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Abstract

Robust control system analysis and design is based on an uncertainty description, called a linear
fractional transformation (LFT), which separates the uncertain (or varying) part of the system from
the nominal system. These models are also useful in the design of gain-scheduled control systems
based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form
for problems involving nonlinear parameter variations. This paper presents a numerical
computational method for constructing an LFT model from a given LPV model. The method is
developed for multivariate polynomial problems, and uses simple matrix computations to obtain an
exact low-order LFT representation of the given LPV system without the use of model reduction.
Although the method is developed for multivariate polynomial problems, multivariate rational
problems can also be solved using this method by reformulating the rational problem into a
polynomial form.

1.0 Introduction

Formulation of linear fractional transformation (LFF) models of systems involving
nonlinear parameter variations is of interest for robust control system analysis and design, as well
as for control of linear parameter varying (LPV) systems. Moreover, the LFF models should be of
low order for efficient computation during analysis and design. A matrix singular value
decomposition (svd) approach was presented in 1985 in references [1] and [2] for computing
LFT's for problems involving linear parameter variations. However, construction of low-order
LFF models for problems involving nonlinear parameter dependencies is very difficult, because it
is equivalent to a multidimensional minimal state-space realization problem for which there is no
general theory. The approach that has been taken to date for solving nonlinear parameter-
dependent problems is to successively decompose the system until all components are linear, and
then to compute an LFF for each linear component based on the result presented in [1] and [2].
The LFT's associated with each system component are then combined using LFF properties to
form the LFF model of the full system. Model reduction is usually required using this approach,
because unnecessary repetitions of the varying parameters usually result. A decomposition method
for LFF modeling of nonlinear parameter-dependent systems was first presented in reference [3],
and later refined in reference [4]. This latter paper presented a special decomposition approach
which reduces the number of unnecessary repetitions of the varying parameters, although model
reduction is still employed to reduce the dimension of the resulting LFT model of the full system.

The approach presented in this paper is an extension of the computational approach of
references [1] and [2] for nonlinear parameter-dependent systems, and is based on reference [5].
Specifically, the computational approach is developed for multivariate matrix polynomial problems,
although multivariate rational problems can be solved using this approach by reformulating the
rational problem to be in a multivariate polynomial form. Reference [6] presents a method for
doing this. The LFT modeling approach presented in this paper requires no matrix decompositions
for multivariate polynomial problems, and achieves a low-order LFT model directly - i.e., without
the use of model reduction. Moreover, the computations are based on simple matrix operations,
including the svd and solving linear matrix equations.

2.0 LFT Modeling Problem Definition

The LFT modeling problem to be addressed in this paper is defined below. It is assumned
that the problem to be solved is in a multivariate matrix polynomial form. However, as shown in
reference [6], multivariate rational problems can be reformulated as multivariate polynomial
problems and solved using this approach. The problem is stated as follows.



Given: A linearparametervarying(LPV)modelof anonlinearparameter-dependentsystem,as
representedby thefollowing equation

(2.1a)

= [_l,_2,...,_m] ER m (2.1b)

where S(iS) has been separated into nominal and varying components, and the varying (or

uncertain) component, SA(iS), has been formulated as an LFT problem given by the following

equation

S A (8) = P21A(I - PllA)'I P12 = P21(I - APll )'1AP12 (2.2)

in which each element of SA(6) is a multivariate polynomial function of the varying parameters, 6

Find: A low-order state-space uncertainty model that satisfies equation (2.2) and is characterized

by the constant matrices P21, P12, and P11 and the uncertainty matrix A(iS), as depicted below in

Figure 1.
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Figure 1. LFT Model of the Uncertain System

The P22 matrix represents the nominal part of the system, and is characterized by the nominal A,

B, C, and D system matrices. The SA(6) matrix of equation (2.2) is a known matrix of

multivariate polynomials based on the LPV model for the system. Formulation of this matrix was
discussed in reference [6]. The LFF model equations associated with Figure 1 are given below.

ZA =PllWA't-P12[2 ]
(2.3a)

(2.3b)



w A = A z A (2.3c)

where: A(iS) = diag [ i51Inl, i52In2 ..... iSmlnm ] E R nA X nA (2.4a)

1il

n A = _ n i , n i = dim(I i) (2.4b)
i=l

The LFT modeling problem consists of solving equation (2.2) for P21, P12, and Pll over some
low-order A matrix (as defined by equation (2.4)). This is equivalent to a multidimensional

minimal state-space realization problem over the m varying parameters in i5. Unfortunately, there
is no existing minimal realization theory for general multidimensional systems (i.e., for m > 3) that
can be used in solving this problem. In fact, there are no general minimality tests for
multidimensional systems given a realization. This paper presents a numerical computational

approach for solving equation (2.2) for P21, P12, and Pll such that the resulting A matrix is of low
order. These results are summarized in Section 3.

3.0 Main Results: LPT Model Computation

As discussed in Section 2, the LPT problem to be solved is given by the following
equation:

SA(8) = P21(I- A(8)Pll) -1 A(8)P12 , SA(8) E P nr°wsxnc°ls (3.1)

The term SA(iS) is a known matrix function of the normalized uncertain parameters in i5, and P21,

P12, and P11, are the unknown matrix variables to be determined. The dimension of A(iS) must

also be determined in constructing the LFF model such that the resulting dimension is low-order.

It is assumed that the functional form of the elements of SA(6) is multivariate polynomial.

However, as discussed in Section 2, rational problems can also be solved by reformulation of the
rational problem (see Reference [6]).

3.1 Numerical LPT Solution Approach

As can be seen in equation (3.1), solving for the matrices P21, P12, P11 and A(6) involves

the inversion of the matrix [I -A(iS)P11]. For multivariate polynomial problems, this matrix

inversion can be exactly replaced by a finite series and an associated nilpotency condition. This is
expressed in the following equations.

(I-A(i_)Pll)-I = I + (A(i_)Pll) + (A(i_)Pll) 2 + ... +(A(i_)Pll) r (3.2)

[A(iS)Pll] r+l = 0 (3.3)

Substituting equation (3.2) into equation (3.1) results in the following equation for SA(6).

