes(' w(,re

h)cal profiles, l)y a sor( of strip (hcory. li(,sul(s
<>fthe ],:in(l in r(,feren(:e 4 wouh| a l)l)ly to case IlI,

discussed lah,r on, wherein small (eml)i'rntur(' vail-

a tions are assumed (hroughoul.

CASE II--Tu VARIABLE, FORCEI) CONVEC'FION

This is a tlow in which the |)ody force is con-

sidered (o l>e n(,gligibh'. In such a case ('(tualio)l

(53) no longer nPI)lies, l)ut on(, assumes that .f--O

and (hat _ is given. With(>u( loss, take g_(.r')=-l.

E(tm_lion (55) is rephtce(l t)v

/_ __ uu-- ('63)
L ,1_

Then equations (61) and ((;2[) with the(l" a(.(.,m>

i)anying conditions hohl, but with (he right sides

of (he lit's( of (,quations (61a) an(l (61l)) r('l)ht('e(I

l)y unity. The solution is that given in e(lmltions

(62) I)u( with h'=l.

The alm lysis thus far given al)l)lies lo the case

where large temperature (lifl'cren('cs are allowed
(To#l). If only small differences are l)ermitt('d,
a somewhat different formulation results.
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CANE III--T_= I, FREE CONVECTION

If "1',-=1, then m ,u,, 1. Also, equation (5;3)

still al)l)lies, and hone(, the drivin_ term in equa-

t i()n (4!I) is (compare with (,q. (54))

1_- .q.(.r)+_'f(l-t _m)

r 7, ± eq± 1+ q-"(,r)-]

:: _.f_]_ [-- 7' 1 -t "-I @-'(Lr('F!]_l_rl, J (l.li(|llid > J

164 )

Then, for a free-convection tlow, it is required that

gz(x) : -- 1 @ 0 (_¢77_') (65)

l:n(ler such a comlition the driving and viscous

foree._ are of itw same order provided (compare

with cq. (55))

u

_.f6_ 7' ;-77/d = (66)

I f these last equations and equalions (51) a.nd (5 `))

are used, equations (4S), (4!t'), lnid (50) become

u_.. i _'l,u --pl,_Uo (67)

u ,,,_. 7'j -e'q':r) I-_ gA.r)._ )]z

(6S)

(69)

'"/ -- 77" Ec.(',. . "'/'l .'+_--X-.,/' [flT-ZTr.,uoT,1,:_'""--Ul,'_i' I," t ' oTc,

-- ($_77,uo, _,

where tim ierins involving _I($ (lo not appear if the

fhiid is it liquid.

In dislinclion to lhe result, fi)r the i'ilso lif ]l/rge

t pnll)erll| ure vlirilil iolis_ hi eqiilil illil (t18),

..... 66,0006 _ (For water)
f LflT

: 6,40062 (For air)

O1"

for the ch'(qnnstlui('es of equation (59). in the

(,ll.Se for lih', if 6=e, ttiis is il. vol'y sinall nillnbol"

lllld shou|([, indeed, be negligible. The COllVe(!tioii

lerni in equalion (69) is of order 71or hirgel', its is lhe

frh'lional healing lerni, and sli()/il(l })o retained.

Theil equations (68) and (69) lil'O

1 -- g:.j:r),,,,...-to......"r,
t) • 6_7'

(7O )

, 5-_ f " ,, F_,', i

, - ,,L+::5 t l 7',,,

(71)

where again l]ie lerins involving e/6 in equat.ion

(70) Itll_t (Jz in equation (71) al)pcar on|y for li gas.

