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1 INTRODUCTION

This is the first annual report for NASA Grant NAG5-5095. Substantial progress was made on each
of the three items of our statement of work, (1) epoxy replication of fiat reflectors as substrates for

multilayer reflectors, (2) deposition of multilayer reflecting layers upon those substrates followed by
an evaluation of their performance in an 8 keV X-ray beam. As before, superpolished substrates

which were not separated was included as a control. The final item, (3), design and construction

of our own DC magnetron sputtering chambers. This includes a small R&:D chamber and a large
chamber that can accommodate two linear cathodes whose purpose is to coat the inside surface of
conical shell reflectors. Each of these SOW items is discussed below.

2 REPLICATION OF SUBSTRATES FOR MULTILAYER COATINGS

Our collaborative program with O. Citterio of the Brera Observatory continued. SAO provided the

master and all materials and took responsibility for the X-ray testing while replication was per-
formed at Brera. We repeated our tests of the comparative merits of carbon and gold as separation

agents in replication. As in the previous tests, we had 50 layers of a nickel-carbon multilayer de-

posited on each of the substrates at the National Institute of Science and Technology. Performance

was evaluated by measuring the reflectivity of an 8 keV beam as a function of angle and measuring

the amplitude and width of a series of Bragg like reflection peaks though the fifth order. Previously

we had found that a substrate separated with carbon had a smoother surface than one separated

with gold that had been deposited by e-beam evaporation. The comparison of gold with carbon

was repeated. However this time we added substrates where gold was deposited by sputtering as

well as by e-beam evaporation. Furthermore, as the use of carbon as a separation agent is novel,
at least in the open literature, we wanted to test the reproducibility of the carbon results of the
previous year.

Our results are reported in a paper presented at the 1998 annual meeting of the SPIE. That

paper is reproduced in Appendix A. In summary, we found that although the smoothness of a

carbon separated substrate was reproducible, the ease of separation was not. We had repeated the

carbon deposition by having it done at the same commercial facility and with the same sputtering

target. However, the separation properties were quite different this time. The force required to

separate the replica from a carbon coated mandrel was much larger than previously. It was large
enough to shatter the carbon layer in one of the two samples that were prepared. We were not

able to identify the reason for the lack of reproducibility. All factors and conditions appeared to

be the same. To elucidate the matter, both SAO and Brera deposited carbon layers on glass flats

with our own sputtering systems. Separation tests were performed on all substrates. Both the SAO

and Brera deposited carbon layers required excessive force to separate the replica from the man-

drel. Investigation of why the carbon results are not reproducible will continue in our own facilities.

On the other hand we were happy to observe that sputtered gold is superior to evaporated gold.

While a replica separated with carbon still has the smoothest surface of all, sputtered gold may be

good enough to satisfy our requirements. With our present multilayer coatings the overall perfor-

mance appears to be more influenced by interface diffusion of the heavy and light materials than



by the roughnessof the underlyingsubstrate.Unlikecarbonthe behaviorof gold asa separation
agenthasbeenwellstudiedandis reproducible.Separationforcesweresimilar for theevaporated
and sputteredgold. This conclusionmaychangeif wesucceedin reducinginterfacediffusionby
substitutingcompoundmaterialsfor the pureelementlayers,e.g. W-C/C for W/C. In that case,
the underlyingroughnessof the substratewhichpropagatesthrought the layersmay becomethe
limitation.

3 CONSTRUCTION OF SPUTTERING CHAMBERS

Duringthe pastyearwemadeconsiderableprogressin thedesignandconstructionoftwodeposition
facilitieswith DC magnetronsputteringcathodes.Complementaryfundingfrom the Smithsonian
Institution madea substantialcontributionto this project. The first, the smallerchamber,can
depositmultilayer coatingsupon flat substratesup to 3 in. x 3 in. It is intendedprimarily for
researchanddevelopmentof coatingmaterialsandinvestigationof optimalcoatingconditions.The
secondis muchlargerand cancoata varietyof substratesarrayedin a cylindricalgeometryup to
a diameterof 18inchesand 24 incheslong. Its primary purposeis depositingmultilayercoatings
on actualhard X-ray telescopesincludingtheinterior surfaceof an integralcylinder,the approach
we favorfor higherenergyX-ray telescopes.However,it cancoatanyarrayof segments,linearor
curvedthat approximatesa cylindricalgeometry.Both chambersarenowoperationalandcoating
studiesareproceeding.