SA(iS) = P21A(iS)P12 + P21[ A(iS)Pll + (A(iS)Pll) 2 + ... (A(iS)Pll)r]A(iS)P12 (3.4)



The first term on the right side of equation (3.4), i.e. P21AP12, represents the linear uncertain

components of SA(8), and the second term adds in the nonlinear terms. For the case of

multivariate polynomial uncertainties, the nonlinear terms of SA(8) consist of crossterms of the 8

parameters and nth-order terms. Thus, the order (r) of the highest term in the series of equation

(3.4) is determined by the degree of the highest term appearing in SA(8), where crossterm degree
can be defined as follows.

degree ( 81 _1 82 _2 83 _3 ... 8i _i ) = ( _1 + _2 + "'" + _i ) -- 1 ; i < m (3.5)

Then, the exponent r in equation (3.4) can be defined by the following inequality.

r < (_ll+_12+...+_lm)-I (3.6)

where tli is the maximum degree of 8i in SA(8).

Since the uncertain system matrix, SA(8), has as its elements multivariate polynomial

functions of 8, it can be easily expanded in a similar manner as the fight side of equation (3.4),
i.e.:

SA(8) = S (8) + S (8) +... + S (8) (3.7)
A 0 A 1 A r

Then like terms from equations (3.4) and (3.7) can be equated as follows.

SA. (8) = P21(A(8)Pll)iA(8)P12 , i = 0, 1 ..... r (3.8)

The uncertainty modeling problem therefore requires that equations (3.8) be solved for P21, P12,

P11, and A(8) such that the nilpotency condition of equation (3.3) is satisfied.

In order to evaluate equations (3.8) and (3.3) in more detail, consider an expanded

definition of P11 , P12, and P21 containing partitioned submatrices associated with the 8iIni blocks

of the A matrix given in equation (2.4a), as shown below.

Pll =

P11_1_1 P11_1_2 "'" P1 lblbm

P11_2_ 1 P11_2_ 2 "'" P1 l_2_m
: : ".

Pll6m6l P "'" P1[16m62 16m6 m

(3.9)

P12 =

-p+_

"D

PI_

(3.1o)

4



•xnj

where: Pllsisj ER nl , P128i ER nixnc°ls, P218i ER nr°wsxni (3.12)

Equation (2.4a) is repeated here for convenience.

A=[81Inl 82In2 ... 8mInm] (3.13)

Substituting equations (3.9) - (3.13) into equations (3.8) and (3.3) leads to a set of extremely
complicated equations to solve. In order to satisfy the nilpotency condition of equation (3.3), the

matrix P11 must itself be nilpotent. Allowing P11 to have a pre-defined nilpotent structure provides
a means of somewhat simplifying these equations while assisting in satisfying the nilpotency
condition of equation (3.3). The following Lemma establishes a general nilpotency structure that
will be used throughout this paper.

Lemma 3.1

Let A E R nxn be a quasi-triangular partitioned matrix whose main-diagonal blocks are nilpotent,
as defined below.

[!1A12Aim1A = A..22 1I" A..2m (3.14a)

. i Amm 
n i

Aii ER nixni , Aii = 0, Xli _ n i , i = 1, 2 ..... m (3.14b)

Then matrix A is a nilpotent matrix with index of nilpotency, 13, as defined below.

_'l In

A = 0 , TI = _ Tli _ n (3.15)
i=l

Proof:

Nilpotency of matrix A is clearly established by considering the eigenvalues of A. Since A is
upper triangular, its eigenvalues are comprised of the eigenvalues of its main-diagonal blocks.
Since each main-diagonal block is itself nilpotent, the eigenvalues of each must be zero (see
Reference [7]). Hence, the eigenavalues of A must be zero and A must therefore be nilpotent. The

index of nilpotency, 13, of matrix A is established by the following.

Let: r = TI1 + TI2 + ... + Tim

Ar _11+ _ 2+.. "+ _1= A n = An l An2... A_lm



Then,eachmatrix A qi contains a zero diagonal block corresponding to Aii, since Tii is its index of

nilpotency. It can therefore be shown that multiplication of these matrices to obatin A r for r = TI1 +

112+ "'" + Tim results in the zero matrix, since each main-diagonal block is zero. However, if r <

111+ 112 +"" + Tim then one of the main-diagonal blocks will not be zero, hence A r will not equal

zero. Thus, the nilpotency index for A must be equal to r =TI1 + 112 + "" + Tim" AS can be
verified in Reference [8], the nilpotency index for any matrix must be less than or equal to its
dimension (i.e., n for matrix A). This can also be verified by the following.

Tii < ni for every i = 1, 2 ..... m
m m

Ti = _Tii < _ni = n
i=l i=l

Thus, equation (3.15) is satisfied.

QED

Note that the quasi-triangular structure defined by Lemma 3.1 is sufficient but not necessary for
nilpotency. Other special structures can also be found. In fact, nilpotent matrices can be fully

populated with nonzero elements. However, assuming some special structure for P11 simplifies
the solution of equations (3.8) and (3.3). For implementation purposes, allowing the special
structure to be more general than upper-quasi-triangular may result in a less conservative (i.e.,
lower order) P-A model for some problems. However, for purposes of this paper, Lemma 3.1

will be used to fix the structure of P11 so that the solution can be clearly derived.

The quasi-triangular structure defined by Lemma 3.1 can be used in expanding equations

(3.8) and (3.3). Thus, let P11 be defined to have the following upper quasi-triangular structure.

Pll =

Pl1_1_1 Pl1_1_2 "'"

0 P116262 ...

0 0 ...

Pll616 m

P11626m

P1 l_m_m

(3.16)

H i

where: (P.. ) = 0, Tii _ ni , i = 1, 2 ..... m (3.17)
ll6i6 i

Then substitution of equations (3.10), (3.11) and (3.16) into equations (3.8) yields the following
set of equations.

Linear Terms:

e21_i P12_) i = SAo_ i

, i= 1,2 ..... m (3.18)



_th-Degree Terms:

P21_) i (P1 l_)i_)i )_-lP12_)i
i=1,2 ..... m (3.19)

Crossterms:

P21_)i 1 (Pll_)il_)il
) 1-1 )_i2 -1.