Now t,o (leterniine what fi)l'iiI the tenli)eralurl_

v_n'iat.ions ell.l| til, ko. [[, was li.SSlllnl,d ill tile Oll{Slq

lhal u0 is indepen(lont of x. For Ibis i'ilSO it is

rel_dily shown that l]ie nlOSl gi,lilq'li| f()i'ins nHow-

a.t_h; for lhe 1 ('llip(,l'ii.l lli'e llllll i)l'eSSllr(, gl'lill ienl ill'('

I I (t IJ'@ It2 -j' .7:(y) ¢7`))

6 T •:/,(x) .... 1 _- _ l(_,<$-f .,).'4 .=,}

Then e plat ions (68 and (69 |)eeonie

(73)

Uil._t/ : -- T.2 ( 7lilt )

'""=:'t-'" "" '' "':5('
(Tin)

where tie lerin uu--"/'6kT'(.,,[l l) (liSlll)lii,ars for n

liquid. These e(lual iOllS re(llih'e _lnli|i t (,lii|)ernl urt!
viiriali( ll_ I)ul adniit siilislantili| liitiss-|lovc riilps.

Yh(,ll, ill liTnlS of u.0an(I ]T_(y), e(lillllion_ (70i1.

and (71a are a 1)air of or(linary di|t'er(,nlial equa-

tions lird arc nonlim,ar only if i tie fri(.tional healilig

is inll)O_tanl. So|utions in the ]ineiu' ease Ill'(, (tnit.e

siinl)h_ ;l'(,f. 4) and in lhe nonlinetir _'lis(, ('I111 tw

foun(| 1).v t lie il era.lJ ve lnet hod giv(,n eli.rihq" f.ll(>w-

ing (,(111it|oil (37), ()slrll.e]l (liS(qlSSes tiffs sysllqll

('xl('nsi,.('ly in l'('ftq'l!n('(' 4, whl,l'e, tllllOllg othlq'

l iiiligs, ;oiiie Inaciline sohilions tir(, given.

(IANE IV To_l, FORCED CONVI_IC'I'I()N

For 'asc 1V equa.iion (63) still appli(,s, lin{l

(,(lua.lio:ls (70) a.n(t (71) are rei)hl(.(,(I I)y

u,o. _ = g_(x) (74

• - ,+:,,,,,,]l'l, w/= '_?"_'L--HO' 4- I_p7'_',"---)'_ pc',/ ,_<,'l',.

( 75 )
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The tentperature variation must have the form

7'_- (a_ + a,,y)=r+ 7_ (y)

while ff_(x) is a constant. These equations are
easily solved t)ecause the depen(lent, variat)h,s are

separated. The result is, of course, the familiar
Poiseuilh_/low.

OTHER GAS FLOWS

The ltows dis<'usse(! thus far have included only

lhose cases wherein the veloeily is essentially
independent of distance along the ,'hannel. If

lifts resiri(qion is lified, the l)rot)lem I)ecomes
vastly more complic'lted. Therefore, only one
class (>f solutions is examined here. These solu-

(i(>ns are ones in which the independent variables

are separal)le. Such a tlow is Olll of the (tuesii,m

for li<ttti(Is unh,ss it can t,e assumed that+ the

t enq)eralnre is a ftmcti<m (ff l/ only. This is

I)ecause <)f the form of the state e(luation (eq. (5t,)).

I t can 1)e shown that this limitation 1o 7' independ-

ent of x leaves only the fully deveh)l)ed cases
discussed previously.

First recall that, to have a fully devch>ped flow

in any sense, the channel must t)e very long and
the dependence on x must t)e much weaker than

that on y. Then equation (l) to (5) can be approxi-
mated as

(pu).,. + (pv) _.--0 (76)

p(UUx+_,uv) +Px=--pf+ (_uv)v (77)

l'r 0 (78)

pcduTx + _Tr) +l'(uxTvr) = (kTv)v4-_u_. (79)

P=pRT (Gas) (80a)

p=_ [1 --'_(T--_)] (Liquid) (80b)

These equations can t)e derived formally in the
same manner as ihey are (l(,r'iv(,(1 for external

t)oun(lary layers. The only difference, is that the

Reynolds numt)er of boundary-layer analysis is

replaced by a ratio (L/d) +', where L is a charac-

teristic flow length and d is the channel wi(Ith.