Photosof the two chambersareshownin a paperby Romaineet al, 1998that waspresented
at the 1998annualSPIEmeeting.It is reproducedasAppendixB. The largecylindricalchamber
employs26_ long cathodesof a customdesignproducedby AngstromSciences.Thesecathodes
wereplaguedbya numberof manufacturingdefectssuchasleaksin waterlinesandincorrectspac-
ingsbetweenof highvoltageandgroundedcomponents.Mostof thesewererectifiedseriallybut a
considerablelossof time. Corrective action is ongoing while the systems are functional but at less
than full efficiency.

4 PRODUCTION OF MULTILAYER COATINGS IN OUR CHAMBERS

Several multilayer coatings were produced in both chambers. This was preceded by a series of
single coating depositions to calibrate the rate of deposition as a function of current. We also

experimented to find optimum values of argon pressure and deposition rates for both chambers.

The multilayer coatings we produced were of acceptable quality. Improvement is expected as
we refine the operating parameters and experiment with new materials.

Results from these depositions were presented at the annual SPIE meeting in a paper by Ivan
et al. This paper is reproduced in Appendix C.



APPENDIX A

Progress in Replication of Substrates for Multilayer
Coatings

S. Romaine 1,2, J. Everett 1, R. Bruni 1, A. Ivan 1,3, p. Gorenstein 1

_Harvard-Smithsonian Center for Astrophysics

60 Garden Street, Cambridge, MA 02138

_ 2Bunting Institute, Radcliffe College

34 Concord Ave, Cambridge, MA 02138

3MIT

Mass Ave, Cambridge, MA 02138

M. Ghigo, F. Mazzoleni, O. Citterio

Osservatorio Astronomico di Brera-Milano

Via E. Bianchi, 46 - 22055 Merate, Italy

J. Pedulla

National Institute of Standards and Technology
Physics Laboratory

Gaithersburg, MD 20899

Abstract

Studies are being carried out to compare the performance of several different separation materials

used in the replication process. This report presents the results obtained during the second year of a

program which consists of replicating smooth, thin substrates, depositing multilayer coatings upon them,

and evaluating their performance. Replication and multilayer coatings are both critically important to

the development of focussing hard X-ray telescopes that function up to 100 keV. The activities of the

current year include extending the comparison between sputtered amorphous carbon and evaporated

gold to include sputtered as well as evaporated gold. The figure of merit being the smoothness of the

replica which has a direct effect on the specular reflectivity. These results were obtained with epoxy

replication, but they should be applicable to electroformed nickel, the process we expect to use for the
ultimate replicated optics.

Keywords: X-ray Telescopes, Multilayers,Replicated Substrates



1 INTRODUCTION

As part of a program to develop multilayer grazing incidence optics for a hard X-ray telescope, replication

is being investigated for the production of light weight, high resolution cylindrical optics. A previous study
[1] reported the results for replicated substrates where the separation material was DC magnetron sputtered

carbon and E-gun evaporated gold; that study also reported results for control samples (i.e. multilayers
deposited directly on the bare substrate, no replication). We have now extended this study to include DC

magnetron sputtered gold as the separation material in the replication process. In addition we have fabricated

new samples with the DC magnetron sputtered carbon and E-gun evaporated gold as the separation material

to make a direct comparison with previous results. In all cases, superpolished fused silica substrates were used

as masters to produce epoxy replicated surfaces onto float glass. After the epoxy replication, nickel/carbon

multilayers were deposited onto the float glass and the specular X-ray reflectivity measured. The multilayers
were deposited using dual ion beam assisted deposition at low ambient pressure (,_ 10 -4 Torr). The results
from four epoxy replicated samples are reported in this paper.

Results of X-ray reflectivity measurements of the multilayers on the 3 different separation materials is

reported below and compared with previous results for similar samples. Results of surface roughness from

AFM measurements and from modelled data is also given below; it has been shown [2] that a surface roughness
of less than 5/_is needed for good X-ray reflectivity performance up to 100 keV. The DC magnetron sputtered

gold replicated samples are similar in quality to the DC magnetron sputtered carbon replica samples, the
E-gun evaporated gold replica samples show inferior and more variable sample to sample performance.