P1 l_i l_i 2 (P11_i2_i2 (Pll&i &i
"Pll_inT_l_i nT nT nT

) nT

-1

P12&i

=S

_i 2 _i
A__l(_i )_il ) ) nT(_i ""(_i

1 2 nT

(3.20)

where:
=_i 1 +_i2+"" q-_i

nT

i 1 -- 1, 2 ..... m - (nT -- 1)

i2 = i 1 + 1, i 1 + 2 ..... m - (n T - 2)

lnT"=i l+(n T-l) ..... m

n T = number of parameters in the crossterm

Note that the SA terms on the right-hand side of equations (3.18) - (3.20) are the known constant

matrix coefficients associated with the indicated parameter terms in SA (6). Moreover, depending

on the number of parameters and the degree of each appearing in SA (6), there can be literally

hundreds of SA coefficient terms - and hence equations to be solved.

nT

3.2 Numerical LFT Model Solution

This section presents a numerical approach for solving all equations of the form defined by
equations (3.18) - (3.20) such that the nilpotency condition of equation (3.3) is satisfied and the
resulting P-A model is of low-order. The results of this section are divided into three sub-sections.

The first sub-section presents a solution for P21, P12, and the main-diagonal blocks of P, ; the
second sub-section presents a solution for the off-diagonal blocks of P,; and the third sub-section
presents results relating to nilpotency and reducibility of the resulting model.

3.2.1 Simultaneous Solution of P21, P_2, and P, Main-Diagonal Blocks for each _i Parameter

The P2_, P12, and P, main-diagonal blocks are solved simultaneously for each uncertain

parameter 6i using the linear and _th-degree terms defined by equations (3.18) and (3.19).

Moreover, the solution is accomplished such that the resulting main-diagonal blocks of P, are
nilpotent with the appropriate index of nilpotency - as required by equation (3.17). This solution is

7



accomplishednumericallywith amatrixsingularvaluedecomposition(svd)byrecognizingthat
thispartof theproblemis equivalentto a 1-Dstate-space(minimal)realizationproblemandby
appropriatelydefininganequivalentHankelmatrix• Thesolutionis accomplishedfor each6i
parameterasshownby thefollowing theorem(which is basedonTheorem6-4,pages268- 272,
of reference[9]).

Theorem 3.1

Consider the linear and _th-degree terms of SA(6) E P nr°wsXnc°ls, which can be expanded as

follows

SAL,_(8) = [SA0&i ] 8i + [SA'l&i L"] 8i2 + ... + [SAvli_l&iVli ] 8ivli (3.21a)

= ]_i n (3.21b)
SAL,_ n_=l [S An-1 &i n

and use the constant coefficient matrices of equation (3.21) to form the Hankel matrices defined
below

SA0&i

SA0& i SAl(&i )2

SAl(&i )2 SA2(&i )3

SA2(&i )3

: SArli -1 )rl i
(6 i

SArli -1 )rl i 0
(6i

SA2(&i)3 "'" SA_l i-l(& i)_li

: .'" 0

SArli -1 )rl i
(6i

0 ... 0

O °°• O

(3 •22)

SAl&i

SAl(&i )2

SA2(6i )3

SA_li -1 )_li
(6 i

0

SA2(&i)3 "'" SA_li-1, a_li
_&i J

" .'" 0

SArli -1, arl i
6

_6i J
0 ... 0

.

0

0

0 ... 0 0

(3.23)

Using a matrix svd, factor equation (3•22) as follows

SA06i 5: 1/2_r5: 1/2V T_ -- --= U6i]_6iV6i T = (U6i 6 i J_ 6 i 6i J = P216iP126i
(3 •24)



where: rank(SA0 ) = rank(P21 )= rank(P12 )
6 i 6i 6 i

Then the matrices P216i, P126i , and Pll6i 6i form an irreducible realization of SAL,_(_) as definedby

e21_i = [Inrows 0_21 _i

['vs]
ell6i6 i = (_21_i)tgAl_i (_12_i)t

equation (3.21), where:

and the notation (A) t designates the pseudoinverse of matrix A.

Proof:

From equation (3.24), define the following:

(SA )]" = (P12 _i )'_ (P21_1)_
06i

Then it is easy to show that:

-SA06i (SA 06i )*gA06i = P216i P126i (P126i)*(P216i )*P216i P126i

= P21_iP12_i = SA0_ i

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Define the following relationship between the Hankel matrices of equations (3.22) and (3.23):

which generalizes to:

where:

m m m

SA18 i =MsiSA081 = SA08 iNSi
(3.30)

ngA0 = gA0_i N6i n ,
n6i • n=0,1,2 (3.31)



Mb i

0

0

= 0

0

Nbi =

IlluowS

0

0

0

0

Incols

0

0

°°° 0

Inrows ... 0

0 "'. :

: ".. |BrowS

0 .-- 0

0 ... 0 0

0 ... 0 0

"" " 0
Incol s •

"'. 0 :

0 ... Incol s 0

(3.32)

(3.33)

Consider the following:

)2 [(P21 )'_gA 1 (P12bi)t]2 =(P21bi)i'SAlbi (P128i)*(P21bi)tSklbi (_12bl)j"
(Pllbibi = bi b i

- (_12 &i )J"(P21bi)i" Mbi SA0 bi (P12 bl ) t
-- (P21bi)i'MbiSA0b i

= (_21bi)tMbi_21bi_12b i (_12 bi )1"(_216i)*MbiSkobi (P12bi))

= (P21b))Mbi2gA0 (P12bi)*
• b i

)n = (P21bl -- (P12 )J"==> (Pll bibi • )*Mbinsa0bi bi

Now, the constant coefficient matrices of equation (3.26) can be rewritten as follows:

<1 IIv l
J i 0hi

bi n

Substituting equation (3.29) into this expression yields:

l i 0hi 0hi )tgA0b i
bin

Substitution of equation (3.31) into this equation yields the following:

(3.34)

(3.35)

10



0 SA n-1(SA0 [ln_}olsBin Bi )t S--AoBi

Substituting equation (3.29) into this expression yields:

)tgA06i
=:> SAn_ 1 = inrows 0_An (gA0 N6 in-l(SA0-

Bin a vBi Bi

Substitution of equation (3.31) into this equation yields the following:

Bi)I"_AOBi [In_ °ls ]

VBi - 0B i - Bi - 0B i )$SAoBi
SAn_I

Bin

Substituting equations (3.24) and (3.28) into this equation yields the following result:

- _t M .n-l_ (_12Bi)t (_21Bi)t-- [In_ols ]SAn_ 1 = [Inrows 0]P21BiP12Bi (P12Bi)t(P21Bi j B1 AoBi P21BiP12B i
6i n