If the fluid is a gas @% (80a)) and the 1)ody

force is netzligit,le, and the vis(.osiiy anti thermal

con<luctivity each vary with ihe t emperatttre as

_=aT r (81)

k=bT_

then the pernfissil)le separated f(>rms are

u/ul(Y) (X/L) ° or e°x'L

r/ri(Y) (X/L)°-I or e°x J"

T/TI(Y)--(X/L) ''° or e:'°x/"

1'/1",-(X/L)°(_ +')+_ or _,_+,_0._/_
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(82)

where 0 is an arbitrary collslanl.

It is interesling, though perhal)s irrelevant, that

exactly the same variati(>ns of free-stream velociiy
are allowed f<>r similar solutions of the exlermd-

boun(lary-h_y(,r e<luations (t'ef. 7).

The eXl)onentia] f<>rm in equations (82) is valid

fi>r the conq)lete Navier-Stokes equations, while

the other form depends critically on ihe assuml)-
lion of a very long ('hannel.

Several other somewhat tmrelaletl commenis

about lhis result are l)erhal)s in order. First, for

a liquid the requirement previously stated, thai

5T/bX--0, leads to the condition lhal nothin_

varies 'with X. This case has already t)een ex-

amine(l. Second, for a gas, if the viscosily and
conductivity do not have the same variations

with t eml)eralure (,,(l s . (81)), only the trivial X-

independent separation results. The X-independ-

ent solution corresl)onds in equations (82) t(> the

exponential varialion with 0=0 and was (tiscussed

starting with equations (7). Finally, if lhe 1)ody

force, is important (--pf in eq. (77)), the fl)rms

given in equations (82) apply, but only will, 0--0

(exponential and uninieresling) or O=J:._ (pov¢(,r
(if X).

The forms given in equllli()ns (_42) have tlvo

oilier propert.ies of hileresl. The lhrough-tlow

Math nllnll)er, which is l)roi)orlional to /C/lt_/_7,

is ind(q)endenl tif A'. Also, nnless lhere is flow

ltirough the c]ianne| walls, all l.]le sohiiions except

0 0 (eXl)onenlitll) ilild 0 ..... J_.(- (power of =V)
must be flows with zero riei inass II.w. This is

t)ecaiise lhe inass flow is

which must not vary with X unless there is flow

through the walls.
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If equations(8'-))areput into equations(761)to
(8,0a),tile resultis

(') _'7 _)pl?ll-_ ( pl t,i )y: 0

(oo .>[ +,.1.
(g4)

= (u_u,_,r)v-- plfl'_,v 0

i (° ,',,ic,,p_ u_T_+v_TL)- +I', L.u,-i

2 )r)- (IclT"l,Y)r+#fltLrPl=pll_ 7)

where X = 0 if the exponentiaJ variation is used and

X = I if the variation is a.s a power of :r. Also, the

term pff ean appear only if, as ah'eady men-

(h)n(,d, 0 0 (exponenthfl) or 0=I/2 (power of.r);
_°l an(| _l._1 hll_3,'e the ol)vious definitions.

Now a new space variable, )7, is intro(luced fl'om

equation (10). Then (,(luat.ions (84) l)e(:ome

{ BP'(2_O+X) ) u'+T'-r(p'vO' () ('5)2R1,[7',(l)]r

IH_ 7'I-ffp,<)u,.,

+ (E0{2 _'-11 ) +X'] Pt) T,

4a[T,( l)]:t_,, t'Lf (86).... 1/_ 1 _ - cu,L .. R

_I__2% lTl(__l)]t(pd,1)T' tT
B x 1 _l,tl

= -4-8lT-'-(-- 1)l_j (T,. '_ _Be T[ t ,,, _ uL,,) (8,7)

P_ p_RT1 (88.)

()bserve that equations (85), (80), and (87) form

a, sct ()f three ordinary differential equations for

three variabh's (u,l, Tl, and pgh). One eurious

feature of thc system is that it is of fifth order and

there are, in g(,neral, six boundary (,onditions to
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b(' al)l)lied (one each to u_, vb and T_ at each wall).
tlent'e sore(, restriction must be pla('e(I on the

combim_.tions of boun(lary conditions fl)r given

vahn,s of the parameters, particularly P_ and 0.