We plan to extend this study to electroformed replicas in the near future. Success in the electroforming

process would make accessible the telescope technology developed for SAX, JET-X, and XMM. However,
it requires that the mandrel surface be conducting in order for the nickel to adhere. Consequently, we are

experimenting with additional metallic layers over the carbon in order to bond to electrodeposited nickel.
Replication trials will be carried out on both flat and cylindrical shell substrates.

2 SAMPLES

Dual ion beam assisted deposition was used to deposit multilayers on all samples discussed here. Nominal

d-spacing and 7 (ratio between nickel and period) for the Ni/C multilayers is 40 /_and 0.4, respectively.

The number of bilayers deposited was 50 in all cases. E-gun evaporated gold was used as the separation

material on 2 of the samples, DC magnetron sputtered gold was used on the third sample and DC magnetron

sputtered carbon was used on the fourth. The thickness of the separation agent in all cases was nominally
2000/_. The list of samples is shown in table 1.

3 MEASUREMENTS

3.1 X-ray Reflectivity Measurements

Figure 1 shows the X-ray reflectivity data for all samples. Although 3 Bragg peaks are clearly visible for

each sample, there is a noticeable difference in the peak intensities among the different samples. Overall,

the DC magnetron sputtered carbon and gold performed noticeably better than the E-gun evaporated gold.

We also note that the specular reflectivity of the multilayers on the 2 E-gun evaporated gold replica samples
varies considerably between samples 474 and 514.



Theresultsagreewith previousresultsin that the DC magnetronsputteredcarbonyieldsa higher
reflectivitythandotheE-gunevaporatedgoldsamples.ThisstudyshowsthattheDCmagnetronsputtered
goldperformsapproximatelyaswellastheDCmagnetronsputteredcarbon.
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Figure 1: Specular reflectivity vs. grazing angle for each of the 4 different samples. All data was taken at 8
keV. Bragg peaks are clearly visible.

3.2 Microroughness Data

It is well known that surface microroughness has a strong effect on the intensity of the grazing incidence

specular reflection [3, 4]. This effect becomes more pronounced the higher the energy of incident photons



(i.e.thesmallerthegrazingangle).Table1givestheinterfaceroughnessofthemultilayerascalculatedfrom
fittingthemodelto thedata,andalsoliststhesurfacemicroroughnessresults(fromatomicforcemicroscopy)
beforedepositingthemultilayerfilm. TheAFMsurfacemicroroughnessof thereplicais lessthanthat of
thecoatedmasterforbothofthesputteredsamples.Thereplicasurfacethatismeasuredis the 'separated
surface',i.e.thelayerthat wasin directcontactwith thesuperpolishedmaster.The'AFMmaster'surface
referredto in thetableis thetopsurfaceofthedepositedlayer(goldor carbon).Thecalculated(modelled)
interfacemicroroughnessof themultilayersshowsaconsistentdifferenceof 1S1betweentheDCmagnetron
sputteredsamplesandtheE-gunsamples,(4._ for theDCmagnetronsputteredsamplesand5Jt for the
E-gunsamples).

Figure2 presents two reflectivity vs. grazing angle plots for 4 _ #r and 5 -_ #r models. The model

parameters used here were the same as those discussed above, i.e., N=50, d=40/_and V = 0.36. A clear

difference can be seen, especially in the intensity of the second and third order Bragg peaks, as was seen in

the data in figure 1, indicating a clear improvement in specular reflectivity with an improvement from 5 to
4 ._ in the interface microroughness.

Sample
Number

311

233

474

514

Surface Microroughness (/k)
Sample

Description

DC mag sputtered carbon replica

DC mag sputtered gold replica

E-gun gold replica

E-gun gold replica

AFM

Master

0.9-2.2

8-11

3-7

AFM

Replica

1-1.7

2-9

6-13 3.5-5

post-coat

(model)

4/4.5

4/4.5

5.7/5.7

5/5.5

Table 1: X-ray modelled and AFM measured microroughness data for the 4 samples discussed in the text.

The AFM data given here is for 0.5, 1.0 and 10.0 # scan lengths and for 2 different areas for each sample.
The model data is from fits to the 8 keV data. The 'AFM master' column is the AFM data for the coated
master.
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Figure 2: Model for specular refiectivity vs. grazing angle using an interface roughness of 5_ (left plot) and
4,:t (right plot).