SAn_ 1 =[inrows 0_21Bi{(_21Bl,tM n-l_ (_126i)?}_1261 [In_ols]
• J 6 i A06iBin

Then, using equations (3.25) - (3.27) and (3.34) yields the following result:

= P21Bi )n-lPl2Bi ; n = 1, 2 ..... Tli (3.36)SAn_l (P116i6i
Bin

Recalling equations (3.18) and (3.19), equation (3.36) shows that equations (3.25) - (3.27) are a

realization of SAL,;(8), as definedby equation (3.21). To show irreducibility, consider the

following:

n i = dim(PllBiBi) = rank(SA0 ) < min{rank(P21 ),rank(P12 )}
6 i 6i 6i

(3.37)

Using equations (3.18) and (3.19), the following matrices can be defined to be consistent with the
Hankel matrix given by equation (3.22) and its svd given by (3.24).

11



P21
5i

P215i

P215i (Pl15i5i)

P215i (Pl15i5i)2

)vii -1
P215i (Pl15i5i

P215i
ER (viinr°ws)xni (3.38)

e12_i = [P12_i (P11_i_i)P125i (P11_i_i)2P12_i "'" (Pl16i5i)vii-1p126i ] '

P126i ER ni x(viinc°ls) (3.39)

Since P216i ER (viinr°ws)×ni and P126i ER ni ×(viinc°ls) are tall and wide matrices (respectively)

that result from the svd computation of equation (3.24), the rank of each equals ni and equation
(3.37) can be evaluated as follows.

n i = dim(P 1 ) = rank(SA0 ) = rank(P21 ) = rank(P12 )
15i5i 5i 5i 5i

(3.40)

Hence, the realization given by equations (3.25) - (3.27) is irreducible. QED

Note that as stated in equation (3.17), each main diagonal block of P11 must be nilpotent of

index rli, i.e.:

(Pl15i5i)_li = 0

The following theorem establishes the nilpotency of P115i_i.

Theorem 3.2

The Pl15 i _3imatrix computed using the result of Theorem 3.1 is nilpotent with index _h.

Proof:

Consider the following equation:

= (P12 _)i )T lvii(Pll_)i_)i)vii [(e21_)i )TgAI_) i

12



Substitutingfrom equations(3.24)and(3.30),andusingthefact thatUs.andVs.areunitary
1 1

matrices yields the following result.

(Pl16i6i)_li = [(U61X_l1/2)_M_l--.. . SA0&i _¢X&i 1/2v&i )tffli

)rli I x -1/2 U T x -1/21rli
(P11&i&i =t &i &i TM6i U&iX&iV&iV&i 6i •

-1/2U TM X X -1/2] rli
(Pl16i6i)rli = [X6 i 6i 6iU6i 6i 6i

) rli fX -1/2U 1/2] rli
(Pll6i6i = t 6i 6iTM6ie6ix6i

Then, the right-hand side of the equation can be separated into the product of matrix components as
follows.

(el 16i6i )rli =fx;t...&vi-1/211._&viTl_I..=&_i"_&ll_i "&x;_i 1/212fx;Jt---&_i-1/211._&viTM6i U6i X6i 1/2 ffli -2

Squaring the first term yields the following.

(ell_,_,)1_i = [(Xb, -I/2U. 6, TM 6, U _i X _i l/2)(Xb, -I/2U 6, TM 6, U _i X _i 1/2 )] IX _i -I/2U _i TMb,Ub, Xb, 1/2 ]_h-2" "

(Pllsisi)rli =f_' -1/211 TIM[ 211 X 1/21rZ -1/2U TM U X 1/2ffli-2t_6i _6i l--Si _6i Si n Si Si Si Si Si •

Continuing this process yields the following result (which is consistent with equation (3.34) for n

= 1_i ).

)rli = y. -1/2 U T MsirliUsiy.6il/2(_ 16i6iP' 6i 6i

Since Ms. has Tji block rows and columns and is defined by equation (3.32), it is a nilpotent matrix
1

with index Tli (see Reference [10]).

QED

Therefore, the deired result is obtained, i.e.:

(P116i6i )_li = 0

In summary, this section has presented a simple numerical technique for computing P21Si,

P12si , and P11si si for each uncertain parameter. The result is irreducible, and each main-diagonal

block is guaranteed to be nilpotent of index _li, where _li is the highest degree of 6 i appearing in

sA(6).

13



3.2.2 Solutionof Pll Off-DiagonalBlocks

TheP11off-diagonalblocksareeachsolvedusingtheappropriatecrosstermsof SA(iS),as
definedby equation(3.20). Thenumberof off-diagonalblocksto besolvedis givenbythe
following equation.

m-1

nOD B = _(m-i) (3.41)
i=l

The equation to be solved for each off-diagonal block of P11 is a generalized linear matrix

equation. The general equation is given below for computing the off-diagonal block P116naj,

where n = 1, 2 ..... m-1 and j = n+l, n+2 ..... m.

(e21an [n]ellan [n])Pllanaj (el2aj) = S--Aan [n]
(3.42)

_21a n [n] _12aj, and SAa n [n] in equation (3.42) are comprisedThe matrices [n] , P11 an ,

of known matrices as well as matrices that have already been computed at this point in the solution
process. Their explicit general definition is given in the following pages.

The matrix P21 an [hi in equation (3.58) is a block-diagonal matrix with n partitions along

the main-diagonal, which is comprised of known matrices (i.e., matrices that have already been

computed at this point). This matrix can be defined as follows.

_21a n [n] = diag[_21 - - [2],_21a, 1 [2],...an ' P21 ail an [2]' P21 ail ai2an ai2ai3an '

P21 ai 1 ai2." .a i k-1 an [2],..., P21 ala2...ain_l an [2]]

where:

m

Partition 1: P21 an =

P21an

P21an (P1 lanan )

P21a n (Pllanan)2

e21an (ellanan) _ln-i

(n 01)=1 Block

Partition 2: -- [2]] ,

P21ailan [2] = diag[P21 alan [2],P21a2an [2],...,P21an_lan

14



n 1) _-n-
1Blocks

1

m

= ®I31 n
P216il 6n [21 P216il

i1= 1,2 ..... n-1

- [21 = diag[P21 [21,P2161636n [21,. [21,Partition 3: P216i16i26n 61626n ..,e21616n_16n

P2162636 n [2],P2162646n [2] [2] [2]] ;"'"P21626n_16n "'"P216n_26n_16n

n - 1] (n - 1)(n - 2) Blocks2 ] 2!