Act ually this is no (tiffcrcnt from wha( hapl)ens in

analysi,; of the cxternal laminar t)oundary layer.

in (hal case, however, the boun(tary condition on

v (or _,_ at (he outside of the boundary layer is not

sa(isfie, I, nor is there any l)a.rticular reason for it.
1o tie. For channel flows such an omission is

I)rol)ably not alh)wable. In general, this means

simply that ihere must be a tlow through at least
one w, ll, and this flow cannot be prescribed if

similarity is tlo be nlaintaine(t.

If, on the other hand, one examin(,s the vase

where 2_-0+X--0 (eq. (85)), it, is permissible (o set

_,_ 0. Then the system is of fourth order wilh

four boundary conditions. The comlition 2_'0-!

X=0 (_,)vrespon(ls exactly to the two cases men-

(ioned in connection with equation (83). These
ave tin only ones in which vl can wmish at the

walls. Of the two cases defined by 2_'0+k=0,

name]), X--0, 0--0 (exponential x-variation) an(t

X-- l, i'0---- 1/2 (x°-variation), the first has been

solved earlier. ]n the second case, for linear

viscosi).y-temperalure wwialion, equations (_6)

an(t (8") 1)e('ome (--20--/'- X- 1)

VgallL ....u_+llT'_=:--kl, l_.,-Ii(--I ,)_ u,,.. (8,.q)

0, )J[-/',m ff( u,(/;'1,):(/:TO.LS,Lb ' -- . R

+a R ,,
u_., (.qO)

where .he boundary con(lit ions are

u,(:_l) o t
Tt(-- 1)-- (_onslant

7'_(+ 1) =Another constant

(91 )

The s(lulion of this system is more difficult to

obtain than is (he solution of equations (35) (o

(37), a] though a sinfilar procedure can be folh)wed.
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If the flow is fairly slow, with the Mach number

limited to, say, a few tenths, the profiles are, to

good accuracy

TI--2[TL(÷I)÷T_( 11] +217',(+1)-- T_(--1)]

f t'¢t" l
<= _ aL[T,(+ _)+ T,(-- 1)i f

V I 1 --Wz_l_ FT , (q- l)- T, (-- 1)l rill--721 "_
"'L. ¥-LT',C_i)#7',(-_)_J _--

(92)

where use has been made of equation (101 to
determine B. I1 may t)e ol)serve(I that the dis-

tance L can l)e defined I)y

(1,]L - -ap
\ o.Vlx =,,

which folh_ws directly froln the last of equations

(_q2). If the wall temt)eratures are equal, the

velocity profile is exactly the familiar Poiseuille
one.

A final remark: It can t)e seen that the system

described bv equations (90) and (911 will t)rol)at)ly

admit pairs of solutions jus! as the free-conveet ion

flow of equations (35) to (37) does.

CONCLUDING REMARKS

When fully developed channel flows are con-

si(lered, lhe cases that. can 1)e solved exactly are
very limited. For a gas a constant pressure is

required, or at least one which does not vary in a

streamwise direction. This case is analogous to

Couette flow in that no approxinmtions need be

nmde in arriving at a relatively simple math(,-

matieal problem. In the ease of a liquid, one can

solve the exact, ease of constant pressure gradient

in the streamwise direction. For both the gas

and the liquid, the wall temperatures must t)e

constant. In the gas case not]ring astonishing

happens. However, in the liquid case a sur-
prising result arises. There appear to be (except

for certain singular cases) either two or no solu-

tions for the flow. This result, which has l)een

discussed extensively 1)y Oslrach, has one solulion

for which frictional healing is negligil)ly small.