4 DISCUSSION and CONCLUSIONS

The quality of the multilayers deposited on DC magnetron sputtered carbon replicas, DC magnetron
sputtered gold replicas and E-gun evaporated gold replicas has been assessed and the results have been

compared with our previous studies. Specular reflectivity data at 8 keV was evaluated to compare the

intensity of Bragg peaks and the modelled microroughness of the interfaces. The modelled interface roughness
for the 2 DC magnetron sputtered samples, 233 and 311, is approximately 1 /_ less than that of the E-

gun samples, 474 and 514 (4/_ vs. 5/_). These results agree with those reported earlier [1] which showed

the performance of the DC magnetron sputtered carbon replicas to be superior to that of the E-gun gold

replicas. The results from sample 474 were very similar to the earlier results reported for E-gun replicas.

Sample 514, also an E-gun replica sample, although considerably better than the other E-gun samples still
did not perform so well as the DC magnetron sputtered replicas.

The quality of the DC magnetron sputtered carbon in this study did not reproduce the same good

separation properties. (i.e. easily separable) as the carbon used in the previous study. We have not yet
identified the cause of this difference. However, since the performance of the DC magnetron sputtered gold

was of equal quality to the carbon, and since gold is easily separable and it's behavior more reproducible, it
is less imperative to resolve the carbon separation issue.

The combined results of our studies indicate that 4._ is the 'intrinsic' microroughness of the Ni/C
multilayer interfade, even if the surface microroughness of the starting substrate is 1/_. The results also

indicate that the DC magnetron sputtering process produces a better quality material than does E-gun
evaporation for the replication process..
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Abstract

We are engaged in a program to develop focusing hard X-ray optics for future X-ray astronomy
missions. Optics are being developed to focus X-rays up to and beyond 80 keV. Emphasis is on the
multilayer coating of integral cylindrical optics which will provide the highest spatial resolution. A

chamber geometry has been designed to allow the uniform coating of the inside surface of integral
cylinders. The building and testing of this system has taken place over the past year. Linear DC
magnetron cathodes are used to sputter the multilayer films. Initial results from both longitudinal and
azimuthal uniformity coating tests are presented.

Keywords: X-ray Telescopes, Multilayers,X-ray optics

1 INTRODUCTION

This past year a coating chamber has been designed and built with DC magnetron sputtering capability

with particular emphasis on coating the inside surface of integral cylindrical optics. Our project goals are

two-fold: (1) to assess replicated substrates to find the 'best' replication technique [1] and (2) to coat and

test an integral cylindrical optic with graded d-spaced multilayers. This work is being carried out as part of
the effort to design the hard X-ray telescope for the Constellation X-ray Mission [2].

2 EXPERIMENTAL DESIGN

Figure la is a photo of the chamber that has been built for this study. It's dimensions are approximately
44" high x 22" diameter; it is cryopumped and has a base pressure of 1 x 10 -7 Tort. The cathodes used

in this design are 26" long linear cathodes, one of which can be seen in figure lb. There are 2 cathodes

mounted back to back in the center of the chamber. Once the optic is loaded into the chamber, the cathodes



Figure1: Thefigureontheleft (fig. la) showsthechamberwhichwasdesignedfor sputteringmultilayer
coatingsontotheinsidesurfaceofintegralcylindricaloptics.
Thephotoontheright (fig. lb) is aviewofthe linearcathodeusedin thechamber.Targetheightis26",targetwidthis 1.5".

arepositionedinsidetheopticwhichrotatesaboutthecathodeto coatthe innersurfaceof the 'cylinder'.
Eachtargetcanbeshutteredsuchthat onlyonecathodeissputteringontotheopticat a giventime.

2.1 Coating Surrogate

The characterizing of flat substrates is simpler than the characterization of integral cylindrical substrates
and for this reason all the initial coating tests have been carried out on silicon wafers. To coat these flats

such that they are representative of a true cylindrical surface, a coating surrogate was fabricated as shown

in figure 2. This surrogate is a stainless steel cylinder with several 3inch diameter holes cut in the surface so

that a flat substrate such as a silicon wafer can be mounted in the hole and coated to represent the inside

surface area of the cylinder. Having several substrates mounted along the length of the surrogate provides

samples to test the linear uniformity of the process; the array of substrates around the circumference provide
samples for a check of the azimuthal uniformity. Figure 2b gives a view of the chamber as the cathode

assembly is being lowered down into the surrogate optic prior to the start of a coating run.