P216i16i26 n [2] -- _)= P216i 1 I_li 2 "_ln

i1=1,2 ..... n-2 , i2 = i1+1, i1+2 ..... n-1

Partition 4:

P216i 16i 2 6i 3 6n [2] = diag[P21 [2]6162636 n [2]'P216162646n [2]"'"P2161626n_lbn ,

[2]

P216163646 n 'P216163656 n [2],...,P2161636n_16n [2],...,P216n_36n_26n_16n [2]] ;

(n - 1] = (n - 1)(n - 2)(n - 3) Blocks
3 / 3_

P216i16i26i36n [2] = P216i 1 (_)Irli 2 "rli3 "tin

i1=1,2 ..... n-3 ; i 2 = i1+1, i1+2 ..... n-2 ; i 3 = i1+2, i1+3 ..... n-1

Partition k:

15



-- [21=
P21gilgi2 ""gik_lgn

• [2] [2]
dlag[P216162...6k_26k_16n [2]' P216162...6k_26k6n '"" "'P216162...6k_26n_16n '

P218183...&k_l&k& n [2], P218183...&k_l&k+l& n [2],..., P218183"" "&k-l&n-l&n [2],

"'" P21 &n_3&n_2&n_l&n[2]]

n-l) (n-l)!k-1 = (k --i-)._n- k)!

(n- 1)(n-2)...(n- k+ 1)
= Blocks

(k-l)!

P215il 5i 2 ""Sik-15n [2] --= P215i 1 @Irli2"-..'rlik_l'rln

i1=1,2 ..... n-k+l ; i2 = i1+1, i1+2 ..... n-k+2 ;

ik_ 2 = i1+k-3 ..... n-2 ; ik_ 1 = i1+k-2 ..... n-1

Partition n:

P215152...5 n_15n [2] = P2151 ® Irl2 "113.....11n_1"11n n-l) 1 Blockn-1

m m

Note that all P21 &i terms in the above equations are defined by the P21&n equation given for

Partition 1.

The matrix P11 In] in equation (3.42) is a block-column matrix with n partitions, and is
6n

comprised of known matrices (i.e., matrices that have already been computed at this point). This

matrix is defined as follows.

16



- [n] =
Pll6n

in n

-- [21

Pl16i16 n

- [31

Pl16i16i26 n

_116i16i26i36n [4]

[k]

P116162...6n_16 n [n]

Partition 1: In = Identity Matrix of Dimension determined by 6n
n

Partition 2:
_116i16n [2] =

[21
P11616 n

el 1626n [2]

Pll6n_16n [2]

n 1) = n-
1 Blocks

1

[2] e 1 [1]e 1
Pl16i16 n = 16i16 n 16 n

e116i16n [1] = Pl16i16 n @Inn
i1= 1,2 ..... n-1

m

Pll6n =

in n

(P116n6n )

(P116n6n ) tin-1

17



Partition 3:

el 16i16i26n [3] =

[31

P11 _l_2_n

P11 _l_3_n [3]

[31

P11515n_15 n

P11 _2_3_n [3]

P11 _2_4_n [3]

P11626n_16n [3]

P116n_26n_16n [3]

" (n21)=(n-1)(n-2)2!
Blocks

[3] p 1 [2]p 1 [1]p 1
P116i16i26n = 16i16i26n 16i26 n 16 n

[21 [21 @

P1 l&il&i2&n = P1 l&il&i2 Inn

[21 = P1 [11Pl16i2Pl16i16i2 16i16i2

[1] el @
Pl16i16i2 = 16i16i2 Ini 2

[11 @

Pll&i2& n = P1 l&i2& n Irln

i1= 1,2 ..... n-2 ; i2=i1+ 1, i1+2 ..... n-1

18
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Partition k:

P115i15i2""5ik_15 n

[k] =

[k]

P115152...Sk_25k_15 n

[k]

el 15152...Sk_25k5 n

[k]

el 15152...Sk_25n_15 n

[k]

P118183...Sk_lSk5 n

el 18183...Sk_lSk+15 n [k]

[k]

P115153...Sk_lSn_15 n

[k]

el 15n_k+lSn_ k+2...5n_15 n

n- 1) (n- 1)!k- 1 = (k £]-).7_n -_ k)!

(n - 1)(n - 2)...(n - k + 1)
= Blocks

(k -1)!

[k] = el [k-1]e115 • 5 [1]P115ne115i15i2""Sik-15n 15i15i2""Sik-15n lk-1 n

[k-l] [k-l] (_) irln
Pl15i15i2 ...Sik_15n = Pl15i15i2 ...Sik_1

ell 5i15i2 ...Sik_l [k-l] = Pl15i15i 2"''5ik-1
[k-2]e 1 [1]Pl15.

15ik_25ik_ 1 lk_ 1

[k-21

Plls. 5 .... 8. [k-2] = Pl15i15i 2 @lrlk_ 111 12 lk- 1 ""Sik_ 2

[2] el [2]
P115i15i25i 3 = 15i15i2 @lrli 3

[1]p 1
PllsilSi 2 [2] = PllsilSi 2 15i2

2O



[1] el
el 16i16i2 = 16i16i2 @Irli 2

i1= 1,2 ..... n-k+l ; i2=i1+ 1, i1+2 ..... n-k+2

ik_2=il+k-3 ..... n-2 ; ik_l=il+k-2 ..... n-1

Partition n:
[n_l]P116n_16n [1]_ 1 . (n-l)Pl16162...6n_16n [n] = Pl16162...6n_16 n 16n ' n-1 = 1 Block

The first two matrices on the fight side of the above equation for Partition n are defined by the

preceeding equations for Partition k. Also, all P11 terms in the above equations are defined by

the P116n equation given for Partition 2.

The matrix PlZ6j in equation (3.42) is a block-row matrix withj partitions, and is

comprised of known matrices (i.e., matrices that have already been computed at this point). This

matrix can be defined as follows.