The second is one in which the frictional heating is

large, and thus the teInperalure is raised and the

t)uoyancy effect is increased. In the present

report an approximate analyt.ic solution of Ibis

l)rol)lem is given. The results agree very well

with Ostrach's machine calculations. Alth<>ugh
an analysis is given for the ease of varial)le vis-

cosity, it turns out that for the cases of interest,

wherein the fluid velocity is kel)t within reason.
the teml)erature variations are small and there is

no reason to consider variat:)le viscosity or con-
ductivity.

These so-called exact solutions, i)arti('ularly in
the case of a gas, do not (,over all the flows of

interest. ]{ence, consi(h,rati(m is given t() cases
in which there are strean)wise teml)erature and

l)ressurc gradients l)ut, in which the flow veh)city
is virtually independent of (listan('e along the

channel. For a gas the mere presence of a pres-

sure gradient requires a teml)erature gradienl,
while for a liquid the l)resence or absence of a

streamwise lemperature variation is governed hy
the wall temperature conditions.

Irt these cases one of two situations occurs. If

the teml)erature variation across the chanm,] is of

the order of the temperature lew,l, then in order

that "channel flow" be maintained, the conve(qi(m

terms in the energy equation must 1)e negligible.
This implies that the mean flow Math numl)(,r is

small and also that the frictional heating is negli-
gible. For such circumstances the equations are

separated and can readily be integrated for any
case of interest. Only one solution exists.

On the other hand, if the temperature variations
are small, more complicated effects occur. This

sitmttion of very small temperature changes ad-
mils very large flow velocities (see the discussion

following eqs. (46)). Then both the fricliomd

heating and the thermal convection elrec,s ,,,,n t)e

significant. In such cases (when the frictional
healing matters) two solulions can occur. These

flows qualify as (tuasi-incompressit)le in that the

only place where compressibility effects matter is
in the buoyancy term in lhc streamwisc momen-

tum equation.
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The forced llow perhaps deserves an added

remark. When the temperature wtries only

slightly across the channel, the veloc.ity profih_
must t)c tilt' usual paral)olic ore,. When the

variation in temperature is large, the profiles can

still I)e found in ch)sed f()t'm but are more compli-
cated.

I f streamwise variations of velocity a t'e allowed,

the flow is xnore <;omplex. A description is given
of the circumstances under which the indepemh, nt

varial)les are separable. These forms can yield

new results only for gas fh)ws and show that the
streamwise variation must be either as a power of

x (streamwise coordim|te) or exponentially with x.

With two exceptions, only one of which admits

.r-varia|ions, these flows require that the body

force t,e negligible. The exponential cases apply
to the full Navier-Stokes equations, while the

other o_es require an expansion of the equations
of motion in terms t)f the wit|th-tt>-h_nglh ratio of

[he chHmel. For all these cases, the streamwise

Math Hmlbcr is independent of x. All but one of

these ] ossible flows lead to diifit;ulties with bound-

ary conditiolls and require a flow through the

walls. The lone exception has streamwise velocity

proportional to l/x/x. For small flow Math
mind)ors the solution is similar to that for Pois-

euilh, tlow but allows for teml)erature variaiions
across the cham_el.

IJEWIS ['_ESEAR(!H (_ENTER

NATI,)NAL AERONAI'T[CS AN[) _PACE ADMINISTRATION

(_I.,;VrZLAND, ()UlO, June 5, 1958



APPENDIX A

SYMBOLS

A,A1,A2

a,b

B

(7

Cp)Cv

d

:,.f,

K

k

L

P

R

,_')7"_

T

T*

parameters defined in eqs. (41) and X, Y
(C._)

parameters defined in eqs. (9) ,,y
t)arameler defined in eqs. (1 O) _,,c_2,c,a

paranleter defin(,d in e( 1. ((79) 3

specific heats

wall sl)acing _,E

body forces in A'- and )'-directions,

respeclively, considered positive
in the nlinus .,Y- and )'-directions

pressure perturbation, cq. (47) ¢,0,X

temperature rune(ions) cqs. (16) or

(22) and (C1) g

t)aranleter defined in e(t. (34) P

therlnal condu(ttivity r

characteristic length, e(1. (47)
parameter defined in eq. (37) Subscripts:

pressure

gas constant, eq. (5a)
Wo

parameters defined in eq. (2 l) _t,l

temperature X, Y, x, !1, n
reference temperature detlned in

eq. (19) 0, 1

dimensionless velo('ilies in eqs. (33)
and (CI)

velocity components in N- and Y-

directions, resl)ectively

Supers(_ripls:

(O), (1)
bars

Cartesian coordinates, N being in
the main flow direction

X/L and Y/d, respectively

l)arameters defined in eqs. (26)

vohmletric exl)ansion ('oefticien( (sec

eq. (5t)))

small paramei(,rs intr, du('(,d in

eqs. (47)
dimensionh,ss (listance across ('han-

nel in eq. (10)

paranwters defined in ('(IS. (Sl) and
(82) and aft(,r (,q. (84)

viscosity

densily

dimensionh, ss l(qnl)(,rature (liff(,r-

encc in e(l. (33)

nlean value corresl)onding to aver-

age of wall temI)(,ratur(,s
wall conditions at )'--0

wall conditions at. Y--d

partial (lerivativ(, with resl)(,(.( to
that variabh,

zero-or(h,r and firsl-or(h,r solution

in eq. (47)

first two approximations

ref(,rence valu(,s in eqs. (5b) or (47)
19



APPENDIX B

A GENERALIZATION OF EQUATIONS (7)

If a transverse body fore, eft an<t a distribution

of heat sources #2, where (_) is a constant, is in-

cluth,d, equations (7) become

V-- 0 l(_uv)v pf

l'r -pfl

(BI)

These equations can be solved in exactly the same

manner' as equations (7). Tim results are, for
linear variation of viscosity and conductivity with

teml>erattu'e,f I #0, attd Q=0,

1' Poe- °"

f l'u R
u 2aj'( [(r/-- 1) e_-- (rl+ 1) e-_+2e-++_]

+,++(r
-- "2

. (f/'<+/:)+ (._ 4--h\2af] ] 2) (e+_e .)2 a-(e"--e--°)e-_"

+)
/t+ -_.+: (c:-'..... r -`-,°) e" + e "")-} 1

[ :++ ]}++0 e:"- -:' - (e+_c_++)2

2o

(B2)

9 rTwhere c = Bf_/.IUI_o is defined by

2"r_l_ _1_{fPol¢'__[(__e_o),(,,;_4/_)
a: dfi bdfl \ )af_ ]] L- ....

+ 7 (e:'_--e- 2") _ 2].-

and, for./,-:O and Q_O,

I'- (!OILS| al|t "_

a B_fP
+" 811U_o (n='-- l j

T,+ +'1'_ /T,+,--T,+,,\ a{aB2fp)2(¢--l]

PQB _
8b RT_o (1-'72)

(B3
where

240 \dT,,,o] L\ t+.,k., /

/B7;.\3/ m,+Qd2 \ /BT.+\
:t

If Q is positive, there is only one real root of this

e(tuati,,n, that root being such that

BY',. <1
o< dTwo

If Q is sufficiently negative, there can t)e thn,e real

1)osiris" e roots.
Othtr solutions can readily be obtained for the

case w!lere neitherft nor Q vanishes or where other
distrib ttions of heat, sources occ, ur.



APPENDIX C

EXACT SOLUTION FOR LIQUID

Tile i)robhml at hand is to solve equat, ions (27)

and (171)), sul)ject to equations (8). Define

_r kT°+.dI(_) {7+7o'_ ]

,, / -- 2#-- uv24# / (0,1)

'="_¢_+_.,,.zff=_'*-_--7';J

In t,ernls of these variables the proiflem is

_[_!e5,(.,.¢2<(](_l'l (C2)

II, ,_-- -- I "_ ,, (C31

I 'r,(i 1) --0 "_

fH,(+ 1) =[(T,%+ 7,)/( + 7,)1- (C49

where, to keep the problem fronl getting out of

hand, equal wall temperatures are assunled. For

eOllVell.iellee, (|efitle

._,= [ci,i,_,0+ ro)/('_'*+_'o)]'}Ao__._f_!2_,/_: (C,_)
" 4(T*+ T_)

It shouhl be remembered that, the parameter .H,

and hence A2, is as yet undetermined (recall eq.