3 RESULTS and DISCUSSION

The target materials purchased for these coating studies included tungsten, silicon, carbon and nickel. Initial

tests were run with tungsten and carbon targets. The tests for deposition rates for given power, src-substrate



Figure2: Thefigureontheleft (fig.2a)isaviewofoneofthesurrogatesfabricatedforcoatingtests.The
heightis13",diameteris 11".Threeinchdiametermountingholesallowflat substratesto becoatedsothey
arerepresentativeof thecylindricalsurface.
Thephotoontheright (fig. 2b) isa viewof thechamberasthecathodeassemblyis beinglowereddown
intotheinsideofthesurrogate.

distance,etc.haveonlyrecentlybeencompletedandthefirstW/C multilayer(N--20bilayers)wasdeposited
thispastweek.Althoughseveralsiliconwaferswerecoatedduringthisfirstmultilayerrun,reflectivityresults
fromonlyonewaferarecompleteat this time.A reflectometeriscurrentlybeingbuilt inourlaboratoryfor
measurementsofthesesamples,but it will notbecompletedfor severalweeks.Wewerefortunateto have
accessto areflectometerat RomeLaboratoriesto measureonesamplebeforetheconference.Figure3aand
3bgive2 plotsof reflectivityvs. grazinganglefor 8 keVincidentenergy.Figure3ais datafromthefirst
W/C multilayersamplefabricatedin thecylindricalopticchamber.Theplotin figure3bisdatafromoneof
themultilayersamplesfabricatedin theP_D chamberwhichwasbuilt forcoatingflat substrates[4].Both
sampleswerefabricatedusingthesameparameters:N=20bilayers,d=97A, ,_ = 0.26. The solid line in each

plot is the modelled fit to the data. The model for figure 3a has a microroughness of 6/_ for all interfaces,

the model for figure 3b has a microroughness of 6/_ for the W/C interfaces and a microroughness of 2.5
for the C/W interfaces. As discussed in an earlier paper [5] such a change in microroughness effects the

intensity of the Bragg peaks.

The data in figure 3a also has low intensity 'peaks' between the main Bragg peaks. These extra peaks
may be due to a variation in the layer thickness over the 20 layers. Computer control for the shutter motion is

just now being installed; this sample was fabricated using manual shutter control which may have introduced

a slight variation in teh layer to layer thickness. No attempt was made to try to model a variation in layer
thickness. The R&:D chamber is totally conmputer controlled and has good control over layer thickness as

seen from both reflectivity measurements and from TEM analysis. In addition, two different facilities were

used to measure the 2 different samples shown here. The sample in figure 3a was measured with a setup



whose resolution was a factor of 5 worse than the setup used to measure the sample shown in figure 3b. This

difference in resolution contributes to the difference in the sharpness of the Bragg peaks.

The first tests we hope to complete after installing the computer control will be a study of the linear and

azimuthal uniformity of constant d-spaced multilayers fabricated using the coating surrogate•
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Figure 3: Plot of reflectivity vs. grazing angle for the first multilayer sample fabricated and tested in the

cylindrical optic chamber. Solid line shows the results from a fit to the data. Incident energy was 8 keV.

The plot on the right (fig. 3b) is a similar plot for a sample fabricated in the R&=D chamber. Both samples

used the parameters: N=20 bilayers, W/C, d=97/_, gamma=0.26.
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values are typically 5-6 It. This is probably due to diffusion at the interface and possible compound formation. The surface

microroughness for sample CW28 was 6 Arms as determined by AFM. The IMD fit yielded 8/_ rms, in good agreement
with AFM, considering that the fit was varying many parameters and that the AFM and X-my reflectivity measurements

cover different spatial frequency ranges. The reflectivi.ty scans clearly indicate different structures in samples CW26 and
CW27, possibly due to a different target to substrate distance. Sample CW28 shows a "splitting" of the second and third

Bragg peaks. The model for the fit considered that the first 20 bilayers have a different spacing than the next 20 bilayers, but
this approach is only partially successfull. Overall, the series of constant d samples showed that the control of the process is
fairly good and that the reflectivity scans offer structure data in agreement with the design. More structural information is
expected from TEM and AES analysis.