-- )2el 2 )TIj -1 ]
P126j = [P126j 'P116j6j P126j '(P116j6j 6j "'"(P116j6j P126j

The matrix SA6 n In] on the fight side of equation (3.42) is a block-column matrix with n

partitions, and is comprised of known coefficeint matrices from the expansion of SA(6). This

matrix can be defined as follows.
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SA [n] =
_)n

m

SASn5 j

-- [2]

SA6il6n6 j

-- [2]

SA6i16i26n6 j

-- [2]

SA_}il _}i2_}i3_}n_}j

-- [2]

SAgi 1gi2""gik_l gngJ

-- [2]

SA6162...6n_16n6 j

Partition 1:

SA16n6j

SA26n26j

SAtin

6n_lngj

SA2 2
5nSj

SA 3

5n25j 2

: °°

SA(_ln +1) "'"

6n_ln6j 2

SArlj

6ngjrlj

SA(rlj +1)

6n26jnj

j = n+l,n+2 ..... m

Partition 2:

m

S [21 =

A6i16n6 j

m

SA&il&n& j

SA&il&n2& j ; i 1 = 1,2 ..... n-1 ; j = n+l,n+2 ..... m
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SAo+g)
6il6ng6j

SA(2+g)

6i 126ng6j

SA(_il +£)

6il _li 16ng6j

SA(2+g)

6il6ng6j 2

SA(3+ O

6i126ng6j2

SA(_il

°°°

°°°

SA(n j +g)

_il_ng_j_lj

SA(_Ij +g+l)

_il2_ng_j_lj

"'" SA(_li 1 +_lj +£-1)

_il _li 1_n£_j_lj

; g = 1,2 ..... Tin

Partition 3:

m

S [2] =

A_il_i2_n_ j

m

SA_il_i2gi 2 6n6j

SAt311 {_12_12 _n2_j

m

SA6il _i2 gi 2 6nrln 6j

i 1 = 1,2 ..... n-2 ; i2 =i1+1, i1+2 ..... n-1

_i2 = 1,2 ..... _]i 2 , j = n+ 1, n+2 ..... m
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•.. SA
SA(I+_) SA(2+_) 2 (rlj +_)

_5ilg6j _5ilg6j _5ilg6jnj

• .. S A
SA(2+_) SA(3+_) (qj +_+1)

_i 12_j _i 12_j2 _i 12_j_lj
: : .. :

SA S A

_i 1_li 1_j _i 1_li 1 _j2

SA(_li 1 +rlj +_-1)

_)il _li 1 _)j_lj

(i_i2)gi2 (_n)gn= ; gn = 1, 2 ..... _ln ; _ = _i2 + _n

Note: _i2 is updated before gn

Partition 4:

SA [2] =
6i16i26i36n6j

m

SA_ll_12gl 2 _)i3 gi3 _)n_)j

SAgll _12 _l 2 _13 _l 3 gn2gj

m

SA_ll _12 (12 _13 (13 6n_ln 6j

i 1 = 1,2 ..... n-3 ; i2 =i 1 + 1, i 1 +2 ..... n-2

i 3 =i1+2, i1+3 ..... n-1 ; j = n+l,n+2 ..... m

_i2 = 1,2 ..... Tli 2 ; _i3 = 1,2 ..... Tli 3
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•.. SA _
SA(l+_)&ilg&j SA(2+_) &il g&j 2 (_lj +g)

&ilg&j_lj

• .. S A _
SA(2+_) SA(3+_) (nj +g+l)

6i 1266j 6i 1266j2 6i1266j_ j
. . .. •

SA SA ""S A
(_li1 +_) (_li1 +_+1) (_li1 +rlj +_-1)

6il _li1g6j 6il _li1 g6j 2 6il _li1 g6jrlj

= (i_i 2)gi2 (i_i 3 )gi3 (i_n)gn ; ,en = 1, 2 ..... Tin ; _ = ,ei2 + ,ei3 + ,en

Note: _i2 is updated before gi3 ; _i3 is updated before _n

Partition k:

-- [2] =

SA6il 6i2"" "6ik-16n6J

SA6il6i2gi 2 ""6ik_l gik_l 6n6j

SA6il 6i2 gi 2 ...6ik_l gik_l 6n26j

SA611612 (12 """6i k-1 gi k-1 6n tin 6j

i 1 = 1,2 ..... n-g+l ; i2 =i1+1, i1+2 ..... n-g+2

ig_2 =i1+_-3, i1+_-2 ..... n-2 ; ig_ 1 =il+g-2, il+g-1 ..... n-1

j = n+l,n+2 ..... m

_i2 " . _ik_l= 1,2 ..... Tli 2 ..... = 1,2 ..... Tlik_ 1
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•.. SA
SA(I+_) SA(2+_) 2 (_lj +_)

6i1_ j _i1_ j _il_j_lj

• .. S A
SA(2+_ ) SA(3+_) (rlj +_+1)

8i 12_6j 6i 1268j2 8il 2_sj'qj

• : ".. •

S A _ SA ""S A
(nil +£) (nil +3+1) (nil +rlj +3-1)

6i 1ni 1g6j 6i 1nil gSj 2 8i 1nil g6jrlj

- gi )£ik_ 1 (i_n)£n
i_ = (i_i2) 2 ...(i_ik_ 1 ; gn = 1, 2 ..... a_n

= gi2 +,_i3 +...+ gik_ 1 +'e n

Note: gi2 is updated before gi3 ; gi3 is updated before gi4 ; ... ; gik_l is updated before gn

Partition n:

-- [21 =

SAs182...Sn_lSn8 j

m

S A s182 g2 ...Sn_l gn-18n8 j

SAglg2 g2...gn_l gn-18n26j

SAs182 g2 ...Sn_l gn-18nrln 8j

j = n+ 1, n+2 ..... m

"gz = 1,2 ..... 112 ; ... ; ,en_l = 1,2,...,_ln-1
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SA(I+_)
6166j

NA(2+_ )

= 61266j

SA(_I1 +_)

61_1166j

• .. S A _
SA(2+_) 2 (_lj +g)

6166j 6166j_lj

• .. S A _
SA(3+_) (qj +g+l)

61296j2 61296j_lj
: .. :

S A _
(_11+g+l) "'" SA(_I1 +_lj +_-1)

61_11 g6j2 61 _11g6j_lj

Note:

= (62)g2 ""(6n-1)gn-l(6n )gn ; _n = 1, 2 ..... _ln

= g2 + g3 +"" + gn-1 + gn

g2 is updated before g3 ; g3 is updated before g4 ; ... ; fin-1 is updated before gn

The above general equations, which define the matrices given in equations (3.42) for
generating the off-diagonal block equations, are complicated due to the large number of cross-
product terms that can arise in solving the general problem and due to the notation required to
generate the associated equations. As an illustration of generating these equations based on
equations (3.42) and the above defining equations, the off-diagonal block equations for the case of

three parameters (m = 3) with maximum degree of 2 for each 6 i parameter (111 = 112 = 113 = 2) are
shown below.