(10)).
The solution is found ilt exactly the same man-

ner as the solulion of equations (35), (36), and

(37). Thus assume

Then equations (C3) and (('4) yMd

II,= A,-F X(1 -- ,?) /a (( '6 )

If this is put into equnlion ((?2), lhat eXlm'ssion

t)e (_'0111 es

l_q_<-.+, 1 _/1_ :_Ail_'- _ (('7_

If t,his is integrated and the appropriato boumlary

conditions are sat,isfied, the result is

A_ '2 +_,_/A _nJo_t(,,_n _

_ f,_ a, . f,_ _,l,, "_ (cs)
Oo-_;_'_-_-d. ¢}

where

(,4 I+3AJA 2 ((:9)

If equations (C8) and ((?6) are put l)acl,: into

equation (C3) and the result is integrat(,d across

the channel, the result is

8A2 2 _ 2_'JF t"[l_nl)dn-I
_iAi-- [i .4_ Lao _'( '-,_' J

7_d0\J0_('-,¢] d,_ ((qo)

Before using this equation to determine A, some-

thing has to 1)e done al)out B, which is as yet

undetermined. If equalions (21"), (C1), and (('6)

are usod, l.]le secon([ of O(luations (10) yields

l" d,
- ,,,'}1,_B ---=Jo -_-"?_-- r_i ((7_11)

21.



22 TECIINICAL REPOi'_T I{, 34 NATIONAL AERONAUTI :S AND SPACE ADMINISTRATION

If this is put into the tirst, of equat.ions (C5),

olinfinaling B, and tilt, rosult is put into equation

(CIt)), the (h,tining e(lu, iion for A is, fimtlly,

f'(,-V)a: + f7 (' ,l,,Jov, C____P do\do C4__V _ d_l

,) " dr/ 4

-886'kJ°(_('4--_{)--0_ ((_ 1 '2)

¢7°]-[p_d2f(7'* ....

This ('_m be solvod to very good accuracy 1)3'

A : :¢,:i[
2 Jo V¢'_--rp

, -: .t dr/ 2

p_fd"( T* -_- 71)

C13)

Tt,e se(.ond root of equation (C12) is nev(,r a

signiti(,anl on(,. This equation can readily be
solved for .l in ler,ns of (' (which is itself a

fun('li()n of A; see eq. (C9)) and the parameter

[pM, t_(T*+T,)V_ K

where K is defined in equation (34). As in lhe

case of ('onstant properties, two possible values

for A are again found.

The various inl(,grnls appearing in equations

(C8) aul (C13) ('an be ewdlmted as follows
(ref. 8):

J:- ---E( )V (-,'_ -'1_ ( _"2

=-/"(r/2,1/V"_2) --/"(co s- ' v//(/, 1 ]

,l r/ ([)) 1,{: :_=i5 [sin- *(1/(Y) -- sin- '( ,12/¢ '")]

• n"(i_l (if(sin_ _ 2 -

--,) /"[sin _f2/ii+('2),1/,"_]--,/¢,,,+_1}

(_'14)

where l'+(_,,l/-V:2) and E(_,,I/_:2) are thl, resl)eetive

elliptic int.egrals of tim first, and s(,(:ond kind of
aml)lilu,h, _ and modulus l/:v2. Two of lhese

integral." ('an be apl)roximat(,d as follows:

j[, (it/ l¥/C 4_ rl'_= (]_ ( 71_- r/_/10C 4)

whi('h is COH'CCt, gO 1 l)er(_ent if ('_> 1.3, and

l'l_(1--r/)(l_ 2 ( 3 1 ).0 V'C'--, 4 :3(Y 1+ 70,,,+g87_,_

which is (_orro(q. h) 1 t)er('enl if (Y_ 1.1/.
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