The graded d spacing sample designs were selected from an IMD-based simulation study for C/W multilayers with

N=40 and 50. The thickness of each layer was chosen to vary with the layer position in the stack according to a power law
[3]:

a

z(i) = (b +0 TM

where a and b are parameters, and i is the layer index number (i = 1 for the topmost layer, N for the bottom layer).

Samples CW30 and CW31 have an identical design, with N=40, 7=0.444, and d graded from 161/_. at the top to 36 ]_

at the substrate. Sample CW32 has N=50, and 3' as well as d are variable throughout the multilayer stack (see Table I). Both
designs were intended to increase the reflectivity at small grazing angles for a range of X-my energies from 10 to 80 keV.
Fig. 8 shows reflectance vs. energy for CW32 at 5 arc-rain grazing incidence and illustrates the effect of graded d structures
on increasing the bandpass: up to 50 keV, the reflectance has only a narrow dip and is more than 80% for most of the
energies.

Figures 4-6 present the reflectivity scans at 8.048 keV for these graded d samples. Again, there is a notable

difference between the twin samples CW30 and 31, possibly due to different base pressures (3x10 "7 T and 1x10 -7 T,
respectively). The fit is better for CW30. AFM surface microroughness measurements showed a value of 1.5 A for CW30

(Fig. 7) and 2.0 A for CW31, consistent with the values from the reflectivity data fit. The interfacial roughness/diffuseness
from the fit is quite high: 10/_, supporting the interdiffusion hypothesis.

Sample CW32 (N=50) has a reasonably good fit, but although the fitted d values are close to the design values, the
trend for 3' values is reversed.

bample #

CW25

Table I

Structure parameters (design vs. fit) for a set of constant and variable d spacing mulfilayers

N (bilayers)

10
CW26 20

CW27 20

CW28 40

CW30 40

CW31 40

CW32 50

d (from deposition
rate)
185 k
92.5/_

92.5 k

46.25/_

161 It (top)-36 /_
(bottom)

161 k (top)-36 k
(bottom)

137 k (top)-30 k

(bottom)

d(from reflectivity
fit)

3' (deposition rate) 3' (reflectivity fit)

0.324

113 0.324 0.254

95.5 0.324 0.250

0.324 0.203
0.444

0.444

0.617 (top) - 0.5
(bottom)

51

160 A (top) -36 k
(bottom)

180 A (top) -36 k

(bottom)
126 k (top) -28 ]_

(bottom)

0.368 (avg.)

0.366 (avg.)

0.340 (top)- 0.439
(bottom)



3. CONCLUSIONS

The work presented here is a preliminary, step in a program to coat integral cylindrical optics with graded d spacing

nmltilayers. The samples presented are correlated with and preceded sputtering tests of depositing C/W multilayers in
another, larger high vacuum chamber with 26 in. long cathodes. After identifying process parameter values that optimize

single layer coatings, we continued with single d spacing multilayer runs for which the interpretation of reflectivity data is
straightforward. The analysis showed that the control of the process is fairly good and the reflectivity data are correlated with

the expected structure. The coatings based on a graded d spacing design confirmed the previously known effect of broadening
the reflection passband and showed that the specular reflectance scans could be fit well by the model. Some discrepancies

indicate that perfect reproducibility of the runs still needs more accurate control of certain deposition parameters (base
pressure, target-to-substrate distance, etc). More analysis is required to describe the interface roughness/diffuseness and TEM
and AES work is in progress for this purpose. The procedures used for the fabrication and characterization of the trial CAV
samples will be used for the next graded d spacing coating studies based on other reflector/spacer material combinations
(W/Si, Ni/C, W/B4C, Pt/C).
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Figure 1: Measured and fitted reflectance scans for sample CW#26 (N=20 bilayers, d(fit)= 113/_

gamma(fit)=0.254). A collimated beam of 8.048 keV (Cu K_ radiation) incident at grazing angle e on the
sample was detected by a collimated NaI(TI) detector positioned at 20 relative to the beam direction.

10 °

10-I

10-2

ri--

10 -5

"6
OE

10--+:I .

10 -5

1 0 -6 I I I I I I I I I I I I I I r I l I I I I I I i , , I f I

0 I 2

Grazing Incidence Angle, 8 [deg]
(E=8.05 keY)

Figure 2: Measured and fitted reflectance scans for sample CW#27 (N=20 bilayers, d(fit)=95 _,
gamma(fit)=0.250).
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