Off-Diagonal Block Equations for m = 3 (_11_----_--_2_----_--_3_----_)

P2161 [P126j P126j I SA1616j

P2161Pl16161 Pl1616 j Pl16j6j -- SA26126 j

P2162

P2162 Pl16262

P2161Pl16162

P2161Pl16161Pl16162

P2161 P116162 P116262

1_2161 1_116161 1_116162 P116262

el 1626 j [P126j Pll6j6j P126j ] =

SA2616j2

SA36126j2

SA1626j

SA26226j

SA261626 j

SA3612626j

SA3616226j

SA46126226j

,j=l,2

SA2626j2

SA36226j2

SA361626j2

SA4612626j2

SA4616226j2

SA56126226j2

,j=3
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The general equation for computing each Pll off-diagonal block, Pll 6 6- ' given by
n j

equation (3.42), can be written as a generalized linear matrix equation of the following form:

AXB = C (3.43)

where A, B, and C are known constant matrices. The following Lemma is stated without proof as
an extension of Lemma 2.2 given in Reference [11].

Lemma 3.2

Consider the generalized linear matrix equation given by equation (3.43), where A E R nxm, B E

R rxp, and C E R nxp are given matrices. Then the following statements are equivalent:

1TIXF

(1) there exists a solution X E R ;

(2) the columns of C _ Im [A] and the rows of C _ Im [B T];

(3) rank[A C] = rank[A] and rank[BT cT]T = rank[B];

(4) Ker (A) C Ker (C) and Ker (B) C Ker (C).

Furthermore, the solution, if it exists, is unique if and only ira has full column rank and B has
full row rank.

Equation (3.43) and Lemma 3.2 can be used in computing a solution for each off-diagonal block of

Pl 1, based on equation (3.42). This solution has the following form.

X _ = M\N (3.44)

where: M = BT® A ; N =C $ (3.45)

Note: C $ is the column-form vector of matrix C obtained by

stacking the columns of C into one column vector

X = [Xl $ X2 $ ... Xr $ ] ; XiSE R mxl ," i = 1,2, ..., r (3.46)

Then the following theorem is stated.

Theorem 3.3

Given a general linear matrix equation of the form given by equation (3.42) for each off-diagonal

block of Pl 1, i.e.:

(_21_n [n]_11 [n] (_12_j) = -- [n]6 n )P116n6 j SA6n

where: n = 1, 2 ..... m-1 andj = n+l, n+2 ..... m

then a solution for P116n 6j of the form given by equations (3.43) - (3.46) and which satisfies rank

test (3) of Lemma 3.2 always exists and is irreducible.
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Proof: (Sketch)

Therank test(3)of Lemma3.2canbeusedto determinewhethera solutionfor Pll8 8-exists,
n 3

based on the P218i, P12 8i ' and Pl18i 8i matrices computed as described in Section 3.2.1. If not,

these matrices can be augmented using the appropriate columns and/or rows of the matrix SAg n [n]

given on the right side of equation (3.42). Thus, a solution can always be found. The resulting
solution is irreducible, because satisfaction of rank condition (3) in obtaining a solution prevents
unnecessary redundancy from being built into the solution process.

QED

To summarize, this section has presented a simple numerical technique for computing the

off-diagonal blocks of P11, i.e. , for each block-row, n, and each block-column, j, (as
Pl18 n 8j

defined by equation (3.16)), where n = 1, 2 ..... m-1 and j = n+l, n+2 ..... m. The numerical
computation involves the solution of a generalized linear matrix equation, and such a solution can

always be found by augmenting the previously computed _P_ls1, P12 , Pll , and Pll
• 8i 8i 8i 8i 8j

matrices as required to obtain a solution for equation (3.42) based on equations (3.43) - (3.46).
The result is irreducible, because a solution for each off-diagonal block is computed to just meet
the rank conditions (3) given by Lemma 3.2.

3.2.3 Full P-A Model Solution, Nilpotency and 1-D Irreducibility

Once the P218i , P128i , Pl18i8i, and Pl18.8. partitions for each parameter have been
13

determined as described in Sections 3.2.1 and 3.2.2, the full solution is determined using
equations (3.9) - (3.12). This is a simple matter of collecting the matrix partitions together into a

single matrix for P21, P12, and Pll" The A matrix is also known and given by equation (3.13),

where the number of repetitions for each parameter, ni, was determined in solving the P218i , P128i ,

P118i8i , and P118.8.1 3 matrices.

The following theorem is given regarding the satisfaction of the nilpotency condition of
equation (3.3) for the full P-A model solution.

Theorem 3.4

The P11 matrix defined by equation (3.9) and computed using Theorems 3.1 and 3.3 as described
in Sections 3.2.1 and 3.2.2 satisfies the nilpotency condition of equation (3.3), as defined below.

]r+l[APll = 0 ; r+l _ Tll+Tl2+...+Tlm

Proof: (Sketch)

For r+l = T]I -4- 112 at- ... at- Tlrn, nilpotency is satisfied by Lemma 3.1. For this case, solution of the
off-diagonal blocks does not enter into satisfying the nilpotency condition. That is, the nilpotency
of the main-diagonal blocks is sufficient to satisfy the nilpotency of the full solution.
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For r+l < 111 at- 112 at- "" at- Tim, nilpotency is satisfied by the solution of the off-diagonal blocks.
That is, this case arises when there are zero crossterm coefficient matrices that are factored into the
solution of the off-diagonal blocks. Thus, inclusion of these zero matrix coefficients in the
solution of the off-diagonal blocks automatically satisfies the nilpotency of the full solution.

QED

An objective of the P-A modeling process was to determine a model which is low-order.
The following theorem is therefore given regarding the reducibility of the full P-A model solution.

Theorem 3.5

The P-A model matrices defined by equations (3.9) - (3.13) and solved using Theorems 3.1 and
3.3 is 1-D Irreducible.

Proof: (Sketch)

The P216i , P126i , and P116i6i matrices determined using Theorem 3.1 represent an irreducible

realization of the linear and th-degree terms of SA(6) associated with the 6 i parameter. Solving

equation (3.42) using Theorem 3.3 results in an irreducible solution of the off-diagonal blocks of

Pll based on the solution obtained previously for P216i , P126i , and P1 INN" Thus, putting the full

solution together results in a 1-D irreducible LFF model of the given system.

QED

4. Example: Multivariate Quadratic Problem (See Reference [4])

Consider the following compound inertia matrix problem presented in [4], and first posed
in [13].

J

0 -2yz 2y 2 4(y 2 -z 2) -3xy xz ]

2yz 0 -2xy -4xy 3(x 2 -z 2) yz /-2y 2 2xy 0 4xz -3yz y2 _ x 2

(4.1)

The x, y, and z terms represent displacement parameters from some reference (zero) point for the

system. Thus, the parameters x, y, and z are the uncertain parameters, 6, of the system. The

results obtained using the above computational solution (in Matlab) are shown below. However,
the details of obtaining this solution are omitted for brevity.

P21 = [ P216x P216y P216z ]

[0000il,l y °°°ilP216x = 1.7321 0 0 0 , = 0 0 0 0 0
0 0 1 0 0 0 -1.4953 0 0

(4.2a)

(4.2b)
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e126x =

e218z

0000 0 O

00001.73210

0000 0 0

0000 0 1

0000 0 0

oooo 1= 01.732100

0 0 O0

P,,,
iiv

P12 = P12o
I_X7

D

Y

0

0 0

1.33750

0 0

0 0

0 1

1 0

0 .94574 1.8915 0 0

0 0 0 0

0 0 0 -.66874

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

(4.2c)

(4.3a)

(4.3b)

e128z =

0000

0002

0000

0000

0000

0000

0

0

0

1.7321

0

0

,

0

0

0

1

0

(4.3c)

Pll
_x_x

0100

00000

=000-10

00000

00000

Pll =

.

PllSxSx E,
°x°y

0 P118ySy

0 Pll_z_y

000

100

000

001

000

000

000

PllSxSz

0

Pllgzgz

0000

0000

0000

0000

0000

0000

0000

0-10000
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000000

000010

(4.4c)

00 0

O0 0

0 0.28778

O0 0

O0 0

O0 0

0 0 -1 0

00 0 0

0 0 0 .7698

00 0 0

00 0 0

0-3 0 0

(4.4d)

A = diag [6xi5, 6yI7, 6zI6] ( n A = 18 ) (4.5)

Note that the solution of this problem was not restricted to a quasi-upper-triangular P11 matrix. In
particular, it was determined in solving this problem that the quasi-upper-triangular structure for

P11 required an extra repetition in A to obtain a solution.
A comparison of this solution with those obtained in [4] and [13] is shown in Table 1.

i i nz nA CommentsMethod nx t ny t
' _ Direct Numerical Solution for Nonlinear
I I

5 _ 7 _ 6 18 Problem, No Decomposition, No Model
_ Reduction

I I

' _ Decomposition to Linear Components,
I I

9 , 10 _ 9 28 Solution for Each Linear Component,
' _ Combination of Component SolutionsI I

7 , 8 _ 5 20 Same As Above with Model Reduction
I I
, _ Special Decomp. to Linear Components,

7 ' 5 _ 7 19 Solution for Each Linear Component,
I I
, _ Combination of Component Solutions
'5'66 I I
I I
I I

9 , 9 I 9
I I
I I
I I
I I

4 i 5 i 4
! I
! I
! I

Belcastro & Chang

Cockbum & Morton [4]

Doyle, Elgersma, et. al. [13]

17 Same As Above with Model Reduction

Decomposition to Linear Components,
27 Solution for Each Linear Component,

Combination of Component Solutions

13
Special Matrix Decomp. to Linear
Products, Solution for Each Linear

Component, Combination of
Component Solutions

Table 1. Comparison of LFT Models Obtained Using Current Methods
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ThesolutionobtainedusingthisLFFmodelingapproachrequiredatotalof 18parametersinA,
with 5 repetitionsfor fix (nx= 5), 7 for i_y (ny = 7), and 6 for i5z (n z = 6). Note that the LFT
modeling approach of this paper does not require matrix decompositions for a solution to this
example, since it was already in a multivariate polynomial form. Moreover, this approach achieves
a low-order model directly (without the use of model reduction), and can be readily implemented in
Matlab. The result presented in [4] for a direct decomposition required 28 and 20 parameters in A
before and after model resuction, respectively. The result obtained using a specialized
decomposition approach developed in [4] to reduce the resulting LFF model dimension required 19
and 17 parameters in A before and after model reduction, respectively. Note that this approach
decomposed the J matrix of equation (4.1) to linear matrix products and sums. Then an LFT
model for each linear matrix was obtained separately, the individual LFF models combined to form
the full LFF model, and reduction methods applied to remove unnecessary repetitions. The result
presented in [13] required 27 parameters in A using a linear decomposition approach, and 13
parameters in A by recognizing that J can be factoed into the product of two matrices containing
only linear x, y, and z terms. Although this yields the lowest-order LFF model, it is specific for
this particular matrix structure and can therefore not be generally applied to other problems.

5. Concluding Remarks

A numerical approach was presented in this paper to directly compute low-order LPT
models for multivariate polynomial problems. The LPT modeling approach does not require
matrix decompositions for multivariate polynomial problems, and a low-order model is directly
obtained without model reduction. The computations depend only on simple matrix computations,
including the singular value decomposition (svd) and solving generalized linear matrix equations.

A matrix svd is used to simultaneously compute a solution for the P216i, P12 6i' and Pl16i

matrices for each i5i parameter. Generalized linear matrix equations are used to solve for the

P116i6j matrices. The full LFT model is constructed by simply collecting the partitioned solutions

together into the P21, P12, and P11 matrices. The resulting LPT model is low-order, because
matrix structure is exploited during the computations in satisfying the rank conditions required for
a solution. Future work will include developing a Matlab implementation of this LPT modeling
approach.
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